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ABSTRACT 

The distribution of stress in the knee of a riveter! steel rigid-frame specimcn 
having a curved inner Bange was investigated both experimentally and theoreti­
cally. A theory was developed which gives the stresses in the knee to the same 
order of accuracy as the ordinary beam theory gives the stresses in the st raight 
legs of the frame. Reinforcing the outer corner of the knee and stiffening the 
web were shown to have little effect on the stress distribution in the frame. 
The maximum load that could be sustained by the specimen was determined. 
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I. INTRODUCTION 

Tests have been made, with the cooperation of the American In­
stitute of Steel Construction, on three steel rigid-frame specimens. 

The results of tests on a riveted specimen having straight flanges 
[1]8 have been reported in RP1130. The results of tests on a riveted 
specimen having a curved inner flange are reported here. This speci­
men was donated by the American Bridge Co. The results of tests 
on the third specimen will be reported in a later paper. 

II. RIGID-FRAME SPECIMEN 

1. DESCRIPTION OF THE SPECIMEN 

The rigid-frame specimen is shown in figure 1. It was fabricated 
from steel plates and angles joined by riveting. The weight as 
determined by the American Bridge Co. was 2,800 lb. The web of 

• Numbers in brackets indicate tbe references at the end of this paper . 
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the specimen was cut from a single plate. The specimen was sym­
metrical about a line joining the center of the curved flange and the 
intersection of the straight flanges. 

The outer corner of the specimen was reinforced by a gusset on 
each side secured to the web by rivets. Additional reinforcement 
at the outer corner was provided by extra angles and a bent plate. 
These angles and the plate were secured by bolts turned to a light 
driving fit in reamed holes, as shown in figure 1, and were removed in 
some of the tests. 
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FIGURE l.-Rigid-jrame specimen. 

The web was stiffened by angles, as shown in figure 1. The lower 
ends of the stiffener angles were crimped over the connected legs of the 
inner-flange angles. The stiffener angles were secured to the web 
and the inner flange of the specimen by rough bolts in punched holes 
and were removed in one of the tests. 

2. TENSILE PROPERTIES OF THE MATERIAL 

Samples were taken from the flange angles and web plate before 
fabrication and marked A, B, E, etc., for identification, as shown in 
figure 1. The tensile properties of the material were determined from 
coupons machined from these samples. The coupons were ASTM 
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8-in.-gage-length tensile specimens for plates, shapes, and flats [21-
The width of the coupons at the reduced section was 1.5 in., and the 
thickness was that of the material as rolled. 

The coupons were tested in a screw-driven, beam-and-poise testing 
machine having a capacity of 100 kips. The speed of the movable 
platen of the testing machine was 0.008 in.fmin until the extensometer 
was removed from the coupon. Thereafter the speed of the movable 
platen was 0.4 in./min. 

The strains were determined by means of a Ewing extensometer 
of 8-in. gage length. One division on the scale of this instrument 
corresponds to a strain of 0.000025. Readings were estimated to 
0.1 division. 

The yield point was determined by the drop-of-beam method. 
Young's modulus of elasticity and the proportional limit were deter­
mined from difference curves [3]. 

The tensile properties of the material are given in table 1. 

TABLE 1.-Tensile properties of the material 

Young's Propor· Elonga· Redue-Coupon num· Coupon Tbick· modulus tional Yield Tensile tion in tion 01 ber from ness of elas· limit point strength 8 inches area ticity 

--- ------------
In . Kip.,/;n.' Kips/in .' Kips/in.! Kips/in.' Percent Percent 

L ............. Angle A 0.507 28,600 33 36.7 60.3 28.8 5 
2 .............. Angle A .502 29,200 36 37.8 61. 4 29.8 59 
3 ...... ........ AngleB .498 29,400 31 40.2 67.7 27.9 55 
4 . . .... ...... .. AngleB .492 27.800 28 40.6 68.2 27.0 6 
5 .............. Angle C ,497 29.400 31 39.6 65.6 28.3 5 

6 ..... .....•... Angle C .500 29,600 35 40.8 68.2 28.3 54 
7 ..... .. . . . .... Angle D . 501 29, 200 33 40. 2 68. 5 27.8 55 
8 ..... .. ... ... . AngleD .495 29, 000 33 39.6 67. 1 28.8 53 
9 ......... .... . Plate E .383 29. 600 35 41. 0 61. 9 29.8 5 8 
10 ....... . ..... Plate E .385 28,900 35 40.2 61. 7 28.0 53 

11 .•.•••. .•. .•• PlateE .390 29,200 35 39.8 61.2 29. 9 55 
12 ............. Plate E .391 29,000 38 39 7 60.9 29. 2 57 

--------- ---
Average. -------------- -- -------- 29. 100 ---------- --- --.-- -- --- --- ---- ---------- ----------

III. TESTING PROCEDURE 

The rigid-frame specimen was loaded in a vertical, screw-driven, 
beam-and-poise testing machine having a capacity of 600 kips. The 
load was applied through two pin-connected shoes, shown in figure 1, 
one attached to each leg of the frame. 

Three different tests were made with the load acting along the line 
indicated in figure 1. For test 1 the bent plate and extra angles at 
the outer corner and the stiffener angles were bolted to the specimen. 
For test 2 the bent plate and extra angles at the outer corner were 
removed, and for test 3 the stiffener an~les were also removed. The 
bolts through the angles were replaced m each case. The gussets at 
the outer corner were not removed for any of these tests. 

Strain-gage readings were taken at rosettes located as shown in 
figure 1 with Whittemore strain gages having gage lengths of 2 inches. 
One division on the dial of the strain gage corresponds to a strain of 
0.00005. Readings were estimated to 0.1 division. Each rosette 
consisted of four gage lines intersecting at a point and inclined at 45° 
to one another. 
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Each rosette location on the web shown in figure 1 represents two 
rosettes, one on either side of the specimen; and each rosette location 
on the angles represents four rosettes, one on the inside and one on the 
outside of the outstanding leg of each angle. 

The specimen is shown in the testing machine for test 1 in figure 2. 
Before any strain-gage readings were taken, a compressive load of 67 
kips was applied and released five times. Strain-gage readings were 
taken at compressive loads of 5 kips and 65 kips. 

IV. MEASURED STRESSES 

Stresses computed from the strain-gage readings will be called 
measured stresses. These stresses were computed from the strainsb 

due to the 60-kip increase in load by the methods outlined in RP1l30 
[1]. The strains in corresponding gage lines of rosettes on opposite 
sides of the web of the specimen were averaged and the average values 
used in the computations. In the case of the outstanding legs of the 
flange angles, the strains in corresponding gage lines of the four 
rosettes were averaged and the average values used in the computa­
tions. The magnitudes and directions of the principal stresses and of 
the maximum shearing stress for each set of two or four rosettes were 
computed. 

The results of these computations are shown for test 1 in figures 3 
to 6, inclusive. Figure 3 is a contour chart of maximum principal 
stress. Each contour line is a locus of points of equal maximum 
principal stress in the plane of stress. The contour lines show only 
the magnitudes of the stress. The directions of the contour lines 
are not the directions of the maximum principal stresses. The con­
tour lines do not give the values of the stresses in the stiffeners. 
Similar contour charts of minimum principal stress and of maximum 
shearing stress are shown in figures 4 and 5, respectively, except that 
the contour lines of maximum shearing stress in figure 5 were drawn 
for the three-dimensional state of stress. At any point at which 
the principal stresses in the plane of stress are of the same sign, the 
maximum shearing stress occurs in planes at 45° to the plane of 
stress and is equal to one-half the numerically larger of these prin­
cipal stresses. The magnitudes and directions of the principal 
stresses in the plane of stress are shown in figure 6. , 

The results of tests 2 and 3 are shown in the same way in figures 7 
to 14, inclusive . 

• The greatest deviation of any value of the modulus of elasticity from the average value was about 4.5 
percent (tahle I) . The average value was used for computing the stresses. because it was estimated that. the 
error in the strain-gage readings was greater than 4.5 percent. 
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F I GURE 2.-1'he Tigid-fmme specimen in the testing machine. 
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FIGURE 3.-Test 1.-Maximum principal stress, kips/in 2. 

FIGURE 4.-Test 1.-Minimum principal stress, kips/in 2. 
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principal stresses, kips/in 2. 
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FIGURE 7.-Test !3.-Maximum principal stress, kips/in 2 • 
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FIGURE B.-Test 2.-11finimum principal stress, kips/in 2. 
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FIGURE 12.-Test S.-Minimum principal stress, kips/in 2. 
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Comparison of the results for the three tests shows that the bent 
plate and extra angles at the outer corner and the stiffener angles 
on the web had little effect on the stress distribution in the frame. 
The stresses at the outer corner were very small. 

V. ANALYTICAL DETERMINATION OF THE STRESSES 

A rigorous theoretical determination of the state of stress in the 
knee of a rigid frame with nonparallel curved flanges has not been 
obtained, but it is possible to determine the stresses semirationally 
with an accuracy believed to be comparable to that obtained for 
straight girders by the ordinary formulas used for such girders. Let 
figure 15 represent the web and the centroidal axes of the flanges of 
a portion of a rigid frame similar to the specimen tested. Suppose 

d 

H 
---........... -.. 

r----------y 

FIGURE 15.-Web and centroidal axes of flanges of a portion of a rigid frame. 

Determination of circular section and resolution of load at edge of wedge. 

the applied load resolved into horizontal and vertical components 
H and V acting at the centroid of the outer flange at a distance d 
from the point of tangency of the curved inner flange. Then, with 
the systems of coordinates shown in the figure, by drawing from 
any point (R, 2a) of the curved inner flan~e a tangent intersecting 
the outer flange at the point (R+h, Vt) it IS possible to write semi­
rational expressions for the stresses along the are, 2pa, swung with 
center at the intersection, and radius, p, equal to the distance between 
the points (R+h, Vt) and (R, 2a). The radii O=a, O=-a, and the 
arc 2pa form the boundaries of a wedge, which suggests analysis by 
means of Airy stress functions. A combination of stress functions is 
described below by means of which the distribution of stress at the 
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circular boundary of the wedge may be approximated closely, even 
though the boundary conditions along the straight boundaries are 
not all satisfied. The solution for the stresses along the arc 2pa is 
very similar to the ordinary- one for a girder with parallel flanges and 
reduces to the latter solutIOn as a=O (p= ex». Its adequacy can be 
determined only by tests. 

In order to obtain the solution, it is convenient to replace the ap­
plied load by a force P1 acting at the point (R+h, Y1) perpendicular to 
the polar axis 0=0, a force P 2 acting at the same point along the polar 
axis, and a couple M. These forces and the couple and the radius p, 
which will be required, are easily found to be (see fig. 15) 

P1= V cos a-H sin a, 

P2= V sin a+ H cos a, 

M= v[a-h cos 2a----:R(I-cos 2a)], 
sm 2a 

h+R(I-cos 2a) 
p= sin 2a . 

(1) 

(2) 

(3) 

(4) 

N ow assume that the stresses in the wedge due to P1 can be derived 
from the stress function [4] 

(5) 

where r is the radius vector from the edge, (R + h, y 1), to any point in 
the wedge. From eq 5 

() C1' u, 1=-sm 0, 
r 

(6) 

(u8h=0, (7) 

(7,8)1=0. (8) 

To determine the constant Ct, the condition may be used that the 
component parallel to P 1 of the resultant of the distribution of stress 
along the arc 2pa must be equal and opposite to P1: 

2A/2 sin2 a+tc1fa sin2 0dO-P1=0, (9) 
p -a 

where the cross-sectional area A! of each flange is assumed concen­
trated at O=a and O=-a, respectively, and the thickness of the web 
plate is denoted by t. From eq 9 

C1 tp(a-sin a cos a)+2A,sin2 (x' 

and the stress (Up )1" becomes 

P1 sin (J 

(Up)1= tp(a-sin a cos a) +2A, sin2 a' (10) 

, Owin~ to the wide discrepancy between the actual and assumed boundary conditions along the sides of 
the wedge, none of the computed stresses at ,r!-p have any Significance. 
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Assume next that the stresses in the wedge due to P2 can be derived 
from t.he stress function [4] 

al . 
¢z=7jr8 sm 8, (11) 

from which 

(qr)z=~ COs 8, 
r 

(12) 

(q6)~=0, (13) 

(Tr6)2=0. (14) 

To determine the constant al the condition may be used that the 
resultant of the distribution of stress along the arc 2 pa must hold P z 
in equilibrium: 

From eq 15 

al = -- tp(a+sin a cos a) +2AI cos2 a' 

and the stress (Up )2d becomes 

P2 cos 8 
(O"ph= -- tp(a+sin a cos a) +2AI cosz a' 

(15) 

(16) 

Assume, finally, that the stress in the wedge due to !vI can be de­
rived from the stress function 

from which 

(0"6)3=0, 

(Tr6)a=;(ao'+2d/ cos 2(J). 
r 

(17) 

(18) 

(19) 

(20) 

Again, by considering the boundary 2pa of the wedge, the constants 
may be deteI'illined from the condition of equilibrium of forces per­
pendicular to the polar axis and the condition of equilibrium of mo­
ments (with respect to the edge of the wedge): 

A 4 d ,· . 4td 'fa . . d -- 2 12 2 sm 2a sm a-- 2 sm 2(J sm (J 8 
p p -a 

+- (ao' +2d2' cos 2(J) cos 8 d(J= O, tfa 
p -a 

d See footnote c. 
107462--38----11 

(21) 

(22) 
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~he solution of the two simultaneous eqs, 21 and 22, for ao' and lit' 
gives 

2A, . 
M cos 2a-"""tP sm 2a 

a '-o -T ' 2A ' 
sin 2a-2a cos 2a+ ' t/'2a sin 2a 

d ' M 1 
2 =-2t . 2A. ' 

sm 2a-2a cos 2a+~'2a sm 2a 

and the stresses (u p)a8 and (Tpe)a! become 

2M sin 28 
(up)a=t(l . 2A.' (23) 

sm 2a-2a cos 2a+ t/·2a sm 2a 

2A, . 
M cos 2a-t;; sm 2a-cos 28 

(Tp8)s= tp2 • 2A.· (24) 
sm 2a-2a cos 2a+ t/·2a sm 2a 

The final stresses are 

Up= (Up)l + (o-ph + (o-p )3' 
O'e=O, 

Tpe= (Tpe)a . 

(25) 
(26) 
(27) 

The preceding development makes it possible to determine the state 
of stress. Of primary practical importance is the determination of 
the maximum normal and shearing stresses. For any circular section 
2pa the numerically largest normal stress occurs at 8=a or ()= - a, 
but the determination of a to make the normal stress a maximum or 
a minimum is another matter. It is evident that differentiating 
equation 25 with respect to a, setting the derivative equal to zero, 
and solving the resulting equation for a involves more than mortal 
man is likely to accomplish. One must be content with cruder 
methods. A cantilever girder of uniform strength, with negligible 
web (latticed construction), loaded only by a transverse force at its 
.end, is triangular in elevation according to the ordinary beam theory. 
Suppose now that we draw from the point of application of the load 
in figure 15 a tangent to the curved inner flange, as indicated by the 
angle 2ao. If we neglect the web, it is clear that, by analogy with the 
girder of uniform strength, the circular section 2poao is weaker than 
any section on either side of it when the effect of only the transverse 
component, V cos ao-H sin ao, of the applied load is considered. 
The effect of both the web and the longitudinal component, V sin ao+ 
H cos ao, of the applied load is to shift the weakest section to the 
left. This shift is likely to be small for most practical cases, but in a 
,questionable case it may be desirable to compute the extreme fiber 
stresses for a=O (by the ordinary beam theory) and for a=ao (M=O) . 

• See footnote c. 
I See footnote c. 
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The stresses for these two values of a are particularly easy to compute 
and will indicate how rapidly the extreme fiber stress is varying. If 
the stress for a=ao is close to the maximum allowable stress, it may 
be worthwhile to compute the extreme fiber stresses for a value of a 
intermediate between a=O and a=ao. 

The value of ao may be obtained by equating the right-hand side 
of eq 3 to zero and solving for cos 2a: 

(1?2-d2)[(h+1?)2+d2]} 
1?2(h+1?)2 . (28) 

The corresponding value of Po is obtained by substituting the value of 
ao from eq 28 for a in eq 4. 

The analytical determination of the maximum shearing stress in­
volves the same sort of difficulties as arise in connection with the maxi­
mum normal stress. It is simply out of the question as a practical 
matter to differentiate eq 27 with respect to a, set the derivative equal 
to zero, and solve the resulting equation for a. It is almost evident, 
however, that the shearing stress becomes a maximum on the section 
defined by a=O, and consequently the equation for maximum shearing 
stress, Tmax , on the cross section of a straight girder applies, 

3 (th+4A,) V 
TIIlAX =2 (th+ 6A,) th' 

(29) 

The expressions 10, 16,23, and 24 should give good approximations 
to the stresses in any beam or girder with equal nonparallel flanges 
so long as the radii of curvature of the flanges are not too small relative 
to the depth at the section at which the stresses are desired. The 
expressions 10, 16, 23, and 24 are closely analogous to those which 
apply for a straight girder with parallel flanges and reduce to the latter 
as a=O (p= co). If numerator and denominator of eq 10 are mul­
tiplied by pa, then the quantity PIP may be thought of as the bending 
moment at the circular section, the quantity p sin e is the distance of 
any fiber from the neutral surface (the polar axis), and the denomi­
nator is the moment of inertia of the circular sectional area with respect 
to the neutral surface. It is obvious then that as a=O (p= co), eq 10 
reduces to the ordinary flexure formula. Similarly, if in eq 16 e = 0 
and a= 0 (p= co ), the equation reduces to 

(CTp)2= th:~A/ 
which is the familiar expression for the normal stress due to an axially 
applied load. Equation 23 may be written for small values of e and 
a as 

Me 
(CTp)a 2 ' 

3tp2~+2A,pa2 

which, with pa=hj2 _and 'pe=z, reduces 'to 

("),~ 1 M, ~hf 
12th3 + 2A "2 
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This equation is again the ordinary flexure formula. For small 
values of () and a eq 24 may be written 

.!a2_.!(}2+ A, a 
M2 2 tp 

(TpS) S= -r2 2 A ' 
p -as + 2--..! a 2 

3 tp 

which, with pa=hj2 and p8= Z, reduces to 

[~(r -z2)+A4J~ 
(TpS)S= - [112thS+2A{~)]t . 

This equation is the familial' one giving the transverse or longitudinal 
shearing stress at any point at the distance Z from the neutral axis of 
a straight girder when the shearing force on the cross section in 
question is Mj p. In the present case M and p are given by eq 3 and 
4, and by forming the ratio Mjp and allowing a to approach zero, it 
is easily found that Mjp=- V. 

VI. THEORETICAL STRESSES 

The theory was applied to the portion of the rigid-frame specimen 
bounded by nonparallel flanges. This portion may be termed the 
"knee" of the frame, and half of it is shown in figure 15, included 
between the positive axes of x and y. A flange was regarded as con­
sisting of two angles and a part of the web plate between them, and 
the area of the flange was considered concentrated at its centroid, 
which was taken as the boundary of the web. The location of this 
boundary was computed for the two 4- by 4- by ~f-in . angles and 
the part of the included %-in. plate which extended from the centroid 
of the flange to the backs of the flange angles, by the method outlined 
in RP1130 [1]. The distance between the boundary and the backs 
of the angles was found to be 1.15 in., and the dimensions (figs. 1 and 
15) of the portion of the frame to which the theory was applied were 
taken as h=18-2(1.15) = 15.7 in. and R=60+1.15=61.15 in. 

The load line intersected the centroidal axis of the outer flange at 
an angle of 45° at the point (R+h, -d), where (fig. 1) d=120-18-
60+hj2=49.85 in. The load was resolved at this point into com­
ponents H= V= 60-v'2j2 = 42.43 kips. 

With these values of h, R, d, H, and V, eq 1, 2, 3, and 4 for PI, P2 , 

M, and p were solved for four values of a, and the results were sub­
stituted in = 25, 26, and 27 for the stresses. The sections taken cor­
respond to the following values of 2a: 2a=0, for which the theory 
reduces to the ordinary beam theory; 2a=2ao=15° 9' obtained by 
solution of eq 28 and for which 1\11=0; 2a=300; 2a=45°. 

A comparison between the theoretical and the measured stresses 
for test 3 is shown in figure 16. The curves represent theoretical 
stresses, and the arrows, measured stresses. The measured normal 
and shearing stresses shown were obtained from the following quan­
tities measured at the rosettes: the maximum principal stresses, O'u ; 

the minimum principal stresses, 0'.; and the angles, if;, between O'u, 
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and the load line. The values of (1'" at corresponding rosettes on either 
side of the line of symmetry of the frame were averaged, and from, 
the averages were interpolated the values of (1'" at the points at which 
the measured stresses are plotted in figure 16. The values of (1', and 
y; at these points were obtained similarly, and from the values of (1'", 
(1'" and y; at each point the components of stress in the r- and O-direc­
tions were computed. The normal stresses, (l'p, are shown on four 
circular sections on the lower half of figure 16, and in addition, the 
normal stresses in the flanges have been plotted at right angles to the 
directions in which they act, with the centroidal axes of the flanges as 
base lines, to show more clearly the variation of stress along the 
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FIGURE l6.-Test S.-Theoretical stresses and measured stu sses . 
The curves represent theoretical, and the arrows measured, stresses. 

flanges. The shearing stresses Tp8 are plotted on four corresponding 
sections on the upper half of the figure, and the variation in shearing 
stress along the center line of the circular sections is also shown. 

The agreement between the theoretical stresses and the measured 
stresses is good, especially for the normal stresses. Except for a few 
points on the section defined by 2a=45°, the theory gives stresses to 
the same order of accuracy as the ordinary beam theory gives the 
stresses for 2a=O. 

The numerically largest of the measured normal stresses shown in 
figure 16 occurs at the inner flange on the circular section defined 
by a=ao. This result is in agreement with the conclusion, drawn 
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from the theory in section V, that the numerically largest normal 
stress occurs near the section defined by a= an. The measured shear­
ing stresses on this section are negligibly small as would be expected 
from eq 24 and 27, which state that the shearing stresses on this 
section are everywhere zero. 

VII. MAXIMUM LOAD 

The rigid-frame specimen is shown in figure 17 in the testing ma­
chine for determining the maximum load. The conditions for this 
test were the same as for test 3, except that lateral deflection of the 
outer corner of the specimen was prevented, and that the gussets at 
the outer corner had been removed.u 

Before loading, the specimen was coated with a cement wash to 
make Liiders' lines clearly visible where the material was stressed to 
the yield point. 

The maximum load sustained by the specimen was 72,000 lb. 
Failure occurred suddenly, by lateral deflection of the curved inner 
portion of the frame with attendant yielding of the web near the inner 
flange as shown by the Liiders' lines in figure 18. No rivets failed 
so far as could be observed visually. 

For test 3, the ratio of the load to the greatest measured stress in 
the inner-flange angles was 3.92 kips per kip/in~. The ratio of the 
maximum load to the tensile yield point of the angles (see table 1) 
was only 1.80 kips per kip/in2. If one assumes linear variation of 
stress with load up to the yield point and the compressive and tensile 
yield points to be equal, it is evident that the full compressive strength 
of the material in the inner-flange angles was not utilized, and that 
the failure was by elastic instability. 

VIII. CONCLUSIONS 

The distribution of stress in a riveted steel rigid-frame specimen 
having a curved inner flange was determined experimentally and theo­
retically, and the ma:A-imum load was measured. The following con­
clusions were drawn: 

1. The stresses at the outer corner of the knee of the specimen 
were small, and reinforcing the outer corner had a negligible effect on 
the distribution of stress in the specimen. 

2. The stiffeners had a negligible effect on the distribution of stress 
in portions of the frame not near the stiffeners. 

3. The formulas developed give the stresses in the knee to the same 
order of accuracy as the ordinary beam theory gives the stresses in 
the straight legs of the frame. These formulas reduce to the ordinary 
beam theory at the section where the straight and curved parts of the 
inner flange are tangent. . 

4. The design was such that the frame failed by elastic instability. 
The inner-flange angles at failure were stressed to less than half their 
yield point. This emphasizes the necessity of providing adequate 
bracing for the inner flange at the knees of rigid frames of this type . 

• The gussets had been removed in preparation for a contemplated test to determine the stress dlstrl· 
bution for this condition. 
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FIGURE 17 --T)w rigid-frame specimen uncle?' the maximum load of 72,000 lb , 
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FIGURE IS.- Inner portion of the rigid-frame specimen after fanure. 
Liiders' lines are visible in a narrow band adjacent to the curved flange. 

L 
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