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PRESSURE LOSSES FOR FLUID FLOW IN CURVED PIPES 

By Garbis H. Keulegan and K. Hilding Beij 

ABSTRACT 

Tlus paper presents the results of a study of the flow of water in smooth-walled, 
large-radius curved pipes for the viscous and turbulent regimes over a range of 
Reynolds numbers from 500 to 60,000. The discussion is based on data obtained 
with %-inch brass tUbing. Two series of tests were made. In the first series 
pressure losses were measured on t en bends, and simultaneous measurements were 
made on the downstream tangents. In the second series pressure losses were 
measured on four equal segments on each of four bends. 

The greater part of the paper is devoted to a consideration of the results in the 
viscous flow regime. In this part of the investigation care was taken to assure 
parabolic velocity distribution, or nearly so, at the entrance of the bends. Empiri­
cal formulas are given for the effective resisbnce coefficient of an entire bend and 
for the downstream tangent. A method of computing to a first approximation the 
length of curve required for the establishment of the velocity distribution charac­
teristic of a curved pipe is presented. 

Critical numbers for bends of different curvature ratios when the entering flow 
is laminar are briefly discussed. Average values for the relative increase in resist­
ance in a bend as compared with straight pipe in the regime of turbulent flow are 
given for the range of Reynolds numbers from 40,000 to 60,000. 
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I. INTRODUCTION 

A curved pipe or pipe bend, in the restricted sense used in this paper, 
is a pipe of circular cross section bent to the form of a circular arc. 
The straight pipes that connect to the two ends of the bend always lie 
in the plane of the bend, as is implied by the terms, upstream tangent 
and downstream tangent, used in this paper. 

When a fluid flows under pressure through a straight horizontal 
pipe, the pressure decreases in the direction of flow as a consequence of 
the energy loss resulting from fluid friction. A thin layer of the fluid 
adheres to the wall of the pipe and remains at rest with respect to it'. 
Thus the velocity of the fluid at any cross section increases from zero 
at the wall to a maximum at the axis of the straight pipe. If fully 
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developed laminar 1 flow exists, the curve obtained by plotting veloc­
ity against distance from the pipe axis (called the velocity distribution 
curve or the velocity profile) is a parabola, and the loss of energy is 
brought about by the viscous resistance to sliding of concentric layers 
of the fluid over each other. If the flow is turbulent, the loss of energy 
is greater and is due mainly to turbulent mixing of the fluid. In this 
case the velocity profile is flatter near the axis of the pipe and steeper 
near the wall than it is for laminar flow. 

N ow if the pipe is curved instead of straight, the velocity profile will 
no longer be symmetrical about the axis of the pipe. Centrifugal force 
due to the change in direction of the flow sets up secondary currents in 
the plane of the cross section, with the result that the maximum 
velocity is no longer at the center of the section but at some point 
intermediate between the center and the wall. It is found, as might 
be expected, that this distortion of the velocity profile is accompanied 
by larger pressure losses along the pipe than occur for the same flow 
with the symmetrical profile that is characteristic of a straight pipe. 
Hence a curved pipe always offers more resistance to the flow of a 
fluid than would the same pipe if straight. At very small Reynolds 
numbers, however, the difference is so slight, that it cannot be meas­
ured by the methods ordinarily employed. 

In the present experiments, the water was brought into the upstream 
tangent through a bell-shaped entrance. As is well known, such an 
entrance tends to produce uniform velocity distribution over the cross 
section at its exit. However, as the water flows along the straight 
pipe comprising the upstream tangent, this flat velocity profile changes, 
gradually assuming the form that is characteristic of the straight ripe, 
until a point is reached, if the pipe is long enough, beyond which this 
characteristic profile persists unchanged throughout the remainder of 
the length of the straight pipe. The portion of the pipe in which the 
velocity profile changes from one definite form to another form, 
characteristic of the pipe in question, is called the transition segment, 
and the length of this segment is called the transition length. 

Since the velocity profile that exists at the entrance to the bend is 
not the characteristic form for the curved pipe, however, another 
readjustment takes place in the bend, and if the latter is long enough, 
a new velocity profile that is characteristic of the curved pipe and the 
existing flow conditions will become established some distance down­
stream from the entrance to the bend, and will persist unchanged to 
the downstream end of the bend. The terms transition segment and 
transition length are applicable to the bend as well as to the straight 
pipe. It was also found convenient to distinguish between long 
bends-those which are longer than the transition length, and short 
bends-those which are shorter than the transition length. 

Another readjustment of the velocity profile takes place in the 
downstream tangent just below the bend, since the profile character­
istic of the bend must now change back to that characteristic of the 
straight pipe. 

It is evident, therefore, that we cannot confine our attention to the 
bend alone in considering the total loss of pressure caused by a bend, 
for the pressure loss in the transition segment of the bend depends on 
the particular velocity profile at the bend entrance, and this is deter-

1 Throughout this paper the term vi8cou8 flow will be used to designate flow at Reynolds numbers below 
tbe critical. While viscous flow is laminar in straight pipes, it is not so in curved pipes, because oC the 
secondary currents which result from the curvature. 
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mined by the conditions in the upstream tangent. Also the pressure 
loss in the transition section of the downstream tangent will be greater 
than that in an equal length of straight pipe in which fully developed 
laminar velocity distribution prevails. This excess pressure loss that 
occurs in the transition segment of the downstream tangent is due to 
the readjustment of the velocity distribution that takes place here. 

The loss of pressure in any pipe, straight or curved, is given by the 
relation 

1 !lp l U2 ---x·-·-'Y !lx - d 2g (1) 

where 
'Y=the specific weight of the fluid, 

!lp=the pressure drop at the axis of the pIpe over an axial 
length !lx, 

X=the coefficient of resistance, 
d=the pipe diameter, 
U=the mean of the velocity components parallel to the axis in a 

cross section, and 
g=the acceleration of gravity. 

When the velocity distribution is the same for all cross sections, as 
in straight pipes or bends downstream from the adjustment length, 
the pressure drop, !lp, is the same for all elementary lengths, !lx, and 
the coefficient of resistance is constant along the pipe for any given 
flow. Under these conditions, for a smooth straight pipe, the resist­
ance coefficient is a function of the Reynolds number only, the Rey­
nolds number being defined by 

dU .R.=-, 
v 

where v is the kinematic viscosity of the fluid. For laminar flow we 
have 

X=64/R., (3) 

and for turbulent flow, below a Reynolds number of about 130,000, 
the empirical relation 

X=CR.-l/4, (3) 

where C, as experimentally determined, has a value in the neighbor­
hood of 0.31. 

When the velocity distribution varies from section to section, as in 
any transition segment, the pressure drop also varies, and hence the 
coefficient of resistance at any given flow is different for all elementary 
lengths, !lx. 

As the coefficient of resistance is determined experimentally by the 
application of equation 1, it is necessary to measure the pressure in 
the axis of the pIpe at any two given cross sections in order to deter­
mine the pressure drop !lp. If the directions of the absolute velocities 
at all points in a cross section are parallel to the pipe axis, then the 
pressure is constant over the entire cross section. It may, therefore, 
be measured at any point in the section and, in particular, at the wall 
of the pipe. 

In a curved pipe, because of the curvilinear paths of the moving 
fluid particles, the pressures, Pi and Po, at the inner and outer ends, 
respectively, of a diameter in the plane of the curve are not equal. 
At the ends of a diameter normal to the plane of the bend of the pres-
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sures, pn, are equal on account of symmetry. However, if the radius 
of curvature of the bend is large compared with the pipe diameter, 
then 

(4) 

a fact which was verified by Richter 2 for turbulent flow. Undoubtedly 
it applies to viscous flow also. It is generally assumed by experi­
menters that when equation 4 holds, the mean pressure in a cross sec­
tion is given by (Pi+Po)/2, or by Pn, and this mean pressure may be 
taken as the axial pressure, with negligible error. Accordingly, in 
this investigation pressures were measured either by averaging the 
pressures at the two ends of the diameter normal to the plane of the 
bend, or by averaging these two and also those at the ends of the diam­
eter in the plane of the bend. 

1. PREVIOUS WORK 

There are very few reported investigations, either theoretical or 
experimental, on flow in long pipe bends. The theoretical treatment 

. for viscous flow is complicated so greatly by the existence of secondary 
currents arising from the centrifugal action of the curvilinear flow that 
no general rigorous solution has been obtained. The first attempt fit 
a theory was made by Dean.3 Although he made but little progress 
toward the derivation of a tbeoretical expression for flow in bends, his 
analysis proved to be very valuable in subsequent work for two rea­
sons. A first result of his analysis related to the law of similarity for 
mean velocities in curved pipes. His original mathematical statement 
of the law can be simplified if we introduce the shear velocity in place 
of the pressure gradient. The law can then be stated as follows: for 
a given shear the ratio of the mean velocities in two pipes of the same 
dimensions, one straight and the other curved, depends on a parameter 
given by the product 

where 
TJ* = (T/p) 112 is the shear velocity, 

T=the mean shear at the wall, 
p=the density of the fluid, 
d=the diameter of the pipe, 
D= twice the radius of the bend, and 
v=the kinematic viscosity of the fluid. 

(It is convenient to call the ratio diD the curvature ratio of the bend.) 
However, White4 found it more convenient to apply the converse of 
the above law. The converse law can be stated: for a given mean 
velocity in two pipes of the same dimensions, one straight and the 
other curved, the ratio of the resistances depends on a parameter 
given by the product of the Reynolds number and the square root of 
the curvature ratio; that is, Re.(d/D)1/2. With tbis as a starting point 
White was able to correlate the results of his experiments. The 
relative increase of resistance due to curvature was found to be a 

• H. Richter, ner nruckabfatl in gtatten gekrummten Rohrteitungen. Ver. dent. Ing. Forsch. Heft 338 
(1930) . 

I W. R. Dean, The streamline motion offluid in a curved pipe. Phil. Mag. [7] t, 208 (1927); 5, 673 (1928) • 
• C. M. White, Streamline flow through curved pipes. Proc. Roy. Soc. (London) 123, [A] 645 (1929). 
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function of Re. (djD) 1/2 provided the flow in the bends did not become 
turbulent. 

The second result of Dean's analysis was an explanation of the man­
ner in which two symmetrical circulations or secondary currents are 
set up in a bend. Taylor's5 study of the onset of turbulence in curved 
pipes was based on the existence of these secondary currents. The 
introduction of dyes through perforations at the ends of a horizontal 
diameter of a bend made the secondary currents visible, and the dis­
turbance of these currents formed a satisfactory criterion for the 
onset of turbulence. Eustice's 6 method of introducing dves at the 
entrance of the bend had previously proved unsuccessful. ~ 

Considerable information is given by Adler 7 on the distribution of 
axial velocities both for viscous and for turbulent flows. After 
obtaining experimental data on the nature of the flow in the central 
core, he gives an interesting derivation of an expression for the 
resistance coefficient for viscous flow at large values of Re. (djD) 1/2 

by making use of the Prandtl boundary layer theory. 

2. SCOPE OF PRESENT INVESTIGATION 

The results of the above-mentioned investigations on resistance 
coefficients for viscous flow in long bends apply only to segments of 
bends downstream from the transition segment. The chief purpose 
of the investigation which forms the subject of this paper was to 
furnish the data required for calculating the total resistance due to a 
long bend. It was necessary, therefore, to determine the effective 
resistance coefficient for the complete bend including the transition 
segment, and also the effect of the bend on the resistance coefficient 
of the downstream tangent. 

The critical number (the Reynolds number at which viscous flow 
becomes unstable and changes to turbulent flow) was determined for 
each bend. Data were obtained for turbulent flow up to the maxi­
mum flow possible with the apparatus, which corresponded to a 
Reynolds number of about 60,000. 

II. APPARATUS 

The water supply system is shown in figure 1. For low flows 
(below the critical), the constant level tank was used to supply water 
under a constant head. For the higher flows, water was drawn 
directly from the city mains at a pressure of about 30 lb /in2. By the 
use of the surge tn,nk, the effects of sudden and severe pressure 
changes in the supply from the city mains were reduced considerably, 
but they could not be altogether eliminated. To insure minimum 
disturbance of the flow at the entrance to the experimental pipe, the 
supply line was increased from a 3-inch diameter in the vertical 
portion by means of an expander and an expanding elbow to a diameter 
of 8 inches in the pipe forming the supply chamber. The entrance 
cone of the experimental pipe was mounted at the center of a flange 
on the end of the 8-inch pipe. A valve at the end of the exit pipe 
was used to control the flow. Below the valve was a pocket for the 
thermometer and a swinging gooseneck for diverting the flow from 
the waste line to the measuring tank. The thermometer was gradu-

• o. 1. Taylor, The criterion/or turbulence in curved passages. Proc. Roy. Soc. (London) 124, [A] 243 (1929) • 
• J. Eustice, Flow of fluids in curved passages. Engineering 120, 604 (1925). 
7 M. Adler, Str6muno in gekriimmten Rohren. Z. ang. Math. u. Mech. 14, 257 (1934). 
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ated in 0.20 0, and was read to the nearest 0.10 0. A volumetric 
tank, calibrated by weighing, with a float gage connected to a pointer 
indicating on a· dial face, was used for measurement of flow. Times 
were measured with a stop watch. 

Measurements of head were made by means of water manometers 
for the lower flows and mercury manometers for the higher flows. 
Oapillary tubes were used to damp out the manometer oscillations to 
the point where they were barely noticeable. Another purpose of 
the capillary tubes was to preserve the stability of viscous flow in the 
test line. At Reynolds numbers above 3,000, slight pressure oscil­
lations caused flow into and out of the piezometer openings when 
capillaries were not used, and the resulting disturbance often was 
sufficient to bring on turbulence in the test pipes. All manometer 
readings were made to the nearest 0.1 mm by means of a cathetometer. 

CONSTANT 1""i'~1'!'1l~~!f 
LEVEL 

TANK 

VALVE-

FROM MAINS 
VALVE-

3" 

SURGE 
TANK 

THERMOMETER--'--­

CONTROL 
,VALVE1 

____ .L.-...~-+': iii 

t--EXPERIMENTAL --ol 
PIPE 

SEE FIGS. 2 a. 3 

FIGURE I.-Arrangement of experimental apparatus. 

III. EXPERIMENTAL PIPES 

FLOAT 
GAGE 

All the experimental pipes were of smooth, drawn-brass tubing, of 
nominal %-inch internal diameter, specially selected for straightness 
and uniformity of bore. The lengths, measured internal diameters, 
and arrangement of the pipes are shown in figure 2. 

Effective pipe diameters were determined by weighing the amount 
of water necessary to fill the pipe completely. Uniformity of cross 
section was determined by measuring outside diameters by microm­
eter gages, assuming a uniform wall thickness. 

The critical number for a bend increases with increasing curvature 
ratio, so that above a certain Reynolds number it is possible for tur­
bulent flow to exist in the entrance pipe and the upstream end of the 
bend, with viscous flow existing in the downstream end of the bend. 
(See section V.) As it was desired to exclude this condition from the 
scope of the investigation, special precautions were necessary in the 
design of the entrance pipe. Now, the critical number for a bend of 
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the largest curvature ratio to be tested was known from the work of 
other experimenters to be in the neighborhood of 5,000 (see fig. 12), 
so that an entrance pipe was required having a critica,l number of at 
least 6,000. This condition was realized by using the bell-shaped en­
trance cone shown ill figure 3, connected to a long entrance segment 
of straight pipe, shown in figure 2. 

Two series of tests were made . In the first series, resistance coef­
ficients for two pipes, no. 1 and 2 in figure 2, were measured. All the 
bends were formed from pipe no. 1, which, for each test, was bent 
elastically into a circular arc of the curvature ratio desired. Pipe no. 

SUPPLY CHAMBER /' COUPLINGS AND 

ENTRANCE CONE'/ PIEZOMETER 

CONNECTlONS~ 
I ~ 

_--Jt--ENTRANCE PIPE 4-PIPE: . 

d • 0.94B6 em. I J. NO '~/ 
% • 158 I 56 0.9'186 c 

I'd' ~/S "'. / I'tp 
I BEND / d. E '" 
'--- / k, 0 0< I C( _____ , 0 d ' .9~;>11 -............./ 

-......; Oly",STc <IS 0",. 7--....... 
I I/c.q~ / EJrlr 

r"", /~, • 0 PIPE / 
GCNr / Yq • . 9~;>S ............. 

/ ISS c",. 'f 

ARRANGEMENT FOR SERIES I TESTS 

COUPLING AND PIEZOMETER 

CONNECTION----.... 
(

PIEZOMETER 

CONNEJ \ 
r~GMENT I-r---:S£GM£NT 2 .......... \ 

ENTRANCE PIPE I ~. 88.6 I %J • 86.3 ilE."EN' J COUPLING AND prEZOMETER 

SAME AS ABOVE II - PIPE: <I • 86.3 "'f-/ ,SCG"E 
d • NO. 3 -d. Ivr_ 

I 0 .9500 8.s.. ., 
~8E"'D c">. / 

Q' ~ / S4~EJrlr P 
/ c"s 'PE 

4s0VE 

ARRANGEMENT FOR SERIES II TESTS 
FIGURE 2.-Experimental pipes with pipe dimensions. 

2 was always kept straight and connected to the downstream end of 
the bend. In the second series, resistance coefficients were deter­
mined for four approximately equal segments of pipe no. 3 (fig. 2) 
which was bent elastically to form the bends. 

In order to determine the deformations of the pipes caused by 
bending, the following procedure was used. A pipe of the same 
material and dimensions as those used in the tests was closed at one 
end and this end clamped to a table. At the fixed end was attached 
a vertical glass tube of 0.5-mm bore. The pipe was then completely 
filled with water and the free end closed. N ext the pipe was bent 
into horizontal arcs of various curvatures and the corresponding rise 
of water in the glass capillary was determined. The relative decrease 
of internal volume (.1. V/V) due to bending appeared to vary as the 
square of the curvature: for d/D=69.7X 10-4, .1. V/V=7.8X 10-4 • 

The external diameters at the midpoint of the pipe were also meas-
110639-37--7 
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ured for this curvature. The vertical diameter increased by 0.004 d; 
while the horizontal diameter (in the plane of the arc) decreased by 
0.006 d. These measurements indicate a decrease in effective diam­
eter of about 1 part in 1,000. It was assumed that these changes 
of form were sufficiently small so that no correction was required for 
deformation of the pipes. 

The experimental pipes were connected by special couplings, the 
details of which are shown in figure 3. With this arrangement, 
every joint could be inspected easily. In each coupling were four 
piezometer openings 1 mm in diameter, connecting to a piezometer 
ring. This ring was connected to the manometer by copper tubing. 

ENTRANCE CONE PIEZOMETER CONNECTION 

COUPLING AND PIEZOMETER CONNECTION 

FIGURE 3.-Fittings for experimental pipes. 

In addition to the couplings at the ends, pipe no. 3 was provided with 
three sets of piezometer openings as shown in figure 2. Each set 
consisted of two I-mm holes on the vertical diameter connected to a 
piezometer ring. 

IV. EXPERIMENTAL RESULTS FOR VISCOUS FLOW 

The results of the series I tests on the bends formed from pipe no. 1 
are given in figures 5, 6, 13, 14, and 15, and on the downstream tan­
gent, pipe no. 2, in figures 9, 10, 13, 14, and 15. The results of the 
series II tests on the bends formed from pipe no. 3 are given in figures 
4 and 7. In each figure the data are presented in a manner conforming 
to the analysis of the results in the following discussions. 
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1. RESISTANCE IN BENDS, INCLUDING TRANSITION SEGMENT 

The following discussion applies to viscous flow with parabolic or 
nearly parabolic velocity distribution at the entrance of the bend. 
The resistance coefficient at the entrance, therefore, is the same as 
that for a straight pipe. Denote this coefficient by As. 

At a certain axial distance Xl, measured from the entrance to the 
bend, the velocity distribution assumes a pattern which is charac­
teristic of the bend, and which persists from this point to the end of 
the bend. The distance Xl is thus the transition length, and the 
corresponding portion of the bend is the transition segment. Down­
stream from the transition segment the coefficient of resistance will 
be constant and will be denoted by I.e. In the transition segment the 
coefficient of resistance will increase from its value As at the entrance 
to its value I.e at Xl' The effective coefficient Ax of any segment of the 
bend (beginning at the entrance) of length x where xI<x<l will, 
therefore, vary with x. This effective coefficient is defined by the 
relation 

1 X U2 
- tJ.p=A --, 
'Y "d 2g 

(5) 

where tJ.p is the pressure loss between the entrance of the bend and 
the point at distance X downstream, d is the pipe diameter, U is the 
mean velocity, and g is the acceleration of gravity. In general, we 
should anticipate that Ax will be a function of xld, the relative length 
of the bend segment, as well as of diD, the curvature ratio of the bend, 
and Re, the Reynolds number. That is: 

Ax=funct. Ca' ;, Re} (6) 

The problem is to evaluate this functional relationship. 
Evidently, considering the resistance coefficient as a function of 

, the bend length, we may write 

Ax.X= SoX\adx+ Ae(X-XI), (7) 

where Aa is the resistance coefficient for an infinitesimal length dx 
of the bend at any point x=a in the transition segment, i. e., O<a<xI' 
Hence Aa is a local coefficient applying only to the point a, while Ax, 
the effective resistance coefficient, is an average value for a length X 

of bend, where X>XI ' and I.e is constant for the bend segment between 
the points Xl and x. Since the terminal values of Aa are A. at X= 0, 
and Ae at X=XiI the integral in equation 7 may be replaced by 

LXI Aadx= kx(Ae- As)XI + A,XI ' 

From equations 7 and 8, 

Ax.x=kx(Ae- As)XI + A,XI + Ac(X-XI), 

(8) 
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which on rearrangement and division by d becomes 

(9) 

Writing for convenience, 

(10) 

I 
and dividing the numerator and denominator of the left-hand member 
of equation 9 by AS) we have 

(11) : 

The two unknown quantities, kx and XI, are thus combined in the single 
unknown quantity {3. In order to determine from equation 11 the 
dimensionless quantity (3 as a function of the Reynolds number Re and I 
the curvature ratio diD it is necessary to find the values of the three 
resistance coefficients: 

The value of AS) when the velocity distribution is parabolic, follows 
from Poiseulle's law and, as previously stated, is given by 

A,=64IRe• (2) 

The results of the initial experiment of the series I tests, for which 
pipe no. 1 was kept straight, agreed within small experimental errors 
with the relation (equation 2) up to a Reynolds number of about 4,500. 
At higher Reynolds numbers the experimentally determined values of 
As became progressively greater than those given by equation 2, as i 
shown in the upper left-hand graph in figure 13. Taking a Reynolds 
number of 7,000 for the purpose of comparison, we find that A. by 
equation 2 is equal to 0.00914, while the observed value for pipe no. 1 
is 0.0102. 

According to Schiller's method of computation 8 for the transition 
segment of a straight pipe, the effective coefficient for pipe no. 1 at a 
Reynolds number of 7,000 should be 0.00924. The difference between 
this result and the experimental value is far too large to be accounted I 
for by experimental errors, so that only a small part of the discrepancy 
can be attributed to the fact that the entrance pipe was too short at 
the higher Reynolds numbers. 

In his original paper Schiller 9 states that a very slight deviation 
from absolute straightness of his experimental pipe produced consid­
erable changes in resistance. This clue affords a possible explanation 
of the high values of A experimentally determined . 

• See p. 25, et seq., in Prandtl-Tietjens, Applied Hydro- and Aero-Mechanics, (McGraw-Hill Book Co., I 
New York, N. Y., 1934). 

'L. Schiller, UnteTs'uchungen abeT laminare und turbulente Strlimung, Ver. dent. lng. Forsch. Heft 248 
(19.2). 
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From the graph in figure 4 we can compute approximately the 
curvature of pipe no. 1 necessary to give a value of A=0.0102 at a 
Reynolds number of 7,000. We have 

A 0.0102 
A8 = 0.00914 =1.12 , 

and hence, by figure 4, 

( d)~ Re D =30, approximately. 

As R e=7,000, and d=0.95, we find 

D=55,000 cm. 

If pipe no. 1 were bent to an arc of this diameter, the distance 
between the arc and the chord at the center-point of the arc would 
be about 2 mm. There was no sag in the pipe, since it was contin­
uously supported, and in the horizontal plane there certainly was no 
deviation of more than 0.5 mm from a straight line. But if the pipe 
were sinuous, say forming two arcs of 55,000 cm diameter, then the 
maximum deviation from a straight line would be only about 0.5 mm. 
It is quite possible, therefore, that an apparently insignificant residual 
curvature in the pipe was sufficient to account for the high resistance 
coefficients observed. 

As any such residual curvature would be inappreciable in compar­
ison with the relatively large curvature imposed on pipe no. 1 when 
the bends were formed, the value of A8 from equation 2, that is, for a 
truly straight pipe, is the proper one to use in equation 11. 

White and Adler (see footnotes 4 and 7) have determined Ac as a 
function of Dean's parameter, Re(d/D)~. However, it was decided 
to make a new determination of Ac (see fig. 4), in order that all data 
of this investigation might be derived from the same source and 
might, therefore, be on a strictly comparable basis. The series II 
tests were made for this purpose, the experimental layout being that 
shown in figure 2. 

An examination of the data showed that the resistance coefficients 
of the two segments furthest downstream (segments 3 and 4) were the 
same for all of the tests and larger than the corresponding coefficients 
for segment 1. The coefficients for the segment 2 were slightly smaller 
than those for the two downstream segments in some of the tests. It 
was judged that the two downstream segments were not appreciably 
affected by entrance effects. Accordingly, the resistance coefficient 
for the downstream half of the bend (segments 3 and 4) was taken as 
the value of Ac and was computed from an equation similar to equation 
1. The results are given in figure 4, where the ratio Ac/As is plotted as 
a function of Re.(d/D)'/;. These values are from 1 to 2 percent lower 
than those of White (see footnote 4). 

From the same series of tests, values of Ax were determined for two 
segment lengths, segment 1 alone and segments 1 and 2 combined, 
that is for values of x/d equal to 88.6 and 174.9, respectively. From 
the first series of tests values of Ax were determined for 10 different 
curvatures, all of the same segment length, x/d=215. The results of 
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these two series of tests are given in figures 5, 6, and 7, in which the 
ratios 'A x/As are plotted as a function of the Reynolds number. 

The data in figures 4 to 7 may now be used to compute (3 by means 
of equation 11. If (3 is independent of the Reynolds number, then it 
should be possible to fit a curve corresponding to a constant value of 
(3 to each of the sets of points in figures 5, 6, and 7. Accordingly, a 
tentative curve was drawn through each set of test points, and values 
of 'Ax/As were read from each curve for about a dozen Reynolds num­
bers. The corresponding values of Ac/As were obtained from the curve 
in figure 4. Then values of (3 were computed, using equation 11. A 
second approximation (in some few cases a third) by shifting slightly 
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FIGURE 4.-Ratio of the bend coefficient, Xc, to the straight pipe coefficient, X" as a 
function of R, (d/D) 'A . 

the tentative curves, sufficed to give practically constant values of (3 
for each set of test points, i. e., for each bend. The final values 
adopted for (3 are given in table 1, and the corresponding curves are 
drawn in figures 5, 6, and 7 . These curves appear to fit the data 
better than did the original tentative curves. The satisfactory agree­
ment of the curves with the experimental points shows that (3 may be 
regarded as independent of the Reynolds number, within the limits of 
experimental error. 
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FIGURE 5.-Ratio of the effective bend coefficient, Ax, for bends of relative length 
x/d=215, to the straight pipe coefficient, As, as a function of Reynolds number. 

The points represent experimental values and each curve represents a constant value of fJ as given in ta ble 
1. See also figures 6 and 7. 

TABLE I.-Relation between f3 and the curvature ratio dj D 

d zld dIDXI0' (dID)"'XlO' fJ I/fJ 

---
em 2.04 1. 43 54.9 0.0182 

4.45 2.12 42.7 .0234 
8.07 2.84 33.3 .0300 

12.8 3.58 26.0 .0384 

0.949 215.0 18.2 4.27 23.3 .0429 
24.2 4.92 21. 5 .0465 
36.3 6.03 17.5 .0570 
45.3 6.73 16.2 .0618 
57.2 7.56 14.2 .0702 
69.7 8.35 13.0 .0768 

{ 
2.62 1.62 50.0 .0200 

.950 88.6 4.97 2.23 41.3 .0242 
22.4 4.73 22.2 .0450 
43.0 6.56 16.2 .0617 

{ 
2.62 1. 62 54.3 .0184 

.950 174.9 4.97 2.23 40.5 .0247 
22.4 4.73 21.6 .0462 
43.0 6.56 16.8 .0596 

From the results given in table 1, a simple empirical relationship 
between ,8 and the curvature ratio dID was found by plotting 1/,8 as a 
function of (d/D)1/2, as shown in figure 8. The points in this figure 
are represented very satisfactorily by the straight line given by the 
equation 

1/ ,8=0.0059 +0.844 (d/D) 1/2. (12) 
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Finally, from equations 11 and 12, for the effective coefficient of 
resistance for a segment of the bend of length X>XI ' meaRured from 
the beginning of the bend, we obtain 

d (;\c- ;\.) 
;\x= ;\0-;;' (0.0059 +O.S44 (djD) 1/2) , (13) 

which is the relation sought. Since;\o is a function of Re. (djD)I/2, 
equation 13 is obviously of the form expressed by equation 6. 
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FIGURE 6.-Ratio of the effective bend coefficien(, Ax, for bends of relative length 
x/d=215, to the straight pipe coefficient, As. as a function of Reynolds number. 

The points represent experimental values, and each curve repreronts a constant value of (3 as given In 
table 1. See also figures 5 and 7. 

2. THE TRANSITION SEGMENT OF A BEND 

The length Xl of the transition segment of a bend cannot be derived 
from any experimental data known to the authors. All that is known 
from this investigation is that {3, and hence (l-kx)xh is independent 
of the Reynolds number and is a function of the curvature ratio diD. 
If k" should prove to be independent of the Reynolds number, then 
Xl would be also . To settle this point effectively, experimental data 
must be obtained for a series of values of X<XI' In order to obtain 
head losses large enough to be accurately measured, Xl must be large. 
At the same time, djD must include at least the range of values 
covered in the present experiments, and hence xdd must be approxi­
mately of the same magnitude as in the present experiments. There­
fore, pipes of considerably larger diameter are required. As the 
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Reynolds number, on the other hand, must be small enough so that 
the flow would remain viscous, a very viscous liquid would be req uired. 

In the absence of experimental information, we may resort to a 
simple computation, first to obtain an approximate value for Xl> and 
second, to establish a basis for the correct expression for Xl in case 
experimental results become available. It is assumed in the follow­
ing computation that Xl is independent of the Reynolds number. 

Assume that A., the resistance coefficient at any arbitrary point 
of the transition segment, has no discontinuities, no maxima and no 
minima in the interval O<X<XI' 

The end conditions are: 

Aa=A.atx=O, (I) 

Aa= Ac at X=Xl) (11) 

d 
dx(Aa)=0 at x=O, (II1), and 

d J;/Aa) =0 at X=XI (IV) 

A polynomial representation of Aa in circular functions satisfying 
the end conditions will give a first approximation of the values of A •. 
The expression 

+ ( ) ( . 7T' X + . 37T' X) 
Aa= As Ac- A. al sm '2 Xl as Slll2 Xl 

satisfies conditions (I) and (IV). If, further, we put al=3/4, and 
as= -1/4, the remaining conditions (II) and (III) are also satisfied. 
Thus, as a first approximation: 

Aa=A8+3/4(Ac-A.)(sin~~ -1/3 sin 327T' :} (14) 

Integrating between the limits 0 and Xl) 

LXI Aadx=XI[A8+ 347T' (AC- A,)} 

A comparison of equation 15 with equation 8 shows that 

4 k =-, 
" 37T' 

and accordingly, the transition length Xl is given by 

Xl 37T' 1.74 
d = 37l'-4 . {3 = 0.0059+0.S44(d/D)I/2 

(15) 

(16) 

(17) 

Indirect evidence from the tests suggests that the error in this 
expression is not very large. In the second series of tests, resistance 
coefficients were obtained for each of the four segments of the bends 
(fig. 2). In every case the values for the two downstream segments 
were the same, within experimental errors, and the averages for these 
two segments were taken as the bend coefficient, Ac. For the bend 
with curvature ratio d/D=4.97X 10-4, the coefficient for the second 
segment was equal to AC) while the coefficient for the first was con­
siderably lower. The relative transition length xt/d, therefore, was 
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something less than the relative length of the first segment, which 
was x/d=88.4. A computation from equation 17 gives in this case 
xtJd=66.9. 

For the bend with curvature ratio d/D=2.62X10-\ the resistance 
coefficient for the second segment was a very little below the bend 
coefficient Ae. In this case the relative transition length must have 
been slightly greater than the relative length, x/d=88.4 of the first 
segment. The computation from equation 17 gives xdd=88.8. 

These results indicate that, if experimental data become available, 
equation 14 will constitute a satisfactory starting point for a more 
accurate determination of Aa and XI' 

3. RESISTANCE IN A STRAIGHT PIPE BELOW A BEND 

Let Az designate the effective resistance coefficient in a segment of 
straight pipe downstream from a bend and of length z measured from 
the downstream end of the bend. As the velocity distribution at the 
entrance to the tangent, at z=O, is that prevailing in the end portion 
of the bend, a certain transition length ZI is necessary before the 
velocity distribution characteristic of a long straight pipe can be 
established. The definition of the effective coefficient, A., is 

1 Z U2 
-:yL1p=Azd2g, (18) 

where L1p is the pressure difference between the end of the bend and 
a point on the straight pipe at distance Z>ZI downstream. As z 
becomes very large, Az approaches As as a limit. 

The coefficient Az depends on the relative length of the segment 
z/d, on the curvatme ratio d/D and on the Reynolds number R.. The 
analysis is analogous to that adopted above for the bend. For the 
effective coefficient we have the relation 

Az ' Z= J,ZI Aadz+ A.(Z-ZI), (19) 

where Aa is the resistance coefficient at any point within the transition 
segment, and Z>ZI' The definite integral may be written 

J,ZI Aadz=A.ZI+kz(Ae-A.)ZI' (20) 

Substituting equation 20 in equation 19, dividing by d, and rearrang­
ing, we have 

AZ_1 

~·~-k ~=Z (21) Ac d- z d- , 
--1 
As 

where, for convenience, we write 

Z=kz~' (22) 

The dimensionless quantity Z may be computed from equation 21 if 
the resistance coefficients A., Ae, and At are known. A. is known when 
the Reynolds number is given, and Ac can then be obtained from 
figure 4. It remains to determine Az• 
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Values of Az for a relative length of z/d=215 were determined with 
the experimental setup for the series I tests at the same time that 
the bends were tested. The results are shown in figures 9 and 10, 
where the ratio Az/A. is plotted as a function of the Reynolds number. 

To determine Z, tentative curves were drawn to fit the experimental 
points in figures 9 and 10. About a dozen values of Az/As were read from 
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length z/d=215, to the straight pipe coefficient, A" as a function of Reynolds 
number. 

The points represent experimental values and each curve represents a constant value of '" as given in 
table 2. See also figure 10. 

each curve, and corresponding values of Ac/As were found from the curve 
in figure 4. Then Z was computed from equation 21. A study of 
the results showed that they could be expressed in the form 

Z=(~-l ).cP, (23) 

where cP was a constant for each bend, that is, cP is 8, function of diD, 
but not of Re. 
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In comparing the quantity Z as given by equation 23, with the 
analogous quantity (3 in equation 12, it should be noticed that (3 is 
independent of the Reynolds number and is a function of diD only, 
because the velocity distribution at the entrance to the bend is always 
parabolic, whereas at the entrance to the downstream tangent the 
velocity distribution depends on the flow in the bend, which is a func-

1.4 

1.2 

1.0 

1.2 

1.0 

Az 
~ 

1.2 

1.0 

1.2 

1.0 

1.2 

v. V· 
D 

./ 
clio' 69.7 < 10-" V f/ 

kV 
/ 

~ 
<l 

4 /"' 

diD· 45.3< 10-" 

~ 
V 

<1'4 

~~ .~. 

-----
~ 
~ 

diD· 24.2 X 10-" 

~ 
~---

& .. ~ 
.. -4 

~ 
~ 

diD =12.8<10-" 
~ 
~ 

~ 
· v --r 

v 

~ 
diD' 4.45 x 10-" ~ 

~ 

I -"-- ~ 

~ ~ 
~ I p 

2 345 

Re x 10-3 

6 7 

.. 
~-

~ 

~ 

8 

FIGURE lO.-Ratio of the effective coefficient, X., of the downstream tangent of relative 
length z/d=215, to the straight pipe coefficient, X., as a funciion of Reynolds 
number: 

The points represent experimental values and each curve represents a constant value of c!> as given in 
table 2. See also figure 9. 

tion of both the Reynolds number and diD . The curves drawn in 
figures 9 and 10 represent the final values adopted for cf> as given in 
table 2. They appear to fit the data better than did the original 
tentative curves. The agreement is quite satisfactory in most cases, 
proyjng that cf> is independent of Reynolds number within the errors 
of observation. 

J 
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An empirical relation between r/J and the curvature ratio diD was 
found by plotting r/J1/2(d/D)I/2 as a function of (d/D)1/2, as in figure 11. 
The straight line representing the points is given by the equation 

cf>1/2(d/D)I/2=O.141 +4.50(d/D)1/2. (24) 

Hence, 
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FIGURE n.-The quantity ¢1/2(dID)1/2 as a function of (diD) 112. 

(25) 

.10 

The points represent the values given in table 2, and the line represents the empirical equation q,t/'(d/D)I/'-
0.141+4.50 (d/D)'!'. 

TABLE 2.-Relation between ¢ and the curvature ratio diD 

d z/d (d/D)XIO' Cd/ D) II' XI0' .pXlO-' .plll(d/D)I/' 

---
2.04 1.43 2.23 0.214 
4.45 2.12 1.25 .237 
8.07 2.84 .838 .201 

12.8 3.58 . 685 .296 
0.950 215.0 18.2 4.27 .588 .329 

24.2 4.92 .535 .361 
36.3 6.03 .485 .420 
45.3 6.73 . 434 .445 
57.2 7.56 .400 .478 
69.7 8.35 .365 .504 
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Finally, combining equations 22, 23, and 25, we have 

Az= A8+~[0.141 (dID)-1/2+4.50]2 (A'~sAs)2, 

109 

(26) 

which gives the effective coefficient of resistance for a downstream 
tangent of length Z > Z\. 

A computation of Z\, similar to that of Xl given above, would be of 
little interest since only one value of z, much larger than ZIJ was used 
in the tests. 

V. TRANSITION FROM VISCOUS TO TURBULENT FLOW 

The critical number is defined as the Reynolds number at which 
viscous flow becomes unstable and changes to turbulent flow. For a 
straight pipe the magnitude of the critical number depends on the 
entrance conditions, and for a bend, on the curvature ratio diD also. 

If the flow at the entrance to a straight pipe is made turbulent by 
introducing disturbances in any arbitrary manner, it will change to 
viscous flow at some downstream point in the pipe if the Reynolds 
number is less than about 2,200. This Reynolds number (2,200) is 
known as the lower critical number for straight pipe. 

There is likewise a lower critical number for a bend, which is a func­
tion of the curvature ratio, diD. This lower critical number starts at 
2,200 for a bend of zero curvature ratio (straight pipe) and increases 
as diD increases . This is shown by the lower curve in figure 12 which 
is drawn to fit data published by several experimenters. The data 
themselves are given in table 3. 

TABLE 3.-Critical number for pipe bends with disturbed flow at entrance 

Author 

White ___________________ _ 
Do ______________ ____ _ 
Do __________________ _ 

Adler ___________________ _ 
Do ______ _______ _____ _ 
Do __________________ _ 

T aylor __________________ _ 
Do __________________ _ 

d/DXlO' 

4.89 
200. 
660. 

50 . 
. 100. 

200. 

310. 
040. 

Critical 
number 

2,250 
6,000 
9,000 

3,980 
4,730 
5,620 

6,350 
7,100 

The critical number for a straight pipe may be increased by reduc­
ing disturbances at the entrance. In the present tests, for example, it 
was raised to 9,200 by the use of the special bell-mouth entrance shown 
in figure 3. So long, therefore, as the Reynolds number was less than 
9,200, the flow at the entrance to the bend was viscous. Under these 

i entrance conditions, the critical numbers given in table 4 were found 
I for the bend. These values are plotted in figure 12 (upper curve). 
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TABLE 4.-Critical number for pipe bends with laminar flow at entrance 

(d/D) X 101 Central Critical 
angle« number 

Degrees 
0.00 0 9,200 
2.04 5 9,000 
4.45 10 8,900 
8.07 20 8,800 

12. 8 30 8,600 
18.2 45 8,000 
24.2 60 7,800 
36.3 90 7,600 

45.3 120 6,000 
57.2 150 5,900 
69.7 180 5,900 

As it was not convenient to determine these critical numbers with 
any certainty by direct observations of the bend loss on the bends 
themselves, they were determined indirectly by observations on the 
straight pipe downstream. If the Reynolds number was less than 
9,200, any change from viscous to turbulent flow in this downstream 
pipe could be due only to turbulent flow in the bend. Hence, the 
downstream tangent forms a convenient detector of turbulence in the 
bend. The critical numbers given in table 4 were determined by 
inspection from the right-hand diagrams of figures 13, 14, and 15. 

It will be noticed from figure 12 that as the curvature ratio increases 'l 
the critical number decreases and approaches the values for bends 
with disturbed flow at entrance at a value of the curvature ratio 
somewhat greater than 0.01. 

In figures 13, 14, and 15, the resistance coefficients for pipes no. 1 
and no. 2 are plotted against Reynolds number in the region of change 
from viscous to turbulent flow. For the bends, however, there is no 
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sharp break, but rather a gradual increase covering a considerable 
range of Reynolds numbers. This range may be called the transition 
region. At Reynolds numbers of about 10,000 to 13,000, the resist­
ance coefficient becomes equal to that for the straight pipe, and this 
point may be taken as the upper bound of the transition region. The 
characteristic feature of the transition region is the instability of flow. 

VI. EXPERIMENTAL RESULTS FOR TURBULENT FLOW 

At Reynolds numbers greater than that defining the upper bound 
of the . transition region, the flow is turbulent in the bend and the 
relative increase in resistance in a bend as compared with straight 
pipe may be defined by the ratio 

Xc-X, 
~. 

The value of X. for turbulent flow as determined by this investi­
gation is 

X.=0.309R.-l/4. 

The relative increase in resistance for the bends studied (in the 
range R.=40,OOO to R.=60,OOO) was small and varied but little with 
Reynolds number. The results are given in table 5. The values 
given are mean values for the range of R.=40,000 to R.=60,OOO. It 
will be noticed that the relative increase in resistance is approximately 
proportional to the curvature ratio. Tests over a wider range of 
Reynolds numbers in the turbulent region are needed before any 
definite relations can be established. 

TABLE 5.-Relative increase in resistance for turbulent flow in pipe bends 

[Mean values for the range R.=40,OOO to R.=60,OOO] 

djDX1O' 
A.:-X, 
~ 

2.04 0.010 
4.45 .006 
8.07 .011 

12.8 .010 
18.2 .017 

24.2 .028 
36.3 .042 
45.3 .058 
57. 2 .057 
69.7 .073 

No increase in resistance due to the presence~of the bends could be 
detected in the straight pipe downstream from~the bends. 

We express our appreciation to Mr. Herbert N. Eaton of the 
National Bureau of Standards for his helpful criticisms and careful 
review of this paper. 

WASHINGTON, October 19, 1936. 
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