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ABSTRACT 

Technique in using the Ketteler-Helmholtz dispersion equation is discussed 
and validity in representing the dispersion of water over the visible range of 
wave lengths is tested by least-squares adjustments of sixth-decimal-place refrac
tive indices. It is concluded that four parameters are sufficient for accuracy 
within the spectral range investigated. 
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1. INTRODUCTORY DISCUSSION OF DISPERSION 
EQUATIONS 

Many dispersion formulas in use for representing the refractive 
indices of transparent media are approximations to the form 

n2=a2",,-LVM X2+ LX2m l2' (1) 

where 

is the dielectric constant, L2 and l2 with appropriate subscripts are 
used to designate, respectively, the effective wave lengths of ab
sorption bands in the infrared and the ultraviolet regions; and 
similarly M and m are corresponding parameters. This is the equa
tion to which the complete Ketteler-Helmholtz equations reduce for 
regions exclusive of the absorption bands. Strictly speaking, vacuum 
values should be used for n, the index of refraction, and for X, the wave 
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length, but the index of refraction of air is so near unity and its dis
persion so small that dispersion equations are frequently used for the 
combined system air plus the medium in question. This practice has 
been followed in this paper and in evaluating parameters all wave 
lengths are expressed in microns. 

In some cases it has been found that only one infrared term and 
one ultraviolet term are necessary for satisfactory approximations. 
With only these two Sellmeier terms there are in reality but four 
independent parameters to be determined and for a simultaneous 
solution the equation may be written as 

2 n2-1(ZZL2)+n2-1(l2+D) 1 (Ml,2+mD)+(l+M+m) 
n=-~ ~ -)o..2VlT L2l2' (2) 

where, inclosed in parentheses, there is a linearly independent set of 
four groups of unknowns. If, then, equation 1 is limited to three 
terms, its five parameters may be computed from the four groups of 
parameters as formed in equation 2. Equation 2, however. is not 
necessarily suitable for direct adjustments by least squares because 
it is not solved 1 for n2• Thus errors in the observed values of n2 

are involved in the coefficients to be used in the least-squares process 
and this mayor may not be of importance in the adj ustment that is 
obtained. 

A thoroughly reliable adjustment of the parameters of equation 1 
can be made after an approximate solution is obtained and the process 
of differentiation applied for obtaining the equation 

tln2= )0/,2 l2( t.\~)-L2~ )o..2( tl~)+l2[~~2l2]2(t.\l2) + 
M)o..2 

D[D- }..2]2 (t.\L2), (3) 

which can then be used in adjusting by least squares the system of 
betterments inclosed in parentheses. These betterments in turn per
mit revision of the parameters which were used in the approximate 
solution. In applying a procedure of this kind it should be remem
bered that second and higher order derivatives are ignored. Con
sequently, it is important, perhaps especially so with this particular 
equation (see section III and fig . 1), that the approximate solution 
be so good that equation 3 can be used with validity. 

It is evident that equation 1 is not desirably convenient for curve 
fitting and usually when two Sellmeier terms are to be used, at least 
one of them is expanded and a more convenient form such as 

2_ 2-k)o..2- }..4_ + ~ n -a p ---- }..2_l2 (4) 

is obtained. The remarkable success that has, in general, been attained 
in using this equation (even without the term in )0..4) is probably 
ascribable to the fact that not only one Sell meier term but many are 
simultaneously approximated. That is, ' 

1 The fact that an equation is given for n' rather than for n is a relatively unimportant matter in its use 
for curve fi tting. A least-squares adjustment of n' rather than of n is in effect an implicit weighting of the 
observations but the percentage variation in these weights over the total range of n is usually small and 
negligible. Throughout this paper it is assumed that errors in >. are small as compared with those other
wise involved in index measurement. 
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2 2 ~M 
a =a ., - L..JL2' 

k=~~' (5) 

p= ~~, etc., 
m, and l2 

are some of the potential values of the parameters in the expanded 
form. Incidentally this view shows, also, why it is unsafe to assume 2 

that the ratio kip equals L2 and gives the location of an effective 
absorption band. 

Equation 4 may, for convenience in simultaneous solutions, be 
written 

but again, as for equation 2, a direct adjustment by least squares is, 
theoretically at least , inadvisable because the equation is not solved 
for n2 • One may, of course, use the differential process and the 
equation 

(7) 

but there is a more direct procedure 3 which the writer has tried and 
found satisfactory. If for [2 an approximate value ZZ 0 can be found 
from previous experience, or in any way whatsoever, then after 
setting 

and 

one may write 

(9) 

to correspond to equation 4. Then the equation 

n2 1 
n2= '- E2+-(m-b2E2) - p.2(h-pE2) - p.4p + (b2+hE2) (10) 

p.2 p.2 

corresponds to equation 6 and can be used for a direct least-squares 
adjustment of the linearly independent set of unknowns E2, (m-b2E2), 
(h-pE2), p, and (b2+hE2). If l~ of equations 8 has been suitably 
chosen, then there will be no appreciable error introduced by neglect
ing in equation 10 the slight error in the coefficient, n2jp.2, of the first 
right-hand term. 

I See, for example, p. 390 of Wood's Physical Optics, 1911 edition. 
3 Suggested to the writer by Dr. L. B . Tuckerman of tbis Bureau. 
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R eferring again to equation 1, if both types of Sellmeier terms are 
expanded, there results 

2_ 2 k'\2'\4 '\6 +V+W+ n -a - 1\ -pl\ -ql\ -- - -- }:2 }:4 ____ , (11) 

where, in addition to the system expressed by equation 5, v='Z,m, 
w='Z,ml2, etc. This equation 11 is linear in the parameters and com- ~ 
paratively convenient for a direct least-squares solution. If data with 
several significant figures must be adjusted and if, as is often the case 
with these dispersion equations, there is serious loss of significance in 
the process of solving the normal equations, then it mar be necessary 
or advisable to adjust betterments by use of the equatIOn 

An2=Aa2- )..2Ak- X4Ap- X6Aq- ____ + ~2AV+~AW+----, (12) 

which is obtained after differentiating equation 11. 

II. REFRACTIVE-INDEX DATA 

During a period of preparation for making definitive measurements 
on the index of refraction of distilled water, preliminary data were 
obtained by measurements on 24 samples, of approximately 9 ml 
each, taken successively from storage in a glass bottle of 5 gallons 
capacity on 24 working days between March 23 and May 4, 1931. 
The refractive indices of these samples were measured at 20.00° C 
for 25 different wave lengths from 3889 to 7679 angstroms. When 
measuring a single sample, only four or five spectral lines were used, 
but these were always so selected that each day's measurements were 
well distributed over the visible spectrum. 

All index measurements were made by the method of minimum de
viation using a water-jacketed hollow prism mounted in a stirred air 
bath on the table of a spectrometer. Temperatures were controlled 
within approximately ± 0.01 ° C and were measured with a platinum
resistance thermometer. All index results were corrected to refer to 
dry air at 20.0° C and a pressure of 760 mm of mercury. The tem
perature-controlled prism housing and other auxiliary apparatus have 
been described in a previous paper,4 and a description of the hollow 
prism will be given in a forth coming paper with Mr. John K. Taylor, 
who cooperated in taking the data that are used in these tests of 
dispersion equations. 

Previously published tests of tlus kind have usually been made 
with four- and five-decimal-place data. In the present case it was 
estimated that errors in the observed indices were confined to the sixth 
decimal place and perhaps were less than ± 5 parts per million.5 

Moreover, these indices were preliminary to experiments which were 
to be more carefully conducted. The latter, however, were to be 
based on fewer spectral lines and to be confined within a somewhat 
more restricted total range in the wave-length interval. Conse
quently, for subsequent use in adjusting the definitive data, it seemed 
desirable to use first the preliminary results in testing and selecting 

• J. Research NBS 17. 389 (1936) RP919. 
• Many precautionary details necessary for refractive-index determinations of this order of accuracy have 

been discussed by the writer in former papers. For a brief summary and references see J. Research NBS 
".417 (1935)RP776. 
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a dispersion formula for which the added systematic errors of a com
putational nature should, if possible, be confined approximately to 
the seventh decimal place. Schonrock's 6 experience in accurately 
representing the refractive indices of fluorite with a five-parameter 
equation (4) indicated that success could probably be attained. 
Nevertheless, comparative tests were desired in order to select a 
convenient equation having a minimum number of paIameters; also 
to permit an objective quantitative estimate of the systematic errors 
involved in its use for this particular medium, water. 

For these reasons equations 1 (with three terms only), 4 (both 
with and without the A4 term), and 11 have been considered and 
tested in choosing a dispersion equation for use in adjusting, repres
enting, and interpolating precise data on the refractive index of 
distilled water. 

III. COMPUTATIONAL PROCEDURES 

The numerical difficulties in making least-squares solutions for 
data having seven significant figures are formidable. Mere arith
metical accuracy in such computations on many data is difficult. In 
addition, during the process of solving normal equations,1 there some
times occurs a loss of significant figures that may be troublesome 
even when only two or three digits are required for expressing the 
parameters that are to be adjusted. Theoretically, of course, this 
can be avoided by some suitable change in the initial equation or in 
the manner in which the solution is attempted. Practically, however, 
it is usually quicker and easier to resolve the normal equations,S 
considering their coefficients as exact numbers and retaining through
out a second solution as many extra digits as were lost during the 
first attempt. vVhen six or seven significant figures are r equired in 
some of the parameters it is evident, therefore, that the situation may 
become serious because the theoretically possihle alternate procedure 
may be hopelessly involved and obscure, especially if one is concerned 
with as many as five or six unknowns. 

It is, perhaps, partly for the reasons outlined above that dispersion 
parameters are seldom thoroughly and completely adjusted when 
four or more parameters are used. Usually a value based on entirely 
extraneous evidence is arbitrarily preassigned to one or more of the 
parameters. Empirically this course is usually justifiable and it is 
often advisable when the sole purpose is adjustment of the observa
tions. It should be remembered, however, that this procedure may 
decidedly influence the values which will be obtained for some of 

'Z. Instr];. (0,93-96 (1920); 41,103-105 (1921). 
7 Some of the numerical difliculties here discussed are, of course, not peculiar to normal equations but 

may occur in other computations. Dr. Tuckerman called the writer's attention to this simple illustrative 
example. Assume n current I fiowing through a galvanometer of resistance R, with a shunt R .. where R. 
is small in comparisou with R" say approximately 1/10000 of R,. Let each of these three quantities be 
observed to three or four significant figures. 'rhen it appears at first impossible to get three or four 3igni-

ficant figures when computing 1,=1-1. where 1.-R:~'R.· Nevertbeless, by considering the observed 
values as exact and retaining throughout the computation a sufficient number of significant figures, perhaps 
seven or eight, one obtains the same result (to three or four figures) that is found by using the more appro-

priate formula 1.~ R~~7I. and retaining only three or four significant figares in tho computation . 
• There seems to be no necessit.y of revising the "observational equations" and the ~quares and cross 

products after they havc once boen correctly computed and written with a snfficient number of significant 
figures to yield, by the process of summation, normal-equation coeflicients having as many Significant figures 
as are found in the initial data, if the solution is direct, or in the residuals if the procoss be one of differential 
betterment. 

99074-36--2 
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the other parameters. Such arbitrary selection of one parameter 
may, therefore, vitiate or call in question the inferences which in some 
instances are drawn from adjusted values of the others.9 This point 
is particularly pertinent for dispersion equations of the type here 
considered. Some of these parameters are especially sensitive to 
arbitrary changes in others and yet their "adjusted" values are often 
regarded as having informative value regarding the location of 
resonance frequencies, or absorption bands. 

1. EQUATION 1, TWO SELLMEIER TERMS, FOUR (INDEPENDENT) 
PARAMETERS 

In using equations 2 and 3 for adjusting four parameters in (three 
terms of) equation 1, the computational difficulties were somewhat 
aggravated by the unsuitable nature or form of this two-Sellmeier
term equation as a means of accurately representing the dispersion of 
water. That this equation, as thus limited, might be found relatively 
unsuitable could have been predicted from dispersion theory and the 
known large dielectric constant of water. However, it does not 
follow that this equation 1 must necessarily be inferior to equation 4 
when the latter is limited to four terms. 

A simultaneous solution with equation 2 gave obviously large 
residuals. Differential betterment by least squares with equation 3 
effected such large changes in the parameters that the results were 
even worse than the initial computations. A second simultaneous 
solution with equation 2 (using a second set of observed indices) 
likewise resulted in computed indices that agreed poorly with the 
observations, so poorly that a continuation with betterments by 
equation 3 was not advisable . Thus it seemed imperative to obtain 
better _ approximate values before second derivatives could safely 
be ignored. For this purpose a direct least-squares solution with 
equation 2 was attempted, but a solution of the normal equations, 
using nine significant figures, fniled to yield even one significant 

figure for the group (~~+ m{;2) of unknowns. 

In most instances of difficult solutions at least some significant 
figures are obtained in solving for one of the unknowns and one knows 
at once how many digits must be retained in a successful re-solution 
of the normal equations. In this case, however, there was no indica
tion as to what computational precision would be sufficient. Conse
quently , using the normal equations, the three other groups of un-

knowns were then expressed in tem1S of (1tfX + m"f) and this sys

tem was repeatedly solved for several even (exact) values of V 
such as 1, 2, 4, 9, and 36, all of which correspond roughly with known 
absorbing frequencies in the infrared spectrum of water. 

In every case within this wide range of L2 these sets of parameters 
were computed with internal consistency to about nine significant 
figures and they satisfied the normal equations to about eight or nine 
significant figures. Of these various sets of parameters none seemed 
really satisfactory but the one with V=2 gave the lowest sum of the 
squared residuals, and L2=4 was next best. Then after trying 2.1, 

e See, lor example, E. Flatow, Ann . Physik [4]12, 93 (1903). 
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2.25, 2.4, and 3.0 and plotting (see fig. 1) the corresponding ~alues of 
~r2, a value of L2=2.25 was selected as approximately an optimum. 
The corresponding set of parameters was then bettered by a least
squares solution with the aid of equation 3. Some significant figures 
were lost in this last process, but the betterments themselves were 
comparatively small. In the resulting dispersion formula, 

0.0315734 0.00701841 
2.2535795- ,,2+,,2-0.0092513' (13) 

5S00r---~---r--~----~--~---r--~----~--~--~ 

3S001~.&--~I~~~I~.8~~'~~--~~~O--~2~.I~~2~.2~~2~3---2~4~-'~~S~~2~ 
DISPERSION PARAMETER L? 

FIGURE I.-Determining by trial the first of four dispersion parameters of equation 1. 
In this difficult case of ad justmeut by least squares it was necessary to express three parameters in terms 

of a fourth and then plot 2;r' for various arbitrarily selected values of the fourth . All sets of parameters 
having L2 in the range 1 to 36 satisfied the normal equations to 8 or 9 significant figures . 

the consistency of the full set of constants is adjusted with a precision 
fully as great as is warranted by the observations, but it is recognized 
that further least-squares adjustment by renewed application of equa
tion 3 would introduce compensatory changes among these constants 
that. in some instances might materially change the penultimate digits. 

Incidentally, the final ~r2, although slightly lower than the similar 
summation for D=2.25 is not noticeably off the curve which has been 
plotted in figure 1 for those various computations that are all in accord 
(to eight significant figures) with normal equations obtained by the 
aid of equation 2. This means t.hat errors in the observed values of 
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n 2 , which were allowed to enter in the right-hand of equation 2, were 
not in this instance of any importance. It also means that at least 
one of the constants of formula 13 can, with approximately the same 
validity in representing the observations, be rounded to three signifi
cant figures, provided it be considered as exact whenever used (in
cluding most particularly its use in the computation of the other 
constants in such manner that all of them form a consistent set that 
satisfies the normal equations). 

2. EQUATION 4, INFRARED TERM EXPANDED, FIVE PARAMETERS 

Comparatively little or no serious computational difficulty was ex
perienced in determining and adjusting five parameters of equation 4 
to express the dispersion of water. Not more than five or six signifi- "-
cant figures were lost in solving the normal equations. Even the 
exploratory simultaneous solution by equation 6 was fairly good and 
a direct least-squares solution by the same equation showed, again, 
that the use of observed values of n 2 in computing the coefficients of 
the observational equations is not necessarily dangerous. A better-
ment by using equation 7 made only a negligible reduction in ~r2 
but effected noticeably large compensatory changes among the values ~ 
of the several constants. The dispersion formula [ 

was thus obtained, and as stated concerning formula 13, it is likely 
that some small changes in the constants would result upon further 
readjustmen t. 

3. EQUATION 11, BOTH SELLMEIER TERMS EXPANDED, SIX 
PARAMETERS 

When a simultaneous solution was made for approximating the 
six parameters of equation 11 the residuals seemed small enough to 
warrant immediate continuation with a least-squares adjustment of 
the betterments, using equation 12 and omitting a preliminary 
direct solution (by least squares) with equation 11. The result of 
this work is the dispersion formula 

n2= 1.7606279-0.0079050;\2-0.0066381 ;\4+0.0038681;\6 
+ 0.00649123+0.000111406 (15) 

;\2 ;\4' 

for which ~r2 is appreciably lower than for the initial (simultaneous) <! 
determination. Again, however, five or six significant figures were \ 
lost in solving the normal equations and some of the betterments 
were so large that the numerical coefficients in formula 15 are, per- I 
haps, not in strictly optimum adjustment. 

4. EQUATION 4, TERM IN >'" OMITTED, FOUR PARAMETERS 

Equation 4, without the term in ;\" is one of the most commonly l 
used equations for expressing dispersion. For simultaneous solu-
tions four parameters may be easily evaluated from the system of 
equations: 



r 

> 
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(16) 

A _ Al- A12 (t..23 - t..34). t.. n)2- n22 n22-n32 
where -(t..12 -t..23 ) Al-A22 ' 12 A22- A/ t..2a =Aa2_ A/ etc.; 

01= (AI2_l2), 02= (A22-P), etc., and the subscripts refer successively 
to values of n2 and A2 from the four sets of observations thai are to be 
used. 

In using equaticns 16 it is obviously important to have the sets of 
observed data separated by wide intervvls in wave length. For 
water, wi.th observations extending over the visible spectrum, no 
serious loss of significance need occur, and the constants as thus 
obtained are often sufficiently reliable to serve as a useful basis for 
differential betterment by four terms of equa tion 7. 

Direct least-squares solutions for these constants by using equation 
6 81so have proved fairly satisfactory for adjustment of the observa
tions, but for a single least-squares process, where the initial results 
are not to be bettered, it is preferable to use equation 10. In general, 
however, whether using equations 7, 6, or 10, about four significant 
figures are lost in solving the normal equations. Therefore, if one 
desires to .adjust the constants themselves it is unsafe to neglect a 
betterment based on the residuals that are given after any initial 
least-squares adjustment. From the particular data considered in 
this paper the dispersion formula 

2 7 0 0 0 9 97 2+ 0.00644940 n = 1. 616 34- . 11 3 A }..2-0.0148669 (17) 

was finally obtained for comparison with formula 13 and the more 
elaborate formulas 14 and 15. 

IV. COMPARATIVE MERITS OF FOUR, FIVE, AND SIX 
PARAMETERS 

1. RELATIVE GOODNESS OF FIT AND CHI-TEST 

When only one formula is used for representing a given set of data, 
some idea of its suitability for the purpose can be obtained by an 
examination of the residuals. Also, one may use the Chi-testiO to 
measure quantitatively in terms of probability the goodness of fit 
which is obtained, provided a numerical estimate of the precision of 
the data is known a priori. When, however, for an identical set of 
data, and identical assumptions concerning the weighting, there are 
several different formulas fitted by least squares to the observations, 
then these formulas may be directly compared as to relative goodness 
of fit by forming in each case an estimate of some characteristic error 
for an observation of unit weight. Estimates of this sort may be 

10 For a recent discussion oC this test, see W . Edwards Deming, J. Am. Statistical Assn. %9, 372-382 (1934). 
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based on the assumption that the chances are about even for obtain
ing, purely by chance and exclusive of peculiarities or defects in the 
formula itself, a worse fit than has been found. Then, if probable 
error be the characteristic measure of precision selected for the basis 
of comparison it is estimated as P. E.=0.6745 -V"1:.r2/O, where 0 is 
the number of observations decreased by the number of adjustable 
parameters in the formula. 

The results of tests and intercomparisons of formulas 17, 13, 14, 
and 15 are given in table 1 where many of the entries are self-ex
planatory. Excepting for the unsuitable formula 13, none of the 
estimated probable errors seems unreasonably large, especially when 
it is considered that these data were preliminary observations and 
not made with the approved technique which was later adopted for 
the definitive measurements. Moreover, it should be noticed that 
these estimated probable errors do not differ for the equations 17, 
14, and 15 (with four, five, and six parameters, respectively) by as 
much as the probable error in these estimates, namely, 0.477 P. E. /-VO. 
Consequently, there is in this particular little or no definite indication 
that these three formulas would have the same relative standing if 
again compared by using them to represent another set of similar 
index data. 

There should, of course, for this single set of data, be only one final 
estimate of the probable error of a single observation of weight unity. 
From the estimates in table 1 (and imperfection in a formula tends 
to make these values high) it appears that the probable error is not 
greater than ± 1.4 X 10-6 in index and from the details of the observa
tions the probable error is directly computed as ± 1.26 X 10-6• As
suming, then, a probable error of ± 1.3 X 10-6 as an a priori estimate, 
there have been computed from the Chi-tables, and listed in table 1 
the probabilities, P, that the actually observed degrees of failure to 
fit might be worse purely by chance even if the corresponding formulas 
were perfectly suitable for the purpose of expressing the dispersion of 
water. For formula 17, then, the tabulated probability 0.23 is not 
seriously below the optimum value which is 0.50 approximately. 
In other words, even a perfect formula would, in about 23 of 100 such 
tests, fail to appear as suitable as does formula 17 when judged by 
this one test. 

T ABLE I.-Statistical comparison of dispersion formulas 

Designation of formula _____________________ __ __________________ 17 13 14 15 
Number of independent parameters _____ __ __________ ___ ____ ____ 4 4 5 6 
Number of + residuals (observed minus computed index) _____ __ 10 11 12 12 Number of - residuals ___ ______ ___ ____________ ___ ___ ____ ___ _____ 15 14 13 13 
Number of changes in sign of adjacent residuals ________________ 12 6 11 14 
Number of non-changes in sign of adjacent residuals ____________ 12 18 13 10 

1062:r=algebraic sum of residuals _________________ ._ -0.03 +0.04 +0_18 0.00 
l()'Xalgebraic average residual _____ __________________ :_::: :::::: -0.001 +0.002 +0.007 0_ 000 
10'2: Irl=arithmetic sum of residuals ______________ __ __________ __ 36.2 94_1 35. 4 34.3 
I06 Xarithmetic average residual. _______________________________ 1. 45 3.76 1. 42 1. 37 100Xmedian residual ____________________ ___ ____________________ 1. 24 3.9 1. 12 1.19 lO"X2:r' _________________________________ ________ _______________ 04.6 541.4 84.0 72.9 

10'Xestimated P. E. (assuming that existing degree of fit can be 
worse by chance alone in 50 percent oC such tests) _______ ___ ___ ±1.43 ±3.42 ±1.38 ±1.32 

I06Xestimated P . E. oCestimated P. E _____________ ________ ____ ±0.15 ±0.36 ±0_15 ±0_14 
Number of observations minus number oC parameters __________ 21 21 20 19 
x'=2:r'/(1.483 P. E.)'. where P . E. is estimated a priori as±1.3X 10'" ____________ __________________ ____ _____ ___ ________________ 25.5 146 22. 6 19.6 
Probability of worse fit by chance alone iC P . E. is estimated a priori as±1.3XlO-Il in index ________________ __________________ _ 0.23 Very small 0.31 0.42 
Odds that formula is imperCect in Corm _________ ________________ 3.4 to 1 Very great 2.2 to 1 1.4 to 1 

< 

1 

~ 

/ 
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2. CONCLUDING DISCUSSION 

649 

The manner in which the four dispersion formulas fit the refractive
index data is illustrated in figure 2, where everything is referred to a 
datum or reference line, Lln=O, that corresponds to values of the 
refractive index of distilled water as computed by the general inter
polation formula which has been adjusted to fit all approved data 11 

on water taken in the refractometric laboratory at this Bureau. The 
four-constant formula 13 is obviously unsuitable and necessarily in
accurate for representing the data, and it is thus indicated that there 
is no single effective location of an absorption band in the infrared 
region that will serve to replace the bands which actually exist for 
water. 

Referring to the average location and trend of the other curves in 
figure 2, the general lack of parallelism to the line Lln=O is probably 
attributable to the accidental distribution of errors in this sample of 

10 
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FIGURE 2.-Comparison of dispersion formulas . 

6000 

Formulas 17, 13, 14, and 15, with 4, 4', 5, and 6 parameters, respectively, were adjusted by least squares to 
fit preliminary refractive-index data taken at 20.00 0 on distilled water. Oircular dots represent obser
vations and lines represent computed indices. The reference line <,>n=O corresponds to indices computed 
by a general interpolation formula (based on formula 17) to fit more numerous data on distilled water 
which were subsequently taken with improved technique and procedures. 

only 25 observations. One notices, particularly, an especially high 
index for the faint helium line 4388 Ai also the low value for the faint 
helium line 5048 A, and the high value for the faint mercury line 
6907 A. The average increase of 3 X 10-6 in index which these samples 
show is attributed to slight contamination of the water which was not 
freshly distilled but had been stored in a dark-room where ammonia 
and other chemicals were kept. Moreover, during some of these 
initial experiments the hollow prism was almost entirely filled and a 
paper collar on the glass stem of the platinum-resistance thermometer 
was inadvertently allowed to touch the water. For these reasons, 

11 A total of 133 observations were used in adjusting by least squares a formula with 13 constants which 
represents the refracti ve index of distilled water in the visible region of the spectrum for the range 0 to 600 C. 
An account of this work by the writer, in collaboration with Mr. John K. Taylor, is being prepared for 
publication in this journal. 
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and also because complete tables of the refractive index and disper-
sion of water are to be included in a later account of work with more 
careful and approved procedures, no explicit values for these data are 
included in this paper. 

It is evident from figure 2 that each of formulas 17, 14, and 15 
agrees well with the average for all three of them. Aside from ex
tremes of wave length, there is only one instance for which an indi
vidually computed index differs from this average by as much as 
6XI0-7• Thus it seems that the Ketteler-Helmholtz dispersion 
formula 17 with four constants is probably adequate in representing 
the refractivity of water in the visible region to approximately 
±5XI0-7 or better. 

As shown by certain data in table 1, there is, from a purely statistical 
viewpoint, some indication of slight added superiority of the five- and 
six-constant formulas for fitting this particular sample of 25 indices. 
On the other hand, the slight advantage is not reliably indicated and, 
moreover, experience in using these formulas leads one to suspect that 
part of the apparent superiority may result from a greater flexibility 
which permits further and perhaps undesirable yielding to the acci
dental peculiarities of a limited set of data. 

In the writer's opinion, then, the advantages of using more than 
four parameters in a dispersion equation for water in the visible range 
are not sufficiently apparent to justify the extra labor in their adjust-
ment and results with added parameters may, perhaps, be less reliable 
at and near the extremes of the spectral range that is employed. 

WASHINGTON, July 18, 1936. 
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