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ABSTRACT 

It is pointed out that electrical surge-generator circuits are, essentially, periodi­
cally loaded lines. It is then shown that, with the aid of certain reasonable 
assumptions, the well-known theory dealing with such lines leads directly to 
expressions for the free periods and damping factors of surge-generator circuits. 
The resulting equations can be solved exactly in some cases and can be solved 
approximat ely in all cases. In certain cases exact expressions can be obtained 
for the current and volt age amplitudes. 
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Recent investigations into the behavior of transmission lines and 
associated equipment, when subjected to voltage and current surges 
simulating those produced by lightning disturbances, have led to the 
development and use of the so-called surge-voltage and surge-current 
generators. A surge-voltage generator consists of a number of capa­
citors which are charged in parallel and then, by a suitable arrange­
ment of spark-gaps, discharged in series. Figure 1 is a schematic 
diagram of the circuits of a surge-generator as they function on dis­
charge, the charging circuits being omitted to avoid confusing the 
figure. If all the capacitors are identical and are initially charged to 
the same voltage Eo, the voltage appearing across the terminals of 
the nth mesh will rise to a maximum value of the order of nEo when 
the gaps are discharged in succession, beginning at the left-hand end. 
A surge-cun.ent generator consists of a number of capacitors which 
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are arranged to be charged and discharged in parallel. The current 
in the terminal mesh of an n-section generator will be roughly n times 
that obtainable from a single capacitor. Figure 3 shows a schematic 
diagram of a surge-current generator in which, again, the charging 
circuit is not shown. 

The methods of obtaining approximate solutions for such circuits 
are obvious. If one neglects the internal structure of such a circuit 
and considers it to consist simply of a lumped effective capacitance, 
inductance, and resistance, the frequency and amplitude of the 
fundamental component of current or voltage can be computed with 
a reasonable degree of accuracy. As an additional approximation 
one might consider the entire generator to consist of two circuits, a 
generator with lumped constants coupled to a load circuit. Appar­
ently no analyses of the discharge characteristics of surge-generator 
circuits have been published which have gone beyond these two 
obvious approximations, although R. Elsner and C. S. Roys have 
published complete analyses of the charging characteristics of such 
circuits.1 While serving fairly well to predict the frequency of the 
fundamental component of current or voltage, this approximation 
leads to erroneous results when an attempt is made to use it in the 
computation of critical damping resistances, as will be shown in the 
section on surge-current generators. In addition, such a simplifica­
tion entirely neglects the presence of frequencies higher than the 
fundamental. It is just these higher frequencies, however, which are 
of particular importance in defining the wave front of such surges. 

It is the purpose of this paper to point out that surge-generator 
circuits are essentially periodically loaded lines, and that the highly 
developed theory of the periodically loaded line can be applied directly 
to surge-generator problems. It is shown that straightforward calcu­
lations lead to expressions for the free periods and damping factors of 
surge-generator circuits which can be solved exactly in some cases and 
approximately in all cases. In certain cases exact expressions can be 
obtained for the current or voltage amplitudes. 

II. SURGE-VOLTAGE GENERATOR 

1. STATEMENT OF THE GENERAL PROBLEM 

The problem of the surge-voltage generator can be stated conven­
iently in terms of the simplified circuit shown in figure 1. A set of 
n-l identical capacitors of capacitance 0 are first charged in parallel to 
a common voltage Eo. By a suitable arrangement of sphere gaps, 
as shown, they are then discharged in series through leads having 
identical resistances R and inductances L. The nth mesh, of resist­
ance Rm inductance In, and capacitance On, contains the equipment 
under test as well as other measuring apparatus, and is in general 
different from the other n-l meshes. The capacitance to ground 
associated with each capacitor and its two spherical terminals is 
supposed, for simplicity, to be concentrated as shown in figure 1 and 
to be of common value 00 , Different locations of this lumped 

1 P. L. Bellaschi, Trans.-Am. lnst. Elec. Engrs. 51, 936-945 (1932); 52, 544-552 (1933); Elec. Eng. 53, 
86-94 (J 934). ,,:<, ' 

J. C. Dowell and O. M. Foust. Trans. Am. lnst. Elec . Engrs. 52, 537-543 (1933). 
B. L. Ooodlet, 1. lnst. Elec. Eng. (London), 74,377-396 (1934). 
K. B. McEachron and J. L. 'J'homason, Gen . Elec. Rev. 38, 126-131 (1935). 
R. Elsner, Arch. Elektrotech. 29, 655-682 (1935). 
C. S. Roys, Engineering Bulletin Purdue University 19, no. 3 (May 1935) . Research Series no. 50. 
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capacitance to ground, as for example, splitting it between the two 
capacitor terminals, would present no essential mathematical diffi­
culties. We neglect the internal structure of the capacitors, if any,. 
and assume that their internal losses are sufficiently represented by 
a suitable increase in the lead resistance R. 

All the capacitors are initially charged to the same voltage, Eo. If 
now the first gap is broken down by some artificial means, each of 
the other gaps in the circuit will break down in its turn as the voltage 
across it rises to its breakdown value. The problem, then, is to find 
the charges on the various capacitors as explicit functions of time, 
subject to the given initial conditions of charge and current. Let 
Qs represent the charge on the sth main capacitor and q. the charge 
on the sth capacitor to ground. The method of solution is to set Up' 
the equation for the summation of the voltages around each mesh in 
terms of the charges on the various capacitors. The q's can be elimi­
nated in terms of the Q's. After certain transformations the result­
ing n second-order differential equations in the Q's lead to a trigono-

\
metric equation of degree fl., the secular equation, the roots of which 
furnish the free periods and damping factors of the system. These 
roots can be obtained exactly in some cases and can be approximated 
in every case. The 2n constants necessary to satisfy the original n 
second-order differential equations determine the amplitudes and 
phase angles of the charge components. Exact expressions can be 
found for these constants in certain limiting cases and approximate 
expressions in certain others. 

2. FORMAL SOLUTION OF THE GENERAL PROBLEM 

Referring now to figure 1 and writing down the equations for the 
summation of the voltages arolmd each mesh, the gaps now being 
considered conducting, 

R L c~ Fe L C 

01 ~·rCH» 
q, C9 q. C 9 

i, 

___ l~cn 
~a" 
'-

0.._., eg 

FIGURE I.-Schematic diagram of a surge-voltage generator. 

The charging circuits have been omitted to avoid confusing the figure. 

-Ril-Ldiddt+QdC+qdCo=Ol 
. -.q~/~u~~~.-.L~'::d~+.Q~/~~q2!~U-:~ 
-qs_dC-R~.-Ld~./dt+Qs/C+qs/Cu=O I 

. . '-qn~J(i-Rnin -'- Lndin/dt + Q,icn"= 6 J 

(1) 

Now consider the currents at a representative point, as a. By definition 
is= -dQs/dt (2) 
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Then at point a 

-dQ./dt+dq./dt= -dQ.+ddt 
Integrating, 

q.=Q.-Q'+I+h. (constant) (3) 
At t=O, 

Therefore, 
h.=q •. o- Q •. O+Q.+1.0 

Substituting eq 2 and 3 in eq 1 we have, 

Ld2Qddt2+RdQddt+QI/0+QdOg-Q2/0g+hdOg=O 
-Qd09+Q2/0g-hdOg+Ld2Q2/dt2+RdQ2/dt+Q2/0 

+ Q2/09-Q3/09+h2/09= 0 

- Qn-dOg+ Qn/Og-hn-dOg+ Lnd2Qn/dt2+RndQn/dt+ Qn/On= 0 

Now make the usual exponential substitution 

Q.=d.+A.e-At 

(4) 

(5) 

(6) 

where d., A., and).. are constants, as yet undetermined.2 Applying 
eq 6 to the typical equation of eq 5 we obtain, 

-h._1-ds-l +[ -A'_I+ (OgL)..2- OgR)..+Og/0+2)A,-A.+de-At 
+ (Og/0+2)d.-d8+1 +h.=O 

This suggests that we define two new quantities 

w()..)=OgL)..2_0gR)..+Og/0+2 } 
X()..)=OgLn)..2-0gRn)..+Og/On+ 1 

Eq 5 then become 

[(w-l)A1-A2]e-At = - (Og/O+l)dl+~-hl 
[-AI +wA2-Aa]e->"=d1- (Og/0+2)~+d3+hl-h2 

[-An_l+XAn]e-At=dn_l- (Og/0+1)dn+hn_1 

(7) 

(8) 

Since the constant.s d are at our disposal, we shall so choose them 
:as to reduce the right-hand members of eq 8 to zero. The d's are 
therefore defined by the following equations, 

2n 
, Strictly speaking there will be 271 ~'8 and Q. will be o( the (arm Q.= ~A •• e->..t. For the time being 

k=l 
'We shall omit the subscript k. Strickly speaking also A. is not necessarily a constant. In case a given A, is 
a double root o( the secular equation, that is, if the rth (requency component is critically damped, the 
corresponding A" is a linear (unction o( time o( the (arm (At+B). See, (or example, Ames and Murnaghan, 
'Theoretical Mechanics, page 124 (Ginn and Co. , 1929). 

.> 
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(00/0+I)d1-fh=-h1 } 

~ ~S.-I.+.(~0/?:~)~8~~S+~ . h~_~-.h: 
-dn- 1 + (00/0+ l)dn=hn- t 

(9) 

With the d's having the values determined by eq 9 the solution 
of eq 8 reduces to the solution of the following equations: 

(W-l)At-A2=Oj ... ~.~1.~~~~~~3:0 
-AS-l+wAs-AsH-O 
................ 

-An_1+XAn=0 

(10) 

The condition that a solution other than zero shall exist for the A's 
requires, as usual, that the determinant of the coefficients shall 
vanish. Let us call this determinant Dn. The condition for a solution 
then reduces to 

Dn= w-l -1 0 0 0 
-1 w -1 0 0 

0 -1 w 0 0 
. . . . . . .. 

0 0 0 w -1 
0 0 0 · . -1 X 

Let us also defin e 

Hn= w -1 0 · . 0 0 
-1 w -1 0 0 

0 -1 w 0 0 
. . . . . . · . .. 

0 0 0 w -1 
0 0 0 · . -1 X 

Expanding Dn on its first column, we obtain 

Dn= (w-l)Hn-1-Hn-2 

Expanding Hn similarly, we obtain 

HlI=wHn-l-Hn-2 

=0 

(11) 

nth order 

(12) 

nth order 

(13) 

(14) 

The method of handling such difference equations and the applica­
tion of the results to electrical problems has been discussed by Wheeler 
and Murnaghan.3 Let us make the trial substitution Hn=cxn, where 
c is any constant. Substituting in eq 14 we obtain 

x2-wx=-1 
whence x=w/2 ± [w/4-1Jl/2 

This suggests the substitution 

w/2=cosh </> 

'H. A. Wheeler and F. D. Murnaghan, Phil. Mag. [7]6, 146-174 (July 1928). 

(15) 



590 Journal of Research of the National Bureau of Standards [Vot. 17 

Making this substitution, we obtain 

Hence 

or 

x=cosh cf> ±sinh cf>=e±<I> 

I-In=cxn= ce±nq, 
Hn=clcosh ncf>+c2 sinh ncf> 

The values of Cl and C2 may be determined from the values assumed by 
H n when n=O and n=1. From eq 12 and 14 we have H2=wX-l= 
wHl-Ho. 
Therefore 

Ho=l 
Hl=X 

Using these values we readily find 

cl=l 

X-cosh cf> 
C2= sinh cf> 

:so that 

R _X sinh ncf>-sinh (n-1)cf> 
n- sinh cf> 

And fmally 

D =X cosh (n-1/2)cf>-cosh (n-3 /2)(p 
n cosh cf>/2 

(16) 

(17) 

The problem of solving eq 10 is therefore reduced to the problem 
of finding those values of cf> which will reduce eq 17 to zero. There 
will be n such values of cf> corresponding to the n degrees of freedom of 
the system. Exact solutions for cf> will be found only for certain special 
values of the constants Rn, Ln, and On, but approximate solutions 
can always be made. 

Values of A are obtained by substituting these values of cf> in eq 7 
and (15), from which we obtain 

Ak.h Ak.Z=R/2L± [R2/4V-1/0L+ (4/0uL) sinh2cf>k/2]i (18) 

there being n values of k corresponding to the n possible values of cf>. 
It can now be verified by direct substitution that eq 10 will be 

sa,tisfied for all possible values of cf> if the A's are of the form 

As=Pk cosh (s-lj2)cf>" (19) 

where the PIc are constants. 
Therefore, the final solution of eq 5 is of the form 

Qs=ds+ L:[p".le-hk,lt+Pk.2e-h •. ,t] cosh (s-lj2)cf> (20) 
k 

The constant ds is evaluated from eq 9 and the constants P".l and P".2 
are det.ermined by the initial conditions, that is, by the values of 
Qs and is at t= O. With the evaluation of these constants the problem 
is completely solved, for with the aid of eq 20 we can now compute the 
voltage drop across any element of the circuit of figure 1 as an explicit 
function of time. 
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3. ILLUSTRATIVE CASE, EXACT SOLUTION 

The application of the preceding formula is best illustrated by 
means of a specific example. For simplicity, a case has been chosen 
in which an exact solution is possible. Other special cases loading 
to exact solutions can be discovered with little difficulty. These 
exact solutions may be found to be of little practical importance since 
the constants of the terminal mesh, including as they do the constants 
of the apparatus under test, cannot in genoml be chosen arbitrarily. 

Referring to figure 1, let us assume that 

Rn=R, Ln=L, On=oo;ou 

This is assuming that the terminal section is identical with the 
typical section, the capacitance On being replaced by a capacitance 
o in series with a capacitance 0 0 , Substituting these values in eq 7 
we find 

X=w=2 cosh cf> 

Substituting this value in eq 17, we find 

D = cosh (n+ 1/2)cf> 
n cosh cf>/2 

The condition for a solution is that D,,=O, or 

cosh (n+1/2)cf> 0 
cosh cf>/2 

Hence 2k+1 . 
(h=2n+17r~ 

or, if i8=cf> 

Referring to eq IS, we have 

. n-1 (21) 

A".1,A".2=R/2L±[R2/4£2- 1/0L- (4/0gL) sin 28k /2Jl/2 (22) 

Three cases are to be distinguished, as usual, depending upon 
whether the radical of eq 22 is real, zero, or imaginary. In the first 
case (R greater than necessary for critical damping) the amplitude 
substitutions will be as given in eq 20. In the second case (R equal 
to the critical damping resistance for a given frequency) the sub­
stitution will be of the form (See footnote 2, page 588.) 

(Pr.lt+Pr.2)e-X,t cos (s-1/2)8r. 

In the third case (R less than that necessary for critical damping) the 
A'~will be of the form 

A,,= J.! ± 27riv" 

where J.!=R/2L 

27rv." = [_R2/4£2+ 1/0L+ (4/00L) sin 28,,/2Jl/2 (23) 

In this case the substitution corresponding to eq 20 will be of the form 

Pic cos (s-1/2)Oe-l't cos (27rv"t-a,,), 

where P" and ak are now the unlmown constan ts. 
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Suppose now that the value of R is such as to critically damp the 
rth frequency component. We can then write a general expression 
for the charge on the sth capacitor in the following form: 

r-l 
Q.=ds+ ~ (Pk.1e-h1.lt + P k •2e-h 1.,t) cos (s-lj2)8k 

k=O 

n-l + ~ P k cos (s-lj2)8ke-~t cos (271'IIkt-ak)' 
k=r+l 

(24) 

The 2n constants are determined from the initial conditions, that is 
at t=O, 

Q.=Q •. o 

is=i •. o 

The problem of determining these 2n constants is the standard 
problem of passing an n term trigonometric sum through n arbitrarily 
chosen points. If the n points are equally spaced (that is, if the solu-

tion of eq 17 yields exact values of 8 of the form 8=k;" ~!!i7l" etc.) 

the solutions can be written down immediately.4 The condition that 
Q.=Q •. o at t=O leads to the solutions of the following identical form 

( ~+1) for P t .1+Pk •2), P r•2, and Pk cos ak (for the case where 8k=2n+171' 

n 
P k cos ak=4j(2n+1)~(Q •. o-ds) cos (s-lj2)8k • (25) 

8=1 

The second initial condition, i.=i •. o at t=O, leads to similar solutions 
for the same pairs of constants, from which the individual constants 
can be evaluated. If the initial conditions are known the summations 
of eq 25 can always be carried through and the constants determined. 

The exact determination of these initial conditions is a matter of 
some difficulty in the case of a surge-voltage generator. It is not 
correct to assume that at time zero all charges are equal and all 
currents zero, although this represents the limiting case of all gaps 
closing simultaneously. Actually, the breakdown of the gaps is 
successive, and the initial time for the whole system should be taken 
as the moment of breakdown of the last gap. At this moment the 
charges on the preceding capacitors are not identical and the currents 
in the preceding meshes are not zero. To compute the initial con­
ditions exactly the following procedure must be followed. First, 
compute the voltage above ground of the terminal of the second 
section of the generator (that is, point a, fig. 1) after the first gap has 
been closed and before the second gap has broken down. This com­
putation can be carried out exactly since there is only one gap in this 
circuit and it is arbitrarily closed at time zero, at which time both 
initial charges are equal and both initial currents are zero. Now, 
having a knowledge of the voltage at which the second gap will break 
down, or having niade a reasonable assumption as to that voltage, we 
compute the charges and currents existing at the moment that break-

• W. E. Byerly, Fourier's Series aud Spherical Harmonics, chapter II. (Ginn and Co., 1895.) 

I 
">< 
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down voltage is reached at the second gap . TIlls moment is taken 
as the new origin of time measurement in dealing with the three­
section network now in the circuit, and these charges and currents 
are the required initial conditions. We repeat the above process for 
the third gap and for each of the other gaps in turn until finally we 
are able to compute all the charges and all the currents at the moment 
of breakdown of the last gap . It is readily seen that the rigorous 
computation of the voltage across the terminals of an n-section gen­
erator becomes very laborious if n is very large, say 20 or 30. 

To make these ideas somewhat more specific, sample calculations 
have been carried out on a three-section network having the following 
circuit constants: 

o 
w 
':>. 
w 

1.0 

o .5 1.0 1.5 

MICRO SECONDS 

FIGURE 2.-Voltage surge of a two-section generator discharging into a previ01isly 
uncharged teTminal section. 

Curve I, both gaps closed simultaneously. 
Curve II, second gap closed 1 X 10-1 seconds after first gap. 

L=Ln =5 X 10-6 h. 
R=Rn=40.5 ohms. 

0=0.25 X 10-6 farads. 
0 0 =0.25 X 10-8 farads. 
fY 000 

Lln=o+oo 
Eo=initial charging voltage. 

The value of resistance used is just sufficient to critically damp the 
fundamental of the three-section network. We have here a two­
section generator discharging into a previously uncharged terminal 
circuit. 
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In figure 2 are plotted curves of Ea/Eo against time, Ea being the 
voltage across the capacitor Co in the terminal circuit. Curve I is 
plotted for the limiting case in which both gaps are closed simultane­
ously. Curve II is plotted for the case in which the second gap closes 
0.1 microsecond after the first gap. In this time, the voltage across 
the second gap will have risen to about 1.25 Eo. The difference be­
tween these curves indicates the importance of initial conditions, that 
is, gap settings, on the shape of the voltage wave front. 

4. DISCUSSION 

In surge-voltage generators as used in practical work the situation 
is somewhat more complicated than is indicated in the simple example 
just cited. The inductance and capacitance of each section of an 
actual generator might be expected to be of the order of magnitude 
of those given in the example, but the resistance of each section, R, 
might be much less than that required for critical damping of the 
fundamental. An aperiodic wave is then obtained by inserting re­
sistance in the terminal section, that is, making Rn large. Ordinarily 
a resistance equal to several times the surge impedance of the circuit 
(LtotadCl)1/2, is found sufficient to give a reasonably smooth wave.5 

A solution for the frequencies and damping factors is obtained, as 
before, through the solution of eq 17 in conjunction with eq 7 and 15. 
Exact solutions will not be possible in general, but approximate solu­
tions can always be made. The solutions for cp will be of the form 
cp=x±iy and the corresponding values of A will be of the form 
Ak= fJ.k ± 27rillk. It should be remarked that the damping constant 
fJ.k is now different for different components k. In general, it will be 
found that lumping the damping resistance in the terminal section 
results in a damping factor for the fundamental and lower harmonics 
greater than would have been obtained had the same resistance been 
uniformly distributed throughout the network. On the other hand, 
the damping factors for the higher harmonics \vill be found to be much 
less for the lumped damping resistance than for the distributed re­
sistance. A somewhat more detailed discussion of the solutions of 
such equations will be found following eq 46 where the solution of a 
similar equation is discussed in connection with surge-current circuits. 
As is shown there, the circuit constants in any particular case may 
suggest valid simplifications and approximations which greatly 
facilitate the computations. 

Exact solutions for the amplitude factors P k , see eq 20, cannot be 
obtained in general. With a knowledge of the proper form of solu­
tion, however, and the correct values of the A's, it will be possible to 
compute, by the ordinary methods of wave analysis, the amplitude 
factors P k necessary to fit a given surge-voltage oscillogram. Even 
this meager information may prove valuable, however. It will en­
able one, from data obtained on the well-defined crest and tail of a 
voltage wave, to reproduce the sharply rising front of the voltage wave 
which is actually of much importance but is often poorly defined on 
the oscillograms . 

• P. L. Bellaschl, Trans. Am. Inst. Elec. Engrs. 51, 936-945 (1932). 
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III. SURGE-CURRENT GENERATOR 

1. STATEMENT OF THE GENERAL PROBLEM 

The problem to be solved in connection with some types of the 
surge-current generator can be stated conveniently in terms of the 
simplified circuit shown in figure 3. The n identical capacitors com-

L R 

I 
FIGURE 3.-Schematic diagram of a surge-current generator. 

The charging circuits have been omitted to avoid confusing the figure. 

pnsmg this generator are connected in parallel by identical leads 
having resistances R and inductances L. The nth, or terminal, 
mesh, which in practice contains the apparatus under test as well 
as other measuring equipment, is closed through a resistance Rn 
and an inductance Ln which is, in general, different from the resist­
ance and inductance (R, L) of the other n-l meshes. As actually 
used, a surge-current generator will consist of two or more units, 
such as shown in figure 3, connected in parallel to a common sphere 
gap and load, as are shown in figure 4.6 If the parallel circuits of 
figure 4 are identical, and if we can neglect the effect of mutual 
inductance between leads, it is obvious that the currents in the 
parallel circuits will be identical at all times and that the current 
through the load resistance will be simply three times tha t flowing 
in anyone of the parallel circuits. The solution for the case of a 
symmetrical circuit, such as figure 4, therefore reduces essentially 
to th e solution of the circuit of figure 3. As before, we neglect the 
internal structure, if any, of the capacitors and represent their 
internal losses by a suitable series resistance, and neglect the change 
of resistance of the leads with frequency. If identical charges Qo 
are placed on each of the capacitors and the nth mesh is then closed 
through its inductance and resistance, it is required to find the 
charges on the various capacitors and the currents in the various 
meshes as explicit functions of time. We are particularly inter­
ested here in the current in the nth mesh. The method of solution 
will closeJy parallel that used in connection with the surge-voltage 
generator in section II. 

o P. L. Bellaschi, Elec. Eng. 53, 86 (1934). K. B. McEachron and J . L. Thomason, Gen. Elec. Rev. 
38, 126 (1935) . 
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2. FORMAL SOLUTION OF THE GENERAL PROBLEM 

Referring now to figure 3 and writing down the equations for the 
summation of the voltages around each mesh we have, if Qs is the 
charge on the sth capacitor and is the corresponding current: 

. ~1!~~~~il~dt.-.~il.-.Q.2/? ?} 
Qs/ 0 - Ld~s/dt - R~8 - Q,+d 0-0 
............. 

Qn/O-Lndin/dt-Rnin=O 

(26) 

FIGURE 4.-Schematic diagram of a surge-current generator using three identical 
circuits in parallel. 

Now, noting the currents at point b, we can write 

or 

and, in general, 

il=-dQI/dt 
i1-~-dQ2/dt=O 

i 2= - (dQr/dt+ dQ2/dt) 

8 

i.= -"J:,dQr/dt. 
r = l 

(27) 



Lewl,] Surge Ge nerators 597 

Let us now make the usual exponential substitution 

Q.=B.e->'! (28) 

where B. and}. are undetermined constants (see footnote 2, p. 588). 
Substituting eq 27 and 28 in the typical equation of eq 26 and 

making a few obvious rearrangements, we have 

8-1 

C-,..2LO- }.RO)~Br+ (}.2LO-}.RO+ 1)B.-B.+1 =0 
1=1 

This suggests the following definitions: 

u=}.2LO-ARO+1 } 
Y = }.2 LnO- ARnO+ 1 

Eq 26 can then be put in the form: 

uB1-B2=0 
8-1 

(u-l)~Br+uB.-B'+I=O 
r=1 

n-J 

(Y -l)~Br+ YBn=O 
r = 1 

(29) 

(30) 

The condition for a solution giving values forlthe B's other than 
zero is, as usual, that the determinant of the coefficients shall vanish. 
This nth-order determinant, which leads to the secular equation, we 
shall call Fn. The determinantal equation is: 

Fn= u -1 0 0 
u-1 u -1 .... 0 
u-1 u-1 u . ... 0 

o 
o 
o 

u-1 
Y-1 

u-1 
Y-1 

u-1 . ... u -1 
Y-1 .... Y-1 Y nth order. 

(3 1) 

Let us also define the following determinant which"' is obtained on 
expanding Fn: &. 

Kn= u-1 -1 0 0 0 
u-1 u -1 .... 0 0 
u-l u-1 u .... 0 0 

u- 1 
Y-1 

u-1 
Y-1 

u-1 .... u -1 
Y-1 .. . . Y-1 Y nth order. 

Expanding eq 31 on the first row, we obtain 

Fn=uFn-I+Kn-l 
Expanding eq 32 on the first row, we obtain 

Kn= (u-1)Fn_I+Kn_1 

whence 

Therefore, 

K n- I = -Fn-2+ (uFn-2+Kn-2) 

=Fn- 1-Fn- 2• 

Fn= (u+ l)Fn_l - Fn-2• 

(32) 

(33) 



598 Journal oj Research oj the National Bureau oj Standards [Vol. 17 

EqF 33 is of oxactly the same form as eq 14 and the method of solution 
of the two equations is identical. If we make the definition 

(u+ 1)/2=cosh ~ 

we find that eq 33 can be put in the form 

F: _ Y sinh n~-sinh (n-1)~ 
n- sinh ~ 

(34) 

(35) 

The problem of solving eq 26 is now reduced to the problem of finding 
those values of ~ which will reduce the right-hand member of eq 35 to 
zero. There will be n such values of ~ corresponding to the n degrees 
of freedom of the system. 

Values of A are obtained by substituting these values of ~ in eq 29 
and 34 from which we obtain 

Ak.l,Ak.2=R/2L±[ R2/4D+ (4/LO) sinh2 ~kJ (36) 

there being n values of lc corresponding to the n possible values of ~. 

It can now be verified by direct substitution that eq 30 are satisfied 
for all possible values of ~ if the B's are of the form 

B ,= Uk cosh (s-1/2)h. (37) 

The final solution of our problem is therefore given by 

(38) 

8 

and i,= - ~ dQr/dt 
r=1 

where the Uk'S are constants to be determined by the given initial 
values of charge and current. 

3. ILLUSTRATIVE CASE, EXACT SOLUTION 

The application of the 'preceding formulas is best illustrated by 
means of a specific example. For simplicity, a case has been chosen 
in which an exact solution is possible. Other special cases leading 
to exact solutions can be discovered with little difficulty. 

R eferring to figure 3, let us assume that 

Rn=R and L,,=L. 

This is assuming that the terminal section is identical with the typical 
section. Substituting these values in eq 29 and 35, we obtain 

Y=u=2 cosh ~-1 

and F: =cosh (n+1/2)t 
n cosh ~/2 

and the condition for a solution, Fn=O, reduces to 

cosh (n+l/2)~ ° 
cosh ~/2 

(39) 



I,ewia) 

Hence 

or, if ~=iif; 

Surge Generators 

2k+l . 
~ - 7r'L k-2n+l 

.f, _2lc+l 
'I'k-2n+l 1r 

k=O, 1,2, ... n-l 

Referring to eq 36 we have 

Ak.l,Ak.2=R/2L±[ R2/4L2- (4/L O) sin2 ~kJii. 

599 

(40) 

As before, we distinguish three cases depending upon whether R is 
greater than, equal to, or less than the value necessary to critically 
damp a given frequency. For values of R less than the critical 
damping value, we will have 

Ak,b Ak.2= I'± 21riPk 

where I'=R/2L (41) 

21rPk=[ -R2/4L2+ (4/LO)sin2 ~kJ~' 
If now the value of R is such as to critically damp the rth frequency 

component, we can rewrite eq 38 in a form similar to eq 24. 

n-l 

+~ Uk cos (s-1/2) if;ke-~t cos (21rPkt-(3k) ' 
k=r+l 

(42) 

The constants U and (3 are deterrillned, a.s before, by the initial 
conditions, which are, in this case at t=O 

Q.=Qo 

i.=O 

rCR is less than the critical damping resistance for the fundamental, 
these conditions lead to the following values for the constants, 

whence 

(3k= tan -11'/21rPk 

Uk=[(-I)k2Qo/(2n+1) cos (3d cot ~k 

(43) 

Q.= ~(-I)k[2Qo/ (2n+ 1) cos (3k] cot ~k cos (s-1 /2) if;ke-~' cos (21rPkt- (3k) 

and finally 
n-l if; if; 

in =2Qo/(2n+1)(LO)V,12o sin 2k/ cos (3k' cot2 2ke-~1 sin 21rPkt. (44) 
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Let us assume, as a practical example, a generator having the 
following constants, 

n=lO, L=IXIO-6h 

O=2.4XIO-:!, R=O.OI ohm. 

These constants approximate those that might be used in an actual 
generator. Using these data we find 

or 

40XIO' 

30 

20 

J.I=5 X 103 

Pk=~~[1.67 sin2(2k+ 1)11"/42-25 X 10-6] 

Pk"'650 sin (2k+ 1)11"/42 kc/s approx. 

k=O, 1,2, ..... 9 

. '-...... 

III /' •••• '"'-. 
10 /" ••••• 

Il) / 

~ O~/----------------------~--~::::=============-____ _ 
a. 
:::; 
0{ 10 

20 

30 

40 

10 IS 20 
MICRO SECONDS 

FIGURE 5.-Current surge from a lO-section surge-current generator. 

Curve I, distributed re3istance oC 0.01 ohm per section, Cundamental very much underdamped. 
Curve II, distributed rasistance oC 0.61 ohm per section, Cundamental critically damped. 
Curve III, the critically·damped Cundamental corresponding to curve II. 

This gives a fundamental, Po, of 48.5 kc/s, which is to be compared 
with 32.4 kc/s, which would be computed by considering all the con­
stants of the generator lumped and computing the resulting frequency. 

In figure 5, curve I, in, the current in the terminal mesh, is plotted 
against time, using the circuit constants just given. In figure 5, 
curve II, in has been plotted for a generator having the same 
constants, except that R=0.6I ohm. This value of resistance is 
just sufficient to critically damp the fundamentaL In this case J.I 
(critical) =30.4 X·I04• Curve III represents the critically-damped 
fundamental for this case. 

.>.1 
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4. ILLUSTRATIVE CASE, APPROXIMATE SOLUTION 

In actual practice it is customary to make the internal resistance of 
the generator (R) as small as possible and to achieve the necessary 
damping by making the terminal resistance CRn) sufficiently large. 
These conditions allow certain simplifying assumptions to be made in 
the general solution of eq 35. It is well known, and can be verified in 
the numerical example of the last section, that if the damping factor 
is small, the damping affects the frequency as a second-order correc­
tion only. Neglecting the internal resistance of the generator for the 
moment, we have, from eq 29 and 34, 

h= ±2/(LC)I/2· sinh ~/2 (45) 

and eq 35 then becomes 

cosh Cn-1/2)~+[2Ln/£'sinh V2=FRnCO/L)1/2] sinh n~=O (46) 
cosh ~/2 

This equation can be solved appro)"'imately by anyone of the standard 
methods. Its roots will be of the form 

and the A'S will be of the form 

and we have, in addition, the small damping arising from the inter­
nal resistance llo=R/2L. 

If we make the additional assumption that Ln=L, that is, that we 
add pure resistance only to the terminal section, eq 46 simplifi es to 

cosh (n+1/2)~=FRn(O/L)I/2 sinh n~ 0 
cosh V2 

(47) 

Approximate solutions can be written down for two limiting cases 

2k+ 1 . 
Rn very small ~k=2n+11J'1,k=O, 1,2, . . . n-1 

k=1,2, .... n-l 

Taking one of these approximations as a value of iy above, "e can 
enter eq 47 and find approximate values for Xk' Using these values of 
Xk, we can now compute a second approximation to tbe true values of 
Yk' This process may be repeated if necessary. The value of Y cor­
responding to k=O may sometimes have to be obtained by a separate 
evaluation. If we wish to find the value of Rn necessary to critically 
damp the fundamental, we solve equation 47 graphically under the 
assumption that Yo is a small quantity the squares of which can be 
neglected and find that value of RI which just causes Yo to vanish. 

89799-36-8 
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Sample calculations have been carried out on the lO-section 
generator of the last section under the conditions Ln=L, R=O.01 
ohms, R,,=2.3 ohms (critical damping for the fundamental). In 
figure 6 are plotted, as solid lines, the damping factors, Mk, for this 
case against the corresponding frequencies. As dotted lines are also 
plotted, the corresponding damping factorli\ against frequency for the 
case of the same generator, the fundamental of which is critically 
d amped by distributed resistance, R=Rn=O.6l ohm. 

It should be remarked that had we considered the constants of this 
generator to be lumped, we would have computed a terminal resistance 
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FIGURE 6.-Damping factors against fr equencies for a to-section surge-current 
generator. 

Solid lines, damping factors against frequencies for the case of a lumped terminal resistance just sufficient 
to critically damp the fundamental. R=O.Ol ohm, R.=2.3 ohms. 

D otted lines, damping factors against frequencies for the case of a distributed resistance just sufficient 
to. critically damp the fundamental. R=Rn=O.610hm. 

of 4.1 ohms necessary to critically damp the system. The damping 
resistance obtained from the present closer calculations, that is 2.3 
ohms, is in reasonable agreement with the experimental values 
observed on just such a generator, that is 1.5 to 2.0 ohms.7 

IV. CONCLUSION 

It is thus seen that the mathematical theory of surge-generators 
presents no essential difficulties, and that it is possible to set up com­
plete formal s0lutions for both the surge-voltage and the surge-current 
generator which take account both of the internal structure of the 
generator and of the load to which it is connected. From these solu­
tions it is possible to obtain exact numerical values for the damping 
factors and frequencies in certain special cases, and to obtain approxi­
mate values in all cases. Exact expressions for the amplitudes and 
phase angles can be obtained only in certain special cases. 

7 P . L. Belleschi, Elec. Eng. 53, 86 (1934). 
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It has been the purpose of this discussion to ou tline the general 
method of attack on the mathematical problem presented by surge­
generator circuits and the difficulties which will be met rather than to 
discuss in detail all the pecial cases which might be derived from the 
equations given above. If a particular generator were under con­
sideration, many valid assumptions and approximations leading to 
useful approximate solutions might suggest themselves, which it 
would be fruitless to consider in a general discussion. 

WASHINGTON, July 23,1936. 
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