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ABSTRACT 

The procedure used in making Brinell t ests must be closely controlled in order 
that t wo observers testing a given metal at different locations should obtain 
Brinell numbers that are in close accord. Small variations in testing procedure 
will be inevitable so that it becomes important to know the effect of these varia­
tions on the magnitude of the Brinell number obtained. The present paper 
considers the effect on the Brinell number of such variations with the help of 
data available in the literature supplemented by new t est s wherever the existing 
data seemed deficient. Attention is given to the effect on the Brinell number of 
variations in t esting procedure, i. e., rate of applying loa d, time under nominal 
load, error in load, and error in measuring the diameter of indentation. The 
effect of variables residing in the specimen is discussed next under the separate 
heads of nonuniform properties, curvature of surface, thickness, spacing of 
indentations, and angle between load line and normal to specimen. Variations 
in the t ype of ball used were considered last, particular attention being pa id to 
differences in elastic deformation and in permanent compression of the ball u nd er 
load. The paper concludes with recommendations for· a t est procedure which 
would lead to greater concordance in the Brinell numbers obtained by different 
observers using a ball of given diamet er on a specimen of given metal. 
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I. INTRODUCTION 

1. PURPOSE OF THIS PAPER 

The Brinell test came into common use soon after its introduction 
by the Swedish engineer, J. A. Brinell,1 in 1900. An extensive litera­
ture dealing with the test has grown up, but it has not yet been pos­
sible to arrive at an understanding of the test that will allow one to 
predict the Brinell number of a given material from its other physical 
properties. The chief value of the Brinell test, just as that of other 
indentation tests, lies in its simplicity, in the fact that it measures a 
combination of properties that has proved to be significant in the 
choice of metals, and that it can be used to check the uniformity of 
a given product by making a few indentations in that product and 
measuring their diameters. 

It follows from the lack of a basic understanding of the Brinell test 
that it can be expected to give concordant results in the hands of 
different operators at different locations only if the test conditions 
are closely controlled and if the effect on the Brinell number of 
small changes in these conditions is understood. It is the purpose 
of this paper to bring together, and in places to supplement, present 
knowledge in regard to the effect on the Brinell number of small 
variations in the several variables entering into its determination. 
It is hoped that this will assist in further developing a standard pro­
cedure for Brinell testing. A short description of the Brinell test will 
aid in understanding the nature of these variables. 

2. DESCRIPTION OF BRINELL TEST 

(a) TEST FIXTURE 

The apparatus necessary for a Brinell test consists of a machine 
for making an indentation with a sphere under a known load, and 
means for measuring the diameter of that indentation. 

The machine that was used in making the tests at the National 
Bureau of Standards described in this paper is shown in figure 1. It 
consists of a heavy cast-iron frame A, an adjustable anvil B, and a 
hydraulic press C. The specimen is placed on the anvil B and is 
brought into contact with a lO-mm ball attached to plunger D, which, 
in turn, is connected to the ram of the hydraulic press. Hand pump 
E is used to force oil into the hydraulic press. The resulting compres­
sive force set up between the ball and the specimen may be read off 
approximately on pressure gage F. With continued pumping the 
pressure will increase until it is just sufficient to lift the crossbar G 
and the dead weights H, which are connected to the pressure chamber 
by a ball piston without packing. The pressure in the cylinder and, 
therefore, the force exerted by the ball will remain practically con-

1 Oommunications Oongres International des M~thodes d'Essai des Mat~riaux de Construction, Paris, 
2, 83-94. (1900.) 
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FIG URE I.-Machine for making B rinell te8t and micrOSC01Je for measuring diame­
ter oj indentation. 

J 
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stant as long as the piston remains raised to a position of floating 
equilibrium. 

This machine was chosen because investigation showed that the 
motion of the indenting tool had no appreciable lateral play and 
differences caused by frictional forces in the ball piston were too 
small to be observed in calibrating with a proving ring. Previous 
tests with an improvised dead-weight Brinell machine had shown 
that errors as great as 5 or 10 percent could be produced by very 
small rocking of the ball under load. 

A load of 3,000 kg is commonly used for metals having a Brinell 
number greater than 100 and one of 500 kg for metals having a 
Brinell number less than 100. 

Figure 1 also shows the Brinell microscope M, that was used in 
most of the tests at the National Bureau of Standards to measure 
the diameters of the Brinell indentations . This microscope has a 
fixed 7-mm scale, which may be read directly to 0.1 mm and to 0.01 
mm, by estimation. 

(b) BRINELL FORMULA 

The Brinell number was defined by Brinell as the average axial 
stress over the surface A of the indentation produced by a steel ball, 
assuming that surface to be spherical, as it would be for an infinitely 
rigid spherical ball. This leads to the formula 

H=~=!~(l+~l-(~y} (1) 

where 
P=load (kg), D= ball diameter (mm), and 
d=indentation diameter (mm). 

Both P and D must be specified in giving the Brinell number, since 
it varies somewhat with each of these. Since the work of Brinell, 
suitable balls of other materials than steel have become available. 
As the indentation diameter, on the same metal, may differ for balls 
of different material (see p. 83) it is now necessary to specify also 
the material of the ball. Tables for H with P=3,OOO kg, D= 10 mm 
and with P=500 kg, D=10 mm have been computed from this 
formula, which give the Brinell number corresponding to the observed 
diameter d of the indentation.2 

II. TEST SPECIMENS 

The materials used in tIllS investigation n,re listed and described in 
table 1. They are tabulated according to lot numbers, ranging from 
10 to 90. Not all lots available in the laboratory were used for this 
investigation and only those used are listed. 

'Misc. Pub. BS 62 (1924). 



TABLE I.-Materials used i'r, investigation 

Approximate chemical composition (in percent) 
Lot Material Condition 

AI Ou Si Fe Mn Mg Sn Pb Zn Ni o Or v w 
1--------1--1--1-- 1--1--1--1--1--1--1--1--1--1--1--1----------

10 Aluminum alloy SAE 30 ___ 90.80 7.95 0.58 0.59 0.08 ________________________________________________________ __ ____ _ 
11 Aluminum alloy 2S ________ 99.01 0.19 .35 .44 .01 ___________________________________________________ . ___________ _ 
12 Duralumin _________________ 94.36 3.71 .35 .49 . 60 0.49 _________________________________________________ __ ____ _ 

n Ri~~~~~l~~-aijoy= ======:::: --4~iiii- :::=::: ::::::: ::::::: ---~30- 9t~0 :::=::: ::::::: ::::::: ::::::: ::::::: :::==:: ::::::: ::::::: 
15 Do ____ _________________ 4.00 _______ _______ _______ .30 95.70 _______________________________________________________ _ 

16 Do______________________ 4.00 _______ _______ _______ .30 95.70 ___________________________________ __ __________________ _ 
17 Do_____________________ 4.00 ___________________ ._ .30 95.70 _______________________________________________________ _ 
20 Phosphor bronze __________________ 89.35 .04 .05 _______ 10.23 0.01 ______________________________ . __________ _ 
21 Do. ___ ____ __ __________________ 89.35 .04 .05 _______ 10.23 .01 __________________________________ _ ______ _ 

22 Nickel silve"- ____ _________________ 63.70 .17.21 _____________________ 18.00 17.92 ____________________ ___ ____ _ 
23 Do ___________________________ 63.75 . 16 .19 _______ _______ .015 17.7i 18.13 ___________________________ _ 
24 Brass __ : _____ ______ ________________ 65.12 .01 _______ _______ _______ .08 34.79 ______ . ___________________________ _ 
2~ Do ____________________________ 65.12 _______ .01 _____________________ .08 34.79 __________________________________ _ 
27 Nickel steeL ______________________________________________________________________________ 3.50 ___________________________ _ 

28 Oarhon tool steeL__ ________ _______ __ ___ __ _______ _______ _______ _______ _______ _______ _______ __ _____ 0.90 ____________________ _ 
33 Monel metaL _____________________ 30.00 .10 2.00 1. 75 ____________________________ 60.00 .20 ____________________ _ 
34 NickcL __ __ _____ __ _________ _______ .20 .10 .50 .25 ____________________________ 99.00 . 10 ____________________ _ 
35 Aluminum bronze__________ 7.92 91.90 ______________________________ . ____ _______ .18 __________________________________ _ 
36 Do ___ __ ____ ___ _________ 7.55 92.16 ______________________________ • ______ .____ .29 __________________________________ _ 
37 Oopper ____________________________ 99.97 __ . _____________________________ • __________ . _________ • ___________________________ • __ 
38 Do ____________________________ 99.97 ____________________________________________ • __ • ___________________ • _____________ • __ 
53 Carbon steeL ____ ______________ • ___________________________ • ______ ._. _____ • _____ .__ _______ _______ .09 ____________________ _ 
54 Do ___ ____ _____ ____________ • _____ ___________ • _________________________ .__ _______ _______ _______ .28 ____________________ _ 
55 Do ______________________________ • __________________________________ • ______ • _____________ .____ .68 ____________________ _ 

50 Nickel·chromium steeL ______________________________________ • __ • ______ • _______________ .__ 2.14 .30 0.82 _____________ _ 
57 Cbromium steeL _____________ • ______________________ • ______ •• _____ • ______________ ________ _ __ • __ ._ 1. 01 1. 33 _____________ _ 
58 Obromium·vanadium steel. ______________________________________________ • ______ • ____ .____ _______ .30 1.11 0.25 ______ _ 
59 Tungsten steeL _____________________________________ • ______ • ____ ._._. ____ • ________________ .______ .60 3.50 _______ 14.00 
81 Brass __ _________ ____ ______ ___________________________________________________________ • _______________________________________ _ 

82 
83 
84 
85 
85 
89 
DO 

Do ______________________________________________________________________________________________________________________ _ 
Duralumin __________________________________________________________________ . ________________ . ___ ._. _____ . __________________ _ 
Carbon tool steeL _______________________________________________________________________________________ ____________________ _ 
Oarbon steel. ____________________ _________ ___________________ • _______________ .. ______________________________________________ _ 

Do ___________________________________ __ _____ ____________ ____________________________________________ ____________________ _ 
Do ______________________________________________________________________________________________________________________ _ 
Do_. _____ ___ _________________________________________________________________________________ . __________________________ _ 

CI Commercially pure. 

Oast. 
Rolled. 
Heat treated. 
Extruded at 3000 O. 
Oast at 6800 O. 
Heat treated at 4500 0, quencbed in 

water. 
Rolled at 4500 O. 
Extruded at 2900 O. 
Annealed. 
Cold·rolled. 
Annealed. 
Oold·rollcd. 
Annealed. 
Cold·rolled. 
As received from mill. 
Annealed . 
Hot-rolled . 

Do. 
Annealed. 
Oold-rolled. 
Annealed. 
Oold·rolled. 
As received from mill. 

Do. 
Do. 
Do. 
Do. 
Do. 
Do. 

Oold·rolled. 
Do. 
Do. 
Do. 
Do. 
Do. 
Do. 
Do. 
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III. CAUSES OF DISCREPANCIES IN THE DETERMINATION 
OF THE BRINELL NUMBER 

The causes of discrepancies in the determination of the Brinell 
number may be grouped as variations in the apparatus and procedure, 
in the specimen, and in the shape and material of the ball. 

1. APPARATUS AND PROCEDURE 

(a) RATE OF APPLYING LOAD 

A rapid rate of applying load will affect the diameter of the Brinell 
indentation in two ways. It will add an inertia load and a friction 
load to the nominal load and thus increase the size of the indentation, 
and it will allow less time for the plastic flow of the material, and, in 
that way, decrease the size of the indentation. 

The magnitude of the first of these two effects will depend both on 
the method of applying the load and on the type of machine used. 
It is probably small as long as the load is applied slowly and without 
jerking and as long as the friction forces opposing the motion of parts 
in the machine are small compared to the forces effecting that motion. 

This last condition is easily satisfied in a machine of the design 
shown in figure 1. The friction force between the lower piston and 
cylinder in the hydraulic press 0 is probably less than 0.5 percent 
of the impressed load of 3,000 kg, and the force between the ball 
piston lifting the balancing weights and its sleeve is certainly less 
than 0.5 percent of the 24-kg weight lifted at maximum load, since 
the piston is constantly covered with oil. 

In the absence of appreciable friction the only forces that may lead 
to a pressure greater than that required to maintain the weights G 
and H in floating equilibrium are the inertia forces due to an upward 
acceleration of the weights G and H. The acceleration of the indent­
ing plunger D is, in general, so small as to be entirely negligible and 
it is, in addition, in an upward direction, i. e., in a direction leading 
to a lessening of the load rather than an overload. 

The relative error due to an upward acceleration a of G and H will 
be equal to the ratio of the resulting inertia force to the weight of the 
floating parts, i. e., equal to the ratio of its upward acceleration a to 
the downward acceleration g of gravity 

(2) 

The acceleration a will be large under two conditions, first, when 
the weights G and H are accelerated from zero velocity to a finite 
upward velocity at the instant at which the 3,000-kg load is reached 
for the first time, and second, when during the maintenance of maxi­
mum load the downward drift of the weights is reversed into an 
upward motion by a stroke of the pump E, in order to maintain the 
weights in floating equilibrium. 

The acceleration mentioned first was greatly reduced in the ma­
chine of figure 1 by attaching to the fixed cylinder J a leaf spring I, 
which starts to raise the balancing weights at half load, i. e., 1,500 kg 
on the indenting ball or 12 kg on the ball piston, and so imparts an 
upward motion to G and H, allowing them to come to floating equi-

73059-36-5 
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librium with a small upward velocity. The travel of this spring is 
0.3 cm. The average acceleration for an interval as small as 1 second 

. from half load to full load would, therefore, be 

. 2XO.3 06 / 2 a=-1-2-= . em sec. 

If this acceleration were maintained at the instant of commg to 
floating equilibrium the overload would be 

tlP 0.6 
P=981 =0.0006, 

which is an entirely negligible overload. 
In estimating the magnitude of the acceleration due to pumping, 

the weights were assumed to drift down at a rate of 0.1 em/sec. This 
approximates the observed rate of drift for the machine shown in 
figure 1. If the floating parts were then accelerated by a stroke of 
the pump E rapidly enough to gain an upward velocity of 2.9 em/sec 
within 1 second, the average acceleration would be 3 cm/sec2, and 
the corresponding relative error due to dynamic overload would be 

tlP 3 
P=981 =0.003. 

This also is a negligibly small overload. It is believed that average 
accelerations greater than 3 cm/sec2 do not occur in careful testing 
with machines of the type shown in figure 1. 

The overload due to inertia is therefore negligibly small with a 
machine of the type shown in figure 1, in all practical cases, as long 
as the loads are applied sm,oothly. 

The second effect, that is, the decrease in indentation diameter with 
increasing rate of loading may, according to Guillery,3 4 become appre­
ciable for average rates of loading of the order of 1,000 kg/sec, provided 
the maximum load is maintained a sufficiently short time (less than 
a minute). In the case of soft cast iron he obtained diameters that 
were 3 percent smaller for a loading interval of about 15 seconds than 
those for an interval of 4 minutes. C. Grard 5 states that there is no 
appreciable effect of the loading interval on the Brinell number pro­
vided the ma:Arimum load is maintained for more than 2 minutes. 

In the absence of data covering different materials it was decided 
to make a short series of tests to provide further information on the 
subject. Two sets of five or more indentations each were made in 
23 specimens of widely different materials which were selected from 
the group listed in table 1. The load was applied relatively slowly 
in making one set of indentations and rapidly in making the other; 
the relatively slow rate of loading was taken as 30 seconds from no 
load to full load for the 3,000-kg maximum load and 10 seconds for the 
500-kg maximum load; for loads applied rapidly the loading interval 
was 6 seconds for the 3,000-kg load and 2 seconds for the 500-kg load. 
The rate of applying load was approximately uniform, i. e., the handle 
of pump E, figure 1, was operated at approximately a constant number 
of strokes per minute. The load was held at the maximum for 15 

• Compt . Rend . 165.468-471 (1917) . 
• Rev. Met. 18.101-110 (1921). 
, Trans. Sixth Int. Congo Assn. Testing Materials. 1912. report IIII. 
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seconds in every test ; actually it would have been desirable to make 
this interval zero, but since inaccuracies in timing are unavoidable 
it was felt that the value should not be too small, and 15 seconds was 
chosen in the belief that it would lead to comparable results. 

The average diameters for each set of indentations are given in 
table 2. The specimens are identified in this table by lotnumbers; 
their compositions may be found from table 1. It is seen that the 
average diameters of the indentations for all the steel specimens do 
not differ by as much as 0.01 mm; they agree within 0.02 mm for all 
remaining specimens, except those of nickel, copper, and brass. An 
examination of the individual readings for these metals showed that 
the individual readings differed more than the difference between the 
averages in all cases. The observed differences are in 9 cases positive, 
in 12 cases negative, and in 2 cases too small to detect. For all the 
specimens the effect of rate of loading up to 500 kg/sec appears to be 
smaller than the accidental variations in indentation diameter due 
to lack of homogeneity and due to other causes. 

TABLE 2 - Tests to determine the possible effect of the rate of application of load 
upon diameter of indentation 

Lot Material 

38 Hard copper ____ __ _____ __ _____ __ _____ ________ ___ __ _ _ 
35 Soft aluminum bronze __ _______ ___ _____ ____ ________ _ 
20 Soft pbospbor bronze ____ ______ __________ ________ __ _ 
53 Low-carbon stoeL ______ ________ ______ _____ __ _______ _ 
22 Soft nickel silver ___________________________________ _ 

12 Duralumin __ ____ ______________ _______________ __ ___ _ 
25 Hard brass _________ ______ __________________ ___ _____ _ 
54 Medium carbon s teeL ____ ____ __ ____ ____ ___ ________ _ 
86 Cold-rolled carbon steeL ______________ _____ __ _____ _ 
33 Monel metaL _____ ___ _______ ___ ___ ________________ _ 

23 Hard nickel silver ___ _____ ___ ___ ______ ____ _____ _____ _ 
11 Alumiuum alloy 28 ____ ______ __ _____ ______ __ _____ __ _ 
28 Carbon tool steeL __ _____ ______ __________ ____ _____ _ _ 
21 H ard phosphor bronze _______ _____________ ___ ______ _ 
55 High-carbon stecL __ ______ ___ _______ ________ ___ __ _ _ 

59 Tungsten steeL ______________ ________ ____________ __ _ 
37 80ft cappeL __ ___ _________ __ _____ ________________ __ _ 
56 Nickel-chromium steeL _____ __________ ________ __ __ _ 
58 Chromium-vanadium steeL __________ ___ __ ____ ___ _ _ 
24 Soft brass ___ ___ _____________ ____ _____ ____________ __ _ 

57 Chromium steeL ___ ___________ ___ ___ ______________ _ 
27 Nickel steeL __________________ __ __________ ________ _ 
84 Carbon tool steeL ________ ________ ____ ___ ________ __ _ 

1 Each value is the average of at least 5 determinations. 

Load 

kg 
3, 000 
3,000 
3.000 
3.000 
3.000 

3,000 
3,000 
3,000 
3,000 
3,000 

3,000 
500 

3,000 
3,000 
3,000 

3,000 
500 

3,000 
3, 000 

500 

3,000 
3,000 
3,000 

Diameter of indenta­
tion 1 

Load 
applied 
slowly 

mm 
6.794 
6.426 
6.034 
5.932 
5.861 

5.434 
5.330 
5.331 
4. 999 
4.900 

4. 618 
4.594 
4.546 
4.156 
4.002 

3.973 
3.802 
3.754 
3.725 
3.942 

3.298 
3.104 
3.103 

L oad 
applied 
rapidly 

mm 
0.744 
0.410 
6. 032 
5.935 
5.884 

5. ~50 
5.310 
5.332 
4.997 
4. 904 

4. 608 
4. 604 
4.543 
4.154 
4.009 

3.968 
3.776 
3.756 
3.722 
3.520 

3.296 
3. 104 
3.103 

(b) TIME UNDER NOMINAL LOAD 

Differ-
enen 

mm 
-0.050 
- . 016 
- . 002 
+.003 
+ .023 

+.016 
-.020 
+.001 
-.002 
+.004 

-.010 
+ . 010 
-.003 
-.002 
+.007 

-.005 
-.026 
+.002 
-.003 
+.028 

-.002 
.000 
.000 

The effect on the diameter of the Brinell indentation of the time 
under maximum load has been investigated by W. N. Thomas 6, 

W. Deutsch 7, M. Guillery 8, and P. Lieber.9 Each one of these 
• J. Iron and Steel Inst. 93, 255-269 (1916) . 
7 Forsch. Gebiete Ingenieurw. MI, 7-23 (1919). 
, See footnotes 3 and 4. 
, Z. Metallkunde 16,128-131 (1934) . 
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investigators found that a certain time interval was required to allow 
the ball to penetrate to its position of static equilibrium. 

In the case of mild steel Thomas found that some 5 to 10 minutes 
were required to come within 1 percent of the Brinell number for 
loading intervals as long as 1 hour. 

Deutsch recommended a duration under maximum load of not less 
than 3 minutes in testing soft bearing metals. Guillery concluded 
that 3 minutes are required to bring the diameters of indentation on 
mild-steel specimens within 1 percent of the final equilibrium value. 
Lieber found that an interval of 15 minutes under maximum load is 
required for some very soft bearing metals to bring the Brinell number 
within 1 percent of the final value; he found that the Brinell numbers 
after 3 minutes at maximum load may be as much as 12 percent above 
the final value. 

(J.8 

6.6 

6.4 

6.2 

6.0 

5.8 

Lot No. 

38 
Lot No. 

~ 5:6 
5.4 

t: 
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~ 4.2 
~ 4.0 
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FIGURE 2.-Variation in indentation diameter with time unde,' maximum load. 

Brinell scale on right margin of figure applies to all curves except those marked 500 kg. 

The investigators mentioned above confined their study of the 
time effect to mild steel, copper, and the soft bearing metals. It 
seemed worth-while to extend this research to a wider variety of 
materials selected from those listed in table 1. 

The tests were made as follows: Four sets of five indentations 
each were made in each specimen, the time from no load to full load 
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being 10 seconds and the time under maximum load being 0, 15, 
30, and 120 seconds, respectively, for the successive sets of five 
indentations each. A maximum load of 3,000 kg was used on all 
specimens, except those from lots no. 11, 14, 15, 16, 24, and 37, 
which were tested using a maximum load of 500 kg. The average 
diameter of indentation for each set is plotted against time under 
maximum load in figure 2. The Brinell numbers of all specimens, 
except those tested under 500-kg load, may be read from the vertical 
scale at the right of the figure. It is seen that the creep for most 
materials is quite rapid during the first 30 seconds under maximum 
load; it is much less rapid in the interval from 30 to 120 seconds. 
The Brinell number in this interval decreased more than 1 percent 
for only two of the materials tested, i. e., soft copper (specimen 38, 
1.34 percent) and carbon steel (specimen 55, 1.30 percent). The 
decrease in Brinell number was between 0.5 percent and 1 percent 
for 10 of the 29 specimens tested, and it was below 0.5 percent for 
the remaining 17. 

For most materials, then, the Brinell number varies less than 1 
percent for loading intervals between 30 and 120 seconds. 

(c) ERROR IN LOAD 

The effect on the Brinell number of a relative error tlPIP in the 
applied load is given by the Brinell formula, page 61, if it is assumed 
that this formula gives a Brinell number PIA independent of P in 
the region considered. Differentiation gives 

(3) 

that is, the relative error in the Brinell number is equal to the relative 
error in the applied load. The assumption, on which the correctness 
of this equation is based, that the Brinell number is independent of 
the load, is true in first approximation only. The closeness of this 
approximation may be computed by using the empirical relation 
between load P and indentation diameter d established by E. Meyer 10 

for a large number of metals indented by steel balls: 

(4) 

where a is a constant depending on the material and the ball diameter 
and n is a constant depending on the material alone. Meyer found 
values of n ranging from n=1.91 to n=2.4. The Brinell number 
may be written in terms of Meyer's law as 11 

(5) 

The change of the Brinell number with load was computed from this 
by differentiating with respect to P and substituting in equation 3. 
The resulting expression involves n and Pia. Pja was replaced by 
dn and tlHIH was calculated for the most unfavorable pairs of values 
of nand d. For n=1.91 and d=7 mm, MljH=-0.26 tlPjP, and 

10 Forsch. Gebiete Ingenieurw. 65 (1909). 
11 H. O'Neill, J. Iron and Steel Inst. 101, I, 343-376 (1923). 
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for n= 2.4 and d=2 mm, flH/H=+.16 flP/P. It appears from 
this that ~P/P on the right side of equation 3 must be multiplied by 
0.74 in the first case and by 1.16 in the second to give a value of 
flH/H corrected for the variation of the Brinell number with load . 
This variation adds less than 20 percent to the correction as given by 
equation 3 in the most unfavorable cases that could be found. As­
suming a 20-percent correction to equation 3, the applied load should 
be correct within 0.33 percent in order to keep the error in the Brinel1 
number from that source within 0.4 percent. 

(d) ERROR IN MEASURING THE DIAMETER OF INDENTATION 

The area A entering in the expression P/A for the Brinel1 number 
is defined as the area of the surface of contact between the ball and 
the specimen under load. It is assumed in the derivation of the 
Brinell formula that A can be measured by the diameter of the inden­
tation d left after removing the ball. 

Actually there may be considerable uncertainty in the magnitude 
of this diameter, and hence in the value of the Brinell number PIA 
obtained. For some materials the edge of the indentation is very 
poorly defined, even when the surface finish is good. Sometimes 
there is a ridge around the indentation extending above the original 
surface of the specimen, and at other times the edge of the area of 
contact is below the original surface 12 as is illustrated in fig 3. In 
some cases there is no sharp line of demarcation between the inden­
tation and the surrounding surface; one surface merely rounds off 
into the other. In all cases there is uncertainty as to the portion 
of the visible indentation which was actually in contact under load. 
At present no methods are known which will in all cases eliminate all 
uncertainty as to the actual contact area. The best that can be 
done is to insure that different observers will not secure too widely 
different results on the same indentation. 

For some specimens, the indentations may be made more distinct 
by using balls etched with nitric acid, as suggested by Axel Hultgren.13 

The borders of the indentation will be still more distinct if a ball of 
more rigid material than steel is used. Styri 14 found that indentations 
made with 5-mm Carboloy (tungsten-carbide) balls at 750-kg load 
have a remarkably clear outline, even on specimens baving Brinell 
numbers as high as 780. This observation was confirmed by tests 
made at the National Bureau of Standards (p. 88). In these tests 
IO-mm Carboloy balls were used to indent specimens up to 750 Brinell 
at 3,000 kg. It must be borne in mind, however, that Carboloy 
balls will indicate considerably higher Brinell numbers than steel 
balls on a given specimen because of the difference in elastic properties; 
this is discussed on page 85. 

In general, there will be an error fld in reading the diameter d of 
the indentation. The relative error flH/H in the Brinell number 
due to a relative error fld/d may be computed from the Brinell formula 
1 by differentiation 

12 F. E. Ross and R. C. Brumfield, Proe. Am. Soc. Testing M aterials 22, part II, 312-334 (1922). 
13 Axel Hultgren, Mech . Eng. 43, 445 (1921). 
11 Metals and Alloys 3, 273-274 (1932) . 

(6) 
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FIGURE 3,-Sections of Brinell indentations on two dij)'erent mate1'ials, 
[A, Copper ; B, aluminum.] 
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The minus sign indicates that an increase in indentation diameter 
corresponds to a decrease in Brinell number. 

Figure 4 shows curves for the percentage error 100 I1H/H in the 
Brinell number H plotted against H for values of d ranging from 0.005 
to 0.050 mm. The error in the Brinell number is less than 1 percent, 
as long as the error in diameter does not exceed 0.01 mm. 

Errors in rea.ding the diameter of the indentation may be ascribed 
to two causes, first, to an error in the reading of the instruments used 
for measuring the diameter, and second, to indefiniteness of the bound­
ary of the indentation itself. 

The error in reading a Brinell microscope of common design, such 
as the one shown in figure 1, should not exceed 0.01 mm over the 
entire 7-mm scale, if the microscope is in proper adjustment. The 
adjustment of the microscope may be checked easily by placing it 
on a calibrated 7-mm scale, such as the scale marked on disk N shown 
next to the microscope in figure 1, and verifying that the image of 
this scale and the scale on the reticule coincide within 0.01 mm; 
this corresponds to 0.1 of a scale division. 

No discussion was found in the literature of the magnitude of the 
error due to indefiniteness of the boundary of the indentation, al­
though this error is probably the greatest single factor contributing 
to the lack of concordance in Brinell numbers obtained by different 
observers testing a given material. The following series of tests was 
made to provide some information on this point. 

T ABI,E 3.-Average errors in reading Brinell indentation diameters 

Observer~ 1 I 2 
I 

3 I 
4 

I 5 
Mean value 

Diameter 
,1. 

H A verage error I 

--
mm mm mm mID mm mm mm 2.418 ______________ ______ __ __ __ 644 0.0095 0.0054 0.0134 0.0113 0.0201 0.0120 2.676 ____________ ______ ____ ____ 524 .0050 .0064 . 0156 .0217 .0194 .0136 

3.082 ____ ___ __ _________________ 392 .0037 . 0025 . 0135 .0124 . 0068 .0078 3.716 ________ ___ _______________ 267 . 0052 .0035 .0045 .0llO .0143 .0077 4.177 __________________________ 209 .0034 .0050 _ 0088 . 0122 .0151 .0089 4.660 ______ ___________ ______ ___ 166 .0049 .0054 .0069 .0081 .0206 . 0092 
- -----------Mean value ___________________________ 0. 0053 0.0047 0.0104 0.0128 0.0160 0.0099 

I Each value ~iven is the average for 6 indentations. 

Six groups of six Brinell indentations each were made on steel 
specimens whose surfaces had been ground plane and the diameter 
of each indentation, taken as the average of two mutually perpen­
dicular diameters, measured at an angle of about 45 degrees to the 
direction of grinding, was obtained by two methods. ]'irst the 
diameter of each indentation was obtained with a traveling micro­
scope which was read by estimation to 0.001 mm. Then the diameter 
of each indentation was obtained by each of five observers with the 
regular Brinell microscope (M, fig. 1), which was read by estimation 
to 0_01 mm. The observers were chosen from the staff of the Bureau's 
Engineering Mechanics Section. Observers 1 and 2 had had con-
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siderable experience in measuring the 
diameters of Brinell indentations, 
observer 3 had had only a small 
amount of experience, while observers 
4 and 5 were inexperienced. 

The relatively more concordant re­
sults obtained with the traveling mi­
croscope were considered as correct, and 
the error for each observer for each 
indentation was computed by sub­
tracting the diameter obtained with 
the traveling microscope from the di­
ameter obtained with the regular mi­
croscope. These results are plotted in 
figure 5. 
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FIGURE 4.-Error in Brinell number due to 
error in indentation diameter. 

Error in indenta-
tion diameter (mm) 

Curve • ___________________ _____ _____________ 0.05 
Curve b __ ___ ____ _____ _______ ________________ .04 
Curve c ___ __ ___ ______ ____ _______ ____________ .03 
Curve d ________________________________ ___ __ .02 
Curve e _______ ______________________________ . 01 
Curve L______________ _____________ ___ ___ ___ _ .005 

The diameters of the six indenta­
tions of each group were nearly equal. 
The averages of the absolute values 
of the errors for each group were com­
puted for each obseryer. They are 
given in table 3. The last line of table 
3 lists mean values of the average 
errors for each observer, and the last 
column lists mean values for each 
group of indentations_ 
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FIGURE 5.-Errors in reading indenta ' 
tion diameters for five different observers. 
[Observers 1 and 2 with considerable experience 

observer 3 with a little experience; observers 
Bnd 5 with no experience.] 
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From these results the average percentage error in the Brinell 
number was computed for each observer for each group. These 
values are plotted in figure 6 as a function of the Brinell number. 

The results for each observer shown in figure 5 indicate the pres­
ence of systematic as well as accidental errors. The systematic error 
changes with the Brinell number of the specimen in a different way 
for each observer. Both the systematic and the accidental errors 
were smaller for the experienced observers than for the remaining 
observers. Apparently a certain amount of experience improves an 
observer's ability to distinguish the 
boundary of the contact surface. 

Figure 6 shows that the average 
percentage error in the Brinell num­
ber for the experienced observers 
was always less than 1 percent, while 
that for the inexperienced observers 
exceeded 2 perc en t in some cases. 

2. SPECIMEN 

(a) NONUNIFORM PROPERTIES 
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$!1.' '-rolling, this will be reflected in a 
noncircular shape of the indentation 
left after the Brinell test. Thus, if 
the material yields more easily under 
compressive stresses in the direction 
of rolling than at right angles to 
that direction, the indentation will 
be roughly elliptical with a maximum 
diameter in the direction of rolling 
and a minimum diameter at right 
angles to that direction. An average 
value of the Brinell number for 
an indentation with a noncircular 
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FIGURE 6.-Average error in Brinell 
number due to uncertainty in reading 
indentation diameter. 

[Curves 1-1 and 2-2 represent resul ts obtained 
by experienced observers; 3- 3 by an observer 
with a little experience; 4- 4 and 5-5 byobserv­
ers with no previous experience.] 

boundary will be obtained if the diameter of the indentation is taken 
as the average of diameters in four directions, roughly 45 degrees 
apart. 

It is assumed here that the surface of the specimen is finished by 
filing, machining, or grinding to such smoothness that the tool marks 
do not interfere with the measurement of the indentation diameter. 
For most materials there is no difficulty in finishing the specimen so 
that the error in the measured diameter caused by tool marks does 
not exceed 0.01 mm. 

If the test used affects only a very small amount of the test material, 
there may be some question as to the proper interpretation of results 
because variations in indentation numbers may be due to local differ­
ences in the surface layer of the specimen and not to systematic varia­
tions in the body of the material. The standard Brinell test is prob­
ably comparatively free from uncertainties of this sort because in it 
a fairly large amount of the test material is affected. Variations in 
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the Brinell number greater than can be accounted for by the varia­
tions in the test procedure and in the indenting ball will actually 
indicate corresponding variations in those properties of the material 
in which the user is interested. 

(b) CURVATURE OF SURFACE 

It is frequently necessary in practice to measure the Brinell number 
on a curved surface rather than a plane surface. An indentation on 
a curved surface of a specimen having uniform properties will not 
have a circular boundary unless the curvature is constant in all direc­
tions, as in the case of a sphere. The qUQstion arises as to which 
diameters to measure and how to average them so as to obtain the 
"equivalent diameter", which may then be substituted in the Brinell 
tables or in formula 1. A good approximation to the equivalent 
diameter will be obtained when the diameters measured and the 
method of averaging are such that the area computed from the 
equivalent diameter approximates closely the area of the actual 
indentation. 

The relative error in the Brinell number corresponding to an error 
~A in the assumed area of the indentation is then from 1: 

(7) 

A convenient approximation to the equivalent diameter would be 
the average of the maximum and the minimum diameters of the 
indentation, that is, the average of the diameters in the two planes 
of principal curvature. The corresponding value of ~A is derived 
in the appendix 1, page 92, as a function of the principal curvatures of 
the specimen (equation 17, page 94), and the distance from the center 
of the indenting ball to the point of intersection of the load line with 
the original surface of the specimen. The area A of the surface of 
the sphere embedded in the specimen is given by equation 14 of 
appendix, page 93. Knowing both A and ~A, the relative error 
in the Brinell number can be computed for various values of the 
Brinell number PIA. 

Figure 7 shows the result for the indentation produced by a IO-mm 
ball under 3,000-kg load on cylindrical specimens of 20 mm and of 
50 mm diameter, as well as on specimens having a concave cylindrical 
curvature of 10 mm radius and 25 mm radius, respectively. For 
two of the surfaces considered, the maximum radius of curvature· of 
the specimen is twice that of the indenting ball, while for the remain­
ing two it is 5 times the radius of curvature of the ball. For the 
extremely high ratio of 1:2 the error in Brinell number is less than 
3 percent for the concave cylindrical surface and less than 1 percent 
for the convex cylindrical surface; for the ratio 1:5 the error is less 
than 0.3 percent for both concave and convex cylindrical surfaces. 
The cylindrical specimen is a rather severe test of the approximation; 
the errors involved would be larger only in the case of specimens 
with anticlastic curvature, i. e., specimens whose principal radii of 
curvature have opposite signs. Two cases of anticlastic curvature 
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were computed, one in which the specimen had radii of curvature of 
+ 10 mm and - 10 mm and the other in which the radii were + 2 5 
mm and -25 mm (fig. 8). The error becomes as large as 6.5 percent 
in the first case, but it is less than I percent in -the second case . 

The error in the Brinell number due to curvature of the specimen 
may be reduced, in general, to less than I percent by using the average 
of the two principal diameters of the indentation as the equivalent 
diameter, provided the minimum radius of curvature of th e specimen 
is equal to or greater than 5 times the radius of the indenting ball. 

(c) THICKNESS +3.0 
The material of the 

specimen is perma- +20 
nently deformed for an 
appreciable distance be- ~o 
low the surface of the o~ /.0 
indentation. If this . ~ 
deformation extends to -i:: 
the lower surface of the ~ 0 
specimen opposite the "­
indentation, one of the <) 
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material directly under FIGURE 7.-Correction due to cylindrical curvatU1'e 
to be added to Brinell number. the ball, thereby caus-

ing the indentation to 
be smaller than one 
which would be pro­
duced in a thicker 
specimen of the same 
material. 

[lO·mm ball, under 3,OOO·kgload] 

Curve Cyliudrical surface 

a ___ .__ ___ ______ __ ____ Concave _______________ ____ _ 
b_ _ _ __ _____________ __ Convex ___ _ . _____________ __ _ 
c____ ____ ____ _______ __ Concave ____ ___________ ____ _ 
d ________ _______ .____ Con vex _________ ___________ _ 

I Radius (mm) 

lO 
10 
25 
~5 

The cohesion of the 
material directly under 
the ball may be insufficient to support the load and this portion may 
yield rapidly with increasing pressure. The diameter of the indenta­
tion may, therefore, be larger than one obtained on a thicker specimen. 

The effect of thick:aess on the Brinell number of steel specimens 
has been investigated by H. Moore II and by W. N . Thomas.1t 
Moore found an increase of about 3 percent if the depth of the inden­
tation was one-third the thickness of the specimen. A ratio of I:7 
was considered safe by Moore to eliminate the effect of thickness. 
Thomas concluded from his tests that the effect of thickness was 
negligible for a IO-mm ball at 3,OOO-kg load, provided the specimeu. 
was at least 0.38 in. thick. 

" Trans. Filth Int. Congo Assn. Testing Materials 1909, report II •. 
" J. Iron and Steel Inst. 93, 255-269 (1916). 
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It seemed desirable to add to these results by carrying out a series 
of tests on specimens of various materials. The following procedure 
was adopted in carrying out these tests. One surface of each specimen 
was machined so that the thickness of the specimen decreased uni­
formly approximately 0.05 in. for each inch of length. The other 
surface was polished with emery paper, without previous machining, 
and indentations were made about 1 inch apart. This spacing gave 
the desired variation in thickness and eliminated at the same time 
the effect of any given indentation on an adjacent one. The time 
under maximum load was in every case 30 seconds. 

The resulting variation of diameter of indentation with thiclmess 
of specimen is shown in figure 9 (see table 1 for composition of test 
specimens as indicated by the lot numbers near the right end of each 
curve). The diameters are given in millimeters while the thickness 
of the specimen is given in inches, in accordance with the usual 
American practice. It will be seen that in most cases the diameter 
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FIGURE S.-Corrections due to anticlastic curvature to increase with increas-
be added to Brinell number ing thickness. 
[lO·mm ball, under 3,000 kg load] The curves faired 

Curve 8, anticlastic surface, principal radii 10 mm. Curve b, anti· through the individual 
clastic surface, principal radii 25 mm. points have been used 

to determine a "critical" thickness, arbitrarily defined as the thickness 
at which the apparent Brinell number for the indentation differed 
by 1 percent from that for the thickest portion of the specimen. The 
corresponding thickness is indicated by a short vertical line on each 
curve; it varied between the limits of 0.08 in. and 0.32 in. For other 
metals, as well as for steel, a thickness of specimen of 0.4 in. may, 
therefore, be considered sufficient, in nearly all cases, to make negli­
gible the effect of thiclmess on Brinell number. This thiclmess agrees 
closely with the thiclmess of 0.38 in. recommended by Thomas for 
steel specimens.17 

It was noted that under each indentation made, where the thick­
ness was less than the "critical" value, a spot of altered surface was 
visible on the under side of the specimen. As a large variety of 
engineering materials was used in this investigation, it seems safe to 

17 J . Iron and Steel lust. 93, 255-269 (1916). 
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assume that the absence of a visible spot on the under surface of the 
specimen indicates that the thickness of the specimen exceeds the 
critical thickness as defined above. 

(d) SPACING OF INDENTATIONS 

(1) From Edge.-If an indentation is made too near the edge of the 
specimen it may be both too large and too unsymmetrical. 

H. Moore 18 concluded on the basis of tests on specimens of steel 
and of rolled brass that the center of the indentation should be at 
least 2}~ times the diameter of the indentation distant from the edge 
to avoid errors from this source. 
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FIGURE 9.-Variation in indentation diameter with thickness of specimen. 

[Brinell scale on right margin applies to all curves except those marked 500, 1,000, or 1,500 kg.) 

It seemed desirable to extend these results to a wider variety of 
materials. Indentations were made on 23 different specimens se­
lected from the materials listed in table 1. The thickness of each 
specimen was greater than 0.40 in. so as to make the effect of thick­
ness negligible (see previous section). The time under load was in 
every case 30 seconds. 

11 See footnote 15. 
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Figure 10 shows the relation between the diameter of the indenta­
tion and the distance from the edge for each of the 23 specimens. As 
in figure 9 a value was found for the "critical" distance in each case, 
i. e., the distance at which the apparent Brinell number for the in­
dentation differs by 1 percent from that obtained for the maximum 
distance. This value is indicated by a short vertical line. The ratio 
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of this critical distance to the diameter of the indentation was found 
to vary from 1.1 to 2.6. 

The error in Brinell number due to edge spacing may be neglected 
if the distance of the center of the indentation from the edge of the 
specimen is equal to or greater than three times the diameter of the 
indentation. 
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(2) From Adjacent Indentations.-H an indentation is made too 
close to one made previously, at least three possibilities of error are 
introduced. 

Deformation of the material resulting from a second indentation 
may extend into the one made first, decreasing its diameter along 
the line connecting their centers. 

Lack of sufficient supporting material may make the second 
indentation too large. 

Work-hardening of the material resulting from the first indentation 
may decrease the size of the second indentation. 

'rhe magnitude of the effect on the Brinell number of adjacent 
indentations was investigated for different specimens selected from 
the materials listed in table 1. The thickness of each specimen was 
greater than 0.40 in. and the time under load was in every case 30 
seconds. 

The following test procedure was adopted: 
Six pairs of points A-A', B-B', C-C', ... were marked on 

the specimen, each pair being well separated from any neighboring 
pair and from the edges of the specimen. The points were so located 
that the distances AA', BB', CC', ... decreased progressively. 
Indentations were made with the points A, B, C, . . . as centers. 
The diameters parallel to AA', BB', CC', ... were then measured. 
Indentations were made at points A', B', C', ... and the diameters 
parallel to AA', BB', CC', ... were measured. The diameters of 
the indentations at A, B, C, .. . were again measured . 

The results of the measurements are shown in figure 11. This is 
a plot of the distance between indentation centers as abscissas and 
do-l1d as ordinates, where do denotes the diameter of the indentation 
before the second one was made close to it and I1d is the decrease in 
this diameter after the second indentation is made. In each case 
values for the distance between indentation centers were found for 
which there was no variation greater than 1 percen t in the Brinell 
number for the indentation. The smallest of these values is indicated 
on the curve by a short vertical line and will hereafter be called the 
critical distance. For specimen 38 the ratio of the critical distance 
to the corresponding diameter of the indentation is 1.6. For all other 
specimens this ratio is less. 

A comparison of diameters of indentations A, B, C, . . . made 
first, with those of indentations A', B', C', .. . made last, showed 
the effect which the indentations made first had upon those made 
last. This effect was quite small and no critical distance larger than 
the largest one shown in figure 11 was found. 

The error in the Brinell number due to indentation spacing will 
not exceed 1 percent if the distances between centers of adjacent 
indentations are equal to or greater than three times the diameter 
of the indentation. 

(e) ANGLE BETWEEN LOAD LINE AND NORMAL TO SPECIMEN 

It is not always practical to have the surface of the specimen at 
the point at which it is to be indented exactly normal to the load P 
producing the indentation. Usually there will be a small angle a 
between load line and normal to the surface; this will reduce the nor­
mal load from P to Pcosa and in addition will add a component of 
load Psina acting in a direction tangential to the surface of the 
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specimen. The reduction in the normal load may lead to an increase 
in the observed Brinell number, while the addition of the tangential 
component may elongate the indentation in the direction in which it 
acts and may lead to an increase in area and consequent decrease in 
the observed Brinell number. The question arises within what limits 
a must be kept to make the error in the Brinell number from this 
cause negligibly small. 
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FIGURE 11.-Variation in indentation diameter with distance of BI'inell indentation 
f rom adjacent indentations. 

[Brinell scale on right margin applies to all curves except curve 13.] 

An estimate of the error involved was obtained for a soft steel block 
(Brinell number 187) and a hard steel block (Brinell number 524) in 
the following manner. 

The Brinell number of each steel block was determined from four 
or five indentations apiece under normal loading. A 2-degree wedge 
was then placed under the block and two further indentations were 
made; this was followed by the making of two indentations each 
with a 4-degree and a 6-degree wedge. 
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The resulting variation of the observed Brinell number with wedge 
angle is plotted in figure 12. Strictly speaking, the angle between the 
normal to the specimen and the load line will be larger than the wedge 
angle because of the play in the indenter D (fig. 1). Measurements 
showed that the maximum play possible was only about 0.5 degree. 
This is too small a variation to have any measurable effect on the 
Brinell number and it was accordingly neglected in plotting figure 12. 
Figure 12 also shows a plot of the percentage increase in the Brinell 
number due to the reduction in normal load computed from 

D.H D.P 
lJ=p=l-cos a. (17) 

The percentage increase appears to be too small to be measured, and it 
is entirely overshadowed by the second effect which becomes appreci­
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other steels also, as 
long as the deviation from normal loading does not exceed 2 degrees. 
The naked eye will suffice in most cases to check alignment within 
2 degrees. 

3. INDENTING BALL 

The Brinell formula assumes that the indenting ball remains a 
sphere of nominal diameter (e. g. 10 mm) during the test. Actually 
this condition is never satisfied. The ball will, in general, deviate 
from the nominal diameter, its shape will not be truly spherical, and, 
furthermore, it will deform under load elastically and may deform 
permanently. Each of these conditions results in a curvature of the 
contact surface different from the nominal curvature which, in turn, 
leads to a difference in contact area and a corresponding change in 
the computed Brinell number. 

(a) ERROR IN DIAMETER 

If the indenting ball is spherical when not under load but has a 
diameter D+D.D instead of the nominal diameter D, the resulting 

" Forsch. Gebiete Ingenieurw. 65 (1909). 

73059-36-6 
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indentation diameter d will vary, in general, with t:.D. The magni­
tude of the variation has been studied by Meyer 19 for a number of 
metals indented with steel balls of various diameters. He found 
that this variation could be expressed by a formula of the type 

(18) 

where a is a constant depending on the material of the specimen, and 
on the nominal diameter D of the ball used, and where n is a constant 
of the material alone. Meyer found values of n ranging from un 
(for lead) to 2.38 (for a certain type of cast iron). For most metals 
n lies in the neighborhood of 2.2. It is seen by solving equation 18 
for d 

(p)l/n ( t:.D)I-2/n 
d= a 1+1) , (19) 

that the indentation diameter d (not the Brinell number) will be 
independent of the ball diameter D only for n=2; it will increase 
with increasing ball diameter for n greater than 2 and will decrease 
with increasing ball diameter for n less than 2. Since the Brinell 
number decreases with increasing d, and since n is greater than 2 
for most metals, a decrease of the Brinell number with increasing ball 
diameter may ordinarily be expected. 

A quantitative measure of the resulting error in the Brinell number 
for a given value of n, assuming the ball to be rigid, may be obtained 
by substituting equation 19 in equation 5 and calculating the differ­
ence in l-I for D=lO mm and D=10+t:.D mm. Eliminating a with 
the help of equation 19 the following expression results for t:.D/D small 
compared to 1. 

t:.l-I= al-I t:.D =~(l-n+.J 1 (d),)t:.D. (20) 
l-I aD D n 1- D D 

This coincides with the corresponding expression which would be 
obtained from equation 1 for the special case n=2 upon holding every­
thing constant except D. 

Figure 13 shows the percentage error 100 t:.l-I/l-I calculated for the 
extreme cases n=1.91 and n=2.4, as well as for the ideal case n=2 
for devi.ations t:.D=0.10 mm, and 1.00 mm from a nominal diameter 
of 10 mm. The percentage error for t:.D=0.10 mm does not exceed 
0.5 percent for Brinell numbers between 67 and 945. 

The diamet.ers of steel balls produced by modern manufacturing 
methods are within 0.015 mm of the nominal diameter. The error 
due to variation in diameter of such balls for any value of n observed 
by Meyer stays below 0.1 percent, which is entirely negligible. 

(b) NONSPHERICAL SHAPE 

If the indenting ball is nonspherical in shape when not under load, 
there will be a resulting error in the Brinell number. This may be 
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estimated from equation 20, provided the radii of curvature in the 
region of contact are known. I1D may be taken as the difference 
between twice the average radius of curvature-i. e. , the effective 
diameter of the ball in the region of contact- and the nominal diam-

i eter. Consider, for example, a ball ground to the shape of an ellipsoid 
of revolution with the minimum diameter of the ellipsoid coinciding 
with the line of action of the load on the ball. Such a ball will have 
aJl effective diameter at the point of loading larger than the average 
diameter by an amount 311D, where D+I1D is the diameter at the 
equator of the ellipsoid of revolution, and D-I1D is its diameter along 
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the load line (connecting the poles). The consequent error in the 
Brinell number will, according to equation 2, be less than 1.6I1D/D in 
practical cases (n between 1.91 and 2.4). The error would not exceed 
0.24: percent if the tolerance in diameter is set at ±0.015 mm. 
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(c) DEFORMATION OF BALL UNDER LOAD 

The diagrammatic sketch of figure 14 will assist in a discussion of 
the effect of deformation of the ball on the Brinell number. Balls 
Bl and B2 are imagined to indent a given specimen under a given 
load, and both are taken to be spheres of the same diameter when not 
under load. Ball Bl is an "ideal" Brinell ball; it is perfectly rigid 
and will not deform under load. If such a ball were possible, an 
"ideal" Brinell number could be ' determined by direct measurement 
of the indentation it produced. Ball B2 is an actual Brinnell ball; it 
is made of deformable material and will yield under load elastically, 
and if the stress in the contact area is tmfficiently high it will deform 
permanently. The area of contact under load approximates a 
sphere of radius r greater than D/2 and therefore the diameter d' of 
the indentation (except for the special case of n=2, see equation 19) 

clQst/c f3a/ / B 2. 

FIGURE 14.-Diagrammatic sketch of two balls indenting a given specimen under a 
given load. 

[Ball B. is an ideal rigid Brinell ball and B, Is an actual deformable Brinel! ball.] 

will be different from the diameter d of the indentation produced by 
the ideal rigid ball. Further, the area of contact corresponding to 
the diameter d' is computed (by the Brinell formula) as if it were a 
spherical calotte of radius D/2. The Brinell number so measured 
and computed, in contrast to the hypothetical ideal Brinell number, 
instead of being a characteristic mechanical constant of the specimen 
alone is also a function of the elastic and inelastic properties of the 
indenting ball which determine its shape under load. 

The importance of this effect, especially for materials of high Brinell 
number, is shown clearly by tests made by Mailaender,2° who found 
differences up to 10 percent between the Brinell number of a given 
specimen computed from indentations with a 5-mm diamond 
ball under 187.5-kg load and with a 5-mm steel ball under the 
sltme load. Styri 21 found differences of the same ' order between 

20 R. Mailaender, Stabl u. Eisen 45, 1769-1773 (1925). 
Il H. Styri, Metals and Alloys 3, 273-274 (1932). 
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the Brinell numbers computed from indentations with 5-mm Car­
boloy balls under 750-kg load and those with 5-mm steel balls 
under the same load. 

Brinell defined his "hardness number" (nombre de durete) in 
terms of the indentation produced by a ball of hardened steel (acier 
trempe).22 According to this definition Brinell numbers computed 
from balls of other materials have "errors" depending upon the 
difference between their elastic moduli and t.he moduli of steel. In 
view of the increased use of Carboloy and diamond balls, it seems 
preferable to consider these effects not as errors but as differences 
between Brinell numbers measured under different conditions anal­
ogous to the difference between the 3,OOO-kg Brinell number and the 
500-kg Brinell number of the same material. 

Meyer's formula 18 could be used to evaluate this effect if Meyer 
had extended his work to very hard materials and had, in addition, 
obtained values of n for balls of other materials than steel, and if the 
value of the radius of curvature r of the loaded ball in the contact 
surface (fig. 14) were known. Knowing both rand n, the constant a 
of equation 18 could then be calculated from the diameter of the 
indentation d' and, in turn, the Brinell number for an ideal rigid 
ball from this constant a. 

Even without knowing n, a rough estimate for rand d' may be 
obtained for the case of elastic deformation of the ball from Hertz's 
theory for the contact of two elastic bodies. Such an estimate is 
made below, followed by a consideration of the effect on the Brinell 
number of permanent deformation of the ball. 

(1) Elastic Dejormation.-Th e effect of elastic deformation of the 
ball would be measlll'ed by the difference between the Brinell num­
ber PIA ' obtained for an elastic ball (B2, fig. 14), and the Brinell 
number PIA obtained for an ideal rigid ball (Bl, fig. 14), where A' 
is the area of the actual surface of contact under load of the elastic 
ball (a b c in fig. 14) and A is the contact area of the ideal rigid 
ball. It is not possible to measure A' under load. To obtain an 
approximation to A', it is computed as if it were the area of a spheri­
cal indentation of diameter d' with the radius of curvature of the 
ball when not under load; that is, A' is replaced by A", where A" 
is the area of the contact surface intersecting the plane of the paper 
in figure 14 in a e c. The assumption of A'=A" is convenient in 
that the Brinell number P IA" corresponding to d' may be read directly 
from a Brinell table and may he compared with tha t. corresponding to d. 
The error due to this assumption is less t.han 1 percent, as is shown 
in figure 19 in the appendix 2, p. 95. 

In applying Hertz's theory it must be remembered that it is not 
strictly applicable to the case of the deformation of the indenting 
ball in the Brinell test for two reasons: 

1. The specimen does not remain elastic during the test. 
" Communications Congr6s International des M6tbodes d'Essai des Mat6riaux de Construction, Paris, 

2, 85 (1900). 
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2. The diameter of the contact surface is not, in general, small 
compared to the diameter D of the indenting ball. 

In spite of these limitations, however, the theory forms a useful 
basis for discussion of the effects of changes in ball diameter, load, 
and material of the ball on the Brinell number obtained on a given 
specimen. These effects become most pronounced for the case of 
indentations on very hard materials. This is just the case which is 
more closely approximated by the theory, since the indentation is 
small on hard materials and since the specimen is not as severely de­
formed as for softer materials. 

According to Hertz's theory the radius a of the circle of contact is, 
for the special case of elastic contact between a ball and plane, given 
by 23 

(21) 

where 
P=normalload transmitted by the ball to the plane 
rl=radius of curvature (D/2) of the ball in its unloaded condi-

tion. 

01= ~l (1-J.t12)=elastic constant for the ball 

Oz= ~2 (1- J.tl)= elastic constant for the plane 

El = Young's modulus for the ball. 
E2= Young's modulus for the plane. 
J.Ll'=Poisson's ratio for the ball. 
J.L2=Poisson's ratio for the plane. 

Assuming that a is the radius ~ of the actual indentation gives 

(22) 

while the diameter of the indentation made by the ideal rigid ball 
(81=0) would be given by 

(23) 

Substituting this value in equation 22 gives . 
(24) 

The Brinell number is obtained by substituting d' in the Brinell form­
ula. The corrected Brinell number, which would be obtained with 
an ideal rigid ball, may be obtained by substituting d, computed from 

"Gesammelte Werke, Barth, Leipzig, I, 155-196 (1894/95) . 
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equation 24 in the Brinell formula. This requires a knowledge of the 
elastic constant 8 1 of the material of the Brinell ball. The elastic 
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FIGURE I6.-Theoretical and observed relations be­
tween Brinell numbers obtained with 5-mm balls of 
various materials under l87.5-kg load. 

of 5 mm diameter, under 
750-kg load. Figure 16 
shows similar curves for 
steel balls and diamond 
balls of 5 mm diameter, 
under 187 .5-kg load. 
The curves indicate 
roughly how the Brinell 
number should be ex­
pected to vary with the 
elastic properties of the 
ball. The variation in­
creases from zero at low 
Brinell numbers to a 
large value at high 
Brinell numbers. 

Results taken from 
actual tests by Styri 24 

using Carboloy balls 
and steel balls (fig. 15) 
and by Mailaender 20 

using diamond balls 
and steel balls (fig. 16) have been replotted for comparison with this 
rough theory. Each point in figure 15 represents two determinations 
of the Brinell number on a given specimen, one made with a steel 

" H. Styri, Metals and Alloys 3, 273-274 (1932) . 
l .. R. Mailaender, Stahl u. Eisen 45, 17611-1773 (1925). 
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ball and the other with a Carboloy ball. In plotting the points a 
corrected Brinell number was assigned to each specimen, on the 
assumption that the curve for the steel ball represented the relation 
between the Brinell number and the corrected Brinell number. An 
additional small correction (discussed later) was applied to take 
account of the permanent deformation of the balls. The trend of 
the points would not be altered significantly if the curve for the 
Carboloy balls had been used instead of that for steel balls. The 
difference between Brinell numbers obtained with Carboloy balls 
and with steel balls on the same specimen shown in figure 15 is the 
distance each solid point lies above the theoretical curve for steel 
balls. In figure 16 the experimental results obtained by Mailaender 
with diamond balls are similarly indicated by a broken line (Mailaen­
der did not report his individual readings). If the experimental 
results were in agreement with the theory, the points shown in figure 
15 should lie between the two limiting curves for Carboloy balls and / 
the broken line in figure 16 should lie between the two limiting 
curves for diamond balls. 

The observed points indicate a smaller difference in the Brinell 
number than this rough theory. The probable reason for this diver­
gence between the predictions of the elastic theory and actual obser­
vations is to be sought in the difference between the actual stress 
distribution in the contact area and that assumed in Hertz's theory. 

This difference in stress distribution has little effect on the defor­
mation of balls indenting very soft material since the average stresses 
acting on the ball are so small in that case that there is no noticeable 
difference between the deformed shape of, say, a steel ball and a 
diamond ball. As the indentation becomes smaller with harder 
materials the stresses become more severe and a very rigid ball will 
be flattened to a lesser degree than a less rigid ball. 

The distribution of axial compressive stress O"z over the contact 
area between ball and plane is, according to Hertz, given by 

where 
a=radius of the circle of contact as given by equation 21 
x=distance from center of contact area. 

(25) 

The stress decreases continuously from 1~ times the average stress 
at the center to 0 at the edge of the circle of contact. In an actual 
Brinell test the relatively high stresses at the center of the indentation 
will produce yielding, thus distributing the stress more evenly over 
the contact area. The ball will flatten less under an evenly distributed 
load than under the same load concentrated toward the center of the 
contact area. This would lead to smaller differences between the 
diameters of indentations obtained with steel balls and with diamond 
balls than those predicted from Hertz's theory. As the hardness of 
the specimen increases further the indentation becomes smaller and 
flatter and the stress distribution assumed by Hertz is more nearly 
approached. The difference between theory and experiment should, 
therefore, decrease in going to the harder materials. This is verified 
by the plots of figures 15 and 16. The difference, as shown in figure 
15, between the Brinell numbers reported by Styri 26 for a given 

If H. Styri, Metals and Alloys 3, 273-274 (1932). 
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specimen with a 5-mm Carboloy ball and with a steel ball at 750-kg 
load comes close to that predicted by the theory at a "Carboloy" 
Brinell number of about 800. Figure 16 shows that the same agree­
ment holds for the comparison of a diamond and a steel ball under 
l 87.5-kg load at a "diamond" Brinell number of about 600. 

Styri's results for the comparison of steel balls and Carboloy balls 
were checked at the National Bureau of Standards by tests on 10-mm 
balls. These tests will be described in detail later. The five points 
taken from these tests (fig. 15, open circles) fall close to the solid 
points taken from Styri's tests. 

The small correction for the permanent compression of the balls 
is less than 5 in Brinell number for all of Styri's tests and less than 
20 for the tests made with high-grade balls at the National Bureau 
of Standards. The observed difference in Brinell number on a given 
specimen made with a steel ball and a Carboloy ball was found to 
be as high as 70 in some cases. The differences in elastic deformation 
may, therefore, be several times greater than those caused by per­
manent deformation of the ball. 

In the case of extremely hard specimens both effects will have to 
be considered, since the elastic theory in itself is not sufficient. 
Nevertheless, theory and tests show that the elastic deformation 
of the ball may lead to large differences in the measured Brinell 
number if balls with sufficiently different elastic properties are used. 
It is, therefore, necessary to specify the material of the ball in quoting 
Brinell numbers above 500. 

(2) Permanent Dejormation.-If the ball deforms permanently dur­
ing the test the contact area will be flattened even more than in the 
case of elastic deformation, thus increasing still more the effective 
diameter of the ball. This effect produces an appreciable error in 
practical testing with high-grade steel balls only if the Brinell number 
of the specimen exceeds 500. For steels the diameters of the indenta­
tions increase with increase in ball diameter so that the greater the 
permanent deformation of the ball the lower will be the Brinell 
number computed from the resulting indentation. 

It is important, for practical work, to specify the limits of Brinell 
number of the specimen within which a given Brinell ball may be 
used without introducing an uncertainty, caused by its permanent 
deformation, greater than a certain figure, e. g., 1 percent. 

This problem has been considered by several workers in the field. 
Mailaender 27 carried out a comprehensive series of indentation tests 
with 10-mm steel balls of different hardness, indenting specimens 
from 110 to 680 Brinell under 3,000-kg load. The Brinell number of 
the ball, as estimated from the diameter of indentation in bringing 
one ball in contact with the other under 3,000-kg load, varied from 
230 to 720. 

Mailaender concluded from these tests that the diameter of the 
indentation remained independent of the Brinell number of the 
ball as long as the latter was at least 1.77 times the Brinell number of 
the specimen. 

Hultgren 28 made an even more extended series of tests with lO-mm 
steel balls of various hardness under 3,OOO-kg load. His specimens 

" R. Mailaender, Stabl n. Eisen 45, 1769- 1773 (1925). 
" J. Iron and Steel Inst. 110, II, 183-218 (1924). 
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ranged in Brinell numbe), from 506 to 735. Instead of using either 
the Brinell number or the effective radius of curvature of the contact 
area of the ball as independent variable, he used the more easily 
measured shortening or permanent compression of the loaded diam­
eter after the first test. Hultgren obtained a series of correction 
curves which show, for instance, that a permanent compression of 
0.025 mm in the ball will lower the Brinell number computed from 
the indentation by about 25 and a compression of 0.010 mm by about 5. 

Hultgren used five different makes of steel balls on each of five 
different specimens, four of which were chromium steel, while the 
fifth (specimen V) was high-speed steel. He made five or more 
indentations on each specimen with each make of ball and measured 
the permanent compression and the Brinell number for each inden­
tation. From these individual values averages of the permanent 
compression of the ball after the first test and of the observed Brinell 
number H were obtained for each specimen and each type of ball. 

o Corrections estimoted 
for /lu/tgrel7's tests 

• Corrections estimated 
for NBS tests 

---- fJH=3 (lOOt/' 

iJH ,I 
v 

0/ 

• 0 
~ 

~ ,~ • 
.J ~ 

~v 

0 
'W' 

A plot of Hultgren's corrections 
t:,.H=He-H against 0, where Ht 

is a Brinell number corrected for 
the permanent compression 0 of 
the baJI, showed that all Hult­
gren's points, except those for 
specimen V, grouped themselves 
with considerable scatter about 
a parabola of the type MI = ao2• 

Obviously the scatter of the 
individual points depends on the 
value of this corrected Brinell 
number H t • It was found that 
this scat ter could be reduced and 

00/ 0.02 003 004 that at the same time the points 
Permanent comf/ress/on of for specimen V could be brought 

into doser agreement with the 
verticol diameter or ball mm remaining points by extrapolat­

FIGURE 17.-Estimated corrections in BTi- ing to new values of H t in the 
nell number due to permanent deformation. A h 
of ball. followmg manner. ssume t at 

the relation t:,.H = a02 holds for 
each specimen, plot H against 02 

for each individual test, and fair a straight line through the plotted 
points. He will then be the ordinate of the straight line for the ab­
scissa 0=0. The values of He so determined were within 5 in Brinell 
number of those estimated by Hultgren, except for specimen V, for 
which 720 was obtained in place of Hultgren's value of 735. The 
differences t:,.H between the average values of H for each type of ball 
for each specimen and the values He for each specimen, derived as 
described above, are plotted against 0 as open circles in figure 17, for 
values of 0 less than 0.04 mm. For larger deformations no relations 
even approximately consistent were found between t:,.H and o. 

[1O-mm steel balls, 3,OOO-kg load] 

The solid points in figure 17 represent the results of a few check 
tests made at the National Bureau of Standards. Steel balls (1 0 
mm in diameter) of three makes A, B, C, were used in these tests. 
A and B designated ordinary steel Brinell balls, while C designated 
steel balls cold-worked by the Hultgren process. In addition, a num-
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bel' of 10-mm Carboloy balls were used for comparison with steel balls. 
These also gave a further check on the effect of elastic deformation of 
the ball on the Brinell number, which was discussed in the previous 
section. 

The test specimens consisted of five disks of chromium steel 
(SAE 52100) heat treated by the Division of Metallurgy of this 
Bureau to have Brinell numbers ranging from 500 to 700. Four 
indentations with each type of ball, A, B, and C, were made on each 
one of the five disks. A new steel ball was used for each indentation, 
and the diameter of each ball in the direction of loading was measured 
with a Zeiss optimeter before and after test. The permanent com­
pressions corresponding to the difference of these two readings, to­
gether with the Brinell numbers corresponding to the observed in­
dentation diameters, are listed in the first six columns of table 4. 
The last two columns give corresponding results obtained with 
Carboloy balls. Since only two Carboloy balls were available for each 
specimen each ball was used twice; the permanent compression listed 
is that measured after the first indentation. Some of the balls of 
group A showed compressions greater than 0.04 mm. The values 
for these balls (denoted by an "a") were not included in the averages 
given at the bottom of each group for the reason noted above. 

TABLE 4.-R esults of tests to show effect of deformation of ball on Brinell number 

'l'ype or ball-+ A 

Specimen 
J. 

Brinel! Com-
num- pression 
ber or ball 

B 

Brinell Com- Brinell 
llum- pression num-
ber of ball ber 

C 

Com­
pression 
of ball 

Carboloy 

Brinell Com-
num- pression 
ber of ball 

-----------.---- --- --------- --------- --------- ------
mm rom mm mm 

{ 
508 0.0079 505 O. 0094 51~ O. 0025 525 0.0000 

1, H ,=511-- . ... ...... ____ __ ,~g~ .:gm ~~ :~: m :~~g m -----~OO33 
510 . 0086 507 .0089 509 .0025 522 _________ _ 

Average ______________ ----w9 ---:0079 ----wil ~ ---sil-----:0028 -m --:Oolii 
Correction ______ .----------- 2 __________ 2 __________ 0 __________ 0 __ _______ _ 
Corrected Brinell number__ _ 511 _________ _ 508 __ __ ______ 511 ___ _____ __ 524 _________ _ 

{ 
582 .0191 575 .0183 584 . 0102 - 610 .0066 

2, H , =592,._____________ ___ g~~ : gi~ ~~~ : m~ ~g~ : ~~~ ~l~ -----~ooiii 
583 .0137 580 .0168 593 .0066 612 ___ ______ _ 

Average ____________ __ ~ ------:0168 ---r;n -----:oi78 ~ -----:oOs2 -----ml--:0064 
Correction __________________ 9 __________ 10 __ __ _____ _ 2 __________ 1 _________ _ 
Corrected Brinell number___ 594 __________ 587 __ __ _____ _ 591 __ ________ 612 ___ __ ____ _ 

{
- 640 . 0231 630 .0272 646 .0122 685 . 0091 

3, H, =652____________ __ ____ ~~ :g~i ~~ : g~~~ . ~~ :gm ~~ -----~OO84 
636 . 0259 632 .0246 647 . Oll9 679 ____ _____ _ 

Average ____ ___ ___ ____ ~ ---:0234 ----e3O ----:0254 --w- ----:oi39 ~ --:oOs8 
Correction_____ ____ _____ ____ 17 ____ ___ ___ 19 ____ __ ____ 6 __________ 2 _________ _ 
Corrected Brinell number___ 655 __ ________ 649 _______ ___ 649 ____ ______ 684 _________ _ 

{
_______ '.2508 665 .0343 658 .0203 742 . 0142 

4, H ,=690________ ____ ______ "~~ :g;~g ~gg : g~~g ~~g :g~~~ m -----~iii42 
676 .0300 666 .0335 674 .0224 736 ________ _ _ 

A verage __ __ __________ ---r;n ~ -----wo ----:0342 ~ ------:0212 --W--:0i42 
Correction_______________ ___ 26 __________ 35 ___ _____ __ 13 ______ __ __ 6 _____ ____ _ 
Corrected Brinell number.. _ 703 __________ 695 __________ 681 __________ 745 _________ _ 

{ 
'529 ". 1334 ' 665 ~ 684 .0221 754 . 0152 

5, H, =697.. _____ ____ _______ ___ ~~:_ "J~~~ :i :g~tg ~~: :g~i~ m -----~iii32 
"554 ' . 1217 662 .0353 690 .0211 746 _________ _ 

Average ______________ 607 -----:0386 ------n62 -------:O:i54 ---miO ~ -----no--:0i42 
Correctioll._________________ 45 __________ 38 _______ ___ 15 __________ 6 ____ ____ _ _ 
Corrected Brinell number___ 712 __________ . 700 __________ 695 __________ 756 ________ _ 

'Values not included in average because tbe deformation of the ball was greater than 0.04 mm. 
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Values for the corrected Brinell numbers He for the five specimens 
were obtained from the individual test results by fairing a straight 
line through a plot of H versus 52 using the procedure already described 
above in the discussion of Hultgren's results. The values of !J.H = 
He-H corresponding to these corrected Brinell numbers are plotted 
as solid points in figure 17. It is seen that the points fall roughly 
about a common curve with the points computed from Hultgren's 
data. The scatter of all points increases with increasing compression. 
A large part of this scatter is, no doubt, due to nonuniform response to 
heat treatment. The resulting lack of uniformity may be expected to 
increase with the Brinell number of the specimen and hence with the 
permanent compression produced in a given ball. All of the observed 
results are approximated roughly by the simple empirical formula 

(26) 

which is shown as a dotted line in figure 17. This formula was used to 
correct the average Brinell numbers listed in table 4. The correc­
tions are less than 1 percent for Carboloy balls, less than 3 percent for 
st.eel balls C, but they exceed 5 percent for steel balls B, indenting the 
hardest specimen, and 6 percent for steel balls A. 

The effect of permanent deformation of the Carboloy balls would be 
similar to that of the steel balls, though not necessarily of exactly the 
same magnitude. The Carboloy balls used in the tests were so 
uniform that any difference was masked by the experimental error. 
For that reason the Brinell numbers obtained with the Carboloy balls 
have been corrected by the same formula, 26, used with the steel balls. 

The Brinell numbers obtained with Carboloy balls are in every 
case higher than those obtained with steel balls; this is due primarily 
to the greater rigidity of Carboloy as compared to steel (see previous 
section). The correction for permanent deformation of the ball 
reduced the maximum difference in the average Brinell numbers ob­
tained with the three types of steel balls in every case except speci­
men 4, in which it increased it from 17 to 22. Much of this scatter 
is, as already mentioned, due to nonuniform response of the specimen 
to heat treatment. 

Figure 17 shows that the error due to permanent deformation of 
the ball is below 5 Brinell numbers for balls showing a permanent 
compression of less than 0.01 mm after the first loading, and below 20 
Brinell numbers for balls showing a permanent compression of less 
than 0.025 mm after the first loading. Table 4 shows that high-grade 
steel balls are available which show permanent sets less than 0.01 mm 
at 500 Brinell and less than 0.025 mm at 700 Brinell. The corre­
sponding permanent compressions for Carboloy balls were found to 
be even less. 

IV. RECOMMENDATIONS FOR BRINELL TESTING 

It is possible, after having discussed in detail the effect of small 
variations in the several variables that enter into the determination 
of Brinell numbers, to draw up a list of recommendations designed 
to keep the combined error due to these variations down to a small 
figure. Such recommendations may assist in further standardiza­
tion of the Brinell test and may in that way lead to greater concord-
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ance between the Brinell numbers obtained by different observers 
using balls of given diameter on specimens of given material. These 
recommendations are based on tests of metal specimens having Brinell 
numbers greater than 70. They may not be sufficient for testing 
metals having Brinell numbers less than 70, such as soft bearing 
metals. 

Grouping the individual factors in the order in which they are dis­
cussed above gives the following list of recommendations. 

1. APPARATUS AND PROCEDURE 

(a) The loading mechanism should be operated to give a uniform 
rate of loading not exceeding 500 kg/sec. 

(b) The maximum load should be applied for 30 seconds. 
(c) The error in the load applied by the machine should not exceed 

}~ percent. This should be checked by periodic calibration with a 
proving ring or other suitable device. 

(d) The calibration of the apparatus used for measuring the diam­
eter of the indentation should be checked frequently. The maxi­
mum error in the reading at any point on the scale should not exceed 
0.01 mm. The indentation diameter should be read in two or more 
mutually perpendicular directions. 

2. SPECIMEN 

(a) The Brinell number should be computed from the average of 
diameter readings in at least four equally spaced directions if the in­
dentation has a non circular boundary. Care should be taken to 
polish the surface of the specimen to such a finish that the error in 
diameter reading due to tool marks does not exceed 0.01 mm. 

(b) If the indentation is made on a curved specimen the mini­
mum radius of curvature of the specimen should not be less than 
25 mm for a 10-mm ball. The diameter of the indentation should 
be taken as the average of the two principal diameters. 

(c) The specimen should be at least 0.4 in. thiclc. 
(d) The distance of the center of the indentation from the edge 

of the specimen should be at least three times the diameter of the 
inden ta tion. 

(e) The distance between centers of adjacent indentations should 
be at least three times the diameter of the indentation. 

(f) The angle between the load line and the normal to the speci­
men should not exceed 2 degrees. 

3. INDENTING BALL 

(a) The difference between the average diameter and the nominal 
(10 mm) diameter of the ball should not exceed 0.025 mm (0.001 in.). 
The average diameter should be the average of six or more different 
diameters of the ball. 

(b) The difference between any individual diameter and the aver­
age diameter of new balls should not exceed 0.025 mm (0.001 in.). 

(c) The material of the indenting ball (e. g. steel, Carboloy, dia­
mond) must be specified in quoting Brinell numbers greater than 500. 

The permanent compression of the loaded diameter of the ball 
after any indentation on a specimen having a Brinell number less 
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than 500 should not exceed 0.01 mm. If, however, steel balls are 
used on specimens having Brinell numbers greater than 500, the 
permanent compression after any indentation should not exceed 
0.025 mm. 

The use of Carboloy balls is recommended for indentations on any 
specimetJ. having a Brinell number greater than 500. 

V. APPENDIX 

1. ERROR IN THE BRINELL NUMBER DUE TO CURVATURE OF SPECIMEN 

The Brinell formula: 

(1) 

assumes the surface of indentation to be a section of a sphere of diameter D 
bounded by a circle of diameter d. The surface of intersection between sphere 
and specimen will no longer have a plane boundary if the specimen has two 
different principal radii of curvature Rh R2• Instead of being a circle it will 
be a closed curve roughly elliptical in shape and having two principal axes, one 
of length d1 and the other of length~. The error in the Brinell number assuming 
the equivalent diameter to be equal to 

da_d l +d2 (2) 
- 2 

will be computed below. 
The relative error in the Brinell number due to an error AA in the measure­

ment of area, is from formula 1 

The error in area may, in this case, be written 

where 
t.A=A-Aa, 

A=area of surface of the sphere embedded in the specimen. 
Aa=area of equivalent section of sphere given by equation 1, that is, 

(3) 

(4) 

(5) 

The computation of the relative error t.Hf H involves the derivation of the three 
quantities A, dl , d2• 

The surface of intersection A of a sphere with a specimen having principal 
curvatures of I/RI and I/R2 will be computed first. 

Let the origin of coordinates be at the center of the indenting sphere (fig. 18) 
and let any point on the surface of the sphere be described in terms of the latitude 
8 and the longitude </> . The curve of intersection ABCF of the sphere with the 
specimen may then be expressed as 8.(</». The surface of indentation A will 
be a portion of a sphere of radius r= D/2 bounded by this curve, i. e., 

A= r 2,.. r ei (j' sin 9d</»rd9=4r2 r,,/2(1 _ cos 9;)d</>. 
J~=o Je=o J~=o 

(6) 

The integration, equation 6, can be carried out if the shape of the curve of 
intersection O;(</» is known, or more specifically, if cos 8. can be expressed as a 
function of </>. 

The curve of intersection 9.(</» is the locus of points common to the indenting 
spherical surface and the surface of the specimen. It is convenient to describe 
all points on the surface of the specimen in terms of cylindrical coordinates z, 8, </> 
having their origin at the point E at which the load line (fig. 18) intersects the 
surface of the specimen. The z-axis is taken as coinciding with the load line and 
directed into the interior of the specimen, s is the radial coordinate (normal to 
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z) and q, is the longitude already used in describing points on the indenting 
sphere. z, 8, will be points on the surface of the sphere also (see fig. 18) if 

Z=Er-r cos 0.=r(E-c08 0.). 

8=r sin 0 •. 

It is aS8umed in describing the 
surface Z (8, q,) ofthespecimen, that 
only a small portion of this surface 
will be indented. The surface may 
then be approximated by a sur­
face of the second degree with 
origin at E having a curvature at 
that point equal to the actual 
curvature of the specimen. This 
surface may be described mathe­
matically by 

(9) 

where l/R is the curvature at the 
longitude considered. The curva­
ture at any longitude is related to 
the principal curvatures (1/ R, at 
</> = 0, 1/R2 at q, = 7f'/2) by Euler's 
equation n 

(10) 

(7) 
(8) 

FIGURE l8.-Diagrammatic sketch of intersection 
Solving equations 8, 9, and 10 for between a sphere and a curved sUljace. 
cos o. gives 

(11 

The negative sign in front of the radical applies here since cos ()i cannot be greater 
than 1 and since R/r is, in general, large compared to 1, while < cannot be greater 
than 1. 

Substituting equation 11 in equation 6 gives the following expression for the 
area of the surface of intersection of sphere and specimen 

A= 4r2f.7r/2[1 -~(I- 11- 2 ...!: <+!:!)] d</>, (12) 
¥,=o r V R R2 

where the integTand is a known function of q, obtained by substituting in it 
equation 10 for I/R. The resulting expression is not a simple integrable form 
but because 2.r/R+r2/R2 are small it can be expanded in a series and integrated 
term by term. 

It is convenient in carrying out this integration to substitute the ratios 

(13) 

which involve only the known radius r of the indenting sphere and the known 
principal curvatures l/R" I/R2 of the specimen. The result of the integration in 
terms of these variables carried out to 5th order terms of K, l' is equal to 

35 6 6 63 - 64 .(3-7E2) (-y4_ yy2K2+ 70K4) + 128(1-14<2 

+21.4)(1'5 _l~ 1'3~+ 2511'0) + ... ]}, (14) 

----
It Blaschke, DifIerentialgeometrle (Springer, Berlin, I, 57, 1921). 
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where <r again represents the distance from the center of the indenting sphere to 
the point of intersection of the load line with the original surface of the specimen 
(fig. 18). 

The area A3 may be computed next by substituting the average diameter 

(15) 

in equation 5. The two principal radii riJ r2, may be derived from eqv.ation 11 by 
noting that the diameter 2ri of the indentation in any direction is equal to 

2ri= 2r sin ().=2r.,jl-cos2 () •. . (16) 

Cos (). is given as a function of r/ Rand. in equation 11. rl and r2 were obtained by 
substituting in equation 16 the values obtained from equation 11, by letting R = 
RiJ R= R2, respectively. These values of riJ and r2 were inserted in equation 15 to 
obtain d3, and d3 was then substituted in equation 5 to obtain A 3• The square 
roots in the resulting expression were removed by expansion into a series making 
use of the abbreviations in equation 13. This led to a formula which could be 
subtra cted from equation 14 to get the difference between the area A and the as­
sumed equivalent area A 3• The computation, while simple in principle, is cum­
bersome of execut ion and is not repeated here. The final expression carried out 
to fifth-order terms of K, -y becomes 

1 
- (1-.2- 50.4+ 70.6)<4]+ 32.3 [(1- 6.2-233.4+2448.6 

-2730.sh 5 + (2 + 16.2+ 326.4-3404.6+ 3780.sh 3K2 

- (3+ 10.2+ 93.4 - 956.6 + 1050.shK4]+ ... } (17) 

This expression is not applicable to the case in which half of the ball is embedded 
in the specimen (. = 0). This, however, does not seriously detract from its 
usefulness. The diameter of a Brinell indentation does not exceed 70 percent 
of the diameter of the indenting ball in ordinary practice. It is apparent from 
this that . > 0.7 in practical work. 

Ll.A must be zero if the indentation is circular, i. e., if Rl = R2, as for a plane speci­
men or a spherical specimen; in that case K=-Y in equation 13 and it is seen that 
the right side of equation 17 becomes equal to zero. 

In the particu1,ar case of a cylinder of radius R1, K=O and equation 17 becomes 

Ll.A=21rr2(1 ;.<2)[ (1-2.2h2+~(1+8.2 -15.4h3+ li.2(3+5.2+282.4 

- 406.6h 4 + 3~.3 (1- 6.2 - 233.4 + 2448.6 - 2730.sh 5 +. . . J (18) 

2. ERROR IN THE BRINELL NUMBER DUE TO ERROR IN THE 
COMPUTED CONTACT AREA FOR A GIVEN DIAMETER OF 
INDENTATION 

An error is introduced in the calculation of the Brinell number obtained with 
an elastic ball indenting a specimen to a diameter d' (fig. 14) by computing it 
from the Brinell formula as if it were a spherical calotte of radius D/2. (See 
p.83.) 

The error could be computed if the actual radius of curvature r (fig. 14) in 
the contact area of the loaded ball were known. An estimate of r may be obtained 
from He.rtz's theory for the contact of an elastic ball and an elastic plane. The 
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radius of curvature r of the ball in the contact area is, according to Hertz, given by 

111+02 
r=---e;-TI ' (1) 

The radius of curvature is doubled, if the contact takes place between a ball and 
a plane of the same material (111= 02). 

The elastic constant 112 may be eliminated from Hertz's equation 21, page 84, 
and from equation 1, and the following expression may be obtained for the Clll'va­
ture l iT in the contact surface 

(2) 

In view of the limitations of Hertz's theory (p. 83), as applied to this case, it is 
not possible to calculate an exact value of r in figure 14. But it is possible to 
obtain an upper limit to r, and 
hence an upper limit to the differ­
ence between the Brinell number 

0.8 
0.7 

PIA' and PIA" by substituting * /l.6 
d'/2 for a in equation 23. The v., 
valuc obtained for T will be an up­
per limit because the substitution 
of d'/2 for a is equivalent to the 
replacement of the plastically de­
formed sp ecimen by a n elastically 
deformed specimen giving an in­
dentation of the same diameter. 
It was shown on page 86 that 
the ball indenting a plastic speci­
m en will be deformed less than 
the same ball indenting an elastic 
specimen to the same indentation 
diameter. H ence the rad ius of 

0./ 

o 
o 

IOO!JH --H /' 
.,.,. 

V 
-' 

H 

200 400 600 800 /000 
Rrlne// numher 

curvature will be less in the first 
case than in the second. For a 
lO-mm steel ball under 3,000-kg 
load (rl = 5 mm, P = 3,000 kg, 

FIGU RE 19 .-Upper limit Lo correction in Bri­
nell number due to error in the computed 
contact area f or a given indentation diameter. 

EJ=2.1 10' kg/mm2,!"1 = 0.25) equation 2 above becomes 

1 0.803 
;:- = 0.2 - /.i3 mm- 1. 

The average axial stress over the contact surface (equal to the corrected Brinell 
number) will then be obtained from the Brinell equation 1 by substituting in it 
D = 2r instead of D = 10 mm. The error in the Brinell number can be computed 
by subtract ing the Brinell number given by the tables from that just computed . 

. Figure 19 shows the result of such a computation. The increase in the Brinell 
number computed on the assumption of a rigid 10-mm ball which would take 
account of this change in curvature, is found to be small; it ranges from 0.46 
to 0.77 percent as the Brinell number is increased from 100 to 900. The actual 
percentage difference between PI A' and P/ A" is even less since the actual 
diminution in curvature of the ball must be less than that a ssumed in the deriva­
tion of figure 19. 

WASHINGTON, March 26,1936. 

73059-36-7 
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