U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

RESEARCH PAPER RP799

Part of Journal of Research of the National Bureau of Standards, Volume 14, June 1935

BEHAVIOR OF HIGH-EARLY-STRENGTH CEMENT CON-CRETES AND MORTARS UNDER VARIOUS TEMPERA-TURE AND HUMIDITY CONDITIONS

By Louis Schuman and Edward A. Pisapia

ABSTRACT

Data were obtained on the properties of 12 commercial high-early-strength cements, and on various mortars and concretes made from them.

All of the cements gave early strengths higher than those of ordinary portland cements. The strength of 1:2:4 concrete with C/W ratio of 1.50 by weight varied from 560 to 1,120 lb/in.² at 1 day, and from 1,590 to 2,590 lb/in.² at 3 days. Concrete stored during the first 24 hours at 90 and 110° F was greater in strength than concrete stored at 70° F. Damp-stored specimens gave the highest strengths after 28 days. Concrete subjected to 300 alternations of freezing and thawing had slightly lower strengths than concrete stored 1 year in the damp room. Freezing and thawing combined with drying and soaking caused severe spalling on mortars and concretes made from some of the cements.

Certain mortar specimens made with the same C/W ratio as concrete cylinders were about equal in strength to the cylinders at early ages.

The heat evolved by the cements was computed from the rise in temperature of concrete in an adiabatic calorimeter. At 90 days the heat evolved varied from 104 to 130 cal/g of cement.

No definite relation was found between cement compound composition and strength, length changes, or resistance to freezing, thawing, drying, and soaking of mortars and concretes.

CONTENTS

		Tai
I. Intro	duction	72
II. Outli	ne of tests	72
	Cements and mortars	72
	Concretes	79
-	(a) Mixing and storage	75
	(a) Withing and Storage	70
	(b) Expansion measurements	14
	(c) Freezing, thawing, drying, and soaking tests	12
	(d) Compressive strength	72
III. Test	results	72
	. Tests of cements and small specimens	72
5	2. Flow and slump	7:
ŝ	Tomparatura risa	7
	Compressive strengths of congretes	7
-	(a) Effect of two of storego during the first twenty	••
	(a) Effect of type of storage during the first twenty-	-
	four hours	1.
	(b) Effect of type of storage after the first twenty-four	-
	hours	7:
	(c) Effect of cement-water ratio	7:
	(d) Effect of cement compositions	7:
1	Expansion and contraction	7:
	Adiabatia storaga	7
TT C	. Autabalic storage	7
IV. Sumr	nary	"

I. INTRODUCTION

The compressive strength of the high-early-strength cements in various concretes hardened at normal temperatures is known. Information regarding the strength when hardened at higher temperatures, and comparison of the composition and fineness of the cements with such physical properties as strength, volume changes, resistance to freezing and thawing, heat evolution during hardening, etc., are lacking

The studies included in this investigation were undertaken to secure data for making these comparisons.

II. OUTLINE OF TESTS

1. CEMENTS AND MORTARS

Twelve samples of cement were received from different mills, but some of the samples were of the same brand. Each sample of about 8 barrels was well mixed and then stored in metal drums sealed with paraffin.

The weight per cubic foot of the cement, time of set, amount retained on sieves nos. 200 and 325, and on a specially prepared sieve designated no. 450, specific surface (by the Wagner turbidimeter), soundness, and chemical composition were determined. The following mortar specimens were made: (1) standard briquets, (2) 2-inch cubes made of a 1:3 mortar using standard Ottawa sand, (3) 2-inch cubes made of a 1:2.74 mortar, using quarry-run Ottawa sand, with cement-water ratio of 1.89, equivalent to 6 gallons per sack, (4) 2-inch cubes of a 1:5 by weight mix of cement with an aggregate proportioned 1 part quarry-run Ottawa sand, 2 parts standard Ottawa sand, 3 parts of Potomac River sand retained on a no. 8 and passing a no. 4 sieve, and (5) prisms $1\frac{1}{2}$ by $1\frac{1}{2}$ by 4 inches, of the same mix as (3). One set of the prisms was tested in compression, with the load parallel to the long axis, and one set tested transversely on a 3-inch span with the load applied at the midspan. The halves from the transverse test were tested in compression by applying a load through steel plates 1¹/₂-inches wide, placed on opposite sides of the specimen, so that the loaded area was a square 1½ inches on a Two ends of the specimen in this test projected somewhat side. beyond the loading plates. The load was perpendicular to the original long axis of the prism. This type of test has been used in Europe,¹ and is now being considered by Committee C-1 of the American Society for Testing Materials.

2. CONCRETES

(a) MIXING AND STORAGE

The 6- by 12-inch concrete cylinders were made of cement, Potomac River sand, and Potomac River gravel. The sand had a fineness modulus of 2.8. The proportions of cement, sand, and gravel are given in table 1.

¹ Proc. Int. Soc. Testing Materials, 6th Congress, 2nd sec. part 13 (1912),

TABLE	1.—Proportions	of	cement,	sand,	and	gravel	in	6-	by	12-inch	concrete
				cylind	ers						

	Propo	rtions by—	
Material	Weight	Volume	Remarks
Cement	1.00	1.00	94 lb of cement, as- sumed equal in bulk
Sand	2.28	2.00	Dry-rodded volume.
Gravel 3% to 34 inch	$\left. \begin{array}{c} 4.51 \\ 1.535 \\ 1.035 \end{array} \right $	4.00 combined	Do.

Specimens were made using cement-water ratios (C/W ratio) of 1.73, 1.50, and 1.33, by weight (6.5, 7.5, and 8.5 gallons of water per 94 pounds of cement), except that for the adiabatic storage, only the 1.50 cement-water ratio was used. Specimens were made in triplicate.

The materials for each cylinder were mixed dry by hand, the water added, and then mixed for 2 minutes. Flow and slump tests were made on those batches which were mixed at 70° F. The temperature of the mixes and the conditions of storage during the first 24 hours after making were:

- (1) Mixes at 70° F, stored in air at 70° F.
- (2) Mixes at 90° F, stored in air at 90° F.
 (3) Mixes at 110° F, stored in air at 110° F.
- (4) Mixes at 70° F, stored in a thermally insulated cabinet.
 (5) Mixes at 70° F, stored adiabatically.

After the first 24 hours, under the first four conditions, specimens for compressive-strength and linear-change determinations were treated as follows: (1) Stored in a damp room at 70° F, (2) stored in the air of a laboratory maintained at 70° F, (3) stored outdoors until tested at the end of 1 year, and (4) subjected to 300 cycles of alternate freezing and thawing (each cycle being completed in 24 hours).

Temperatures during the first 24 hours after making were measured on one of each set of three cylinders by a copper-constantan thermoelement, consisting of three couples in series. Each set of three junctions was tied together. One set was inserted at the center of the cylinder, the other in melting ice. In the 90 and 110° F storages the temperatures were measured by a recording galvanometer, and in the 70° F and insulated storages by a recording potentiometer. The use of three couples in series was for the purpose of securing greater accuracy where the temperature rise was small. For the specimens stored at 90 and 110° F during the first 24 hours, the temperature within the storage box was automatically maintained by electric heaters over which the air of the cabinet was continually circulated.

The cylinders to be stored at 70, 90, and 110° F were cast in steel molds, with steel top and bottom plates. Those for storage in the insulated cabinet were cast in paraffined paper molds, and the filled mold placed in a metal cylinder surrounded by a thickness of 9 inches of diatomaceous silica. The cylinders to be stored adiabatically were cast in tinned sheet-iron molds which were hermetically sealed.

(b) EXPANSION MEASUREMENTS

The apparatus for expansion measurements consisted of a metal cradle into which the cylinder was so placed in a definite horizontal position that a fine line scratched on a glass plate cast in one end of the cylinder was in contact with a blunt-pointed screw attached to the stand, while the stem of a dial micrometer touched a glass plate in the other end. Measurements were made on two such sets of glass plates that were placed in the ends of each cylinder. Readings on the cylinders in the 90° F, 110° F, and insulated storages were taken both on the removal from the molds and after cooling to 70° F. The temperature within the cylinders, which were stored in air at 70° F, was generally slightly higher than 70° F at the end of 24 hours; no measurements were made before these cylinders had cooled to 70° F. All specimens were then placed in the designated storages for subsequent tests. After the initial measurements were made the cylinders stored in the damp room and in the laboratory air were measured at the ages of 7 and 28 days, 6 months, 1 year, etc.; those stored outdoors were measured only at 1 year (after storing for the last 10 days in the air of the laboratory at 70° F). The specimens subjected to freezing and thawing were measured at 1 year and at 300 cycles. All expansions and contractions were based upon the length of the cylinders at 1 day, measured at 70° F.

(c) FREEZING, THAWING, DRYING, AND SOAKING TESTS

Three- by six-inch concrete cylinders, with a C/W ratio of 1.50 (7.5 gallons of water per sack) were made for determining the effect of cycles of drying and soaking, and of freezing, thawing, drying, and soaking on the strengths of the concretes of the different cements. The mix was the same as for the 6- by 12-inch cylinders, except that the aggregate had a maximum size of ¾ inch, and for a unit weight of cement was proportioned as follows:

Size of gravel	Proportions, by weight
14 to 36 inch	2.52
36 to 34 inch	1.99

The ratio of the weights of the ¹/₄- to ³/₈-inch gravel and ³/₈- to ³/₄-inch gravel was the same as in the 6- by 12-inch cylinders.

All specimens were kept in the molds for 48 hours, then in water for 24 hours, and then started in the specified treatment.

For each cement, cylinders were made for three different treatments:

(1) One freezing and one thawing daily for 3 successive days, then

3 days' drying at 150° F, then 1 day storage in water. (2) Drying 3 days at 150° F, soaking 4 days.

(3) Damp storage.

The drying took place in an oven maintained at 150° F, through which air was blown after passing through heaters. Fresh air was continuously drawn into the oven.

Specimens were tested in compression after 15, 25, 50, and 100 cycles of treatments (1) and (2), and after damp storage for corresponding ages.

Specimens for expansion measurements, subjected to the same treatments as the 3- by 6-inch cylinders, were made from each cement, in the form of 2- by 12-inch cylinders with glass plates as reference marks set in the ends. The mix used was the same as that used in the 1:5 mortar cubes (see cements and mortars). This gave a mortar of about the same consistency as the mix used for the 3- by 6-inch cylinders. The expansion measurements were made in an apparatus similar to that used for the 6- by 12-inch cylinders. Observations were taken after each set of three freezings and thawings, after drying, and after soaking. The damp-stored specimens were measured at the same ages as the corresponding specimens in the other treatments. All specimens were allowed to reach 70° F before measuring.

(d) COMPRESSIVE STRENGTH

The loads were applied at the rate of approximately 1,000 lb/in.² per minute. The specimens in damp storage and those subjected to freezing and thawing were tested in the wet condition. The specimens stored outdoors were stored in the air of the laboratory at 70° F for 10 days before testing. The air-stored specimens were tested without further treatment.

Most of the specimens were prepared for testing by grinding the ends. In those cases where the cylinder ends could not be trued by grinding, as those with glass plates inserted in the ends, plaster caps were applied.

III. TEST RESULTS

1. TESTS OF CEMENTS AND SMALL SPECIMENS

The chemical composition, calculated compound composition, fineness, specific surface, time of setting, and weight per cubic foot of each cement are given in table 2.

The calculated compound compositions of the cements differ widely. The tricalcium-silicate content ranges from 34 to 70 percent, dicalcium silicate from 0 to 38 percent, the tricalcium aluminate from 7 to 17 percent, and the tetracalcium alumino ferrite from 6 to 10 percent. It is noteworthy that one of the cements (no. 12) contains more dicalcium silicate than tricalcium silicate.

The fineness also varies considerably; the specific surface values are considerably higher than similar values for standard portland cement. For example, in one cement, the weight of the fraction containing particles less than 10 microns in diameter exceeded 40 percent of the total weight of the sample. With the possible exception of an earlier final set, the setting characteristics are similar to those of the slower-hardening cements. The weights per cubic foot show how much these depart from the commonly accepted figure of 94 pounds.

											0						1	Fineness		Wei	ght	Mixing	Tim	le of
Ce- ment				Cher	nical c	ompos	sitions				U	aicula	posit	ions	com-	R	etaine ieve n	d on o.—	Specific surface			for normal consist- ency	(Gili met)	nore hod)
по.	CaO MgO 4	Al ₂ O ₃	Fe ₂ O ₃	SiO2	SO3	Ċ1	Insol- uble in HCl	Loss on igni- tion	Free CaO ^a	C3S	C_2S	C_3A	C4AF	CaSO ₄	200	325	450 b (wet meth- od)	(by Wagner turbidi- meter)	Rodded®	Loose d	(% of dry cement, by weight	Ini- tial	Final	
1 2 3 ^f 4	% 66. 2 66. 6 65. 6 65. 7	% 1.1 1.0 2.5 2.5 2.5	% 8.3 6.2 4.7 5.6	$ \begin{array}{r} $	% 17.0 20.6 20.6 19.3	% 2.4 2.5 1.3 2.2	0.0 0.0 0.3 0.0	$\% \\ 0.2 \\ .5 \\ .5 \\ .6 \end{cases}$	$ \begin{array}{r} \% \\ 1.7 \\ 1.1 \\ 2.4 \\ 2.1 \\ \end{array} $	% • 0.4 1.6 .3 2.7	% 65 57 70 62	% 0 16 7 8	% 17 13 7 11	% 10 6 9 7	% 4.1 4.2 2.2 3.7	% 3.7 3.1 2.8 3.1	% 8.5 8.3 8.8 8.7	$ \begin{array}{r} \% \\ 15.7 \\ 16.3 \\ 16.6 \\ 13.2 \\ \end{array} $	cm ² /g 1990 1910 1770 2030	lb/ft ³ 78. 3 74. 6 78. 7 74. 8	lb/ft ³ 67. 8 63. 6 69. 8 65. 6	$25.0 \\ 27.0 \\ 25.6 \\ 26.0$	hr 2.5 3.0 4.5 3.5	hr 4.5 6.0 6.5 5.5
5 6 7 8	$\begin{array}{c} 64.\ 2\\ 62.\ 9\\ 65.\ 7\\ 65.\ 4\end{array}$	$\begin{array}{c} 3.4 \\ 2.9 \\ 1.5 \\ 2.7 \end{array}$	$\begin{array}{c} 7.2 \\ 7.0 \\ 6.6 \\ 6.4 \end{array}$	$2.5 \\ 2.3 \\ 2.7 \\ 1.9$	18.520.319.319.319.3	$\begin{array}{c c} 2.4 \\ 2.6 \\ 2.1 \\ 2.3 \end{array}$	$ \begin{array}{c} .04 \\ .08 \\ .03 \\ .0 \end{array} $	2.3 2.3 .4 .2	$ \begin{array}{c} 1.8\\ 1.6\\ 1.8\\ 1.7 \end{array} $	$\begin{array}{c} .6\\ .1\\ 1.5\\ 4.2 \end{array}$		$ \begin{array}{r} 7 \\ 24 \\ 14 \\ 17 \end{array} $	$ \begin{array}{r} 15 \\ 15 \\ 13 \\ 13 \end{array} $	8 7 8 6	$\begin{array}{c} 4.1 \\ 4.4 \\ 3.5 \\ 3.9 \end{array}$	$ \begin{array}{c} 1.7\\ 2.7\\ 1.3\\ 1.7 \end{array} $	$5.3 \\ 8.4 \\ 5.8 \\ 9.6$	$\begin{array}{c c} 14.2 \\ 15.2 \\ 11.8 \\ 13.6 \end{array}$	$1760 \\ 2050 \\ 1970 \\ 2180$	$\begin{array}{c} 74.8 \\ 75.8 \\ 74.2 \\ 76.1 \end{array}$	$\begin{array}{c} 62.\ 7\\ 64.\ 6\\ 63.\ 4\\ 63.\ 1\end{array}$	$\begin{array}{c} 25.\ 0\\ 25.\ 4\\ 26.\ 0\\ 24.\ 4\end{array}$	$\begin{array}{c} 3.5 \\ 4.5 \\ 3.0 \\ 1.75 \end{array}$	$ \begin{array}{r} 6.0 \\ 6.5 \\ 5.5 \\ 3.5 \\ \end{array} $
9 10 11 12	$\begin{array}{c} 66.\ 2\\ 62.\ 3\\ 63.\ 3\\ 60.\ 6\end{array}$	$2.2 \\ 3.4 \\ 3.5 \\ 4.8$	$\begin{array}{c} 4.4 \\ 7.1 \\ 6.4 \\ 4.8 \end{array}$	2.8 2.8 2.5 2.4	$\begin{array}{c} 21.\ 6\\ 18.\ 5\\ 19.\ 1\\ 21.\ 9 \end{array}$	$ \begin{array}{c c} 1.9\\ 2.5\\ 2.6\\ 2.7 \end{array} $.0 .0 .07 .0	.1 .5 .4 .7	$ \begin{array}{c} 1.2\\ 2.7\\ 1.9\\ 2.5 \end{array} $	$\begin{array}{c} .4 \\ 1.9 \\ 1.2 \\ .9 \end{array}$	$ \begin{array}{r} 65 \\ 47 \\ 54 \\ 34 \end{array} $	$ \begin{array}{c} 13 \\ 18 \\ 14 \\ 38 \end{array} $	$7 \\ 14 \\ 13 \\ 9$	9 9 8 7	3.24.24.44.6	$ \begin{array}{c} 1.7\\ 3.8\\ 2.1\\ 3.9 \end{array} $	$\begin{array}{c} 7.5 \\ 8.8 \\ 5.1 \\ 6.6 \end{array}$	$ \begin{array}{c} 12.2\\ 20.4\\ 11.2\\ 7.7 \end{array} $	$2120 \\ 1930 \\ 2150 \\ 2490$	75. 6 79. 5 75. 0 74. 3	67. 2 67. 8 63. 2 63. 8	$\begin{array}{c} 24.0 \\ 25.0 \\ 25.0 \\ 25.0 \\ 25.0 \end{array}$	$\begin{array}{c} 3. \ 0 \\ 2. \ 5 \\ 3. \ 0 \\ 3. \ 0 \end{array}$	$5.5 \\ 6.0 \\ 5.0 \\ 5.5 $

TABLE 2.—Chemical and compound composition, fineness, time of set, and weight of the cements

All of the cements were satisfactory in the steaming test for soundness $C_{3}S = 3CaO.SiO_{2}; C_{2}S = 2CaO.SiO_{2}; C_{3}A = 3Ca.O.Al_{2}O_{3}; C_{4}AF = 4CaO.Al_{2}O_{3}. Fe_{2}O_{3}$

Free CaO determined by the method of Emley, Trans. Am. Ceram. Soc. 17, 720 (1915).
Sieve no. 450 was produced by electroplating the cloth of a no. 325 sieve, which reduced the average size of opening from .044 mm to .031 mm. If the standard sieve series were extended the .031 is ze would correspond to a no. 450 sieve.
According to ASTM Standard Method of Test for Unit Weight of Aggregate for Concrete C29-27.
According to Rogers' method, BS J. Research 13, 811 (1934) RP 746.
The value for the free CaO for cement no. 1 was analytically determined. However, in calculating the compound composition it was found that the excess CaO over that re-

quired for the compounds was 1.9 percent. f Contains a water-repellent material.

TABLE 3.—Strength of small test specimens

[All values are given in lb/in.2]

Cement	Te of mo	nsile 1:3 ortar	e str star bri	eng ndan ique	th :d- ets	Com of n ct	ipres f 1:3 iort ubes.	sive sta ar. .)	stren anda (2-	gth ard in.	Con 0 (:	ipres f pla 2-in.	sive stic 1 cube	stren mort: s.)	gth ar.ª	Com o (: C	npres f 1 2-in. C/W=	sive :5 	stren mort 1 b e	ar.b	Comp pla by Lo sid	pressiv astic 11/2-1 baded le	ve str mort: by 4-ir parall	rength ar.ª 1. pris lel to	n of (1½- ms.) long	Tran p (1 pr of sp	last 1/2-b risms ru pan	se str ic r y 1½ s.) ptu	rengt nort by Mod re—:	h of ar.ª 4-in. ulus 3-in.	Com ha tes squ	pressi lves i t.ª L iare a	ve st rom oaded rea°	transt transt on 1	h of verse ½-in.
10.		Tes	sted	at			Te	ested	at			Te	ested	at			Т	ested	at			Т	ested	at			T	ested	at			Te	sted a	at	
	1 day	3 days	7 days	28 days	1 year	1 day	3 days	7 days	28 days	1 year	1 day	3 days	7 days	28 days	1 year	1 day	3 days	7 days	28 days	1 year	1 day	3 days	7 days	28 days	1 year	1 day	3 days	7 days	28 days	1 year	1 day	3 days	7 days	28 days	1 year
1 2 3 4	330 250 185 280	400 390 300 390	400 395 365 400	455 450 385 410	375 415 395 370	$2550 \\ 1750 \\ 1260 \\ 2100$	$3710 \\ 4060 \\ 2580 \\ 4030$	4120 5650 3550 4890	$5010 \\ 5860 \\ 4690 \\ 5990$	$5090 \\ 5690 \\ 6560 \\ 6310$	$1380 \\ 965 \\ 925 \\ 1150$	$3310 \\ 3500 \\ 2650 \\ 4090$	$3800 \\ 4690 \\ 3950 \\ 5660$	$\begin{array}{r} 4450 \\ 5030 \\ 4350 \\ 6440 \end{array}$	3920 4850 5490 6720	780 710 565 740	2040 2220 1580 2360	$\begin{array}{r} 2510\\ 3490\\ 2250\\ 3730 \end{array}$	2980 4320 2870 4810	$2990 \\ 4820 \\ 4290 \\ 4850$	$1630 \\ 1150 \\ d1140 \\ 1380$	$3060 \\ 3380 \\ d_{2450} \\ 3660$	3440 4700 d3410 5000	3930 5590 44890 5860	4020 6350 45390 5910	$620 \\ 380 \\ d360 \\ 465 $	795 770 d665 780	895 945 d820 950	945 1040 d985 960	860 1000 d1000 935	1730 1250 d1290 1590	3230 3800 42970 3840	3610 5190 43590 5310	$4230 \\ 6290 \\ 45000 \\ 6080$	$\begin{array}{r} 4370 \\ 6530 \\ 46330 \\ 6090 \end{array}$
5 6 7 8	$255 \\ 225 \\ 245 \\ 215$	385 370 390 360	515 425 375 370	445 475 500 440	$425 \\ 465 \\ 400 \\ 420$	$1730 \\ 1740 \\ 1860 \\ 1720$	3870 3670 3430 4040	$5420 \\ 5130 \\ 5260 \\ 4880$	6960 6220 4290 6170	$7430 \\ 6310 \\ 6130 \\ 6170$	1360 1130 1570 1030	$\begin{array}{r} 4010 \\ 3420 \\ 3140 \\ 3430 \end{array}$	$5500 \\ 4680 \\ 5080 \\ 4790$	6830 5280 5110 5790	$7470 \\ 6210 \\ 6200 \\ 6090$	630 540 765 820	2430 1700 2150 1970	$3840 \\ 2680 \\ 3160 \\ 3330$	$5180 \\ 4270 \\ 4920 \\ 4620$	$5260 \\ 5090 \\ 5750 \\ 4840$	$1130 \\ 905 \\ 1370 \\ 1270$	$3610 \\ 2620 \\ 3590 \\ 3320$	$\begin{array}{r} 4840 \\ 3730 \\ 4880 \\ 4620 \end{array}$	$6180 \\ 5620 \\ 5780 \\ 6050$	$6110 \\ 6600 \\ 5650 \\ 4980$	$380 \\ 365 \\ 445 \\ 395$	810 710 825 755	$1060 \\ 885 \\ 1000 \\ 1020$	$1100 \\ 1160 \\ 1110 \\ 1180$	$1020 \\ 1085 \\ 1000 \\ 985$	$1310 \\ 935 \\ 1570 \\ 1350$	3830 3020 3910 3510	5380 4380 5180 4810	$\begin{array}{c} 6320 \\ 5670 \\ 6200 \\ 6560 \end{array}$	6750 6530 6340 5610
9 10 11 12	$255 \\ 250 \\ 295 \\ 230$	395 350 380 320	$465 \\ 360 \\ 485 \\ 410$	$470 \\ 420 \\ 435 \\ 500$	$460 \\ 400 \\ 385 \\ 455$	$2000 \\ 1700 \\ 2660 \\ 2160$	$\begin{array}{r} 4320 \\ 3030 \\ 4550 \\ 3650 \end{array}$	$5240 \\ 4110 \\ 6210 \\ 5110$	8050 5490 7270 5850	$7420 \\ 5110 \\ 7010 \\ 6990$	$1400 \\ 1240 \\ 1450 \\ 1220$	3860 2990 3900 2810	5670 3820 4910 4080	$6970 \\ 4970 \\ 6060 \\ 6410$	$\begin{array}{c} 6650 \\ 6340 \\ 5950 \\ 7540 \end{array}$	$1010 \\ 710 \\ 1000 \\ 630$	$2280 \\ 2020 \\ 2560 \\ 1440$	$3730 \\ 2830 \\ 3760 \\ 2250$	$5010 \\ 3970 \\ 4910 \\ 4350$	$5480 \\ 4730 \\ 5020 \\ 5690$	$1020 \\ 950 \\ 1420 \\ 880$	$3380 \\ 2310 \\ 3340 \\ 1920$	$\begin{array}{r} 4040 \\ 2410 \\ 4830 \\ 2860 \end{array}$	5920 4320 5320 3990	$5870 \\ 4430 \\ 5950 \\ 6410$	415 395 550 370	730 750 885 650	935 920 1070 885	$1080 \\ 1030 \\ 1080 \\ 1080$	$1070 \\ 1040 \\ 1020 \\ 1170$	$1260 \\ 1370 \\ 1870 \\ 1100$	$3280 \\ 2720 \\ 3790 \\ 2430$	$\begin{array}{r} 4930 \\ 3660 \\ 4900 \\ 3450 \end{array}$	$\begin{array}{c} 6660\\ 4630\\ 6190\\ 5550 \end{array}$	$7160 \\ 5280 \\ 5900 \\ 6900$
Avg	250	370	415	450	415	1940	3740	4960	5990	6350	1230	3430	4720	5640	6120	740	2060	3130	4350	4900	1190	3050	4060	5290	5640	430	760	950	1060	1010	1380	3360	4530	5780	6150

300 g of cement, 822 g of pit-run Ottawa sand, 159 ml of water. C/W=1.89. Fineness modulus of sand about 1.8.
Aggregate 1:23 mix of pit-run Ottawa sand, Standard Ottawa sand, and no. 8 to no. 4 Potomae River sand. Fineness modulus of aggregate about 3.8.
Load axis perpendicular to original long axis of prism.
Cement no. 3 plastic-mortar prisms made with C/W=2.02 on account of too high a flow for C/W=1.89.

Schuman Pisapia

Table 3 presents the results of the strength tests of the mortar specimens. The average values for each type specimen are also given.

Although tension and compression tests only are required in the United States in strength specifications for cement, transverse tests also are being used or considered in some countries. In these studies transverse tests were made, and the resultant halves of the specimens were tested in compression.

FIGURE 1.—Relation of compressive strength of concretes and mortars.

The results of the tensile tests are typical in that there is in all but one case a retrogression after 28 days, a phenomenon not typical of cement mortars or concrete tested in compression at corresponding ages. It is to be noted that eight of the cements do not meet the 1-day requirement of the ASTM tentative specification (C74–30T) for high-early-strength cement and five do not meet the 3-day requirement. Some manufacturers are now producing cements with greater tensile strengths, but, as shown by data collected in another investigation, the requirements of 275 and 375 lb./in.² at 1 and 3 days, respec-

tively, are not being exceeded by an appreciable margin. The transverse-test results are somewhat similar to those for the tension tests in that there is frequently a retrogression at the later ages.

Two-inch cubes of plastic mortar have been proposed as test specimens for portland cement, on the assumption that they will have the same strength as concrete when made with the same cementwater ratio and of about the same consistency as the concrete. While most of the mortar specimens tested approximately justify this assumption the 1:5 cubes and the 1½- by 1½- by 4-inch prisms tested in compression with the load parallel to the long axis gave strengths more nearly equal to the concrete strength at all ages. If the concrete and mortar strengths at all ages were identical, the points for each cement in figure 1 would lie on the lines drawn at 45°. The average strength of the prisms tends to be higher than the average strength of the concrete after 1 day, the difference increasing up to 28 days, but becoming negligible at 1 year. The cement-water ratio of the prisms could not be changed to bring the strengths at all ages into equality. Although the 2-inch cubes and the concrete cylinders under discussion were of the same cement-water ratio and the strengths of the two are in better accord than the strengths of the concrete and the mortar prisms, the cube strengths also tend to be higher at the later ages than those of the concrete. The values obtained on the halves from the transverse-test specimens at any age, were, on the average, about 10 percent higher than the strengths of the corresponding prisms tested with the load parallel to the long axis. Compared to the 2-inch cubes of the same mortar, the strengths of the halves were, on the average, about equal in strength to those of the cubes: but individual differences were often large, and were not consistent.

2. FLOW AND SLUMP

The flow and slump measurements are given in table 4. There is no apparent relation between the flow or slump and composition or

	Flow	and slu	mp of co cylin	ncrete for nders	6- by 12	2-inch	Flow ^a of	Flow ^b of
Cement no.	C/W	1.73	C/W	7 1.50	C/W	7 1.33	3- by 6- inch cylinders;	quarry-run sand mor- tar; C/W
	Flow	Slump	Flow	Slump	Flow	Slump	C/W·150	1.00
1	% 16 30	in. 0.3	% 40 51	in. 3.6 1.3	% 84 83	in. 6.7 5.0	% 36 45	% 103 101
3	46 29	.4	81 51	4.4	107 80	6.7 5.5	75 54	{ 141 c 103 102
5 6 7	$30 \\ 31 \\ 28 \\ 22$.2 .2 .2 .2	53 54 43 39	1.6 3.9 1.1 1.4	72 78 67 66	3.6 5.5 4.6 5.6	43 56 48 49	$114 \\ 104 \\ 129 \\ 113$
9 0	28 27 35	.2 .2 .4 .3	50 51 57 43	1.5 1.4 2.3 1.9	77 80 93 79	5.9 5.8 7.2 6.9	58 50 66 58	113 102 124 123

TABLE 4.—Flow and slump

Using large flow table and fifteen 1/8-inch drops.

 $^{\circ}$ Using large how table and twenty-five $\frac{1}{2}$ -inch drops. $^{\circ}$ C/W = 1.89 was too wet for this cement. The values for flow of 103 and those given for strength in table 3 are for C/W = 2.02, which gives a flow value nearer to that of the other cements.

fineness (table 2). Cement no. 3 has a flow markedly greater than any of the others, because the water repellent therein increases the flow.

3. TEMPERATURE RISE

The data on temperature rise of the concrete under the different storage conditions are given in table 5. The concretes with dif-

nisal ook Maristia	STOR	ED A	Г 70° F НОТ	DURII URS	NG FII	RST 24	STOP	RED A	Г 90° F НО	DURI URS	NG FII	RST 24
Cement no	C/W	=1.73	C/W	=1.50	C/W	=1.33	C/W	=1.73	C/W	=1.50	C/	W=1.33
	Max rise in temp	Time to reach max temp	Max rise in temp	Time to reach max temp	Max rise in temp	Time to reach max temp	Max rise in temp	Time to reach max temp	Max rise in temp	Time to reach max temp	Max rise in temp	Time to reach max temp
12 34 55 67 78 91010111212	° F 15 6 4 5 5 8 5 6 3 7 4 4 4	hr 9 13.5 8.5 10.5 11 12.5 9 12 12 12 10.5 12 14	° F 10 5 3 4 5 6 4 4 3 5 6 4	hr 9 13 11 10 11.5 13 14 12 13 11 12 18	° F 12 6 2 4 6 8 7 4 4 6 4 4 4	hr 11 14 12.5 11.5 12.5 13.5 13 12 13.5 12 12.5 15	° F 16 9 7 14 6 6 7 11 9 11 7 6	hr 4.5 7.5 6.5 6.5 5.5 7 5.5 7 8 5 7 7 7	° F 12 8 6 11 6 4 5 9 8 10 5 5	hr 4.5 8 7.5 6 5 6 7 6 7 8 6 7.5 8 6 7.5 8	° F 13 8 7 11 6 4 5 6 7 10 5 4	hr 4 8 7 6.5 7 8 7 5 8.5 6 8.5 8
STO	RED .	AT 110° 24]	F DUI HOURS	RING	FIRST		THE	RMALI I	LY INS FIRST :	ULAT 24 HOU	ED DU RS	RING
1	$\begin{array}{c c} 12\\ 10\\ 11\\ 11\\ 11\\ 10\\ 10\\ 12\\ 10\\ 11\\ 11\\ 9\\ 9\end{array}$	$\begin{array}{c} 3.5\\ 5\\ 5.5\\ 3.5\\ 4\\ 5.5\\ 4\\ 3\\ 6\\ 4\\ 4.5\\ 5\end{array}$	$ \begin{array}{c} 7 \\ 7 \\ 10 \\ 8 \\ 10 \\ 9 \\ 9 \\ 9 \\ 9 \\ 7 \\ 7 \end{array} $	$ \begin{array}{r} 3 \\ 5 \\ 6 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 6 \\ 5 \\ 5 \\ 5 \\ 5 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3.5\\ 5.5\\ 7\\ 4\\ 4.5\\ 5\\ 4\\ 3\\ 6.5\\ 4\\ 5\\ 5\\ 5\end{array}$	31 25 17 23 23 21 22 25 20 21 21 21 22 18	8 15 14 14 14 14 12 16 12 16 10 12 15	30 23 17 21 21 18 21 24 19 21 21 21 21 21	$\begin{array}{c} 8\\ 13\\ 13\\ 11\\ 13\\ 13\\ 17\\ 12\\ 17\\ 12\\ 13.5\\ 15.5\\ \end{array}$	$\begin{array}{c} 27\\ 22\\ 16\\ 19\\ 22\\ 20\\ 19\\ 22\\ 18\\ 19\\ 19\\ 18\\ 17\\ \end{array}$	$\begin{array}{c} 7.5\\ 13\\ 16\\ 14\\ 15\\ 12\\ 18\\ 12\\ 18\\ 13\\ 14\\ 15\\ \end{array}$

TABLE	5R	ise in	temperature	of t	he con	crete
-------	----	--------	-------------	------	--------	-------

STORED ADIABATICALLY

		C/W=1.50				C/W=1.50	
Cement no.	Temp rise at 24 hr	Temp rise at 87 days	Ratio of 24-hr rise to 87-day rise	Cement no.	Temp rise at 24 hr	Temp rise at 87 days	Ratio of 24-hr rise to 87-day rise
1 2	° F 78 46 46 59 67 55	° F 102 87 85 96 97 86	$\begin{array}{c} 0.\ 77 \\ .\ 54 \\ .\ 56 \\ .\ 61 \\ .\ 65 \end{array}$	7 8	° F 57 69 56 60 64 48	° F 95 90 92 85 94 80	$\begin{array}{c} 0.\ 60\\ .\ 76\\ .\ 61\\ .\ 64\\ .\ 69\\ .\ 60\end{array}$

ferent cement-water ratios did not differ much in temperature rise. In insulated storage, the average temperature rise for the lowest

		Storage during first 24 hr			Su	bseque	ent stor	rage coi	ndition			Storage during first 24 hr			Su	ıbsequ	ent sto	rage co	ndition	1		Storage during first 24 hr	9		Sı	ubseque	ent sto	orage co:	ndition			Storage during first 24 hr			Sul	bseque	ent stor	rage col	ndition					
Ce- ment	C/W (by weight)	70° F		Da	mp		Lat	porator;	y air	Out- doors	Freez- ing and thaw- ing	90° F		Da	mp		Lal	oorator	y air	Out- doors	Freez- ing and thaw- ing	110° F		D٤	ump		La	borator,	y air	Out- doors	Freez- ing and thaw- ing	Insu- lated		Dai	mp		Lab	porator	y air	Out- doors	Freez- ing and thaw- ing	Store	ed adiaba 87 da	tically for ys
	worghty)	1	3	7	28	1	7	28		1	300	1		7	00							Teste	d at-				•																1	year
		day	days	days	days	year	days	days	year	year	cycles	day	days	days	days	year	days	days	1 year	1 year	300 cycles	day	3 days	7 days	28 days	1 year	7 days	28 days	1 year	1 year	300 cycles	l day	3 days	7 days	28 days	1 year	7 days	28 days	1 year	1 year	300 cycles	90 days	Sealed	Stored un- sealed in damp roon after 87 day
1	$ \left\{\begin{array}{c} 1.73\\ 1.50\\ 1.33\\ (1.72) \end{array}\right. $	1470 1120 550	3100 1880 1250	3430 2830 1570	3840 3240 1980	3880 2780 2120	3170 2480 1740	3930 3390 2350	4190 3140 2230	3020 2930 1990	3890 3430 2220	$2150 \\ 2000 \\ 1280$	$2760 \\ 2600 \\ 1520$	3330 3010 1810	3100 2880 1930	3650 3140 2100	3280 2560 1920	3780 3050 2310	3880 2990 2400	3820 2710 1990	3750 2870 2090	a 1620 1780 1410	2080 2190 1800	2350 2680 2090	2350 3100 2200	3420 3550 2630	2170 2310 1980	2430 2910 2290	3050 2960 2140	$3380 \\ 3540 \\ 2430$	$3460 \\ 3490 \\ 2580$	2380 1800 1070	2880 2100 1490	3140 2430 1510	3480 2660 1970	3500 2720 2090	3120 2550 1740	3890 2890 2100	3820 2930 2180	$3420 \\ 2420 \\ 1830$	3790 3320 2150	2780	2760	272
2	$ \left\{\begin{array}{c} 1.73\\ 1.50\\ 1.33\\ (1.73) \end{array}\right. $	760 470	2610 2200 1320 2920	3510 2600 1940	4340 3620 2620	6140 4850 3050	3210 2570 1730	3900 2890 2330	4090 2950 2150	4110 3070 2570	4950 3950 2650	1940 1380 890	2760 2050 1320	3350 2780 1680	3750 2930 2140	5070 3690 2880	3350 2510 1640	$2850 \\ 3450 \\ 2640$	3940 2920 2180	4450 3670 2850	4710 4130 2770	2330 1610 1480	2980 2110 1630	2980 2550 1960	3020 2670 2120	$\begin{array}{c} 4890 \\ 4100 \\ 3540 \end{array}$	3320 2440 2060	3660 3140 2220	3890 2690 2180	4040 3520 2910	4450 3770 2960	1690 1260 820	2600 2070 1430	3160 2120 1730	3470 2890 1930	4430 3140 2340	3080 2080 1470	3620 2510 1770	3710 2420 1600	4170 3520 2340	4210 3380 2530	3450	3880	401
3	$ \left\{\begin{array}{c} 1.50\\ 1.33\\ (1.73) \right. $	620 410	1590 990 2040	2050 1510	2520 1930	3660 2640	2950 2050 1470	3010 2030	2450 1620	3860 3030 1980	4120 3660 2710	1780 1140 700	2450 1540 1020	2860 1890 1290	3790 2800 2010	4310 3290 2280	2800 2040 1150	3720 2680 1660	3280 2490 1500	4520 3430 2200	3960 3250 2810	2470 1650 1250	3010 2440 1550	3360 2630 1910	3520 2710 2080	4610 3750 2640	3490 2420 1710	4160 2810 2220	4080 2940 2060	4570 3740 2750	4810 3610 3100	$1270 \\ 830 \\ 480$	$1990 \\ 1400 \\ 860$	2430 1540 1140	3020 2130 1610	4140 3040 2160	2670 1640 1030	3060 1980 1650	2670 1750 1190	3860 2870 2090	4210 3540 2570	3530	3560	381
4	$ \left\{\begin{array}{c} 1.50\\ 1.33\\ (1.73) \right. $	1150 760 460	2360 1540	3030 2390	4310 3720 2820	3910 3010	4020 2880 2220	4000 3960 2880	4320 3010 2070	4970 3990 2910	$5010 \\ 4310 \\ 3270$	2180 1540 1100	3060 2230 1790	3750 2610 1770	4590 3270 2640	5150 3640 2720	3460 2800 1960	4270 3020 2350	4160 2730 1930	5340 3880 2610	4870 3800 2660	2360 1900 1430	2490 2290 1810	3070 2540 2150	4390 3420 2330	4380 3980 3170	3540 2720 2020	4090 3680 2920	3830 3250 2320	$5560 \\ 4120 \\ 3480$	3930 3870 3340	2150 1180 870	3010 2080 1610	3280 2590 1860	3700 3230 2580	4270 3560 2760	3180 2640 2080	3850 2780 2510	3730 2560 1800	4510 4010 2660	4450 3680 2830	3830	3510	388
5	$\left\{\begin{array}{c} 1.50\\ 1.33\\ 1.72\end{array}\right.$	770 530	2200 1710	2800 2470	3840 3180	4150 3130	2470 2130	4000 3740 2830	4370 3400 2600	5100 4470 3460	$5010 \\ 3600 \\ 2840$	1990 1410 960	2840 2100 1750	3390 2740 2030	4140 3260 2560	4260 3570 3170	2750 2690 2090	4160 3230 2480	4210 2950 2180	4790 4210 3410	4340 3690 2770	$\begin{array}{c c} 2300 \\ 1660 \\ 1240 \end{array}$	2850 2130 1560	2720 2430 1900	3530 3010 2480	3760 3520 2980	2620 2560 1740	3580 3010 2410	3380 3120 2410	$3500 \\ 4020 \\ 3760$	3420 3570 3050	1600 1280 830	2790 2020 1670	2910 2760 2200	3590 3050 2480	4240 3300 2690	3080 2430 1880	3690 3200 2550	3620 2740 2080	5090 4030 3320	4510 3820 2710	3630	4020	338
6	$\left\{\begin{array}{c} 1.73\\ 1.50\\ 1.33\\ (1.72)\end{array}\right.$	560 390	1750 1230	2630 2090	4520 3650 2900	6370 5110 3860	3050 2200 1760	4030 3140 2470	4280 3080 2070	4970 4340 3500	$5340 \\ 4370 \\ 3160$	1520 1150 770	2840 1890 1460	3540 2540 2090	4650 3570 3000	5830 4850 3990	3300 2390 2000	4700 3380 2600	4600 3120 2310	4680 4330 3570	4760 4320 3680	a 1640 1740 1250	1530 2280 1840	2240 2700 2170	3070 3390 3030	$3460 \\ 4650 \\ 4250$	$\begin{array}{c c} 3170 \\ 2600 \\ 2120 \end{array}$	2910 3480 2610	2840 3040 2320	$4390 \\ 4190 \\ 3630$	$3250 \\ 4200 \\ 3780$	$1350 \\ 1000 \\ 640$	2460 1950 1140	3030 2420 1910	3590 3400 2600	4990 3890 3000	2930 2300 1650	3580 2910 2070	3530 2530 2050	4680 4160 3000	4990 4130 3090	3490	3840	385
7	$\left\{\begin{array}{c} 1.73\\ 1.50\\ 1.33\\ (1.72)\end{array}\right.$	950 590	2330 1740	4370 3600 2760	4300 3320	6410 5200 4280	3710 2810 2210	4360 3530 2650	3970 3290 2360	5560 4670 3960	$4900 \\ 4210 \\ 3250$	$2210 \\ 1630 \\ 1130$	3180 2470 1760	4310 3390 2410	4000 3920 2950	4800 4320 3490	4030 3290 2250	4200 3770 2370	4080 3570 1960	4990 4640 3120	4650 4190 3360	^a 1690 2240 1600	2490 2850 2120	2580 3360 2690	$\begin{array}{c c} 2740 \\ 3840 \\ 3140 \end{array}$	3070 4970 4010	2410 3260 2530	4140 3870 2930	3740 3390 2650	$3310 \\ 4390 \\ 3480$	$3020 \\ 3860 \\ 3420$	$2040 \\ 1470 \\ 1020$	3100 2300 1730	3850 3150 1600	4160 4000 2070	5180 4080 2120	3800 2790 2180	4370 3380 2660	4050 2940 2030	4650 4440 3230	4960 3360 3180	3910	4580	400
8	$ \left\{\begin{array}{c} 1.73\\ 1.50\\ 1.33\\ (1.72) \right. $	1320 840 570	2090 2090 1430	3320 2440	4100 3440	4380 3890	3550 2720 2060	4370 3410 2710	4290 3490 2710	5300 4960 3620	$5700 \\ 4510 \\ 3040$	2000 1440 970	3190 2140 1560	3600 2680 2460	4690 3810 3220	5210 4520 3340	3660 2670 2110	4480 3430 2470	4260 3200 2450	5520 4250 3300	4890 4210 3340	^a 2010 1970 1460	1650 2170 1960	2560 3010 2230	3580 3760 3160	4650 4470 3740	3220 3050 2380	3300 3730 2780	3430 3710 3000	5080 4680 3830	$3160 \\ 4180 \\ 3360$	1870 1270 910	2670 2050 1710	3450 3340 2290	3840 3820 3170	4820 3720 3160	3150 2120 1950	4460 3350 2710	3840 3050 2350	5600 4350 3800	4810 3900 2470	3660	3970	418
9	1.70 1.50 1.33	820 560	2750 2590 1530	3050 2290	4930 3450	5190 3510	4150 2570 1820	4830 3550 2440	4300 3050 2120	4730 4340 3670	5470 4970 3170	2430 1570 1060	3560 2310 1610	4100 2920 2260	4840 3880 2700	6000 4010 3400	3880 2830 2030	4850 3350 2600	4120 3000 2020	6100 4570 3540	5380 4350 3050	2680 2290 1620	3680 2840 2320	4010 3500 2750	4980 3650 3400	5330 4580 4060	3880 3500 2880	4930 3910 3220	4710 3750 2830	$6140 \\ 5840 \\ 4130$	$5320 \\ 4550 \\ 3220$	$2120 \\ 1030 \\ 660$	3350 2070 1420	3640 3130 2110	4210 3800 2970	4290 4480 3370	3720 2240 1750	4560 3240 2430	3320 2960 1730	5460 4420 3090	5390 4620 3350	4310	4760	472
10	$ \left\{\begin{array}{c} 1.73\\ 1.50\\ 1.33\\ (1.72) \right. $	700 390	1770 1210	2800 2210 1790	4190 3500 2500	4800 4300 3100	2690 2190 1490	3760 2850 2300	3790 2720 2070	$5400 \\ 4110 \\ 3260$	4580 4090 2920	1590 1240 710	2160 1800 1160	3050 2140 1330	3670 2990 2430	5170 4040 2990	2890 1970 1430	3650 2710 1980	3790 2810 2010	4840 4100 2990	4230 3830 3140	1760 1650 1020	2060 1770 1370	2690 2170 1610	$3180 \\ 2560 \\ 2070$	3960 3330 2770	$\left \begin{array}{c} 2770 \\ 2140 \\ 1440 \end{array}\right $	3220 2730 2020	3600 3210 2190	$4490 \\ 4110 \\ 3240$	$3700 \\ 3470 \\ 2330$	1420 940 660	1920 1560 1110	2810 1870 1340	2930 2530 2250	4280 3460 2610	2240 1770 1370	3200 2640 1750	$3150 \\ 2240 \\ 1680$	$4420 \\ 3370 \\ 2660$	4450 3030 2260	2910	3190	361
11	$ \left\{\begin{array}{c} 1.75\\ 1.50\\ 1.33\\ (1.72) \end{array}\right. $	1070 630	2940 2120 1600	3440 2470	3770 3040	4780 3430	3750 2870 2290	4920 3480 2670	4920 3570 2790	5770 4570 3890	$5600 \\ 4600 \\ 2990$	$2230 \\ 1560 \\ 890$	$3610 \\ 2360 \\ 1440$	3750 3070 2220	5300 3980 2620	5980 5050 3450	3930 2900 1950	4910 3760 2730	4790 3370 2580	5390 4580 3650	$5510 \\ 4420 \\ 3060$	2900 2080 1520	$ \begin{array}{r} 3160 \\ 2670 \\ 2100 \end{array} $	3870 3340 2420	4940 3900 3180	$5520 \\ 4760 \\ 3540$	3980 3770 2380	4730 3670 2940	4350 3820 2810	5470 4290 3600	$3910 \\ 4230 \\ 3450$	1930 1250 700	2850 1930 1280	3590 2770 1920	4010 3520 2460	4590 4090 2610	$\begin{array}{c c} 3610 \\ 2170 \\ 1740 \end{array}$	3950 3090 2670	3670 2970 2140	4770 3940 3050	5110 4130 3120	3640	3850	388
12	$\left\{\begin{array}{c} 1.73\\ 1.50\\ 1.33\end{array}\right.$	820 560	1680 1230	2540 1790	4640 3990 2770	6130 5020 3660	3080 2310 1650	3960 2890 2200	4230 3070 2250	6320 5310 4320	5660 5200 3490	1810 1160 760	2070 1890 1200	3060 2350 1670	4670 3020 2460	6240 4700 3480	3320 2120 1480	4000 2890 2430	4260 3170 2230	$\begin{array}{c} 6020 \\ 4640 \\ 3540 \end{array}$	5260 4530 3660	a 1330 1560 1030	1600 2100 1470	1940 2310 1880	2470 3570 2890	4340 5180 4070	$2110 \\ 2570 \\ 2020$	$2690 \\ 3210 \\ 2560$	2750 3590 2700	$3560 \\ 5450 \\ 4430$	3200 4480 3680	1310 940 580	2130 1520 1140	2960 2200 1650	4240 3340 2910	5460 4320 3430	2450 1920 1410	3850 3080 1740	3890 3200 1930	4860 4170 3350	5040 4000 3280	3980	4450	475

TABLE 6.—Compressive strength (lb/in.2) of 6- by 12-inch concrete cylinders

• Cylinders for this cement, made at 110° F, C/W=1.73, were honeycombed.

133113-35. (Face p. 732.)

C/W ratio was about 10 percent less than for the highest C/W ratio. This is to be expected, since the heat capacity of the concrete was increased only about 10 percent by increasing the water from the highest to lowest cement-water ratio.

The average temperature rise of all cements in storage under three temperatures was in the order of the temperature of storage, the highest storage temperature giving the greatest rise of temperature in the concrete. For the concretes with a C/W ratio of 1.50 the average temperature rise for the different conditions of storage was as follows: 70° F storage, 5° rise; 90° F storage, 7.4° rise; 110° F storage, 8.5° rise; thermally insulated, 21° rise; and adiabatic storage, 59° rise. It is to be noted that cements nos. 1 and 4 were exceptions in that the highest temperature rise was obtained in 90° F storage.

The data in tables 2 and 5 may be studied to obtain some idea regarding the effect of composition and fineness on the temperature rise produced by the reaction of the cements and water. Maximum temperatures attained in the insulated storage seem to depend mainly on the tricalcium-aluminate content. The low-aluminate cements (nos. 3, 9, and 12) gave the lowest maximum temperatures. No doubt the fineness of the cements also influences the temperatures attained during the first 24 hours. Under the section devoted to strength, the results of the use of an equation derived from similar data will be presented in some detail.

4. COMPRESSIVE STRENGTHS OF CONCRETES

The results of the compression tests on concrete cylinders are given in tables 6, 7, and 8.

(a) EFFECT OF TYPE OF STORAGE DURING THE FIRST TWENTY-FOUR HOURS

The storage temperature during the first 24 hours greatly affects the 1-day strength (table 7). Cylinders stored at 90° F during the first 24 hours have strengths nearly twice those of cylinders stored at 70° F. Storing at 110° F further increases the early strength, while cylinders thermally insulated, where the maximum temperature averaged approximately 90° F, gave compressive-strength values somewhat lower than those of the cylinders kept for the entire 24 hours in the 90° F cabinet. The higher temperatures during the first 24 hours do not affect the strength appreciably beyond 3 days. Indeed, the average strength of the specimens stored in the damp room is greater at 1 year for those stored at 70° F than for those exposed to higher temperatures during the first-day storage. The results obtained on specimens stored adiabatically are discussed in section III-6.

(b) EFFECT OF TYPE OF STORAGE AFTER THE FIRST TWENTY-FOUR HOURS

With a few exceptions the specimens stored in the damp room, at $70^{\circ}\pm 3^{\circ}$ F and relative humidity not less than 95 percent, developed the highest strengths. Cement no. 1 showed practically no gain after 28 days. Most of the other cements showed considerable increase in strength up to 1 year, when stored in a damp atmosphere.

TABLE 7.=Compressive strength of 6- by 12-inch cylinders

(Average for 12 cements)

COMPRESSIVE STRENGTH-AGED 1 DAY

C/W polic	Type of storage		Initial	storage	
C/w ratio	after first 24 hra	70° F	90° F	110° F	Insulated
1.73 1.50 1.33		lb/in. ² 1190 815 510	lb/in. ² 1990 1440 935	lb/in.² 2090 1840 1360	lb/in. ² 1760 1190 770

COMPRESSIVE STRENGTH—AGED 1 YEAR OR AFTER 300 CYCLES OF FREEZING AND THAWING

1.73	D OD FT	5530 4930 5020	$5140 \\ 5040 \\ 4690$	$\begin{array}{c} 4280 \\ 4460 \\ 3800 \end{array}$	$4520 \\ 4620 \\ 4660$
	LA	4160	4110	3640	3580
1.50	{D OD FT LA	$\begin{array}{c} 4440 \\ 4150 \\ 4240 \\ 3100 \end{array}$	4070 4080 3970 3030	$\begin{array}{r} 4240 \\ 4320 \\ 3940 \\ 3290 \end{array}$	$3650 \\ 3810 \\ 3740 \\ 2690$
1.33	D OD FT LA	3310 3260 2980 2250	$\begin{array}{c} 3110 \\ 3060 \\ 3030 \\ 2150 \end{array}$	3450 3470 3190 2470	2690 2870 2790 1900

^a D=damp storage; OD=outdoor storage; FT=freezing and thawing; LA=laboratory air at 70° F.

Cementno.	Compre after f ing ar	essive reezing nd soaki	strength and thaw ng	(lb/in.²) ing, dry-	Compr afte	essive st r drying	rength (l and soak	b/in.²) ing	Compr after co	essive st	rength (1 s damp s	b/in.²) storage	Effect of freezing and thawing, drying, and soaking				
	C	ycles at	which tes	ted	Су	cles at w	hich test	ed	We	eks at w	hich test	ed					
	15	25	50	100	15	25	50	100	15	25	50	100					
1	1670	2060	2200	Spalled	2080	2400	2400	3110	2930	3040	3310	3610	Began spalling at about 35 cycles. Considerable spalling from 50 to 70 cycles.				
2	2950	3010	3170	a 3120	2930	3090	3290	3550	3490	3640	3590	3870	Showed slight spalling at about 70 cycles. Considerable				
3 4	2660 2820	$2550 \\ 2860$	2780 3180	3200 Spalled	$\begin{array}{c} 2550\\ 3300 \end{array}$	2630 2980	$3030 \\ 3560$	$3710 \\ 3920$	2730 3370	$\begin{array}{c} 3010\\ 3450 \end{array}$	$\begin{array}{c} 3730\\ 4060 \end{array}$	$\begin{array}{c} 4020\\ 4210 \end{array}$	No spalling up to 90 cycles. Showed slight spalling at about 70 cycles. Considerably				
5	2960	3470	3700	a 4420	3300	3280	3780	4070	3940	3960	4370	4400	Showed slight spalling at about 70 cycles. Considerable				
6 7	3220 2880	3620 2990	$3850 \\ 3460$	4030 Spalled	3550 3370	3780 3000	$\begin{array}{c} 3810\\ 3480 \end{array}$	3950 3770	3890 3730	4280 3890	4490 4620	$\begin{array}{c} 4460\\ 3930 \end{array}$	Slight spalling after 80 cycles. Began spalling at about 40 cycles. Considerable spalling from 50 to 70 cycles.				
8 9 10	$3140 \\ 3090 \\ 2070$	$3310 \\ 5420 \\ 2620$	4650 Spalled a 2220	5300 Spalled Spalled	$3360 \\ 3260 \\ 2600$	$3440 \\ 3410 \\ 2680$	$\begin{array}{r} 4210 \\ 4120 \\ 3320 \end{array}$	5450 3870 3370	$4510 \\ 4240 \\ 3250$	$\begin{array}{r} 4230 \\ 4570 \\ 3460 \end{array}$	$3950 \\ 4540 \\ 3320$	$4750 \\ 4300 \\ 3560$	Slight spalling after 75 cycles. Severe spalling from about 35 to 50 cycles. Began spalling at about 35 cycles. Considerably spalled a				
11 12	$\begin{array}{c} 3470\\ 3610 \end{array}$	$\begin{array}{c} 2560\\ 3130 \end{array}$	Spalled 3600	Spalled 3490	$\begin{array}{c} 3660\\ 3410 \end{array}$	$\begin{array}{c} 3170\\ 3360 \end{array}$	3580 3820	3930 4130	$\begin{array}{c} 4220\\ 4120\end{array}$	$\begin{array}{c} 3940\\ 4020 \end{array}$	$\begin{array}{c} 4340\\ 4380 \end{array}$	4170 4940	40 cycles. Severe spalling from about 35 to 50 cycles. No spalling up to 80 cycles.				
Avg	2880	2970	2560		3110	3100	3530	3900	3700	3790	4060	4190					

TABLE 8.—Results of tests of 3- by 6-inch concrete cylinders after certain treatments

• Only 1 specimen tested—others too badly spalled.

Schuman] Pisapia

It has been assumed that this type of cement is characterized by a strength at early ages indicative of its name, but not by good gains with age. If the concrete is stored in a humidity that permits hardening without drying, there is considerable gain in strength with age.

In the majority of cases specimens stored in the air of the laboratory at $70^{\circ}\pm3^{\circ}$ F had nearly the same strengths at 7 days as those stored in the damp room. The air-stored specimens gain relatively little with age after 28 days because of the lack of water.

The average compressive strengths of the concrete test specimens stores outdoors for 1 year under natural conditions of temperature, humidity, and precipitation were but little different from those of specimens stored in the damp room for the same length of time, with the exception of those made with a C/W ratio of 1.73, and stored at 70° F for the first 24 hours (table 7). The specimens stored outdoors for 1 year gave strengths distinctly higher than those stored in the air of the laboratory.

in the air of the laboratory. The specimens subjected to freezing and thawing were given 300 freezings at 0 to 20° F, alternated with thawings in water at 50 to 80° F. While it was originally hoped that the 300 cycles of freezing and thawing would require about a year and therefore data obtained would be directly comparable with the 1 -year tests of specimens in other storages, interruption because of the necessary periodic defrosting of the freezing room extended the time required to carry out these tests about 3 months. The treatment, as shown in tables 6 and 7, did not markedly reduce the strength of any of the concrete below that of specimens stored damp. In fact, of the specimens thermally insulated during the first 24 hours, those frozen and thawed had slightly greater strengths than those stored in the damp room.

It had been noted in other studies that a drying out of the concrete, even if carried out below the boiling point of water, between the freezing and thawing cycles, tended to materially increase the severity of so-called freezing tests. In some cases, freezing tests showed that although a temperature of 10° to 15° F below freezing was attained, no typical freezing curve was obtained. There was no indication through a rise of temperature that later the supercooled water froze. But this phenomenon was not always noted; in general, a typical freezing curve was indicated. The reason for this is not certain. Also it should be remembered that water with considerable amounts of salts in solution, as in concrete, seldom freezes to a solid mass, but tends to freeze more as slush of small ice crystals in the salt solution. However, during a cycle of drying, the salts, especially the hydrated lime, would crystallize out of solution. When the concrete is reimmersed in water, the amount of these salts which would dissolve in the first 24 hours of soaking will probably be less than had crystallized during the drying. A freezing immediately following a drying and soaking would therefore be more characteristic of a true freezing of pure water with the development of large crystals.

From such reasoning, plus the additional fact that most structures submitted to the weather undergo drying as well as freezing, the drying cycles have been included in the freezing and thawing tests. Three- by six-inch cylindrical specimens were prepared, which were submitted only to drying and soaking, and these alternations carried out so that the number was equal to the number of dryings undergone by the freezing, thawing, drying, and soaking specimens. A third set of test pieces was stored continuously in the damp-room. Other work had shown that it is not necessary to carry out such tests to destruction, but that testing in compression from time to time would yield valuable data. Hence, in the present study, sets of concrete cylinders were tested at 15, 25, 50, and 100 cycles (each cycle requiring 1 week) of freezing, thawing, drying, and soaking. Damp-stored specimens were tested at the same ages.

The wide variations in results for different cements under the freezing, thawing, drying, and soaking treatment cannot be adequately explained by differences in composition or early strength, as can be seen from a comparison of tables 2, 6, and 8. Cements nos. 3 and 12 were among the few giving excellent results. Cement no. 3 has a high C_3S content, the lowest C_2S ; cement no. 12 the highest C_2S and lowest C_3S content; the C_3A content of neither is high. Cement no. 6, one of the most resistant, had a very high C_3A content, namely, 15 percent.

Table 8 also shows that after cycles of drying and soaking the strengths are lower than those of specimens of the same age stored in the damp room. The difference in the average strength is approximately 600 lb/in.² at the end of 15 weeks (15 cycles) and less at later ages. The specimens, after cycles of drying and soaking, have greater strengths than specimens subjected to the same number of cycles of freezing, thawing, drying, and soaking.

(c) EFFECT OF CEMENT-WATER RATIO

The data presented in table 7, showing the relation of C/W ratio to compressive strengths of concrete at two different ages, are plotted in figure 2. The strengths decrease with decrease in C/W ratio; and the relation is approximately linear. Concrete specimens made with a C/W ratio of 1.73 and stored at 110° F for the first 24 hours were badly honeycombed, and hence the values for these do not show a linear relationship; this concrete stiffened so rapidly that the specimens could not be properly placed. Approximate linear relationships as given in figure 2 hold also for specimens in other storages at other ages.

From the data of table 7 the increase in strength obtained by high initial storage temperature may be compared with that obtained by increasing the C/W ratio. Using the average strength of concrete specimens at 1 day with a C/W ratio of 1.73 stored at 70° F as a basis of comparison, the average strength of those with a C/W ratio of 1.50, but stored at 90°, was about 20-percent greater; those with a C/W ratio of 1.50 stored at 110° averaged about 55-percent greater; those with a C/W ratio of 1.50 stored in the insulated cabinet were of equal strength. After 1 day, however, the strengths were lower for the C/W ratio of 1.50 even when these specimens were initially stored at higher temperatures. TABLE 9.—Relation of observed to calculated compressive strength

6- by 12-inch concrete cylinders: cement-water ratio=1.5, by weight

3-day strength calculated from equation: strength=40.9 C₃S+24.5 C₂S+22.9 C₃A-123.5 C₄A F. 28-day strength calculated from equation: strength=54.8 C₃S+66.7 C₂S+39.35 C₃A-117.4 C₄A F. For derivation of equation see text.

(mit) mont grant	1	3-day strengt	h	28-day strength					
Cement no.	Observed	Calculated	Deviation of calcu- lated from observed in terms of observed	Observed	Calculated	Deviation of calcu- lated from observed in terms of observed			
	lb/in.2	lb/in.2	Percent	lb/in.2	lb/in.2	Percent			
1	1880	1860	1.1	3240	3100	4.3			
2	2200	2310	4.8	3620	3950	9.0			
3	1590	2060	30.0	2520	3460	37.3			
4	2360	2150	8.9	3720	3600	3.2			
5	2200	2000	9.3	3840	3450	10.0			
6	1750	1880	7.4	3650	3830	4.9			
7	2330	2000	14.2	4300	3620	15.8			
8	2090	2080	0.7	4100	3800	7.3			
9	2590	2090	19.4	4930	3700	25.0			
10	1770	1610	9.3	3500	3310	5.6			
11	2120	1890	10.6	3770	3510	6.9			
12	1680	1580	6.2	3990	3830	4.0			

 $C_3S=3CaO.SiO_2$; $C_2S=2CaO.SiO_2$; $C_3A=3CaO.Al_2O_3$; $C_4AF=4CaO.Al_2O_3.Fe_2O_3$

(d) EFFECT OF CEMENT COMPOSITIONS

Attempts have been made by several investigators ² to develop equations that would express the contribution to the strength of the cement of each percent of the four major compounds (C_3S , C_2S , C_3A , and C_4AF) in the cement. A similar attempt was made in this investigation. The equations gave calculated strengths that agreed fairly well with the observed strengths for eight of the cements listed in table 2, but the coefficients as given in table 9 for the individual compounds were widely different from those found by others. Since all portland cements may contain the same four major compounds it is obvious that any equation of this type must be applicable over the whole range of portland-cement compositions to have any real significance. Apparently such variables as fineness, percent ignition loss, insoluble residue, etc., have such an important effect on strength that they cannot be left out of consideration in any such calculation.

² Woods, Starke, and Steinour, Eng. News-Record 109, 435 (Oct. 13, 1932); R. E. Davis and coworkers Proc. Am. Concrete Inst. 29, 413 (1933); R. F. Blanks, Proc. Am. Concrete Inst. 30, 9, (1934); H. F. Gonnerman, Proc. Am. Soc. Testing Materials 34, part II, 244 (1934).

5. EXPANSION AND CONTRACTION

Table 10 presents some of the data on changes in length of the 6by 12-inch concrete cylinders. Although measurements were made at several earlier ages, only those obtained at 1 year are given, since the former showed like changes of less magnitude.

FIGURE 2.—Relation between C/W ratio and average compressive strength of concrete.

The specimens stored outdoors did not give consistent results. The conditions of temperature and humidity during early hardening or at periods immediately preceding a set of observations may have been markedly different for one set of specimens than for another, affecting the length of the various cylinders differently. Briefly, it can be said that there was a tendency for the concrete so stored to contract.

TABLE 10.- Expansions or contractions of 6- by 12-inch concrete cylinders at one year

9900	116						100	Stora	ge du	ring f	irst 2	4 hr-		10		01017		
Ce- ment	C/W ratio	70°	90°	110°	Ins.	70°	90°	110°	Ins.	70°	90°	110°	Ins.	70°	90°	110°	Ins.	
101		Sub	sequ sto	ent da rage	amp	Sub	seque ry ai	ent lal r stora	bora- ige	Subs	seque and t	ent fre hawin	ezing g	Subsequent outdoor storage				
1	$\left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right.$	0.007 .001 .006	. 008 . 009 . 010	0.008 .004 .002	0.013 .005 .003	0.030 .039 .044	. 037 . 038 . 041	0.040 .044 .047	0.038 .035 .040	0.023 .012 .012	. 020 . 011 . 011	0.017 .016 .019	0. 031 . 009 . 013	0.010 .012 .022	. 006 . 007 . 011	0.009	0.013	
2	$\left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right.$. 004 . 007 . 003	. 003 . 004 . 013	.007 .004 .006	.005 .003 .012	. 032 . 037 . 031	. 030 . 028 . 027	. 030 . 028 . 033	. 030 . 029 . 026	.008 .008 .018	. 016 . 017 . 017	.012 .009 .015	.012 .016 .020	. 010 . 005 . 009	.009 .003 .005	$\begin{array}{c} .003 \\ +.001 \\ .009 \end{array}$.000 +.002 .000	
3	$\left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right.$.017 .011 .013	.007 012 .007	.009 .008 .010	.014 .015 .017	. 040 . 035 . 033	. 037 . 042 . 040	.037 .037 .028	. 035 . 034 . 038	.019 .024 .024	. 025 . 020 . 022	.014 .015 .018	. 020 . 023 . 022	. 015 . 004 . 003	.002 .011 +.003	.009 .007 .020	. 011 . 005 . 007	
4	$\left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right.$.018 .012 .013	. 012 . 007 . 008	.011 .004 .003	.004 .011 .009	. 025 . 028 . 027	. 025 . 034 . 034	.027 .029 .037	. 026 . 035 . 034	.013 .015 .012	. 013 . 012 . 019	. 023 . 018 . 015	.012 .012 .019	. 003 . 010 . 007	.008 .010 .009	.003 .014 .009	. 012 . 008 . 003	
5	$\left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right.$.014 .013 .017	.017 .016 .017	.013 .013 .011	.015 .017 .018	.030 .032 .030	. 033 . 030 . 030	. 034 . 038 . 038	. 031 . 032 . 037	.023 .026 .022	. 025 . 029 . 021	.018 .024 .022	. 024 . 034 . 023	. 017 . 013 . 012	. 015 . 004	.013 .009 .014	. 015 . 010 . 007	
6	$\left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right.$.012 .009 .008	. 006 . 008 . 008	.010 .011 .013	.013 .007 .008	.045 .047 .038	. 043 . 040 . 037	.043 .049 .052	.040 .037 .051	.010 .013 .015	. 017 . 018 . 011	.018 .024	.022 .019 .022	. 011 . 013 +. 004	. 006 . 003 +. 008	$ \begin{array}{c} .008 \\ +.002 \\ +.002 \end{array} $. 013 . 014	
7	$\left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right.$.013 .008 .012	.007 .010 .010	.010 .008 .006	.010 .011 .014	.037 .040 .041	. 037 . 037 . 040	.040 .043 .045	.042 .037 .036	.012 .015 .012	. 012 . 014 . 017	.014 .004 .017	.017 .018 .014	.002 .009 .002	.011 .010 +.002	. 001 . 003 . 000	. 007 . 009 . 010	
8	$\left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right.$.014 .014 .009	. 013 . 012 . 011	.005 .009 .008	.007 .012 .008	. 034 . 038 . 039	. 039 . 044 . 045	.043 .045 .051	.037 .040 .047	.013 .017 .023	. 012 . 022 . 018	. 030 . 020 . 022	.017 .014 .021	. 007 . 000 . 008	.017 .011 .003	.008 .014 .015	. 003 . 010 . 009	
9	$\left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right.$.013 .006 .003	. 004 . 004 . 004	.005 .003 .003	.009 .003 .003	.044 .043 .044	.040 .047 .041	.037 .040 .043	.040 .047 .042	.003 .007 .012	. 014 . 011 . 011	.010 .008 .015	.010 .012 .014	. 027 . 027 . 025	.022 .021 .022	.011 .016 .022	. 017 . 022 . 019	
10	$\left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right.$.012 .012 .012	. 009 . 008 . 008	. 006 . 004 . 005	. 009	.040 .040 .042	.042 .047 .045	.041 .044 .046	. 040 . 045 . 047	.017	. 029 . 021 . 016	. 023	.024 .019	.017 .012 .017	. 010 . 008 . 010	. 013	. 008	
11	$\left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right.$.003 .008 .008	. 005 . 005 . 006		.006 .004 .007	.037 .042 .045	.045 .044 .042		.040 .035 .042		. 009 . 005 . 005			. 027	. 013 . 014 . 010			
12	$ \left\{\begin{array}{c} 1.73 \\ 1.50 \\ 1.33 \end{array}\right. $.009 .011 .005	.010 .008 .008	.007 .010 .004	.018 .005 .008	.037 .039 .053	.042 .045 .044	.047 .051 .053	.043 .048 .053	.011 .007 .015	.014	.016	.016	.007 .012 .007	.008 .010 .009	.007	.008	

[Expressed in percent of the length at 24 hours, measured at 70° F.]

NOTES.-

Ins.=Thermally insulated for first 24 hours.

All specimens in damp storage expanded. All specimens subjected to freezing and thawing expanded. All specimens subjected to freezing and thawing expanded. All specimens stored outdoors contracted, except the few indicated by a + sign, which expanded.

Neither the differences in temperature of initial storage (during the first 24 hours) nor the differences in C/W ratio perceptibly affected the change in length; but the conditions of later storage had profound The greatest change in length was the contraction during effects. The expansion due to alternate freezing and thawing air storage. is larger, in general, than that resulting from storage in the damp room.

The changes of length of the 2- by 12-inch cylinders after various treatments are given in table 11 under five subheadings. Under subheading (1) there is given the contraction from the original length to the least dry length. In the case of ten cements this maximum

TABLE 11.—Length changes (in percent) due to freezing, thawing, drying, and soaking

(2- by 12-inch cylinders)

FTDS=Freezing and thawing, daily on 3 successive days, then drying at 150° F. for 3 days, then soaking 24 hours before freezing. DS=Drying 3 days at 150° F. followed by soaking for 4 days. All values except those under heading (1) are positive (expansion) unless negative (contraction) sign appears. The figure in parentheses is the number of the cycle at which this contraction occurred.

Cement no.	(1	(2)					(3)			(5)							
	Contractic original	on from length to	Expansion on soaking following			C	hange from	original l	ength, when	Expansion from original length caused by soaking, after drying at—				Expansion from original length				
	least dry	under head- ing (1)		10 cycles		25 cycles		50 cycles		100 cycles		10 cycles		100 cycles		age at—		
	FTDS specimens	DS specimens	FTDS	DS	FTDS	DS	FTDS	DS	FTDS	DS	FTDS	DS	FTDS	DS	FTDS	DS	10 weeks	100 weeks
12 34 56 67 88 9101 1112	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{matrix} 0. \ 024 \\ . \ 024 \\ . \ 026 \\ . \ 027 \\ . \ 030 \\ . \ 034 \\ . \ 026 \\ . \ 027 \\ . \ 028 \\ \end{matrix}$	$\begin{array}{c} 0.\ 029\\ .\ 022\\ .\ 020\\ .\ 026\\ .\ 026\\ .\ 024\\ .\ 030\\ .\ 025\\ .\ 030\\ .\ 028\\ .\ 028\\ .\ 029\\ .\ 025\\ \end{array}$	$\begin{array}{c} -0.\ 031\\\ 028\\\ 021\\\ 003\\\ 032\\\ 019\\ .\ 007\\\ 021\\\ 021\\\ 024\\\ 025\\\ 005\\ \end{array}$	$\begin{array}{c} -0.\ 051\\\ 033\\\ 034\\\ 022\\\ 030\\\ 024\\\ 024\\\ 024\\\ 024\\\ 032\\\ 031\\\ 031\\\ 013\\ \end{array}$	-0.019 012 017 .006 012 004 .022 012 Spalling 017 .015 .013	$\begin{array}{c} -0.\ 029\\\ 017\\\ 022\\\ 008\\\ 014\\\ 008\\ .\ 012\\\ 013\\\ 029\\\ 014\\\ 023\\\ 002 \end{array}$	Spalling Spalling -0.007 Spalling .015 Spalling Spalling Spalling Spalling Spalling Spalling Spalling Spalling	$\begin{array}{c} -0.\ 026\\\ 013\\\ 022\\ .\ 000\\\ 007\\ .\ 013\\\ 006\\\ 025\\\ 001\\\ 012\\\ 003\end{array}$	Spalling Spalling -0.002 Spalling Spalling Spalling Spalling Spalling Spalling Spalling Spalling Spalling Spalling Spalling Spalling Spalling	$\begin{array}{c}\ 027\\\ 007\\\ 028\\ .\ 007\\\ 003\\\ 006\\ .\ 017\\\ 003\\\ 003\\\ 003\\\ 001\end{array}$	$\begin{matrix} 0.\ 010\\ .\ 014\\ .\ 015\\ .\ 014\\ .\ 021\\ .\ 020\\ .\ 012\\ .\ 021\\ .\ 013\\ .\ 019\\ .\ 012 \end{matrix}$	$\begin{array}{c} 0.\ 016 \\ .\ 017 \\ .\ 018 \\ .\ 020 \\ .\ 015 \\ .\ 015 \\ .\ 010 \\ .\ 017 \\ .\ 015 \\ .\ 020 \\ .\ 019 \\ .\ 014 \end{array}$	Spalling Spalling 0.007 Spalling Spalling Spalling Spalling Spalling Spalling Spalling Spalling 004 Spalling .008	$\begin{array}{c} 0.\ 003\\ .\ 005\\ .\ 008\\ .\ 005\\ .\ 006\\ .\ 008\\ .\ 005\\ .\ 005\\ .\ 006\\ .\ 006\\ .\ 006\\ .\ 004\\ .\ 006 \end{array}$	$\begin{array}{c} 0.\ 012\\ .\ 007\\ .\ 008\\ .\ 006\\ .\ 005\\ .\ 010\\ .\ 008\\ .\ 004\\ .\ 008\\ .\ 007\\ .\ 005\\ \end{array}$	0.012 .007 .009 .008 .010 .012 .011 .004 001 .009 .006 .008

contraction occurred either after the first or second drying and in the case of the other two cements after the third drying. Under subheading (2) there is given the percent expansion on soaking after the drying referred to. These data are given for the specimens subjected to freezing, thawing, drying, and soaking, and for those subjected to drying and soaking. In no case did the subsequent soaking bring the specimens back to their length before drying, though in two cases they returned very closely to the original length.

The change from the original length of the specimens dried after 10, 25, 50, and 100 cycles of each of the two treatments is given under subheading (3). It is evident that the contraction decreased as the number of cycles increased; in other words, the effect of the treatment was to cause the specimens to expand. For example, at 25 cycles, even in the dry condition, the specimens of four of the cements subjected to freezing, thawing, drying, and soaking, were longer than originally; one expanded sufficiently to start spalling. At 50 cycles specimens of only one cement were shorter than originally, and the others were either longer or had spalled. The magnitude of the expansion, however, cannot be taken as an indication of the tendency to spall. The changes in length produced by cycles of drying and soaking were in the same direction as those produced by freezing, thawing, drying, and soaking, but the magnitude of the former is much less than the latter.

The data under subheading (4) show the percent expansion during the first soaking after drying at 10 and 100 cycles. It is seen that the magnitude of the expansion due to soaking decreases with successive cycles. The effect of these treatments is that the specimen first contracts and then gradually expands until its final length is almost equal to or greater than its original length.

The changes in length at two different periods under continuous damp storage are given in table 11 for comparison. It is evident that changes in length are much less under this condition than under the cyclic treatments.

There does not appear to be any marked relation between the changes in length of these specimens and the chemical composition or physical properties of the cements from which they are made.

6. ADIABATIC STORAGE

The apparatus for the adiabatic storage was designed by C. H. Jumper and G. Kalousek. All of the tests for this storage were made by them, and their assistance is gratefully acknowledged.

The concrete mix for the adiabatically stored specimens was identical with that used in the other strength tests, but the specimens were made with only one C/W ratio, namely, 1.50. Only enough material was mixed at one time to fill a mold, which was then hermetically sealed. The pan, trowels, tamping rod, and gloves were weighed before and after the molding in order to determine the amount of mortar adhering to them. After separation of the constituents of this mortar by wet sieving, the weights of sand and cement were determined and the amounts of gravel, sand, cement, and water in the mold computed. Table 12 gives the weights and shows the actual change of the proportions from the nominal 1:2:4 mix, and also how the C/W ratio has changed from 1.50.

Ce- ment no.	He	at ev	oluti of ce	ion (e men	calori t) aft	es pe er—	er gra	ım	Cu wei gram aft	umulat ght los is) on c er 90 d storage	ive s (in trying ays	Gair (in soakir	n in we grams) ng follo drying	ight on wing	ion in mold ne) 1	o (by weight) cylinder ²
	4 hr	8 hr	12 hr	1 day	3 days	7 days	28 days	87 days	At 68° F for 24 hr	Addit storag at 10	tional e time 4° F sAgp 9	1-hr soaking	24-hr soaking	7-days soaking	Concrete proporti (by volun	Cement-water rat of concrete in
1 2 3	$ \begin{array}{r} 16 \\ 3 \\ 10 \\ 4 \\ 11 \\ 5 \\ 6 \\ 13 \\ 7 \\ 10 \\ 8 \\ 10 \\ 8 \\ 10 \\ \end{array} $	$\begin{array}{c} 60\\ 10\\ 27\\ 17\\ 25\\ 12\\ 20\\ 33\\ 23\\ 23\\ 28\\ 25\\ 23\\ \end{array}$	$80 \\ 31 \\ 40 \\ 44 \\ 50 \\ 40 \\ 49 \\ 63 \\ 45 \\ 53 \\ 49 \\ 41$	$100 \\ 61 \\ 60 \\ 77 \\ 86 \\ 72 \\ 73 \\ 89 \\ 73 \\ 78 \\ 83 \\ 62$	$115 \\ 99 \\ 86 \\ 109 \\ 111 \\ 104 \\ 96 \\ 112 \\ 100 \\ 100 \\ 100 \\ 111 \\ 78$	$\begin{array}{c} 119\\ 107\\ 96\\ 116\\ 117\\ 108\\ 105\\ 116\\ 105\\ 106\\ 116\\ 88 \end{array}$	$\begin{array}{c} 125\\ 112\\ 105\\ 125\\ 121\\ 108\\ 116\\ 117\\ 105\\ 110\\ 120\\ 100\\ \end{array}$	$\begin{array}{c} 130\\ 114\\ 110\\ 125\\ 125\\ 111\\ 122\\ 117\\ 105\\ 110\\ 121\\ 104 \end{array}$	$\begin{array}{r} 221\\ 177\\ 101\\ 170\\ 179\\ 157\\ 162\\ 167\\ 138\\ 165\\ 163\\ 133 \end{array}$	$\begin{array}{r} 366\\ 303\\ 182\\ 307\\ 306\\ 284\\ 286\\ 264\\ 240\\ 262\\ 254\\ 234\\ \end{array}$	$\begin{array}{r} 443\\ 362\\ 239\\ 355\\ 386\\ 331\\ 366\\ 336\\ 305\\ 344\\ 335\\ 297\\ \end{array}$	$190 \\ 149 \\ 114 \\ 148 \\ 193 \\ 138 \\ 155 \\ 162 \\ 131 \\ 170 \\ 160 \\ 138$	$\begin{array}{r} 404\\ 321\\ 209\\ 356\\ 368\\ 311\\ 314\\ 324\\ 269\\ 330\\ 315\\ 291\\ \end{array}$	484 339 249 375 434 332 390 367 318 358 358 338 324	$\begin{array}{c} 1:2.\ 09:4.\ 26\\ 1:2.\ 11:4.\ 23\\ 1:2.\ 09:4.\ 25\\ 1:2.\ 09:4.\ 28\\ 1:2.\ 09:4.\ 28\\ 1:2.\ 09:4.\ 28\\ 1:2.\ 09:4.\ 26\\ 1:2.\ 09:4.\ 26\\ 1:2.\ 09:4.\ 26\\ 1:2.\ 09:4.\ 29\\ 1:2.\ 09:4.\ 29\\ 1:2.\ 07:4.\ 26\\ \end{array}$	$1.56 \\ 1.47 \\ 1.50 \\ 1.48 \\ 1.53 \\ 1.49 \\ 1.55 \\ 1.55 \\ 1.56 \\ 1.56 \\ 1.56 \\ 1.57 \\ 1.53 \\ 1.55 \\ 1.55 \\ 1.53 \\ 1.53 \\ 1.53 \\ 1.53 \\ 1.53 \\ 1.53 \\ 1.53 \\ 1.53 \\ 1.53 \\ 1.53 \\ 1.53 \\ 1.53 \\ 1.55 \\ $

TABLE 12.—Data obtained on concrete stored adiabatically

Proportions as weighed out were 1:2:4 by volume.
 Cement-water ratio of the concrete as mixed was 1.50.

Twelve specimens for each cement were stored adiabatically at one time. After 87 days, 3 days were allowed for cooling. The molds were then removed from three cylinders, which were tested in compression. Three other cylinders were removed from the molds and weighed. Losses of water were then determined after storage at 68° Three other cylinders were removed from the molds and F for 24 hours and then after storage at 104° F for 48 hours and for 6 days. The specimens were then placed in water, and the absorp-tion determined after 1 hour, 24 hours, and 7 days. The specimens were then placed in the damp room and tested at 1 year. The other six cylinders of each cement were placed in the 70° F storage room; half of these were tested on unsealing at 1 year and the other half are being held sealed for later tests.

The loss of water during drying of the concrete after the adiabatic storage is of much interest. Taking cement no. 1, there was in the mold approximately 950 g of water. During the first 24 hours after the 90-day storage, the specimen lost about 220 g at a temperature of about 68° F. During the next 6 days at 104° F this loss was doubled. Hence, 440 of the original 950 g of water were lost at a temperature so low that it might be considered as void filling or free water. If it is assumed that the 500 g remaining is combined with the 1,472 g of cement present, then the cement has taken up about one-third of its dry weight in hardening under adiabatic storage. The loss of 440 g of water indicates the creating of 440 cc of voids or about 27 cu in. in 339 (volume of a 6- by 12-inch cylinder).

An attempt to correlate percentage losses of water in drying with the compound composition of the cements used in the concrete leads to contradictions that are apparently irreconcilable. For instance, cement no. 1, which had the greatest loss in water, contained a large amount of C₃S, while cement no. 3, with the greatest amount of C₃S, showed the least loss. Cement no. 9 also showed a small loss, although it contained a large amount of C_3S . There also appears to be no consistent relation between tricalcium-aluminate content and water loss.

133113-35-7

The compressive strengths of the concrete specimens stored adiabatically are given in table 6. Since these were the only specimens tested at the age of 90 days, there can be no direct comparison at this age with specimens in other storage conditions. A comparison of the specimens stored in the damp room for 28 days with those adiabatically stored for 90 days shows that for 10 of the 12

cements the strength of the adiabatically stored specimens is less than those stored in the damp room. When the specimens stored adiabatically for 87 days were then stored sealed at 70° F until 9 months further had elapsed, the average gain in strength was slight and the values on the average were about 500 lb/in.² less than those obtained for a full year storage at 70° F in the damp room. The adiabatically stored specimens which were taken out of their sealed molds and placed in the damp room for a further 9 months, changed

but slightly, and the average strength was still less than that of the 1-year specimens stored in the damp room.

The number of cements used in this investigation was too small to enable the derivation of a satisfactory equation relating heat evolu-The calculated values for some of these tion with composition. cements, using factors obtained by others, may be of interest. Taking the factors used by Woods³ for calculating the heat evolution from the chemical composition, and assuming that the cements of this investigation were of equal fineness, it is found that cement no. 1 gives a calculated heat evolution at 90 days of 115 cal/g, whereas the observed heat in concrete in the adiabatic calorimeter was 130 cal/g (table 12). Similar differences between calculated and observed values were also found for the other cements. Cement no. 12, which is unusual for a high-early-strength cement in that it contains a large amount of C₂S relative to the amount of C₃S, has a calculated heat evolution of 81 cal/g and an observed heat of 104 cal/g. Cement no. 12 is also of interest because it is much finer than the others. This is perhaps one of the reasons that the observed heat is greater than the calculated. Cement no. 4 has a specific surface $270 \text{ cm}^2/\text{g}$ greater than that of no. 5. These two cements have nearly the same compositions, and the same observed heats, viz, 125 cal/g. Their calculated heats were 104 and 110 cal/g, respectively. These cements were finer than those used in Woods' studies, which probably explains why the evolved heats were greater than those calculated from compound compositions.

A comparison of the evolved heat with the compressive strengths of concretes made with the same cements (table 6 and fig. 3) shows that it is not a general rule that at any age the cement which has developed the greatest heat will develop the greatest strength.

IV. SUMMARY

(1) Twelve commercial high-early-strength cements were studied in this investigation. The data obtained include the chemical and compound compositions; fineness measured by the turbidimeter and on the nos. 200, 325, and 450 sieves; weight per cubic foot; tensile, compressive, and transverse strengths of one or more kinds of mortars; compressive strength of 1:2:4 concrete of three C/W ratios stored at four different temperatures during the first 24 hours and different conditions of temperature or humidity thereafter; the effect of freezing, thawing, drying, and soaking upon concrete specimens; the length changes in concrete induced by different conditions of storage; the heat of hardening of concrete specimens; and the effect of adiabatic storage.

(2) The calculated compound compositions of the cements varied widely from one containing more dicalcium than tricalcium silicate to one with no dicalcium silicate. The percentage of tricalcium aluminate varied over a wide range.

(3) The amount of material retained by the no. 200 sieve is too small to have significance. Even when sieved wet with a sieve having such small openings as the no. 450, the amount retained was still

² Woods, Steinour, and Starke, *Heat evolved by cement during hardening*. Eng. News-Record (Oct. 6 and 13, 1932, and April 6, 1933).

small, varying from 7.7 to 20.4 percent. The specific surface 4 as determined by the Wagner turbidimeter, ranged from 1,760 to 2,490 cm²/g.

(4) The standard mortar briquets of only three of the cements passed the present tentative ASTM requirement, at 24 hours, of 275 lb; seven met the 3-day requirements.

(5) Of the several kinds of mortars and mortar specimens studied, those which seemed to predict most satisfactorily the strength of concrete at all ages were the 2-inch 1:5-mortar cubes, and the $1\frac{1}{2}$ - by $1\frac{1}{2}$ - by 4-inch mortar prisms tested in compression.

(6) The proportions and grading of the aggregates used were such as to permit a C/W ratio approaching that used in practice, but avoiding what might be called a "sloppy" or too "wet" mix. Hence, at 24 hours the concrete strengths were relatively low—all under 1,500 lb/in.²—compared with strengths reported as being attained by such cements. The results show all the cements were of the true high-early-strength type and developed early strengths considerably greater than those attained by standard portland cements for corresponding mixes and C/W ratios.

(7) A linear relation was found to exist between the C/W ratio and the strength of the concrete, for any particular age or storage condition, except for some specimens which could not be properly molded.

(8) The weight per cubic foot of the cements varied from 63 to 80 pounds according to the degree of compaction used.

(9) Concrete cylinders stored at 90° F developed nearly double the 1-day strength of specimens stored at 70° F. Storage at 110° F still further increased the 1-day strength. At ages after 3 days the strengths were unaffected or somewhat decreased by the higher initial temperatures. Specimens stored adiabatically for 87 days and then in the damp room gave lower strengths at 1 year than specimens stored at 70° F in the damp room for 1 year.

(10) After the first 24 hours, damp storage gave the highest strengths. Specimens stored in laboratory air gained little or no strength after 28 days. Those stored outdoors had slightly lower strengths than those stored in the damp room.

(11) Three hundred cycles of freezing and thawing reduced the strengths of concrete cylinders of all C/W ratios and kinds of storage during the first 24 hours, on the average, about 10 percent below the 1-year strength of cylinders stored in the damp room at 70° F.

(12) Cycles of freezing, thawing, drying, and soaking produced pronounced effects on concrete cylinders. Less than 100 cycles caused spalling to the extent that compressive tests could not be made on specimens from six of the twelve cements. Specimens subjected to cycles of drying and soaking were lower in strength on the average than those stored in the damp room.

(13) Concrete cylinders in damp storage expanded from 0.001 to 0.018 percent in 1 year. Cylinders in air storage contracted from 0.025 to 0.053 percent in 1 year. Cylinders subjected to alternate freezing and thawing expanded from 0.003 to 0.031 percent in 1 year. Freezing, thawing, drying, and soaking of the 2- by 12-inch cylinders caused so much spalling that few data were obtained after the 25th cycle.

⁴ The fineness of 28 brands of high-early-strength cements of recent manufacture was determined by the turbidimeter and the specific surface was found to vary from 1,990 to 2,860 cm.²/g with an average value of 2,360.

(14) The total heat evolved at the end of 8 hours of adiabatic storage of concrete made with a C/W ratio of 1.5 and hermetically sealed, ranged from 10 to 60 cal/g of cement; at the end of 24 hours, from 60 to 100 cal/g, and at the end of 87 days from 104 to 130 cal/g. In general, the higher the tricalcium-silicate and tricalcium- aluminate content, the greater the amount of the heat developed.

(15) No satisfactory equation could be derived showing the relation between composition and heat evolution, strength, or linear changes of the cements.

(16) Specimens of concrete of all cements hermetically sealed and stored adiabatically for 87 days were all found to contain free water varying in amount from one-quarter to one-half of the original mixing water.

The authors desire to express their appreciation to P. H. Bates, who outlined the investigation and directed the work; and also to G. W. Walker, who initiated the concrete tests.

WASHINGTON, March 6, 1935