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A METHOD FOR DETERMINING STRESSES IN A NON-
ROTATING PROPELLER BLADE VIBRATING WITH A
NATURAL FREQUENCY

By Walter Ramberg, Paul S. Ballif, and Mack J. West

ABSTRACT

Propeller failures in flight generally have the appearance of fatigue fractures.
This points to resonant vibrations setting up excessive alternating stresses as a
probable cause of failure. The present paper describes a method for measuring
and for calculating such alternating stresses for the case of a nonrotating propeller
vibrating in resonance with an alternating torque applied to its shaft. A complete
picture of the stress distribution in such a propeller was obtained by measuring
the longitudinal and transverse strain amplitudes at various points, and calculat-
ing the stresses from these measurements, assuming a condition of plane stress
at the surface of the blade. Stress distributions were obtained for a duralumin
blade vibrating with its fundamental mode and also for the same blade vibrating
with its second harmonic mode (with a node near the tip). The measured stress
distributions and frequencies for the two modes were checked by the stresses and
frequencies calculated from the theory of vibrating beams of variable section.
The effect of restraint at the hub on fiequency and on stress distribution was also
investigated theoretically, and it was found that the degree of restraint at the
hub affected the stress distribution very little, but that it had considerable effect
on the natural frequency. A further check on the measurements was made by
noting that artificially produced fatigue failures in eight nonrotating blades vibrat-
ing with their fundamental mode occurred in each case at a section where the
stresses were within a few percent of the maximum stress measured.
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I. STATEMENT OF PROBLEM

An investigation of the vibration of aircraft propeller blades, having
as its ultimate aim the diagnosis of the failure of propellers in flight,
is being carried out at the National Bureau of Standards. Failures
occur in most cases either close to the hub or a few inches from the tip
of the blade. They have the characteristic appearance of fatigue
fractures, thus pointing to alternating stresses as the cause. The
source of such alternating stresses is not definitely known; but it is
known that alternating stresses occur whenever a periodically varying
torque is applied to the propeller shaft or whenever periodic impulses
are applied to the blades themselves. It is also known that periodic
forces 1n resonance with one of the natural frequencies of the propeller-
shaft system may set up propeller vibrations of relatively large
amplitude.

It seemed logical to start the investigation with propellers vibrating
without rotation in order to get a clear picture of their behavior under
these relatively simple conditions before going to the more complex
ones of the rotating propeller. There were good reasons to think
that such a preliminary investigation would result in the development
of a technique and in the assembly of data that would later be of
value in considering propellers in flight. For example, it has been
demonstrated that the natural frequency of the fundamental mode of
a rotating propeller can be estimated with some degree of accuracy in
a simple manner from the natural frequencies without rotation.!

Considerations similar to these suggested the following line of attack
on the problem:

1. Develop a method for applying periodic impulses of controllable
frequency and amplitude to nonrotating propeller blades so as to set
up resonant vibrations of sufficient amplitude to cause failure, if
possible.

2. Develop a method for measuring the stresses set up in the vibrat-
ing blade and, if possible, obtain values at the points of failure for the
stresses just preceding failure.

3. Extend these methods to propeller blades in rotation.

The present paper will deal principally with the second part of the
research program, that is, with a description of a method developed
for determining the stresses in a nonrotating propeller blade vibrating
with a natural frequency.

II. EXPERIMENTAL PROCEDURE
1. EXCITATION OF VIBRATION

The first part of the research program has already been described
in an article by L. B. Tuckerman, H. L.. Dryden, and H. B. Brooks.?
The application of the method there described to the present problem
will be clear after an examination of the photograph, figure 1. G in
this figure is a 27-hp motor-generator set which is able to supply
nearly sinusoidal alternating current in a range of frequencies from 10
to 180 cycles/second. This alternating current is fed into the armature
of the 15-hp motor, M; the field coils of this motor are excited by
direct current so that sinusoidal impulses of torque are set up in the
shaft of the motor with an amplitude that is nearly proportional (up
to saturation of the magnetic field) to the product of the field current

! F. Liebers. Jahrb. Deut. Versuchsanstalt Luftfahrt 2, 20-28 (1932).
1 BS J. Research 10, 659 (1933) RP556.
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Ficure 1.—Propeller vibration apparatus.

Over-all view, final set up (G, 27-hp variable-frequency motor-generator set; U, telescope for observing
tip amplitude; M, 15-hp direct-current motor; I, outboard bearing for motor shaft).

Ficure 2.—Propeller vibration apparatus, close up.

Initial set up (U, telescope for observing tip amplitude; M, 71s-hp direct-current motor; S, motor
shaft; B, propeller blade; T, Tuckerman optical strain gage; A, Tuckerman autocollimator).
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and the armature current, and with a frequency equal to the frequency
of the armature current. These torsional impulses are transmitted to
the propeller through the shaft of the motor. The stand, I, in front
of the propeller carries a 4-screw bearing for holding the forward tip
of the shaft. This bearing was used to prevent excessive vibration of
the shaft as a cantilever beam heavily loaded at the end.

2. AMPLITUDE OF VIBRATION

The amplitude of vibration of the propeller blade was observed by
measuring with the telescope, U, the motion of an illuminated
point at one of the two tips (figs. 1, 2; 2 is an earlier assembly).
The telescope had a special reticule on which a sheet of cross-section
paper had been photographed. The motion of the vibrating point
appears as a bright line magnified 10 times on the cross-section paper.
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F1cure 3.—Resonance curve for a duralumin blade.

The amplitude can be measured to about 0.01 in. by reading the end
points of this line. The plane of motion follows directly from the angle
which the bright line makes with the axes of the cross-section paper.
The magnitude of the motion may be regarded as the vector sum
of two motions, one in the plane of rotation of the propeller (OP,
fig. 3), the other normal to the plane of the blade at the tip (OP’,
fig. 3). The components OP, OP’ are obtained directly from the com-
ponents of motion, PQ in the plane of rotation of the blade and QP’
normal to that plane, by setting one axis of the cross-section paper
parallel to the plane of rotation of the blade. It is then easily shown
from the sketch in figure 3 that

OP=PQ—P’Q tan 6 (1)
OP’'=QP’ sec ¢

where 6 is the angle which the plane of the blade at the tip makes with
the plane of rotation of the propeller.
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In this way the torsional motion OP of the shaft may be separated
from the flexural motion OP’ of the blade, and separate resonance
curves obtained for each motion. Figure 3 shows the result for a
duralumin blade of common design (no. 32-2755). The amplitude
at the tip for an armature current of 15.0 amp corresponding to a
torque amplitude of 552 in-lb is here plotted against the frequency
for a range of frequencies from about 15 to 140 cycles/sec. Two
resonance peaks are noticeable; the first one about 35 cycles/sec
corresponding to a vibration of each blade similar to a cantilever
beam fixed at one end, and the second one around 130 cycles/sec
corresponding to a vibration of the blade as a cantilever beam with
a node near the tip of the blade. It is seen at once from figure 3 that
by far the largest amplitudes were observed when the propeller was
excited with its fundamental cantilever beam frequency at around
35 cycles/sec. This amplitude could in fact be increased to a value
that was high enough to cause fatigue failure in the propeller after a
few hours running (see also section VI). No such fatigue failure
could be obtained a: the other resonance frequency even by vibrating
the propeller with the maximum power available.

The next step after the determination of the resonance frequencies
was to determine the stresses associated with them.

3. MEASUREMENT OF STRAIN

The curvature of the blade is so small that the stresses at its surface
can be sufficiently well computed from the strains obtained by assum-
ing a state of plane stress. The principal stresses in such a state of
plane stress can be computed from the principal strains and the two
elastic constants of the propeller material by making use of the
following relations: ®

i z+ MEy
a,,—————l oF
% (2)
M€z
Sy

where:
o,=nprincipal stress in z-direction.
o,=principal stress in y-direction.
e;=principal strain in z-direction.
¢,=principal strain in y-direction.
E=Young’s modulus of material.
p=Poisson’s ratio of material.

The principal strains e,, ¢, may be considered as the semiaxes of a
strain ellipse. The determination of this strain ellipse at a given
point on the propeller blade requires the observation of strains in four
different directions about the point. Three would suffice if we were
dealing with static strain; one more is needed if the strains vary
as a simple harmonic motion, whose amplitude alone can be measured,
in order to determine the phase relation between ¢, and ¢, It was
found experimentally that the motion of any point on the propeller
blade when vibrating in resonance with its fundamental frequency
was close to such a simple sine motion.

3 8. Timoshenko. Strength of Materials. 1, 58. (D. Van Nostrand Co., New York, 1930.)
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Knowing the strains in any four directions about a point, the prin-
cipal strains can be derived by a geometrical construction.*

The experimental procedure for obtaining the strain readings was
as follows. A 2-inch Tuckerman optical strain gage (T, fig. 2) was
held firmly against the blade surface by two vacuum cups, with its
knife-edge and lozenge each 1 inch from the point studied. The blade
was caused to vibrate at its resonance frequency and the amplitude at
the tip was observed through the telescope, U, in the manner described
above. The average strain amplitude over a 2-inch span was read
off directly by using the calibrated Tuckerman autocollimator, A,
with the “dumbbell 7’ reticule especially designed for the measurement
of dynamic strains.?

It should be noted in this connection that the usual 30° knife-edge
was replaced by a 90° knife-edge to minimize the error introduced by
the bending of the knife-

edges by inertia forces re- RELATION BETWEEN STRAIN AMPLITUDE AND TIP
. . . AMPLITUDE FOR ‘THREE POSITIONS OF STRAIN GAGE
sisting thf3 a'Ccel(}I' ation of PARALLEL TO € OF BLADE N0:322762 AT STAT/ONS
the gage in its simple har- s S
monic motion. It can be 25-0.5 INCH FROM ¢ TOWARDS LEADING EDGE
ShOWIl theoretically that C-2.5 INCHES FROM ¢ TOWARDS LEADING EDGE
the error from this source '
may be eliminated by read-  #[:/0* , <
: : TR
ing the gage in one posi- % 34
tion, turning it 180°, read- &
ing it again, and taking the %, At 25
average of the two read- ¢ /// A
ings, provided the deflec- ¢ ]
tion due to inertia forces is i e
. 2

smaller than the extension §

: ~
to be measured. This was 3
verified experimentally by §
noting that the average of 3 ’
two strain readings at a § | /
given point taken with a 5 .
30° knife-edge was in close o -7 - 75 o s
agreement yVIth the %vergge T1P AMPLITUDE~ INGHES
obtained with the 90° knife- gqurg 4.—Relation between strain amplitude
edge, although the differ- and tip amplitude.

ence between individual

readings (about 40 percent for the 30° knife-edge) was about five
times as large in the first case as in the second. The difference in
the two readings using the heavy knife-edge was negligible for most
points on a blade vibrating with itsjifundamental frequency.

The strain for a given position,of the strain gage was obtained for
at least four different tip amplitudes ranging from 0.05 to 0.5 in., the
tip amplitudes ® being increased by increasing the armature current
of the driving motor. It was found,that the strain was proportional
to the tip deflection, the observations lying close to a straight line
when strain amplitude was plotted against tip amplitude (see fig. 4).
The slope of the straight line faired through the observed points
gives the strain amplitude_ for 1 in. tip amplitude. The propor-

¢ W. R. Osgood and R. G. Sturm. BS J. Research 10, 685 (1933) RP559.

5 George K. Burgess. Paper 335, pp. 33-36. World Eng. Cong., Tokyo (Nov. 1929).
¢ The term amplitude as used here designates one-half the total excursion of the vibrating mark.
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tionality between strain amplitude and tip amplitude was verified at
a point near the hub up to a tip amplitude of about 1% in.; that is,
up to amplitudes approaching those at which fatigue failure occurred.
Strains per inch of tip amplitude were determined in this manner
in four directions about several points, and the principal strains were
computed, using the method described by Osgood and Sturm.” The
two principal strains were found parallel and at right angles,
respectively, to an approximate center line which was constructed by
connecting points that were equidistant from the leading and the
trailing edge of the blade. Hence it was thought sufficient to take
nwo gage readings for each point studied, one parallel to this center
line and the other normal to it, and to assume that the strains thus
ohgserved were equal to the prineipal strains and could, therefore, be
anhstituted in the expressions eq 2 for the principal stresses.

“TI. ANALYSIS OF EXPERIMENTAL RESULTS
* 3TRESS DISTRIBUTION FOR FUNDAMENTAL MODE

“ame of the results of a thorough exploration of a 47.6 in. duralumin
hla fe set at a pitch angle of 19.6° at a point 5.5 in. from the tip and
vin ating with its fundamental frequency (34.8 cycles/sec in this
ewse) are shown in the curves, figure 5.

Figure 5 (a) shows the longitudinal and the transverse strains along
the center line on the convex side of the blade. The strain e, becomes
a maximum at a point about 26 in. from the tip. Figure 5 (b) shows
the strain distribution across the convex side of the blade at a section
26 in. from the tip.

Corresponding strain distribution curves were obtained for the
concave side of the blade. The stress distribution was then com-
puted from the strain distribution by substituting in eq 2 the observed
strains for ¢, and ¢, taking the Young’s modulus of the material as
E=107 Ib/in.? and 1ts Poisson’s ratio as 0.3.

The stress distribution on the concave side of the blade along the
center line is shown in figure 5 (¢). The stress is largest at a point
about 27 in. from the tip. The transverse stress is compressive near
the tip and tensile near the hub; it is in no case more than one-third
the longitudinal stress. This behavior may be explained qualita-
tively from the shape of the blade, remembering that the direction
of the principal longitudinal stress near the edges of the blade must
be nearly parallel to the respective edges. The edges tend to
converge towards the tip, and the corresponding stresses make an
angle with each other, thus throwing the material between them into
compression in a transverse direction.

Figure 5 (d) shows the stress distribution on the concave side of
the blade at a section 26 in. from the tip. The transverse stress is
nearly 0, as it would be for a rectangular beam. The longitudinal
stress increases steadily in passing from the trailing edge toward the
leading edge up to a point near the leading edge; this behavior may
be explained by the change in thickness of section and consequent
change in the distance from the neutral surface to the extreme fiber
in proceeding from one edge of the blade to the other.

7W. R. Osgood and R. G. Sturm. BS J. Research 10, 685 (1933) RP559.
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The stress distribution along the centerline on the convex side of
the blade is shown in figure 5 (e). This is of the same general nature
as the corresponding stress distribution on the concave side (fig. 5 (c)).
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Ficure 5.—Distribution of stress and strain at extreme fiber for duralumin blade
type 32, vibrating with fundamental mode.

Figure 5 (f) shows the stress distribution on the convex side at a sec-

tion 26 in. from the tip. The longitudinal stress is higher than on

the concave side, corresponding to the greater distance to the extreme

fiber. The transverse stress is no longer zero; this is not surprising

since the convex side is not so nearly plane as the concave side.
105145—35——8
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2. STRESS DISTRIBUTION FOR SECOND HARMONIC MODE

All the stress distributions described so far were observed in a blade
vibrating with its fundamental frequency. The experimental diffi-
culties increase in passing from this case to the second harmonic
frequency. For the second harmonic, the blade vibrates about 3.7
times as fast as for the fundamental, "and consequently the acceler-
ating forces bending the knife-edge of the strain gage and tending to
shake the gage loose are about 14 times as large at a given tip ampli-
tude. Furthermore, it was found that the maximum stress in this
mode occurs in the third of the blade near the tip rather than in the
middle third, so that the most careful exploration had to be made in
that region with its large amplitude normal to the plane of the blade.
In spite of these difficulties it was possible to get consistent strain
readings by running the blade at relatively low tip amplitudes and
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Ficure 6.—(a) Stress distribuiton for blade type 32 vibrating with second harmonic
mode; (b) stress distribution for blade type 28 vibrating with second harmonic mode.

taking readings in the direct and reversed position of the gage for
each setting.

Figure 6 (a) shows the stress distribution along the centerline com-
puted from such readings on the convex side of a blade of the design
so far considered (type 32), and figure 6 (b) the corresponding stress
distribution on a blade of somewhat different design (type 28).® The
position of the observed node near the tip is indicated on the two
figures; in each case it is seen to be appreciably closer to the tip than
the point of maximum stress. The inflection points at which the
itire:fses reverse in sign are in both cases close to the middle of the

ade

IV. THEORETICAL ANALYSIS OF STRESS DISTRIBUTION
IN A PROPELLER BLADE VIBRATING WITHOUT ROTA-
TION

It was deemed worth while as a check on both the technique used
and the experimental results obtained to compare these results with
those given by a theoretical analysis. Hansen and Mesmer °® calcu-

8 The scatter of observed strain amplitudes plotted against tip amplitudes for this second blade was
reduced by replacing the original Tuckerman gage by one of special design that was lightened as much as

possible so as to minimize inertia forces.
9 Z. Flugtech. Motorluftschiffahrt 34, 208 (1933).
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lated the stress distribution in a propeller blade vibrating without
rotation by setting up the equation of motion of the blade, solving
the equation for a natural mode, and from the mode calculating the
stress at any point. A brief description of the analytical procedure
used is given below.

1. METHOD
(a) EQUATION OF MOTION OF BLADE

The exact equations of motion of a beam with an unsymmetrical
cross section whose area, moments of inertia, and principal axes of
inertia vary along its length would be extremely complicated, even
if they could be written down. For this reason it is customary ° to
treat the problem by an approximate method, assuming that the
motion of the blade is adequately represented by the motion of a
beam with symmetrical cross sections, whose areas and principal
moments of inertia are equal to those of the propeller blade, and whose
principal axes of inertia remain parallel throughout the length of the
beam. This approximate treatment cannot reproduce torsional
vibrations of the blade, nor give any close approximation to the natural
vibrations of high order. It does give a useful approximation to the
flexural vibrations of lower frequency.

Since the longitudinal dimensions of the blade are large compared
with the lateral dimensions, it is further customary to neglect the
effect of shear and rotational inertia on the motion of the blade. For
a propeller blade of usual design this introduces only small errors !
at the lower frequencies, and it is convenient in that it permits one
to use the ordinary beam theory in setting up the differential equation
of motion of the blade.

The motion of each particle in this idealized blade will be sinusoidal
if, as in the present case, the blade is vibrating under the action of a
sinusoidal exciting force or moment applied at the hub in a principal
plane of inertia. One may then express the displacement at any
section by eq 3:

z=X sin pt 3)

where p/27 is the frequency of the exciting force or moment in
cycles/second and X is the amplitude of displacement at a distance z
from the center of the hub. One has a complete picture of the motion
if both X and p are known.

The differential equation which X must satisfy is obtained by
substituting eq 3 in the equation:

a@? g b ARG T 4)
%(EI%)— A

expressing the equilibrium of shear forces and inertia forces in a
transverse direction; K1 denotes the flexural rigidity of the section
of the blade considered and pA the mass per unit length at that
same section. Inserting eq 3 in eq 4 yields:

& (o A
(B —parx 5)

10 See for instance Griffith. Advisory Comm. Aeronaut. (Gt. Brit.) R. & M. no. 451 (1918).
118, Timoshenko Vibration Problems in Engineering, p. 231, (D .Van Nostrand Co., New York, 1928.)
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The solution of this differential equation is simple in the case of a
beam in which both the coefficients 7 and A are constant. But in
the case of a propeller these coefficients are not even approximately
constant. Thisis brought out clearly by the curves of figure 7 (a) and
7 (b), respectively, which show the distribution of iLé and —‘[/1—1 plotted
against the relative distance z/L from the center of the hub for blade
32-2758; this blade is of the same design (type 32) as blade 32-2762.
Both quantities decrease rapidly from the hub to the tip; A and 7
will decrease even more rapidly since they are proportional to the
square and the fourth power of these quantities, respectively. The
distribution of both A and I was obtained {from direct measurements
of the section of the blade at 15 sections along its length of 47.6 in.

Neither A nor I vary with z in a simple way. There seemed little
hope, therefore, of obtaining for them an analytical expression that

=
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Ficure 7.—Variation of cross-sectional area (a), and of moment of inertia (b)
along blade.

would give to the differential eq 5 an integrable form. Hence, it
was decided to make use of the numerical method of solution that
has been applied to a number of propellers by Hansen and Mesmer **;
it is the mathematical counterpart of a well-established graphical
method for the computation of natural modes and frequencies of
rotating shafts of varying section.'

The formula used by Hansen and Mesmer " to compute X and p
for the vibration of a bar may be derived as follows:

Replace the independent variable z by the ratio:

=7 (6)

so that eq 5 takes on the form:
F(IEX\_ pIA o
GATgE )T R IF

where I/L* and A/L? are both known functions of ¢ and where £

varies from 0 to 1 as one passes from the point of clamping to the
tip of the blade.

@

127, Flugtech. Motorluftschiffahrt, 24, 208 (1933). 7
13 8. Timoshenko. Vibration Problems in Engineering, p. 231 (D. Van Nostrand Co., New York, 1928).
14 Hansen and Mesmer limited their discussion to a clamped-free bar.
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X is a function of ¢ alone independent of the time ¢, of the form

=16

where d is the amplitude of displacement at the tip of the blade
(¢=1). For each value of p, f(¢) is a definite function of £ depend-
ing only on the type (force or moment) and the frequency of the
excitation, the dimensions of the bar, and the end conditions.

The present work is concerned primarily with conditions of reso-
nance. At resonance the exciting force or moment becomes negligible
in comparison with the inertial reactions of the vibrating blade.

For the clamped-free bar one can, therefore, assume for the
boundary conditions at the tip end (¢=1), zero shear, zero bending
moment; at the hub end (¢=0), zero slope, zero deflection.

&P T PR

E\ ) =0 Trag =0 0]
X i
“E =0 X=0, at =0

Any value of X as a function of £ with the corresponding value of p,
that satisfies both eq 7 and 8 represents a ‘“natural’”” mode of vibra-
tion of the blade. An expression for X (£) is obtained by integrating
eq 7 four times in succession, determining each time the constant of
mtegration from one of the four boundary conditions eq 8. This
leads to the following integral equation for the natural mode of a
clamped-free bar:

29 ¢ r
X=ELE [F[EE (0 X deasarae (9)

(b) NUMERICAL SOLUTION OF EQUATIONS OF MOTION

The final deflection curve X (£) on the left of eq 9 must have the
same shape as the assumed deflection curve X (¢) in the integrand on
the right if the latter describes a possible mode of vibration of the
blade. To test this condition in a given case one must compute two
double integrals of the type:

Fifﬁ%@ﬁ@

Lo (pew ek
aiﬁﬁw@@&

where ¢ (¢£), ¢ (¢) are known [unctions of £; in this particular case
they are:

(10)

o= X, vO =1 F

F may be converted into the form @ by replacing ¢ by 1—¢, so that
only the second form (&) need be considered. Hansen and Mesmer '*
use a convenient method for integrating this second form numerically.
It consists in subdividing the interval from £=0 to {=1 into n equal

157, Flugtech. Motorluftschiffahrt 24, 208 (1933).
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intervals of width h=1/n and tabulating the values of ¢ (¢) for the
boundaries of these intervals:

1042+ v(E)

The interval spacing % is chosen small enough so that the integrand
Y (£) in the interval% =t= 7/_;*1/‘_2 (t=0,1,2,...,n—2) may be repre-
sented accurately by a parabola:

Y (&) =cutcrf+cat? (11)

The 3 constants of this parabola are then determined from the con-
dition that ¢ (£) must go through the 3 points y (%), ¥ (t—_—;—1>, \b(&nz .

The value of G (£) at any interval may now be found by substi-
tuting eq 11 in eq 10 and integrating twice with respect to £. This
leads to the following formulas:

G():O
1
G =153 (3.5%0+3¢1—0.5¢) (12)

Gizzgi—x— Gi—-2+ 1—?1%—3 (‘l/i—Z F 10¢, AF lpz)

where G, and ¥, denote values of G (¢) and ¢ (¢) at the origin
(¢=0) and @; and ¢, values of the same quantities at the end of the

1-th interval <£=% - F (&) can be computed in the same way, re-

membering only that the direction of integration must be reversed.
This leads to the formulas:

F,=0
il
Fn—1='1"2"77 (3~5¢n+3¢n—1_0-5¢n—2) (13)

1
F1=2Fi+1—Ft+2+ W (<P1+2+ 10¢t+1+¢1)

where F; and ¢; denote values of F' (¢) and ¢ (£) at the end of the
1-th interval (E———%)-

In the present work it was found convenient to subdivide the length
of the blade into 20 equal intervals, thus choosing n=20. Table 1
illustrates a convenient arrangement for computing all values of F
and G except F,_, and G, which were computed directly from the
second formulas of eq 12 and eq 13. The table was taken from the com-
putation of the fundamental mode of a blade of type 32 vibrating
as a clamped-free bar. Part A shows the computation of the
integral F, choosing for the mode X=X, values that are proportional
to the deflection curve of the blade under its own weight. ¢; and F;

denote values of <p=%§-‘_’ and F at the end of the i-th interval.
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Part B of the table is carried out the second double integration,
4
namely, that leading to G as given by eq 10; LI—F is substituted

for ¢ (£), where F' is taken from the previous table. In the last row
of part B is the value of G at the end of each interval. It is, ac-
cording to eq 9, proportional to the mode X, corresponding to an
inertia loading produced by the assumed mode X,. The ratio X,/G,
as shown in a separate row below the tables, ranges from 2.12><10~*
to 3.56>1073. This shows that the eq 9 is far from being satisfied.
A closer degree of proportionality will be obtained if the process is
now repeated starting with a mode proportional to X; (which is pro-
portional to &) and leading to a mode X, proportional to the dis-
tribution G;(¢) obtained in this second calculation. The ratio
Xi1/G, may be made constant to any degree of accuracy, pro-
vided the procedure is repeated a sufficient number of times. In
the present work constancy within slide rule error was considered
sufficient.



TABLE 1.—First appro:cimation in computation of fundamental mode duralumin blade, type 32.

sz

Fo(9)= f [ xoazae= f [ et

Computation begins at the right column and proceeds toward the left.

: E £ L4 (6
A. Computation of —+5 f J‘ f ngEdaEd’dt

§ o AR 0. * ok k x 0.20 | **** 0. 85 0. 90 0. 95 1. 00
S R RS 0. * ok k x 4. *k kx| 17, 18. 19. 20.
(8 8 RO Sk ik 0.0000 | * * * * 4.787 | **xx| 627.2 720. 5 814. 2 908. 0
TSIV é s L e (B +0.0000 | * * * * +0.0233 | **** | 40.5332 | +0.4756 | +0.3257 0.0
(d) L A DO R o +.0105 | * * * * 0061 | e wil A g onBh | LSRRy ] T R G
i o DRl +.0059 | * % * * +.0377 | **** | 1. 3257 B0 R e S R
AR T e e +1399.0000 | * * * * |  +081.2000 | * * * * | 4-10.4200 | +1.4790 |- __________|________._
(g) @+ +E)+E - 1300.0000 | * *** | "FOSI. 5000 | **** | 16,0200 | 15 2120 |-—cooo-ooo oo
o L R 647. 0000 | * * * * 439, 0000 | * * * * . 7393 AT s R U S
(i) (&) —Mm)=12n2F; ______ T752.0000 | ** ** | "T542. 5000 | * * * * | 1153000 | +5.2120 | «+.7393 0. 0
G) 1(212L2=F,»=F0(g ________ 0. 1566 | * * * * 0.1131 | * * % * 0.00319 | 0.001086 | 0. 000154 0.0

e Computed by first and second parts of equations 13.

0UDN Y1 0 Y225y [0 unor  Z0g
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B Contpatation of Gt J; Eﬁf F°édgds=J;‘ J; ¥ ydede

Computation begins at the left column and proceeds toward the right.

__________________________ 0. 0. 05 0. 10 0.15 0. 20[* * * * 0. 95 1. 00
(i) 2 S W e (e T 0. I 2 3. 400w 19. 20.
(¢) Yi=F,(&) % ___________ +73300. | --68100. +63100. +58500. 4117800, |* * * * -+118000. 0.
b Eat RO T e s S D B SO o +681000. +631000. +585000. |* * * * 1 3880000. -+118000.
Gk SR o NS S 8 S R +73300. -+68100. +63100. |* * ** -+ 709000. +38800.
(o T e R R R e S A S A R +-858600. |+3352000. |+7362000. |* * * *+-3186000000. |--364800000.
(E(C)F (d)iate) iy o = vl ol e e 1676000. |T4110000. |+8128000. |* * * *-3791000000. |+ 365000000.
i e R e e R A T RN 000. 429300. |__1676000. |* * * * __1367000000. 159300000.
) (@—(h)=12n2G;________ @ 0. | - 429300. |+ 1676000. |+3681000. |+ 6452000. [* * * ¥-1824000000. |+ 205700000.
)] 12Z,L2=G,.=G0 (B R 0. +-89. 4 +349. 1 +767. 1344 o [F Rk -+ 380000. -+ 428500.
}Gi’ _______________________ 2.26-10-3 3.24-10-3 3.49-10-3 3.56:10-3 [* * * ¥ 214.10-3 2.12-10-3

e Computed by first and second parts of equations 12.

Note.—In this type of integration it is sometimes necessary to carry intermediate steps to more significant figures than are retained in the result.

of the columns zeros are written beyond the figures retained.
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Assume that m computations were required to satisfy this criterion.
Equation 9 may then be written as

X ()=l 1) (14)

Solve this for the natural frequency f corresponding to this mode:

P A R 5
f_2'rr—27rL\/p_\/ q.. .

(c) CALCULATION OF STRESS

Knowing the mode, the stress distribution can be computed, pro-
vided the transverse stresses are negligible. 1In that case the longi-
tudinal stresses are:

d’X Eecd’X

d D LZ d£2 (16)

where ¢ is the distance from the neutral axis to the extreme fiber
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Ficure 8.—Fundamental mode and curvature.

Or, if d is the deflection at the tip, the stress amplitude per unit tip
deflection becomes:

or o e d2 X

i~ e an

The neglect of transverse stresses in this analysis is probably justi-
fied in first approximation; the experimental data show that the
transverse stresses are small compared with the longitudinal stresses
in the region of maximum stress (see fig. 5, 6). A more exact calcula-
tion of the stresses would require a knowledge of ¢, as well as ¢,
which is proportional to the curvature of the mode. This involves a
complete solution of the deformation of a solid of variable section
under the action of distributed loads. It was thought not worth
while to attempt such a solution in view of the extra work involved
and the small correction which would result from it.
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2. FUNDAMENTAL MODE OF FIXED-FREE PROPELLER BLADE

Curve a, figure 8 (left diagram) shows the fundamental mode for a
blade of type 32 computed by the method outlined above. The
blade is assumed clamped at the center of the hub. The fundamental
mode for a clamped-free bar of constant cross section with unit deflec-
tion at the tip!® is shown for comparison. The two curves differ
considerably.

That difference is brought out much more emphatically by inter-
comparing the curvatures of the neutral fibers for these cases (fig. 8,
right diagram). While the maximum curvature for the blade comes
at the middle, that for the uniform bar occurs at the point of clamping.
It is not safe, therefore; to conclude anything regarding the stresses
in propeller blades from the stresses in uniform bars.

The stresses per unit tip deflection may be computed from the
curvature by means of eq 17, provided the extreme fiber distance c is
known. The distribution of ¢/L along the centerline for both the
convex side and the concave side of a blade of type 32 is shown in
figure 9.

Curve a, figure 10, shows the stress distribution for the fundamental
mode of blade type 32 clamped at the center of the hub. The Young’s
modulus £ and the specific density of the material (25ST) from which
the blades were forged are here taken as

E=1071b/in.?
p=2.593 10~* Ib-mass/in.?

The stress distribution differs only little from that observed (curve
¢, fig. 10). DBut the frequency which is according to eq 15 equal to

f=30.7 cycles/second

is some 14 percent lower than that observed. This suggests that the
point of fixity chosen in the computation should have been placed at a
point some distance from the hub and toward the tip. This would
shorten the effective length of the blade, and assuming that the blade
behaved as a uniform beam in which the frequency is inversely pro-
portional to the square of the length, would lead to a higher fre-
quency. It was decided, therefore, to repeat the computation choos-
ing a point of fixity 15 percent of the distance from the center of the
hub to the tip of the blade. This is the point (§=0.15) which corre-
sponds roughly to the limit of the contact area between hub-clamp
and blade. The resulting stress distribution is shown in curve b,
figure 10. It is seen to differ only slightly from the stress distribution
for clamping at the hub. The frequency becomes

f=26.6 cycles/second

which is a decrease although the effective length of the blade has been
decreased. A more detailed investigation shows that this apparent
anomaly is due to the rapid decrease in section near the root of the
blade. This shows again the need for caution in drawing analogies
between a beam of uniform section and one of variable section such
as a propeller blade.

18 Lord Rayleigh. Theory of Sound, par. 173 (Macmillan Co., New York, 1894).
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Fraure 10.—Stress distribution, fundamental mode.
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3. SECOND HARMONIC MODE OF FIXED-FREE PROPELLER BLADE

The procedure outlined above must be modified in the computation
of the second harmonic mode of the fixed-free blade. The correct
mode must again satisfy the integral eq 9. In addition it must have
a node at a point near the tip of the propeller. Hansen and Mesmer
arbitrarily assume the location of this node at a point one-fourth of the
blade length in from the tip (£=0.75) and then proceed to compute
the mode for this nodal position by starting with a mode X satisfying
the end conditions at the tip and at the hub and also going through

COMPUTED STRESS DISTRIBUTION ALONG ¢
BLADE TYPE 32 CLAMPED AT ¢ HUB
a-TRUE NODE (¢=0.806)

Ff=1168-CYCLES PER SECOND
b- ASSUMED NODE AT ¢:0.75

f=120.7 CYCLES PER SECOND
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Ficure 11.—Sltress distribuiion, second harmonic mode.

zero at the assumed node. Using this value of X, they compute X;
from eq 9. The mode X; will now, in general, have its node at a
point some distance away from the assumed point £=0.75; to pull it
back into this point Hansen and Mesmer add a mode proportional to
the fundamental mode and choose the factor of proportionality such
as to make the resultant mode go through 0 at £=0.75. 1f this
procedure is repeated a few times the resultant mode will be propor-
tional to the initial mode; Hansen and Mesmer then compute the
frequency from their ratio as given by eq 15. It is clear that the
condition eq 9 of equality of initial and final mode is not satisfied by
this method unless the proportion of fundamental mode to be added
is equal to 0. This suggested the following procedure for computing
the true mode and correct position of the node.
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The ratio of the tip amplitude of the fundamental mode, added for
compensation, to the amplitude of the second harmonic mode as
computed by eq 9 is plotted for various positions of the node, say =
0.7,0.75,0.8, and the nodal position for which this ratio is equal to 0 is
obtained from these points by interpolation. Then the computation
is repeated for the optimum location of the node to verify that the
condition eq 9 actually holds within slide-rule error.

The frequency as computed by Hansen and Mesmer’s method of
forcing the node at £=0.75 practically agrees with that computed for

STRESS OISTRIBUTION ALONG & BLADE TYPE 32
SECOND HARMONIC MODE VIBRATING AS FIXED-FREE BAR
a-FIXED AT @ HUB ¢=0  f=116.8 CYCLES PER SECOND,
b-FIXED AT £:0.05 f=115.8 CYCLES PER SECOND
C-FIXED AT £=0/5 f=106.1 CYCLES PER SECOND
d- MEASURED STRESS f=124.6 CYCLES PER SECOND
5 (SEE FIG 6a)
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Ficure 12.—Stress distribution, second harmonic mode.

the theoretically correct node, but the stress distribution so computed
does not. This point is brought out in figure 11, which shows the
stress distribution computed for blade 32-2762 fixed at the hub and
vibrating in one case (curve a) with the theoretically correct mode
having a node at £=0.806 and in the other (curve b) with the node
at £=0.75 as assumed by Hansen and Mesmer. It is seen that the
stress distributions for the two computations are similar in shape,
but the stress per inch tip deflection for the correct node is some 20
to 30 percent higher than that for the node assumed at the % point.
The frequencies for these cases agree within 4 percent. It appears
desirable, therefore, to find the solution of eq 9 whenever one is
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interested in the stress distribution as well as in the frequency of the
second harmonic.

The frequency of the second harmonic mode assuming fixity at the
center of the hub was calculated to be 116.8 cycles/second against an
observed value of 124.6 cycles/second. It was first thought that this
divergence might be due to selecting the wrong point of fixity, and
hence it was decided to compute the stress distribution and frequency
for two other points, one with the blade clamped at §=0.05 (2.38 in.
from the center of the hub) and the other with the blade clamped at
¢=0.15 (7.14 in. from the center of the hub). The results of these
computations are shown in figure 12. It is seen that the change in
point of fixity has had little effect on the stress distribution. The
measured stress distribution for blade 32-2758 is shown by curve d
(see also fig. 6 (a)). The computed and the observed curves agree
within 15 percent except near the tip and near the hub. Near the tip
the uncertainties in both the experimental and theoretical results are
greatest, in one case because of the severe vibration at that pomt and
1n the other because of possible errors in measuring the section of the
blade. The discrepancy between observed and calculated stress dis-
tribution near the hub may be due to assuming ideal fixity at the hub
instead of the true end condition, which must be somewhere between
that for a free-free bar and that for a fixed-free bar.

As the point of fixity moves from the center of the hub to a point
15 percent of the blade length toward the tip, the frequency is low-
ered some 10 percent. One notes again the unusual effect of lower-
ing of frequency with shortening of the free length of the blade,
although the effect is not as pronounced as for the fundamental
mode.

This discrepancy in natural frequencies cannot be explained by the
neglect of shear deformation and rotational inertia in setting up eq 9,
since both these factors tend to lower the frequency ' '8, while the
frequencies calculated in the preceding are already lower than those
observed. The effect of restraint at the hub remains as a possible
explanation.

Hence it seemed worth while to carry out the solution for a blade
of design 32 vibrating with its fundamental frequency as a free-free
bar.

4. FUNDAMENTAL MODE OF FREE-FREE PROPELLER BLADE

The integral equation for a natural mode satisfying the boundary
conditions for a free-free bar:

i /1 & I (&
(5 Eg)‘():‘)’f? W —0, at t=1

.4 LRI

dE— ’dg Th gy b AL A0
may be found by integrating eq 7 four times with respect to £ and each
time determining the constant of integration by one of the boundary
conditions. The first three boundary conditions eq 18 are the same

17 Lord Rayleigh. Theory of Sound, par. 186 (Macmillan, New York, 1894).
18 8. Timoshenko. Phil. Mag. 41, 744 (1921).

(18)



210  Jowrnal of Research of the National Bureau of Standards (vol. 14

as for the clamped-free bar eq 8. The integral expression for the
slope dX/dx will, therefore, be the same and that for the mode can
differ by a constant only:

X=Xi+c (19)

where X, is the expression on the right side of eq 9 and ¢, may be
evaluated by substituting eq 19 in the integral equation for shearing

force:
2 272
C‘,{ ”‘\> ’”’,Lf < Xdg (20)

and making the right side equal to 0 at £=0. Inserting the value
of ¢y so obtained in eq 19 gives the following integral equation for the
natural mode of a free-free bar:

’2 £ET 4
X0 L( f f & f f &, Xdgdgdsdi—
1A pEpinpered e
fﬂﬂﬁvﬁﬁlﬁﬁvAMWWM>
o L7

The solution of the integral on the right of eq 21 involves double
integrals of the form @ and F given in eq 10 and in addition singie
integrals of the form:

H@=ﬁ§@ﬁ ©2)

The integral 77 may be evaluated numerically in a manner analogous
to that used in solving &, F. One chooses an interval spacing 1/n
that is so close that the value of the integrand over any interval
% 1-+2

S =E= - may be closely approximated by a parabola passing

through the 3 points x( ), >\<' vl 1) (H—2>- The value H(£) at the

end of the first interval and that at the end of the 7-th interval are
then given by:

= (0X0+8X1 Xz)
(23)

H=H,, +I.Z (_Xiv2'|_ 8xetik 5Xi)

where Z7; and x; denote values of H(¢) and x(£) at the end of the
i-th interval <E=;—L>- The integration may be conveniently tabu-

lated in & manner analogous to that shown in table 1 for the integra-
tion of F'(¢) and G(§).

The fundamental mode of a blade, design type 32, vibrating as a
free-free bar, was found from eq 21 with the help of such a tabulation
using 20 intervals (n=20), and then repeating the integration until

the ratio pFL in eq 21 assumed the same value at the end of each

interval.
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L0
COMPUTED FUNDAMENTAL MODE BLADE TYPE 32

VIBRATING AS FREE-FREE BAR
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Ficure 13.—Fundamental mode, blade vibrating as free-free bar:

STRESS DISTRIBUTION ALONG @ CONVEX SIDE
BLADE No.52-2762 FUNDAMENTAL MODE
a- FREE-FREE BAR f=34.4 CYCLES[SEC
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The mode calculated in this way is shown in figure 13. It is seen
that the amplitude at the center of the hub is closely equal to one-
tenth that at the tip and also that the node occurs close to the posi-
tion £=0.5. The frequency for the {ree-free blade comes out
theoretically as f=34.4 cycles/second compared to a value of f=34.8
cycles/second observed on the actual blade.

The stress distribution for the free-free blade is shown as curve
a in figure 14. Curve c shows the observed stress distribution for
the actual blade. The two curves agree within +8 percent for the
most part.

V. COMPARISON OF MEASURED AND THEORETICAL
VALUES

1. COMPARISON OF STRESS DISTRIBUTION

The result of a comparison of measured and calculated stress
distributions of a blade of type 32 may be stated as follows (see figs.
10, 12, and 14):

a. The curve representing the measured stress distribution and
the curves computed for each of several conditions of restraint at
the hub all have the same shape.

b. The maximum measured stress for the fundamental agrees
within 3 percent, and that for the second harmonic mode (with node
near tip) within 15 percent of the theoretical stress computed for a
blade clamped at the center of the hub.

c. The conditions oi clamping have only slight effect on the theo-
retical stress distribution, the maximum stress calculated for the
extreme condition of no restraint at the hub (free-free bar) differing
from the stress actually observed by not over 7 percent.

2. COMPARISON OF FREQUENCIES

The results of a comparison of the frequencies measured for a
blade of type 32 with those calculated for various end conditions may
be summarized as follows:

a. The actual observed frequency, whether for the fundamental
or the second harmonic, is greater than the corresponding frequency
computed for a blade clamped at, or at any point near, the hub.
For clamping at the hub, the difference is 14 percent for the funda-
mental and 6.5 percent for the second harmonic.

b. The conditions of restraint at the hub have a pronounced effect
on the theoretical frequency of the blade. The frequency calculated
for the blade vibrating with its fundamental mode and clamped at a

oint 15 percent of the blade length from the hub is about 24 percent
ess than that for the free-free blade; the last agrees within a fraction
of 1 percent with the observed frequency of the actual blade.

VI. PRELIMINARY RESULTS OF FATIGUE TESTS ON
NONROTATING PROPELLER BLADES

A further check of the method of measuring stress distribution
described in the beginning of this paper may be obtained from some
preliminary results of fatigue tests carried out recently at the Na-
tional Bureau of Standards.
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Eight propeller blades of various designs, forged from 25ST alu-
minum alloy, were vibrated at their fundamental mode, and explored
with a strain gage. Two of the blades (nos. 43,903 and 43,904) were
new, and the remaining six had been in service. Table 2 gives the
magnitude and location of maximum strain.

TABLE 2.—Characteristics of aluminum alloy blades

Maximum i
Blade longitudinal | FHSGRE O,
Blade number ! length | Frequency *| strainampli- | %)y sprain
tude for 1-in. et ti
tip amplitude p
in. Cycles/second 104 in. in.
33,155 (4)- 48 3L.7 7.30 2814
25,460 (1) 48 33.1 6.75 2414
25,363 (09 4814 32.5 6.25 24
25,099 (363 and 377). : 48 32.6 6.76 24
43,904 (3) §_....o0l il 5 48 33.8 6.55 24
43,903 (4 and 26,681) 4. = 48 33.8 7.10 2234
7 4 e BEERSEEe 4 4614 36.0 7.80 20%4
BTN AT ) i s i oisihst i i s i 49)% 30.7 3(6.25) 31

1 Thelast digit, or digits, of the number identifying the second blade of the propeller are enclosed in paren-
theses. In two cases the second blade was changed during test.

2 All frequencies on 15 hp motor. Frequency of 33,155 on 744 hp motor was 32.4.

3 Measured on blade 27,057 only.

4 New blade.

The blades were then subjected to high alternating bending stresses
by increasing the armature current of the motor, M, (figs. 1, 2) until
the tip amplitude reached a value corresponding to the desired stress
amplitude. For the first two propellers tested, the stress amplitude
had been chosen as 12,700 and 15,400 1b/in.2, values which proved to be
too small to produce fatigue failure after more than a million cyecles.
The tip amplitudes at which these two blades were run were, therefore
raised to values corresponding to a maximum stress of 24,100 and
19,900 1b/in.? respectively. The blades failed at these stresses after
about two hours running for the first propeller and less than 20
minutes for the second propeller. The remaining six blades were run
at one stress only (see table 3). The final fracture was preceded in
every case by the formation of a typical fatigue crack across the
blade at a section in the middle third where the stress differed only a
few percent from the measured maximum stress.

TasLe 3.—Data on fatigue failures of aluminum alloy blades

: Distance
Maximum | Number of Stress at
Blade number of crack
stress cycles from tip crack
1b/in.? in. 1b/in.2
12,700 for.__. 90,000, 2ot e s s S S e
24,100 for_._. 214, 000 25 123,000
15,400 for____ 2AIA09000 =5 Lm0 L Sl S St
19, 900 for____ 33, 800 2414 219, 700
L6700t 505, 000 {1934, 2014, 21 15, 500
14, 500 442, 000 23 14, 000
17,600--— 2, 060, 000 2744 17, 200
16, 600 2, 390, 000 29 16, 100
21, 400..-. 233, 000 2414 19, 500
18, 800 379, 000 27Y4 18, 100

1 In the preceding run the stress at this point was only 12,200 1b/in.2
: %\111 th% {)rgceding run the stress at this point was only 15,300 1b/in.?
ew blade.
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The number of cycles to failure are plotted against maximum stress
on the S-N diagram of figure 15. This same figure shows for com-
parison one S-N diagram (for strips of 25ST material) obtained by
Briggs and Murphy in an air-driven high-speed fatigue machine at
the National Bureau of Standards and one (for rotating cantilever
beam specimens of the same alloy) obtained by D. J. McAdam, Jr.'®
Finally it shows the S—N diagram for fatigue tests on specimens cut
from a 25ST propeller blade.?* The eight points for the failure of full-
size blades fall, for the most part, below the S-N diagrams for polished
specimens. The points scatter considerably, and are too few in num-
ber to give a reliable value for the fatigue limit of a full-size blade.
Much of the observed scatter may be due to differences in surface

FATIGUE TESTS ON OURALUMIN PROPELLERS & OURALUMIN SPECIMENS
J6 @-TESTS ON PROPELLER BLADES
Q-TESTS ON 2858T STRIPS (BRIGGS & MURPHY)
b-ROTATING BEAM TESTS 25ST (MCADAM)
K
3 @-ROTATING BEAM TESTS ON SPECIMENS CUT FROM
T HUB PORTION OF BLADE NO.39365
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CYCLES OF STRESS FOR FAILURE

F1Gure 15.—Results of fatigue tests on duralumin propellers and duralumin
specimens.

condition of the blades. It will be seen that the new blades tested
under the same conditions as the used blades withstood a greater
number of alternations before failure. One failure on a used blade
(no. 25,460) was noticed in the earliest stages and the crack was
observed to follow a tortuous curve from one small pit in the surface
to another. The highly polished surface of the new propellers was
relatively free from irregularities.

VII. CONCLUSIONS

1. By means of the experimental method described in this paper
the stress distribution for the fundamental mode and for the second
harmonic mode (with node near tip) of a duralumin blade type 32

19 Pamphlét no. 1,537-D, issued with Mining and Metallurgy (Feb. 1926).
20 These tests were made by W. H. Swanger and R. D. France of this Bureau.
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can be determined; in the region of maximum stress it agrees within
12 percent with the computed distribution.

2. The theoretical stresses for the fundamental mode are, within
10 percent, independent of the restraint at the hub.

3. The frequency is much more sensitive to the restraint at the
hub than the stress distribution. It changed by some 26 percent for
a change in restraint that produced a variation of only 10 percent in
maximum stress for the fundamental.

4. Artificially produced fatigue failures on eight propeller blades oc-
curred in each case at a point where the stress was within 10 percent
of the maximum stress measured on the blade.

The third of these conclusions emphasizes the fact that computa-
tion, while giving good approximations for the stresses, is not, in
general, a reliable means for determining the natural frequencies of a
propeller blade; it is safer to rely on direct measurements of resonant
frequencies insofar as they are obtainable. One step towards obtain-
ing such measurements is the propeller-vibration indicator developed
by Dryden and Tuckerman * in connection with this research program.

WasHINGTON, December 18, 1934.
21 BS J. Research 12, 537 (1934) RP678.
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