RESEARCH PAPER RP763

Part of Journal of Research of the National Bureau of Standards, Volume 14, February 1935

IMPACT AND STATIC TENSILE PROPERTIES OF BOLTS

By Herbert L. Whittemore, George W. Nusbaum, and Edgar O. Seaquist

ABSTRACT

This investigation was made to determine the properties of bolts under impact tensile loading and also under static tensile loading. 360 specimens were tested, representing all possible combinations of five different materials (chromium-nickel steel, cold-rolled steel, monel metal, bronze, and brass), four different bolt diameters (3%, ½, 5%, ¾ in.), and three different forms of screw threads (American National coarse, American National fine, and Dardelet). These threads are often used by engineers in this country for bolts. The U. S. Standard threads are almost the same as the American National coarse threads and the SAE threads almost the same as the American National fine threads. The bolts of different diameters were geometrically similar, the length between the head and different diameters were geometrically similar, the length between the head and the bearing face of the nut being five times the diameter, the thread extending inward from the face of the nut one diameter. In all cases the impact work for bolts with American National coarse threads was less than for bolts of the same size and material with American National fine threads. Except for the brass bolts and those cold-rolled steel bolts which showed brittle failures, the impact work for bolts with American National fine threads was approximately the same as for bolts of the same size and material with Dardelet threads. In all cases the impact work for bolts with Dardelet threads was much greater than for bolts of the same size and material having American National coarse threads.

Similar relations were observed for the static work and the maximum static

load.

For bolts of the same size and having the same threads the bolt efficiencies were approximately the same for all of the materials.

CONTENTS

	CONTENTO	
		Page
I.	Introduction	140
II.	Description of screw threads	142
III.	Material	144
	1 Kinds of materials	144
	2. Identification	145
	3. Vickers numbers	145
	4. Chemical compositions	145
	5. Mechanical properties	146
IV.	Specimens	147
	1. Manufacture	147
	2. Measurement of specimens	148
V.	Method of testing	170
	1. General	170
	2. Impact tests	170
	3. Static tests	172
VI.	Results	172
	Discussion	176
	1. Impact tests	176
	2. Static tests	178
	3. Comparison of impact and static properties	180
III.	Conclusions	187

I. INTRODUCTION

Bolts are used in machines and structures to fasten together parts which cannot readily be made of one piece, or parts which may be removed for adjustment, cleaning, or repairs. In many cases these fastenings are subjected in service to static and to impact tensile loads. The designing engineer should know not only the greatest load which a bolt will sustain without failing but also the work (force times distance) required to rupture the bolt if, under unusual circumstances, the bolted structure should be subjected either to steady or to impact loads greater than the working loads for which the structure was designed.

The resistance to static loads depends upon the tensile strength of the bolt with nut. The resistance to impact loads, however, depends upon the work required to rupture the bolt under suddenly applied loads. This "impact work" depends upon the load-stretch curve under impact. This will be different from the load-stretch curve under static conditions and would be affected differently by the shape and surface of the threads and the character of the material.

Many investigations have shown that for metals under either tensile or transverse loading, the work required to rupture the specimen under loads applied slowly (the "static work") is not equal to the work required to rupture it under loads applied suddenly (the impact work). Similar differences between the static work and the

impact work are to be expected for bolts.

A few investigators have studied the static and, sometimes, the impact strength of bolts. Their results were used as a guide when preparing the test program for this investigation. The effect of decreasing the cross-sectional area of the shank of the bolt to about the cross-sectional area at the bottom of the threads has been discussed by Kimball and Barr.¹ They point out that although decreasing the cross-sectional area lowers somewhat both the torsional and the tensile strength and the stiffness, it increases the impact work many times because it increases the stretch. They discuss decreasing the cross-sectional area by reducing the diameter of the shank, by longitudinal flutes and, preferably, by an axial hole. Drop tests upon bolts for Prof. Sweet's straight line engine showed that the impact work was increased about nine times by an axial hole.

The effect of differences in the pitch of the thread was studied by Major William R. King, U. S. Engineers.² His static tensile tests made at Watertown Arsenal on wrought-iron bolts, 1½ in. diameter having V threads, showed that the static work for bolts having 18 threads per inch was four times that for similar bolts having 6

threads per inch.

The shape of thread was considered by Langenberg.³ His tensile impact tests at Watertown Arsenal on specimens having Acme threads (flat bottoms) showed greater stretch and greater impact work than similar specimens having a semicircular groove at the bottom of the thread.

Elements of Machine Design, p. 178 (1913).
 Experiments with bolts and screw threads. Trans. Am. Inst. Mining Engrs. 14, 90 (June 1885 and May 1886).

³ Investigation of failure of elevating screws on 14 in. D. C. no. 13 and 14 in. D. C. no. 14, Tests of Metals p. 44 (1917). Experimental data obtained on the Charpy impact machine. Tests of Metals, p. 222 (1918). Also this latter paper by F. C. Langenberg. Bul. Am. Inst. Mining and Met. Engrs. no. 152, p. 1471 (Aug. 1919).

Beyer 4 made static tensile and tensile impact tests on cold-drawn steel bolts having Dardelet and U.S. Standard threads. He reported that bolts having Dardelet threads gave greater static tensile strength, greater stretch, and greater resistance to impact than similar bolts having U. S. Standard threads.

He found further 5 that the static tensile strength and the static work depended upon the length of the thread exposed between the head of the bolt and the face of the nut. As the length of exposed thread was decreased, the stretch under static load and also the static work decreased markedly being only one-half to one-third as great when no threads were exposed as when the exposure was two or

three times the diameter of the bolt.

To keep this investigation within practicable limits it was decided to study the effect on the static work and impact work of differences in only three variables. They were the shape of the thread, the material, and the size of the bolt. The three shapes of thread which are used for most commercial bolts in this country were chosen. They were the American National coarse thread, the American National fine thread, and the Dardelet thread. The differences National fine thread, and the Dardelet thread. between the American National coarse thread and the U.S. Standard thread, and between the American National fine thread and the SAE thread are so small that there is no reason to believe that there would be appreciable differences in the static or the impact works. Therefore, the U.S. Standard thread and the SAE thread were not included. The results showed the effect of differences in the pitch for threads having the same profile (shape) as studied by King and the effect of differences in the profile of commercial threads as studied by Langenberg and Beyer.

The materials, chromium-nickel steel, cold-rolled steel, monel metal, bronze, and brass, were chosen as representative of the kinds of material which are much used for commercial bolts and nuts. It is believed that from the results on these five materials, the static work and the impact work for other materials can be estimated with sufficient accuracy for engineering purposes. If all the different materials used for bolts and nuts had been included the cost of this

investigation would have been prohibitive.

Through the courtesy and cooperation of the Ordnance Department of the U. S. Army the impact tests were made in the large Charpy machine at Watertown Arsenal. This machine 6 having a nominal capacity of 2,170 ft-lb (300 kg-m) is the largest impact machine of the Charpy type in this country. Nisley gives the weight of the pendulum as 212.46 lb, the radius to the center of gravity as 5.34 ft, the maximum starting angle as 160°, the free return angle corresponding to the maximum starting angle as 158°, the velocity of impact (maximum starting angle), as 28.65 fps, the (actual) capacity as 2,203.2 ft-lb, the distance from the center of the specimen to the axis of rotation as 6.56 ft, the period of oscillation as 2.77 seconds, and the weight of the block or tup as 5.07 lb.

⁴ Reports no. 2162 (Nov. 1929) and no. 2162A (Feb. 1930), Comparative Shock Resistance of Standard V Thread and Nut Connections and Dardelet Thread and Nut Connections. Columbia University (New

^{**}Report no. 2207 (June 1930), Effect of Length of Thread Exposure upon the Static Tensile Strength and Energy to Rupture of Standard V and Dardelet Thread and Nut Connections. Columbia University (New York, N. Y.).

**Harold A. Nisley, The relation between the dynamic and the static tensile tests. Army Ordnance 4, no. 20, 88-93 (Sept.-Oct. 1923).

For some of the materials it was estimated that specimens of the desired shape having a diameter greater than ¾ in. might not be ruptured in this impact machine. It was estimated, therefore, that in this machine bolts made from the strongest and most ductile material and having a diameter of ¾ in. could be tested and that the results obtained on bolts made from the weakest and least ductile material and having a diameter of ¾ in. would be sufficiently accurate.

As bolts having a diameter less than % in. are seldom used under severe service conditions, the sizes chosen for the specimens were %,

½, ½, and ¾ in. diameter.

To avoid the differences in work found by Beyer 7 caused by differences in the length of thread exposed between the head of the bolt

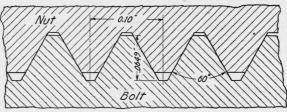


Figure 1.—Section of the American National coarse thread for a bolt having a diameter of ¾ inch.

and the face of the nut, all the tests were made with the thread exposure equal to one diameter of the bolt. It is believed that this is about the average thread exposure for commercial bolts under service conditions.

II. DESCRIPTION OF SCREW THREADS

The dimensions of the American National thread (coarse and fine) nuts and bolts are given in the Report of the National Screw Thread

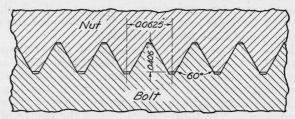


Figure 3.—Section of the American National fine thread for a bolt having a diameter of ¾ inch.

Commission, Misc. Pub. BS M89 (revised 1928). Those of the U. S. Standard thread are given in the Report of the Special Committee on a Uniform System of Screw Threads, Journal of the Franklin Institute, volume 49, pages 53 to 57 (1865) (adopted March 16, 1865, l. c. page 280).

The dimensional differences between the American National coarse thread and the U. S. Standard thread are so small that the bolts and

nuts are usually interchangeable.

⁷ Report no. 2207 (June 1930), Effect of Length of Thread Exposure upon the Static Tensile Strength and Energy to Rupture of Standard V and Dardelet Thread and Nut Connections. Columbia University, (New York, N. Y.).

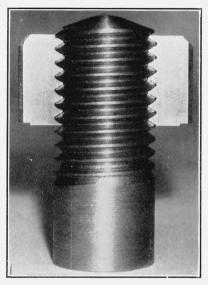


Figure 2.—American National coarse thread, diameter of bolt ¾ inch.



Figure 4.—American National fine thread, diameter of bolt ¾ inch.

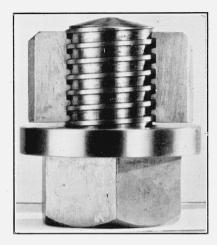


FIGURE 7.—The Dardelet thread, diameter of bolt $\frac{3}{4}$ inch. Position of the nut when it rotates freely on the bolt.

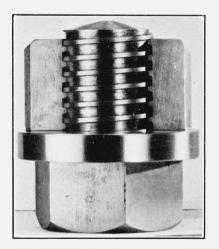


Figure 8.—Dardelet thread, diameter of bolt % inch. Position of the nut when thrust faces are in contact and the helical cones are elastically compressed, resisting unscrewing of the nut.

A drawing of the American National coarse thread for a ¾ in. bolt is shown in figure 1 and a photograph in figure 2. There are 10 threads per inch on this bolt. A drawing of the American National fine thread is shown in figure 3 for a ¾ in. bolt and a photograph in figure 4. There are 16 threads per inch on this bolt. For all diameters of bolt the pitch of the American National fine thread is less than that of the American National coarse thread.

Drawings of the Dardelet thread for a ¾ in. bolt are shown in figures 5 and 6, and photographs in figures 7 and 8. The inclination

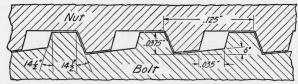


FIGURE 5.—Section of the Dardelet thread for a bolt having a diameter of ¾ inch.

Position of the nut when it rotates freely on the bolt.

of the sides or thrust faces of the threads is the same as that of the Acme thread, i. e., 14½° to the normal to the axis of the bolt. The surfaces at the major diameters are cylindrical with clearance between the nut and the bolt. The surfaces at the minor diameter of both the bolt and the nut are tapered, forming oblique helicoids with a generating angle of 6° to the axis of the bolt. For convenience these surfaces will, hereafter, be called "helical cones." When the nut is screwed on the bolt there is clearance between the threads, as shown in figures 5 and 7, and the nut rotates freely. When the nut

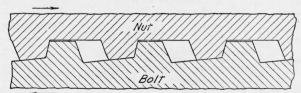


FIGURE 6.—Section of the Dardelet thread for a bolt having a diameter of ¼ inch.

Position of the nut when the thrust faces are in contact and the helical cones are elastically compressed resisting unscrewing of the nut.

is screwed down into contact with the parts to be clamped, the helical cones come into contact, and as the nut is tightened they are compressed elastically until the thrust faces of the threads come into contact as shown in figures 6 and 8. When the bolt is under the working tension most of the load is carried by the thrust faces. The elastic compression of the helical cones increases the frictional resistance of the nut to rotation.

The nominal dimensions of the threads and the number of threads for each size of specimen are given in table 1.

Table 1.—Nominal dimensions of threads and number of threads

NT-miles 1	Basic	America	n Nation thread	al coarse	Americ	an Natio	onal fine	Dar	delet thi	read
Nominal size of speci- men	major diameter for all threads	Number of threads per inch	Basic minor diameter	Ratio of diam- eters— minor: major	Number of threads per inch	Basic minor diam- eter	Ratio of diam- eters— minor: major	Number of threads per inch	Basic minor diam- eter	Ratio of diameters—minor:major
in. 38 1/2 58 3/4	in. 0.3750 .5000 .6250 .7500	16 13 11 10	in. 0. 2938 . 4001 . 5069 . 6201	0. 7835 . 8002 . 8110 . 8268	24 20 18 16	in. 0.3209 .4350 .5528 .6688	0. 8557 . 8700 . 8845 . 8917	12 10 8 8	in. 0.3250 .4400 .5500 .6750	0. 8667 . 8800 . 8800 . 9000

III. MATERIAL

1. KINDS OF MATERIALS

The materials for the specimens were chromium-nickel steel (heat treated), cold-rolled steel, monel metal, bronze, and brass.

All nuts were made from hexagonal bars except those of chromiumnickel steel, which were made from round bars because hexagonal bars were unobtainable from stock. The diameter of these round bars was equal to the distance across flats of hexagonal nuts of the same nominal size. As the nuts were only hand tight when assembled for the tests no flats were required. The sizes of the bars are given in table 2.

Table 2.—Size and Vickers numbers of material

	S	ize			Vickers n	umber	i dem
Purpose	Diameter, distance if hexago	if round; across flats, onal	Num- ber of bars	Maximum	Minimum	Average	Load
	Round	Hexagonal					
Bolts	in. 11/8 13/16 11/8		4 1 1 1 1	308 291 307 291 300	265 289 298 287 294	279 290 302 289 297	kg 50 50 50 50 50 50
Contract to the		Cole	d-Rolled	Steel	MIL VALLE Latin Trace	er encol Mario d Mare e	8221q 18221q
BoltsNuts	11/5	$ \begin{cases} $	5 1 1 1 1	211 254 226 217 231	202 251 218 217 228	206 252 222 217 230	50 50 50 50 50
		Mo	nel Met	al			
Bolts	11/2	$ \begin{cases} \frac{56}{13/16} \\ 1 \\ 1/8 \end{cases} $	4 1 1 1 1	277 202 202 204 204 204	254 199 199 203 189	262 200 200 204 196	50 50 50 50 50

Nuts

Table 2.—Size and Vickers numbers of material—Continued

Bronze Size Vickers number Diameter, if round; distance across flats, Num-Purpose if hexagonal bars Load Maximum Minimum Average Round Hexagonal kg. in. in. 214 50 Bolts. 11/8 193 50 1 183 $\frac{179}{202}$ 181 202 50 13/16 202 212 209 50 11/8 190 196 50 Brass 30 Bolts 11/8 $\frac{138}{158}$ $\frac{141}{160}$ 147 30 1 162

2. IDENTIFICATION

1

1

143

159

138

143

158

143

158

138

30

13/16

11/8

An impression was made with a knurl on the surface of each bar for its entire length and the number of the bar stamped upon it every inch. As a portion of the original surface of the bar remained on each finished bolt and nut, the material was identified by the pattern of the knurling and the bar by the number.

3. VICKERS NUMBERS

Pieces % in. long were cut from both ends of each bar and the cut surface machined and polished. Using a Vickers machine and a diamond pyramid, three identations were made on the polished surface of each piece and the Vickers numbers determined. A load of 30 kg was used for brass and a load of 50 kg for all the other materials. The Vickers numbers are given in table 2.

4. CHEMICAL COMPOSITIONS

The results of chemical analyses of the material are given in table 3. The samples were taken from the bars having the nearest to the average Vickers number for the bolt stock and for the nut stock of each material.

Table 3.—Chemical analyses of material

Element	Chron			rolled	Monel	metal	Bro	onze	Bra	ass
Reserve Stanford	Bolt	Nut	Bolt	Nut	Bolt	Nut	Bolt	Nut	Bolt	Nut
Carbon	Per- cent 0.37	Per- cent 0.33	Per- cent 0, 12	Per- cent 0.18	Per- cent	Per- cent	Per- cent	Per- cent	Per- cent	Per- cent
Manganese Phosphorus Sulphur	. 55	. 57	.84 .099 .12	.92 .115 .12	1.3	1. 2	0.9	1.2		
SiliconChromium	. 52	. 63	.01	.02			2.9	3		
Nickel Copper Zine 1	1. 28	1. 24			65. 9 31. 2	67. 2 29. 8	95. 9 . 15	95. 1 39	61. 7 34. 89	0.0 62.4 34.3
Iron Lead Tin					1.7	1.8	. 15	. 21	3.3 .1	3.1

By difference.

The chromium-nickel steel was similar to SAE 3140 and had been heat treated to comply with ASTM A96–27, class C. The manufacturer stated that each lot was tested and was guaranteed to comply with this specification. The cold-rolled steel was described by the manufacturer as "cold finished screw stock" similar to SAE 1112. It was also similar to the Bessemer screw-steel grade in ASTM A108–30.

The bronze was a copper-silicon-manganese alloy similar to FS QQ-C-591. For convenience it is called "bronze" in this paper. The brass was a free-cutting brass similar to grade B of FS QQ-C-611 and ASTM B16-29. For convenience it is called "brass" in

this paper.

5. MECHANICAL PROPERTIES

The tensile properties of rolled bars are usually obtained on ASTM standard specimens, having a diameter of ½ in. and a gage length of 2 in. One specimen of this kind with threaded ends was taken from each bar of bolt material and one from each of the three bars of nut material which had the lowest, the nearest to the average, and the highest Vickers numbers. There was not sufficient nut material to take a specimen from each bar. The ultimate tensile strength,

elongation, and reduction of area were determined.

Additional specimens were taken to determine accurately the proportional limit and the Young's modulus of elasticity. From each bolt and nut material one additional specimen was taken from the bar having the nearest to the average Vickers number and being, therefore, probably the most representative. For the bolt materials the additional specimen had a diameter of ½ in. and a gage length of 8 in. The ends were threaded. A Ewing extensometer (gage length 8 in.) was used on these specimens. As there was insufficient nut material for additional specimens having an 8-in. gage length, the additional specimens for the nut material were ASTM standard specimens of ½ in. diameter and 2 in. gage length.

Two Tuckerman optical strain gages 8 (gage length 2 in.), one on

each side, were used on these specimens.

The proportional limit and the Young's modulus of elasticity for the additional specimens were determined from stress-strain diagrams. The proportional limit reported was the stress at which the stressstrain curve deviated from a straight line by a strain of 0.00001 in./in.

All the specimens were tested in a screw-power, beam and poise testing machine having a capacity of 50,000 lb. Calibration of this machine showed that the errors in the indicated load did not exceed 1 percent.

The mechanical properties of the materials are given in table 4.

⁸ Proc. Am. Soc. Testing Materials, 23, part 2, 602-610 (1923). Engineering (London) 116, 222-223 (1923). World Eng. Congr. (Tokyo, Japan) Paper 335, p. 33-36.

Table 4.—Mechanical properties of material

Chromium-Nickel Steel

						Chromium-	Nickel Ste	31					
Purpose	Vickers number	Ultimate tensile strength	Elongation in 2 in.	Reduction of area	Proportional limit 1	Young's modulus of elasticity	Purpose	Vickers	Ultimate tensile strength	Elongation in 2 in.	Reduction of area	Proportional limit 1	Young's modulus of elas- ticity
Bolts	265 266 269 308	128,700	19. 0 20. 5	62. 9		1b/in.2	Nuts	{287 298 307	lb/in. ² 127, 600 130, 800 136, 100	15. 0 16. 0	59. 7 59. 2		1b/in.²
Av		130, 900	18. 0	58. 8	225, 000	228,500,000	Av		131, 500	16. 0	60.8	3 55, 900	329,500,000
						Cold-Ro	lled Steel						
Bolts	202 203 203 205	85, 600 79, 700 85, 200 80, 800	18. 5 18. 5 18. 5	54. 5 50. 9 55. 7			Nuts	217 231 254	83, 600 106, 700 104, 400	12. 0 14. 0	34. 0 48. 3		200,000,000
Av	[211	85, 100 83, 300	18. 0	52. 7	² 76, 000	230,400,000	Av		98, 200	14. 7	45. 8	3 66, 000	329,800,000
	1					Monel	Metal						
Bolts	$\begin{cases} 254 \\ 260 \\ 268 \\ 277 \end{cases}$	104, 200 105, 200 106, 600 117, 600	23. 5	66. 5 65. 2			Nuts	${ 189 \atop 199 \atop 204 }$	82, 800 78, 900 84, 900	45. 0 36. 0 39. 0	74.3		
Av		108, 400	22. 2			225,900,000	Av		82, 200	40.0	72.7	³ 21, 200	325,000,000
						Bro	onze		ha a				
Bolts	${ \begin{bmatrix} 193 \\ 205 \\ 224 \end{bmatrix} }$	80, 800 82, 100 95, 000	22. 0 17. 5	61.8 53.0			Nuts	${ 179 \atop 196 \atop 212 }$	83, 000 82, 200 93, 200	25. 0 29. 0 19. 0	67. 7 60. 3 61. 2		
	226 227	99, 800 97, 800		47.6			Av		86, 100	24.3	63. 1	³ 23, 800	313,600,000
Av		91, 100	19. 0	53. 1	2 15, 000	214,800,000							0.000
					4100	Br	ass						
Bolts	${ \begin{bmatrix} 138 \\ 138 \\ 141 \\ 141 \end{bmatrix} }$	57, 700 58, 800 57, 600 60, 700	25. 0 24. 5 25. 5 22. 0	45. 4 46. 2 37. 5			Nuts	$ \begin{bmatrix} 138 \\ 143 \\ 162 \end{bmatrix} $	58, 400 58, 800 68, 100	27. 0 21. 0 12. 0			
Av	147	58, 700	22. 0		² 20, 000	²13,500,000	Av		61,800	20. 0	44. 2	³ 18, 700	311,200,000
			No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa	100000000000000000000000000000000000000						Charles and		The second second	and the same of the same of

¹ Taken as the stress at which the stress-strain curve deviated from a straight line by a strain of 0.00001 in./in.

² Determined on 1 specimen, 8 in. gage length.

³ Determined on 1 specimen, 2 in. gage length.

IV. SPECIMENS

1. MANUFACTURE

The bars were sent to a large manufacturer of bolts and nuts who made the bolt specimens. A drawing of the specimens is shown in figure 9. The threads on the larger end were cut with a die directly in the surface of the bar without any other machine work. The diameter d was the nominal size of the specimen. The portion hav-

ing the diameter d was machined and then threaded. Six similar specimens were made for each of the three types of thread of each of the five materials and for each of the four diameters (d), a total of 360 specimens.

The American National threads were ordered to meet the specifications of class 3, medium fit. The American National threads, both coarse and fine, on the smaller ends of the specimens were cut by the manufacturer using a single point tool. The threads on the

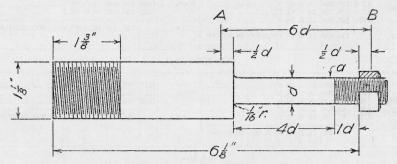


FIGURE 9.—Specimen bolts whose nominal diameters d at the smaller ends were \%, \frac{1}{2}, \frac{5}{8}, and \frac{3}{4} inch

The dimensions given in inches were the same for all the bolt specimens. The other dimensions may be obtained by multiplying the coefficient by the nominal thread diameter, d. Thus the distance between A and B for the specimens having ½ in. threads was $6 \times \frac{1}{2} = 3$ in.

smaller ends of the Dardelet bolt specimens were cut by the Dardelet Threadlock Corporation on specimens finished, except for the threads, by the manufacturer of the bolt specimens. The nuts having Dardelet threads were made by this corporation from material furnished by the Bureau. The nuts having American National threads, coarse and fine, were made at the Bureau. The bolt and nut for each specimen were of the same kind of material.

2. MEASUREMENT OF SPECIMENS

The results of the measurements on the specimens are given in tables 5 to 9, inclusive.

⁹ See Report of the National Screw Thread Commission, Misc. Pub. BS M141 (1933).

It was recognized that the strength of bolts depends considerably upon the minor diameter and that the minor diameter may not be within the permissible tolerances even though the pitch diameter is within the tolerances. Each bolt was measured, therefore, and both the minor diameter and the pitch diameter determined. For the minor diameter a Zeiss measuring microscope was used. In this instrument the microscope, having cross hairs in the field, was moved transversely by a screw micrometer having 100 divisions on the barrel of the micrometer. One rotation of the screw moved the micro-The difference between the micrometer reading when scope 1 mm. one of the cross hairs coincided with the root of the thread on one side of the bolt and then with the root on the other side, was taken as the minor diameter. The minor diameter in inches was computed from the metric value. It is believed that the error in these values did not exceed 0.0004 in. Values for the minimum minor diameter are not given in the Report of the National Screw Thread Commission; therefore these values for the American National bolts, both coarse and fine, were computed in accordance with footnote 1 on page 59 of the report. The differences between the actual minor diameter and the minimum minor diameter are given in the tables. A plus sign indicated that the actual diameter exceeded the minimum diameter and a minus sign that it was less. For the American National bolts the specimens for which this difference is minus did not comply with the requirements for minor diameter. For a few specimens the minor diameter exceeded the maximum allowable minor diameter. These values have been marked with a reference number. These specimens also did not comply with the requirements.

The dimensions of the Dardelet bolts were furnished by the Dardelet Threadlock Corporation. The differences for the minor diameter are the differences between the actual minor diameter and the nominal

minor diameter because no tolerances were given.

No pitch diameter was given for the Dardelet threads; therefore,

this diameter was not measured.

A screw micrometer having a suitable anvil and point was used for measuring the pitch diameter of the American National bolts. It is believed that the error in these readings did not exceed 0.001 in. The values which did not comply with the requirements as to pitch diameter after allowing for this possible error in the reading were marked with a reference number.

Neither the pitch of the bolt nor of the nuts was measured because it was believed that small differences in pitch had little effect upon the

tensile strength of the specimens.

For many of the bolts, it was noticed that the axis of the threads on the larger end did not coincide with the axis of the bolt. Each bolt, therefore, was screwed into a threaded holder, on which was mounted a dial micrometer in such a position that rotation of the specimen in the holder indicated the amount of eccentricity of the body of the bolt near the small threads, at a, figure 9. The position of maximum eccentricity was marked on the bolt. The angle between the axis of the large thread and the axis of the bolt was computed from the readings of the dial. Angles of the order of 0.1 min of arc could be detected. For some of the bronze and the brass bolts this angle was too small to be measured, being less than this value.

Table 5.—Results of measurements and tests; chromium-nickel steel

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
							3% In	ch American	National	Coarse						
			Bolt			N	ut			Impact			Stati	e		
Specimen			Differ- ence be-		Angle be-			Clearance		Impac	t work			Statio	work	Ratio Impact work (col 12)
no.	Bar no.	minor	tween ac- tual and minimum minor diameter	Pitch diam- eter	tween axis of large thread and axis of bolt	Thick- ness	Obliqui of bearin face	bolt by	Stretch, 5 diam- eters	Each speci- men	Aver- age	Stretch, 5 diam- eters	Maxi- mum load	Each speci- men	Aver- age	Static work (col 16)
1	2	in. 0. 2886 . 2882	in. -0.0019 0023	in. 0.332 .331	deg 0. 260 . 292	in. 0.327	deg mi	in. 7 0.0042 7 .0035	in. 0. 12 . 12	ft-lb 90 95	ft-lb	in.	lb	ft-lb	ft-lb	
3 4 5	1 4 1 4 1	. 2852 . 2858 . 2941 . 2862 . 2902	0023 0047 +. 0036 0043 0003	. 331 . 333 . 331 . 332	. 292 . 302 . 313 . 250 . 339	. 328 . 327 . 324 . 327 . 326	$egin{array}{c c} 0 & 1 \\ 1 & 1 \\ 0 & 5 \\ 0 & 1 \\ \end{array}$	$\begin{bmatrix} 3 & .0050 \\ 2 & .0030 \\ 2 & .0040 \end{bmatrix}$.12	90 100	94	0. 10 . 10	9, 370 9, 520	76. 4 78. 4	77.4	1, 21
							3% I	nch America	n Nationa	l Fine						
1 2 3	2 3 3	10.3244	+0.0060	0.348 .347 .347	0. 271 . 281 . 026	0. 328 . 326 . 327	0 1	7 .0043	0. 13	128 2 128 134	132					1.11
5 6	3 3 2	. 3224 . 3193 . 3224	+. 0040 +. 0009 +. 0040	. 348 . 348 . 348	. 391 . 287 . 391	. 329 . 326 . 326	0	7 .0042 7 .0045 7 .0045	. 16	134) 	0. 15 . 13	10, 810 12, 100	121 117] 119	

, Seagu	ಾ	
-	1.0	
	2	
~	•	
~		
1		
luisi		
~		

H	
Properties	
0	
3	
0	
3	
3	
6.	
ŝ	
of	
-	
-	
ω	
0	
-	
Bolts	

3	2 4 4 1 3 4	0. 3271 . 3251 . 3267 . 3255 . 3251 . 3267	+0.0021 +.0001 +.0017 +.0005 +.0001 +.0017		0.063 .130 .104 .115 .130 .099	0. 502 . 502 . 500 . 503 . 502 . 502	0 0 0 0 0 0 0	7 20 13 26 13 39	0.0005 .0020 .0004 .0020 .0014 .0008	0. 14 . 15 . 17 . 14 	128 134 140 128 	} 133	0. 14	10, 960	117 115	} 116	1. 15
1	4 3 3 3 3 3 3	0. 3917 . 3945 . 3925 . 3949 . 4043 . 3964	-0.0046 0018 0038 0014 +.0080 +.0001	0. 447 . 447 . 447 . 447 . 450 . 447	0. 554 . 309 . 394 . 389 . 384 . 251	0. 437 . 436 . 434 . 437 . 432 . 436	0 0 0 0 0 0	5 5 0 5 10 5	0. 0040 . 0042 . 0039 . 0044 . 0048 . 0035	0. 16 . 15 . 16 . 15	229 236 229 229	231	0.16	17, 800 17, 720	215 193	} 204	1. 13
							,	½ Inc	h America	n National	Fine						
12 34 5	1 2 2 1 4 3	0. 4354 . 4338 . 4346 . 4335 . 4386 . 4354	+0.0030 +.0014 +.0022 +.0011 +.0062 +.0030	0. 465 . 465 . 466 . 466 . 465 . 465	0. 357 . 352 . 330 . 357 . 309 . 357	0. 438 . 439 . 436 . 439 . 436 . 436	0 0 0 0	5 5 10 5	0.0015 .0012 .0012 .0009 .0030 .0012	0. 20 . 16 . 17 . 19	330 316 323 330	325	0. 20 . 19	20, 050 20, 110	306 296	} 301	1.08
									½ Inch I	Pardelet							
1	1 4 4 1 1 2	0. 4382 . 4394 . 4390 . 4390 . 4390 . 4390	-0.0018 0006 0010 0010 0010 0010		0. 128 . 112 . 160 . 117 . 112 . 096	0. 627 . 624 . 626 . 625 . 628 . 624	0 0 0 0 0	14 14 5 14 5 19	0.0003 .0010 .0005 .0007 .0008 .0014	0. 19 . 20 . 20 . 20	330 338 346 338	338	0. 15 . 12	20, 630 22, 150	263 219	} 241	1.40

36 Inch Dardelet

¹ Did not comply with requirements.

² Thread stripped—not included in the average.

Table 5.—Results of measurements and tests; chromium-nickel steel—Continued

1	2	3	4	5	6	7	8	3	9	10	11	12	13	14	15	16	17
							5/8	Inch	American	National	Coarse			V-1 1-10	i de la composición della comp		
4.		#160 #380 #380	Bolt		115 111 100	N	lut	14	7.0008 F PG07	30	Impact		0.79	Stati	le		8.40
Specimen		\$1008 (2.882-1)	Differ- ence be-		Angle be-	A. 1527 (Q.4			Clearance		Impac	Impact work			Statio	work	Ratio
no.	Bar no.	minor	tween ac- tual and minimum minor diameter	Pitch diam- eter	tween axis of large thread and axis of bolt	Thick- ness	Obliq of bea fac	ring	nut and bolt	Stretch, 5 diam- eters	Each speci- men	Aver- age	Stretch, 5 diam- eters	Maxi- mum load	Each speci- men	Aver- age	Impact work (col 12) Static work (col 16)
1	4	in. 0.5035	in. +0.0007	in. 0. 562	deg 0. 371	in. 0.548	0	min 8	in. 0.0055	in. 0. 22	ft-lb 485	ft-lb	in.	lb	ft-lb	ft-lb	
2 3 4	3 2 2	. 5016 . 5039 . 5020	0012 +. 0011 0008	. 562 . 563 . 562	. 497 . 344 . 382	. 543 . 546 . 548	0 0	4 4 0	. 0044 . 0057 . 0051	. 19 . 15 . 15	466 426 426	451					1. 18
5 6	3 1	. 5079	+. 0051 +. 0007	. 562 . 562	. 344	. 546 . 544	0	0 4	.0056				0. 17 . 17	28, 850 28, 710	382 384	} 383	
Q. T.		9005	14 obey	197		486	5,	ś Inc	h America	n Nationa	Fine				ida		
1 2 3	3 3 4	0. 5500 . 5500	+0.0002 +.0002	0. 586 . 586 . 586	0. 229 . 284 . 459	0. 545 . 546 . 546	0 0 0	15 4 4	0. 0043 . 0047 . 0053	0, 24 . 25	² 362 683 683	695					1.10
4 5 6	3 3 1	1.5579 .5512 .5516	+. 0002 +. 0019 +. 0014 +. 0018	. 587 . 587 . 588	. 491 . 349 . 448	. 546 . 545 . 547	0 0 0	0 19 4	. 0046 . 0046 . 0058	. 25	720] 	0. 25 . 25	32, 320 32, 670	622 624	} 623	1, 12
									5% Inch I	Dardelet							
1 2 3	3 3 2	0. 5512 . 5504 . 5500	+0.0012 +.0004 .0000		0. 131 . 115 . 087	0.749 .750 .750	0 0 0	15 15 11	0.0023 .0028 .0016	0. 25 . 26 . 21	609 637 555	605					1. 26
5 6	2 2	. 5502 . 5498 . 5507	+. 0002 0002 +. 0007		. 109 . 126 . 115	. 749 . 752 . 751	0 0 0	11 8 8	. 0013 . 0010 . 0012	. 25	618	, 	0. 17 . 16	35, 000 36, 070	496 469	} 482	1. 20

	4 2	0.6106 .6118 .6142 .6106	-0.0049 0037 0013 0049	0. 682 . 681 . 683	0. 274 . 425 . 302	0.656 .656 .654	0 0 0	0 0 3	0.0046 .0060 .0015	0. 23 . 25 . 22 . 24	895 895 885 856	883					1. 24
	4 3	.6161	+. 0006 0037	. 681 . 683 . 680	. 302 . 268 . 402	. 657 . 653 . 657	0 0	3 0	. 0049 . 0033 . 0060	. 24	800	, 	0.21	42, 800 41, 610	723 705	} 714	
		9111	- 0013 - 0013	318	518 S	37.07	3	4 Incl	n American	n National	Fine		0.00	o beo ena			
2	4 2	0. 6709 . 6665 . 6705	+0.0053 +.0009 +.0049	0. 709 . 706 . 707	0.369 .582 .268	0. 656 . 650 . 653	0 0	7 3 3	0.0058 .0033 .0035	0.31 .29 .27	1, 298 1, 201 1, 194	1, 241					
5 6	4 2 1	. 6713 . 6705 . 6720	+. 0049 +. 0057 +. 0049 +. 0064	.708 .707 .708	. 632 . 291 . 408	. 658 . 657 . 658	0 0 0	0 0 0	. 0040 . 0052 . 0035	.31	1, 270	J	0. 22	53, 500 48, 310	923 1, 130	} 1,026	1, 21
		78/d 1 58/m	10001 10000 10000	C 100 Y	198		6		¾ Inch I	Dardelet			07.30 07.30	10°000 4° 4100	2013		
2	2 4	0. 6775 . 6772 . 6762	+0.0025 +.0022 +.0012	3/13	0. 095 . 123 . 106	0. 874 . 874 . 873	0 0 0	10 7 13	0.0006 .0005 .0019	0. 26 . 30 . 32	1, 132 1, 260 1, 240	1,216					191
5	4	6772 6756 6750	+. 0012 +. 0022 +. 0006		.123	. 874 . 873 . 882	0 0	17 13	.0015	.31	1, 231	Julip	0. 25 . 24	47, 800 47, 930	998 926	} 962	1. 26

34 Inch American National Coarse

¹ Did not comply with requirements.

² Thread stripped—not included in the average.

Table 6.—Results of measurements and tests: cold-rolled steel

1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	16	17
		% 23	i i i i i i i i i i i i i i i i i i i						3% Inch Ar	nerican N	ational C	Coarse					
79			Bolt			N	Tut				Impact			Stati	ie		
Specimen	Bar		Differ- ence be-		Angle be-				Clearance between		Impac	et work			Statio	work	Ratio Impact work (col. 12)
no.	no.	minor	tween ac- tual and minimum minor diameter	Pitch diam- eter	tween axis of large thread and axis of bolt	Thick- ness	of be	quity aring ice	nut and bolt	Stretch, 5 diam- eters	Each speci- men	Aver- age	Stretch, 5 diam- eters	Maxi- mum load	Each speci- men	Aver- age	Static work (col. 16)
1 2 3	4 4 2	in. 0. 2862 . 2858 . 2866	in. -0.0043 0047 0039	in. 0.332 .332 .332	deg 0.099 .271 .240	in. 0.327 .327 .327	deg 0 0 0	min 7 7 7 0	in. 0.0051 .0053 .0046	in. 0. 10 . 10 . 11	ft-lb 70 64 70 70	ft-lb 68	in.	lb	ft-lb	ft-lb	1.34
56	5 5 2	. 2866 . 2866 . 2854	0039 0039 0051	. 332 . 331 . 331	. 177 . 208 . 438	. 326 . 326 . 325	0 0	7 0 7	. 0053 . 0060 . 0059	.11	70) 	0. 10 . 10	6, 370 6, 630	50. 9 50. 8	} 50.8	
							3	% Incl	h American	n National	Fine						
1 23	2 3 5	0. 3205 . 3201 . 3193	+0.0021 +.0017 +.0009	0.348 .348 .348	0. 073 . 182 . 156	0. 325 . 328 . 322	0 0 0	7 0 0	0.0031 .0031 .0039	0. 13 . 14 . 14	90 95 95	92					
4 56	1 5 3	.3205 .3197 .3197	+. 0021 +. 0013 +. 0013	. 348 . 348 . 348	. 276 . 250 . 255	. 323 . 323 . 322	0 0	7 0 7	. 0040 . 0028 . 0039	. 13	90	J	0. 13 . 13	7, 520 7, 250	75. 2 75. 5	} 75.4	1. 22

	uist
	- 32
	1
	7
-	07
	e.
	4
	e
	05
	of
	H
	Properties of Bolts
	its
	•
_	

									3/8 Inch I	Dardelet							
1 2 4 5 6	1 1 3 1 2 4	0. 3251 . 3255 . 3263 . 3255 . 3255 . 3255	+0.0001 +.0005 +.0013 +.0005 +.0005 +.0005		0. 109 . 161 . 104 . 083 . 099 . 156	0. 500 . 498 . 501 . 499 . 499 . 496	0 0 0 0 0 0	33 26 33 26 33 26	0. 0012 . 0005 . 0008 . 0004 . 0007 . 0008	0. 14 . 18 . 16 . 15	95 100 95 90	95	0. 13 . 14	7, 920 7, 210	82. 4 80. 5	} 81.4	1.17
							3.	í Inch	American	n National	Coarse						
1 2	2 4 2 3 1 3	0. 3921 . 3976 . 3964 . 3898 . 3976 . 3984	-0.0042 +.0013 +.0001 0065 +.0013 +.0021	0. 447 1. 452 1. 451 . 447 1. 451 1. 452	0. 304 . 245 . 373 . 261 . 250 . 426	0. 438 . 437 . 437 . 438 . 439 . 436	0 0 0 0 0	5 5 0 10 14 5	0. 0055 . 0015 . 0018 . 0060 . 0013 . 0003	0. 03 . 15 . 04 . 03	² 50 164 ² 60 ² 50	164	0. 12 . 13	12, 360 11, 690	116 121	} 118	1.39
							1	2 Inch	American	n National	Fine						
1	3 1 4 5 3 4	0. 4346 . 4303 . 4287 . 4342 . 4346 . 4338	+0.0022 0021 0037 +.0018 +.0022 +.0014	0. 466 . 466 . 466 . 466 . 466 . 466	0. 240 . 293 . 224 . 261 . 272 . 298	0. 439 . 429 . 437 . 433 . 433 . 433	0 0 0 0 0	5 5 5 5 10 5	0.0044 .0009 .0012 .0011 .0011	0. 19 . 17 . 19 . 18	229 216 223 236	226	0. 17 . 18	13, 300 13, 020	182 178	} 180	1. 26
									½ Inch	Dardelet							
3	5 1 5 1 2 4	0. 4386 . 4390 . 4377 . 4402 . 4386 . 4386	-0.0014 0010 0023 +.0002 0014 0014		0. 101 . 091 . 080 . 101 . 101 . 117	0. 627 . 626 . 627 . 628 . 626 . 627	0 0 0 0 0	14 19 10 10 10 10	0.0028 .0014 .0016 .0011 .0008 .0030	0. 20 . 21 . 21 . 20	236 250 250 236	243	0.16	14, 150 13, 030	187 175	} 181	1. 34

¹ Did not comply with requirements.

² Brittle failure—not included in the average.

		1	1	17	BLE 6.—1	tesuus c	n med	isure	emenis a	ma tests.	cota-1	rouea s	ieel—Co	nunuea	1		
1	2	3	4	5	6	7	8		9	10	11	12	13	14	15	16	17
		ener	1000		H3		5/8	Inch	American	National	Coarse			A 180	110	() ()	
		6 900 605 L	Bolt		100	N	Tut	10	0056 0056	30	Impact	243		Stati	ie		31
Specimen		0.4281	Differ- ence be-		Angle be-			2333	Clearance between	0.50	Impac	t work			Static	work	Ratio Impact work (col. 12)
no.	Bar no.	Actual minor diameter	tween actual and minimum minor diameter	Pitch diam- eter	tween axis of large thread and axis of bolt	Thick- ness	Obliq of bear fac	ring	nut and bolt	Stretch, 5 diam- eters	Each speci- men	Average	Stretch, 5 diam- eters	Maxi- mum load	Each speci- men	Aver- age	Static work (col. 16)
	1 5 5	in. 0.5047 .5047 .5043	in. +0.0019 +.0019 +.0015	in. 0. 562 . 562 . 562	deg 0.311 .388 .448	in. 0.547 .543 .541	deg 0 0 0 0	min 4 4 0	in. 0.0053 .0054 .0060	in. 0. 20 . 16 . 20	ft-lb 323 316 346	ft-lb 331	in.	lb	ft-lb	ft-lb	1. 35
	1 1 3	. 5118 . 5035 . 5051	+. 0090 +. 0007 +. 0023	. 562 . 562 . 562	. 388 . 464 . 229	. 545 . 546 . 546	0 0 0	4 4 4	. 0060 . 0055 . 0057	. 19	338) 	0.16 .17	18, 290 18, 680	231 257	344	
		3956 3950 6 3866	0050 - 0052 - 0052	100 100 100 100	2 (W 200) 201)		5,6	§ Inch	n Americai	n National	l Fine			7 85 ANN 1 3 75 THESE		118	
	4 3 5 2	0. 5492 . 5492 . 5481 . 5523	-0.0006 0006 0017 +.0025	0. 586 . 587 . 586 . 587	0. 295 . 448 . 055 . 229	0. 546 . 546 . 545 . 545	0 0 0	0 4 8 8	0. 0052 . 0050 . 0050 . 0049	0. 26 . 24 . 24 . 03	434 451 451 2 112	445					1. 28
	3 2	. 5484 . 5520	0014 0022	. 587 . 587	.311	. 546 . 546	0	8	. 0048				0. 21 . 19	21, 260 22, 410	355 342	348	

.5507	$ \begin{array}{c c} -0.0002 \\ +.0007 \\ .0000 \\ +.0012 \end{array} $		0. 142 . 131	0.750											
	+.0012		. 131 . 071 . 098 . 082 . 126	.752 .751 .753 .749 .749	0 0 0 0 0	4 8 8 11 11 15	0.0027 .0016 .0026 .0012 .0024 .0005	0. 25 . 26 . 23 . 25	418 460 418 443	435	0. 19	22, 020 22, 000	343 317	330	1.32
2001 - 2001 - 1000	# 0x32 ; # 0x15 # 0x15		18. 305 305		3/4	Inch	American	National (Coarse			19. 500 2 8. 220			
0. 6121 . 6114 . 6122 . 6088 . 6118 . 6118	-0.0034 0041 0033 0067 0037 0037	0. 682 . 682 . 681 . 681 . 681 . 682	0. 456 . 497 . 520 . 274 . 235 . 553	0. 653 . 655 . 655 . 655 . 652 . 652	0 0 0 0 0	3 3 0 0 3	0. 0042 . 0049 . 0057 . 0052 . 0043 . 0053	0. 25 . 03 . 03 . 03	564 ² 90 ² 106 ² 79	564	0. 19	28, 860 28, 800	438 426	432	1.31
15845 18641 18830	0080 0080 0080	1915 1915 1945	702 703 380	11120	3	4 Inc	h America	n National	Fine			Stano (
0. 6630 . 6643 . 6634 . 6639 . 6642 . 6630	-0.0026 0013 0022 0017 0014 0026	0. 707 . 708 . 707 . 707 . 707 . 708	0. 212 . 514 . 553 . 693 . 358 . 564	0. 656 . 650 . 655 . 656 . 650 . 655	0 0 0 0 0	7 0 3 7 3 3	0.0038 .0037 .0042 .0045 .0041 .0045	0. 14 . 27 . 10 . 05	² 418 768 ² 278 ² 128	768	0. 25	31, 420 31, 270	611 620	616	1. 25
Actual 1	ener ne- troj mej	ganted Liter.	Angle be-	TDRA-	ON H	dans.	34 Inch I	Dardelet	5,000		a Seriegi a duran-	71.121-	3,900		cara more sor
0. 6764 . 6764 . 6752 . 6762 . 6740 . 6756	+0.0014 +.0014 +.0002 +.0012 0010 +.0006		0. 095 . 145 . 134 . 134 . 123	0. 876 . 874 . 875 . 874 . 875 . 878	0 0 0 0 0	10 7 7 10 10	0. 0013 . 0015 . 0020 . 0012 . 0017	0.30 .30 .33 .30	856 817 836 826	834	0. 24 . 22	31, 800 31, 720	618 580	} 599	1.39
	6114 6122 6088 6118 6118 6118 0. 6630 6643 6639 6642 6639 6642 6630	6114	61140041 .682 .61220033 .681 .60880067 .681 .61180037 .681 .61180037 .681 .61180037 .682 .682 .682 .682 .682 .682 .682 .682	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6121	0.6121 -0.0034	6114 0041 682 497 655 0 3 .0049 .03 290 6122 0033 .681 .520 .655 0 3 .0057 .03 2106 .6088 0067 .681 .274 .055 0 0 .0052 .03 279 .6118 0037 .681 .235 .652 0 0 .0043 .6118 0037 .682 .553 .652 0 3 .0063 .6118 0037 .682 .553 .652 0 3 .0063 .6118 0037 .682 .553 .652 0 3 .0063 .6083 0013 .708 .514 .650 0 0 .0037 .27 .768 .6634 0013 .708 .514 .650 0 0 .0037 .27 .768 .6634 0012 .707 .553 .655 0 3 .0042 .10 2278 .6639 0017 .707 .583 .655 0 3 .0042 .10 2278 .6634 0014 .707 .358 .656 0 7 .0045 .05 2128 .6630 0026 .708 .564 .655 0 3 .0041 .6630 0026 .708 .564 .655 0 3 .0041 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 3 .0045 .6630 0026 .708 .564 .655 0 .308 .664 0010 .388 .388 .6762 0012 .388 .388 .6762 0012 .388 .388 .6762 0012 .388 .388 .6762 0012 .388 .388 .6762 0012 .388 .388 .6762 0012 .388 .388 .6762 0012 .388 .388 .6762 0012 .388 .388 .6762 0012 .388 .67656 0016 .388 .388 .67656 0016 .388 .	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6121 -0.0034	0.6121 -0.0034	0.6121 -0.0034	0.6121 -0.0034

² Brittle failure—not included in the average.

Table 7.—Results of measurements and tests: monel metal

1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	16	17
							3,	s Inc	h Americar	National	Coarse						
			Bolt			N	lut				Impact			Stati	le		
Specimen			Differ- ence be-		Angle be-				Clearance between		Impac	t work			Statio	work	Ratio Impact work (col. 12)
no.	Bar no.	Actual minor diameter	tween ac- tual and minimum minor diameter	Pitch diam- eter	tween axis of large thread and axis of bolt	Thick- ness	Obliof be fa	quity aring ce	nut and bolt	Stretch, 5 diam- eters	Each speci- men	Aver- age	Stretch, 5 diam- eters	Maxi- mum load	Each speci- men	Aver- age	Static work (col. 16)
	2	in. 0. 2874	in. -0.0031	in. 0.332	deg 0. 354	in. 0. 323	deg	min 13	in. 0.0018	in. 0.14	ft-lb 100	ft-lb	in.	lb	ft-lb	ft-lb	
	3 3 3	. 2874 . 2886 . 2870	0031 0019 0035	. 333 . 332 . 332	.313	.328 .326 .333	0 0	13 7 39	. 0021 . 0013 . 0011	. 14 . 14 . 14	100 100 100	100					1. 22
	3	. 2862 . 2882	0043 0023	. 332	. 469	. 336	0	52 39	.0012				0. 13 . 12	8, 300 8, 370	83. 2 81. 2	82.2	
								38 Inc	ch America	n National	Fine						
2	2 3	0. 3193 . 3185	+0.0009	0.348 .348	0. 271 . 260	0. 340 . 340 . 327 . 328	0	20 20	0. 0030 . 0040	0. 15 . 15	134 128] 131					
	3 3 3 2	. 3185 . 3201 . 3201 . 3212	+. 0006 +. 0017 +. 0017 +. 0028	. 348 . 347 . 348 . 348	. 250 . 292 . 302 . 167	. 327 . 328 . 338 . 326	0 0 0	20 20 0 26 20 39	. 0037 . 0035 . 0036 . 0033	. 16	134 128]	0. 16 . 15	9, 650 10, 600	117 125	} 121	1.08

							3/8 Inch I	Dardelet							
3 .3267 2 .3251 2 .3267 2 .3271 2 .3263 3 .3260	+0.0017 +.0001 0017 +.0021 +.0013 +.0010		0. 135 . 120 . 115 . 125 . 083	0. 503 . 501 . 501 . 500 . 503 . 512	0 0 0 0 0	26 13 13 13 13 13	0. 0004 . 0028 . 0005 . 0006 . 0006	0. 16 . 14 . 16 . 15	128 128 134 134	131	0. 14 . 15	10, 660 9, 680	122 121	} 122	1.08
					1/2	Incl	n American	n National	Coarse						
 2 0.3909 2 .3909 2 .3921 2 .3949 3 .3913 2 .3898	-0.0054 0054 0042 0014 0050 0065	0. 448 . 448 . 448 . 448 . 448 . 448	0. 256 . 320 . 245 . 288 . 224 . 234	0. 437 . 443 . 436 . 438 . 438 . 440	0 0 0 0 0 0	5 24 5 5 10 39	0. 0070 . 0030 . 0072 . 0073 . 0073 . 0033	0. 17 . 16 . 17 . 17	250 236 243 250	245	0. 18 . 16	15, 260 16, 070	216 199	} 208	1. 18
					ļ	½ Inc	h America	n Nationa	l Fine						
 2 0. 4331 2 . 4311 3 . 4342 2 . 4323 2 . 4319 2 . 4354	+0.0007 0013 +.0018 0001 0005 +.0030	0. 466 . 466 . 466 . 466 1 . 464 . 465	0. 192 . 309 . 277 . 299 . 213 . 352	0. 437 . 437 . 438 . 437 . 437 . 437	0 0 0 0 0 0	19 24 34 24 14 29	0. 0023 . 0023 . 0015 . 0015 . 0035 . 0035	0. 22 . 21 . 23 . 22	338 338 346 354	344	0. 18 . 19	18, 190 18, 870	268 292	} 280	1. 23
							½ Inc	h Dardelet	t						
2 0. 4377 2 . 4382 3 . 4386 3 . 4377 2 . 4382 2 . 4390	-0.0023 0018 0014 0023 0018 0010		0. 133 . 107 . 160 . 123 . 091 . 133	0. 629 . 628 . 623 . 626 . 623 . 627	0 0 0 0 0	10 19 10 14 19 19	0. 0025 . 0023 . 0016 . 0013 . 0026 . 0023	0. 21 . 20 . 24 . 23	323 293 330 323	317	0. 17 . 17	19, 180 18, 320	271 258	} 264	1. 20

¹ Did not comply with requirements.

Table 7.—Results of measurements and tests: monel metal—Continued

1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	16	17
7,1919	ray cój	ght en	(sed (s), ch				5	% Incl	n American	National	Coarse						
			Bolt			N	Tut		0075		Impact			Stati	c	Y-14	
pecimen		1000	Differ- ence be-		Angle be-				Clearance between		Impac	t work			Static	work	Ratio Impact work (col. 12
no.	Bar no.	Actual minor diameter	tween actual and minimum minor diameter	Pitch diam- eter	tween axis of large thread and axis of bolt	Thick- ness	of be	quity earing ace	nut and bolt	Stretch, 5 diam- eters	Each speci- men	Aver- age	Stretch, 5 diam- eters	Maxi- mum load	Each speci- men	Aver- age	Static work (col. 16)
	4 3 .4	in. 0. 4941 . 4941 . 4917	in. -0.0087 0087 0111	in. 1 0. 561 . 564 . 562	deg 0. 196 . 218 . 306	in. 0.548 .549 .548	deg 0 0 0	15 8	in. 0.0068 .0041 .0083	in. 0. 21 . 21 . 24	ft-lb 451 443 466	ft-lb 453	in.	lb	ft-lb	ft-lb	1, 21
	4 3 1	. 4921 . 4941 . 4917	0107 0087 0111	. 562 . 562 . 562	. 240 . 240 . 218	. 551 . 548 . 547	0 0	4 8 23	. 0073 . 0058 . 0052	. 21	451) 	0. 18 . 21	24, 580 23, 650	364 384	374	
		16123	00 po 00 po 00 po			140		5% Inc	ch America	n Nationa	Fine			78 500	1146		
	2 4 1	0. 5476 . 5488 . 5488	-0.0022 0010 0010	0. 588 . 586 . 588	0. 153 . 273 . 295	0. 545 . 547 . 548	0 0 0	8 4	0, 0033 . 0035 . 0044	0. 26 . 27 . 29	628 697 711	884	{				1, 26
	4 1 1	. 5480 . 5476 . 5472	0018 0022 0026	. 587 . 588 . 587	. 251 . 350 . 262	. 547 . 545 . 540	0 0	4	. 0029 . 0048 . 0038	. 28	702	J 	0. 25	27, 690 27, 520	526 558	} 542	1. 20

56	Inch	Dardelet

	1 4 4 1 4 4	0.5507 .5507 .5512 .5504 .5512 .5500	+0.0007 +.0007 +.0012 +.0004 +.0012 .0000		0. 044 . 136 . 066 . 055 . 147 . 098	0. 749 . 752 . 752 . 747 . 750 . 749	0 0 0 0 0	8 19 15 27 8 15	0. 0018 . 0015 . 0009 . 0010 . 0013 . 0014	0. 27 . 28 . 28 . 28	637 637 628 646	637	0. 23 . 22	28, 160 27, 900	528 506	} 517	1. 23
							3/4	Inch	American	National	Coarse						
2	1 1 4 1 1 1	0. 6071 . 6051 . 6039 . 6067 . 6051 . 6035	-0.0084 0104 0116 0088 0104 0120	0. 682 . 682 . 682 . 682 . 682 . 682	0. 358 . 347 . 246 . 140 . 212 . 380	0. 658 . 658 . 656 . 657 . 655 . 656	0 0 0 0 0 0	3 3 3 3 0	0.0085 .0082 .0075 .0073 .0070	0. 27 . 29 . 29 . 28	875 856 895 895	880	0. 26 . 26	35, 480 35, 080	718 714	} 716	1. 23
							3,	4 Inc	h America	n Nationa	l Fine						
2 5 8 8	1 4 1	0. 6630 . 6618 . 6622 . 6661 . 6634 . 6602	-0.0026 0038 0034 +.0005 0022 0054	0.708 .708 .708 .708 .708 .708	0. 391 . 324 . 402 . 212 . 134 . 414	0. 659 . 657 . 659 . 657 . 658 . 653	0 0 0 0 0 0	3 3 3 3 0	0.0034 .0037 .0022 .0029 .0020 .0019	0.35 .35 .34 .34	1, 250 1, 288 1, 231 1, 280	1, 262	0.31	40, 330 40, 270	977 976	} 976	1. 29
900	124.1	10000, VE							¾ Inch I	Dardelet							dina emple
1	1 1 1 1 1	0. 6762 . 6728 . 6756 . 6756 . 6752 . 6756	+0.0012 0022 +.0006 +.0006 +.0002 +.0006		0. 101 . 151 . 196 . 095 . 151 . 123	0. 878 . 877 . 875 . 865 . 869 . 880	0 0 0 0 0	13 10 20 10 13 10	0. 0011 . 0014 . 0006 . 0027 . 0026 . 0019	0. 34 . 36 . 35 . 35	1, 211 1, 240 1, 221 1, 211	1, 221	0. 33	41, 120 41, 450	1, 060 1, 030	} 1,045	1. 17

¹ Did not comply with requirements.

Table 8.—Results of measurements and tests: bronze

1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	16	17
							3,1	inch	American	National	Coarse						
			Bolt			N	ut				Impact			Stati	c		
Specimen			Differ- ence be-		Angle be-				Clearance		Impac	t work			Static	work	Ratio Impact work (col. 12)
no.	Bar no.	Actual minor diameter	tween actual and minimum minor diameter	Pitch diam- eter	tween axis of large thread and axis of bolt	Thick- ness	Oblic of be fa	quity aring ce	nut and bolt	Stretch, 5 diam- eters	Each speci- men	Aver- age	Stretch, 5 diam- eters	Maxi- mum load	Each speci- men	Average	Static work (col. 16)
	1	in. 0. 2866 . 2870	in. -0.0039 0035	in. 0.332 .331	deg 0. 031 . 036	in. 0.325 .321	deg 0 0	min 7 7	in. 0.0039 .0057	in. 0.13	ft-lb 70 50	ft-lb	in.	lb	ft-lb	ft-lb	
	2 2 2 2	. 2862 . 2870 . 2862 . 2838	0043 0035 0043 0067	1.330 .331 .331 1.329	. 031 . 068 . 083 . 047	. 322 . 325 . 329 . 326	0 0 0	7 7 7 7	. 0053 . 0048 . 0045 . 0056	.10	70 60	62	0. 10 . 07	7, 230 6, 930	58, 8 42, 8	} 50, 8	1. 22
								3% Inc	ch America	n Nationa	l Fine						
	1 1 2	0. 3201 . 3193 1. 3252	+0.0017 +.0009 +.0078	0. 347 . 347 . 347	0. 057 . 026 . 016	0. 330 . 329 . 328	0 0 0	7 13 7 7	0.0034 .0027 .0031	0. 14 . 15 . 13	90 90 90	92					1. 25
	$\begin{array}{c} 1 \\ 2 \\ 1 \end{array}$. 3236 . 3201 . 3193	+. 0052 +. 0017 +. 0009	. 347 1 . 351 . 347	.031 .016 .031	. 329 . 329 . 330	0 0	7 7 0	. 0033 . 0008 . 0035	. 17	100) 	0. 10 . 12	8, 410 7, 290	73. 4 74. 2	73.8	1, 20

									3/8 Inch	Dardelet							
1	1 1 1 2 2 2 3	0. 3260 . 3263 . 3260 . 3248 . 3263 . 3248	+0.0010 +.0013 +.0010 +.0002 +.0013 0002		0. 182 . 083 . 182 . 156 . 172 . 130	0. 503 . 500 . 502 . 501 . 501 . 501	0 0 0 0 0	46 13 59 33 33 20	0.0007 .0008 .0009 .0019 .0012 .0021	0. 18 . 14 . 18 . 12	100 95 100 95	98	0.11	8, 430 8, 310	82. 6 74. 2	} 78.4	1. 25
							1/2	Inch	American	National (Coarse						
1 2	1 4 2 4 2 1	0. 3906 . 3909 . 3957 . 3886 . 3921 . 3886	-0.0057 0054 0006 0077 0042 0077	0. 447 . 446 . 447 . 446 . 446 . 446	0. 000 . 021 . 000 . 000 . 000 . 021	0. 433 . 433 . 435 . 437 . 438 . 435	0 0 0 0 0	5 5 5 0 5	0.0049 .0046 .0045 .0057 .0053 .0054	0. 17 . 19 . 16 . 17	177 183 177 170	177	0. 13	12, 720 11, 360	136 131	} 134	1. 32
							3	½ Inc	h America	n Nationa	l Fine						
1	1 1 4 2 2 2 4	0. 4280 . 4272 . 4291 . 4291 . 4291 . 4295	-0.0044 0052 0033 0033 0033 0029	1 0. 464 . 466 . 466 . 466 . 466 . 466 . 466	0. 000 . 000 . 021 . 000 . 021 . 021	0. 435 . 437 . 435 . 437 . 436 . 437	0 0 0 0 0	5 5 0 5 5 0	0.0020 .0019 .0020 .0022 .0027 .0020	0. 24 . 24 . 21 . 18	250 250 236 229	241	0. 12 . 18	14, 460 13, 410	148 203	} 176	1. 37
								1	1 Inch Da	ardelet							
3	2 2 3 1 3 1	0. 4390 . 4394 . 4394 . 4380 . 4394 . 4390	-0.0010 0006 0006 0020 0006 0010		0. 133 . 128 . 112 . 128 . 133 . 117	0. 627 . 626 . 626 . 627 . 623 . 624	0 0 0 0 0	29 14 14 14 10 10	0. 0012 . 0010 . 0010 . 0018 . 0021 . 0017	0. 21 . 22 . 20 . 24	264 264 243 257	257	0. 18 . 20	15, 240 13, 350	227 230	} 228	1. 13

¹ Did not comply with requirements.

TABLE	8.—Results	of	measurements	and	tests:	bronze—Continued
-------	------------	----	--------------	-----	--------	------------------

1	2	3	4	5	6	7	8	3	9	10	11	12	13	14	15	16	17
							5,1	ś Inch	American	National	Coarse			20 5 40			
			Bolt			Nut				Impact				Stati			
Specimen			Differ- ence be-		Angle be-				Clearance between		Impact work				Static work		Ratio Impact work (col. 12)
no.	Bar no.	Actual minor diameter	tween actual and minimum minor diameter	Pitch diam- eter	tween axis of large thread and axis of bolt	Thick- ness	Oblic of be- fa	aring		Stretch, 5 diam- eters	Feeb	Aver- age	Stretch, 5 diam- eters	Maxi- mum load	Each speci- men	Aver- age	Static work (col. 16)
2	5 3	in. 0.4949 , 5028	in. -0.0079	in. 0.562	deg 0.000 .000	in. 0.548	0	min 4 4	in. 0.0045 .0055	in. 0.11	ft-lb 250	ft-lb	in.	lb	ft-lb	ft -lb	
6 5	5 4 5 4	. 5028 . 4933 . 5012 . 5035 . 5028	0005 0016 +. 0007 . 0000	1.561 1.560 1.561 1.562	. 000 . 000 . 000 . 000 . 022	. 539 . 547 . 549 . 546 . 545	0 0 0 0	0 8 4 11	. 0053 . 0052 . 0062 . 0042 . 0048	.16 .14 .22	346 250 362	302	0.08	23, 200 19, 170	178 264	} 221	1. 37
	ò		- 1955 14 - 1965 197952	781	100			5% Inc	h America	n Nationa	l Fine						
1 2 3 4 5	3 1 4 3 5 4	0. 5555 . 5551 . 5551 . 5551 . 5551 . 5567	+0.0057 +.0053 +.0053 +.0053 +.0053 +.0069	0. 587 . 587 . 587 . 587 . 587 . 586	0. 000 . 000 . 000 . 038 . 000 . 000	0. 544 . 551 . 547 . 545 . 545	0 0 0 0 0	8 4 8 11 4 27	0. 0039 . 0039 . 0039 . 0040 . 0045	0. 21 . 31 . 31 . 29	443 555 555 485	510	0. 14	26, 740 21, 650	331 512	} 422	1. 21

								5% Inch	Dardelet								
1 2 3 4 5 6	5 0. 5504 3 . 5520 3 . 5507 3 . 5512 4 . 5504 5 . 5507	+0.0004 +.0020 +.0007 +.0012 +.0004 +.0007		0. 147 .115 .093 .126 .071 .104	0. 752 . 751 . 749 . 752 . 752 . 750	0 0 0 0 0	0 19 15 11 4 15	0.0026 .0013 .0024 .0009 .0027 .0015	0. 18 . 22 . 20 . 28	418 443 434 485	445	0. 23	21, 350 25, 940	463 290	} :	376	1. 18
	3 3510 3 3510 5 3510	- 3000	110	1597 - 1597 -	10 M	3/4	Inch	American	National	Coarse		at the	12 (4.8) 12 (5.8)				
1 2	1 0.6122 5 6110 1 6043 3 6094 6106 3 6087	-0.0033 0045 0112 0061 0049 0068	0. 681 . 681 . 682 . 681 . 682 . 682	0. 134 . 034 . 000 . 453 . 486 . 000	0. 652 . 654 . 657 . 650 . 650 . 648	0 0 0 0 0	3 7 3 0 3 0	0.0041 .0054 .0038 .0043 .0040 .0042	0. 28 .18 .24 .17	697 520 573 502	573	0. 26	27, 680 32, 680	598 340	}	169	1. 22
1	3 399			- 101 - 101		3	4 Inc	h America	n National	Fine		10110	1 160				
	5 0. 6701 .6693 .6693 .6693 .6701 4 .6701	+0.0045 +.0037 +.0037 +.0041 +.0045 +.0045	0.707 .707 .707 .706 .707 .707	0. 039 . 078 . 000 . 179 . 000 . 268	0. 654 . 656 . 648 . 650 . 655 . 648	0 0 0 0 0	3 3 0 3 0 3	0.0038 .0031 .0045 .0055 .0020 .0037	0. 25 . 25 . 30 . 23	826 856 866 788	834	0.16	37, 800 31, 450	530 892	}	711	1. 17
								¾ Inch]	Dardelet								
1 2	4 0. 6764 4 . 6750 3 . 6756 4 . 6768 5 . 6764 5 . 6768	+0.0014 .0000 +.0006 +.0018 +.0014 +.0018		0. 173 . 151 . 168 . 129 . 123 . 173	0. 878 . 872 . 878 . 880 . 871 . 870	0 0 0 0 0	17 7 10 3 7	0. 0015 . 0017 . 0014 . 0007 . 0006 . 0009	0. 32 . 34 . 20 . 30	954 944 711 885	874	0. 27 . 15	38, 410 38, 590	863 511		387	1. 27

¹ Did not comply with requirements.

Table 9.—Results of measurements and tests: brass

1	2	3	4	5	6	7		8	9	10	11	12	13	14	15	16	17
							3,	ś Incl	a American	National	Coarse						
			Bolt			Nut					Impact			Stati			
Specimen			Differ- ence be-		Angle be-				Clearance between		Impac	t work			Static	work	Ratio Impact work (col. 12
no.	Bar no.	minor	tween ac- tual and minimum minor diameter	Pitch diam- eter	tween axis of large thread and axis of bolt	Thick- ness	of be	quity aring ice	nut and bolt	Stretch, 5 diam- eters	Each speci- men	Aver- age	Stretch, 5 diam- eters	Maxi- mum load	Each speci- men	Aver- age	Static work (col. 16)
	2	in. 0. 2862	in. -0.0043	in. 0.332	deg 0. 094	in. 0.322	deg 0	min 0	in. 0.0050	in. 0.07	ft-lb	ft-lb	in.	lb	ft-lb	ft-lb	
	2	2862 2854	0043 0051	.332 $.332$.078	. 327 . 324	0 0	7	.0052	.06	32 32 37 37 32	33				2. 21	
	2 2 2	. 2854 . 2850 . 2862	0051 0055 0043	. 331 . 332 . 332	. 094 . 104 . 047	. 329 . 322 . 321	0 0 0	7 7	. 0056 . 0049 . 0053	.07) 	0. 05 . 03	4, 300 4, 140	18. 2 11. 6	} 14.9	
								3⁄8 Inc	eh America	n National	l Fine						
	2 2 4	0. 3197 . 3212 . 3205	+0.0013 +.0028 +.0021	0.347 .348 .347	0. 089 . 099 . 094	0. 328 . 330 . 329	0 0	26 13 13 7	0.0023 .0021 .0013	0. 13 . 12 . 11	60 60 60	60					
	2 2 4	.3216 .3216 .3181	+. 0032 +. 0032 0003	. 347 . 347 . 346	. 063 . 089 . 073	.328 .330 .328	0 0 0 0	7 33 26	. 0030 . 0010 . 0027		60	J	0.08	5, 080 5, 480	35. 8 18. 4	} 27.1	2. 21

									36 Inc.	h Dardelet							
1	2 2 2 2 2 2 2 2	0. 3267 . 3263 . 3263 . 3260 . 3263 . 3267	+0.0017 +.0013 +.0013 +.0010 +.0013 +.0017		0. 177 . 156 . 250 . 198 . 172 . 162	0. 499 . 499 . 503 . 498 . 498 . 502	0 0 0 0 0	46 20 33 20 20 33	0.0008 .0009 .0005 .0009 .0010	0. 15 . 14 . 15 . 14	64 64 70 64	66	0.09	5, 150 5, 240	41. 7 36. 8	39. 2	1.68
							3,6	Inch	American	National (Coarse						
2 3 4	1 4 1	0.3957 .3917 .3929	-0.0006 0046 0034	0. 450 . 449 . 450	0. 112 . 059 . 053	0. 438 . 438 . 435	0 0 0	5 5 0	0. 0015 . 0039 . 0034	0.08 .09 .09	60 64 70	66					2. 62
6	1 1 1	. 3945 . 3941 . 3937	0018 0022 0026	. 450 . 450 . 450	. 064 . 053 . 064	. 435 . 438 . 441	0 0 0	5 5 5	. 0034 . 0032 . 0019	. 12	70	, 	0. 02 . 04	8, 170 8, 190	20. 9 29. 4	} 25. 2	
							,	½ Inc	eh America	n National	Fine						
1 2 3	4 1 1 1 1	0. 4303 . 4307 . 4303 . 4291	-0.0021 0017 0021 0033	0. 466 . 466 . 466	0. 075 . 059 . 080 . 096	0. 430 . 436 . 437 . 438	0 0 0	5 5 0 10	0. 0021 . 0025 . 0018 . 0027	0. 15 . 16 . 16 . 13	123 128 123 95	117					2.02
5	1 1	. 4295	0029 0025	1 . 469 . 466	. 075	. 435	0 0	10 5	.0016				0. 07 . 07	9, 180 9, 160	59. 8 56. 1	} 58	
									½ Inch	Dardelet							
3	1 1 4 1 1 1 4	0. 4386 . 4390 . 4386 . 4394 . 4386 . 4390	-0.0014 0010 0014 0006 0014 0010		0. 107 . 101 . 123 . 320 . 181 . 133	0. 628 . 625 . 625 . 625 . 625 . 628 . 627	0 0 0 0 0	19 10 19 24 19 19	0.0028 .0014 .0014 .0008 .0026 .0029	0. 16 . 18 . 15 . 19	134 140 128 140	136	0.09	9, 570 10, 190	77. 5 70. 5	} 74	1.84

¹ Did not comply with requirements.

Table 9.—Results of measurements and tests: brass—Continued

1	2	3	4	5	6	7	1	8	9	10	11	12	13	14	15	16	17
							5/8]	Inch A	American N	National Co	oarse						
			Bolt			N	lut			Impact				Stati	c		
Specimen			Differ- ence be-		Angle be-				Clearance between		Impac	t work			Static	work	Ratio Impact work (col. 12
no.	Bar no. Actual tween actual and diameter minimum minor diameter diameter diameter diameter. Pitch tween axis of large thread and axis of bolt Thickness of face	nut and bolt	Stretch, 5 diam- eters	Each speci- men	Aver- age	Stretch, 5 diam- eters	Maxi- mum load	Each speci- men	Aver- age	Static work (col. 16)							
l }	3 3 3	in. 0.5051 .5039 .5047	in. +0.0023 +.0011 +.0019	in. 1 0. 568 1 . 567 1 . 567	deg 0.022 .027	in. 0.546 .546 .543 .541 .548 .544	deg 0 0 0 0	min 0 0 4	in. 0.0019 .0021 .0021	in. 0.11 .11 .13 .11	ft-lb 117 123 134	ft-lb 124	in.	lb	ft-lb	ft-lb	
	3 3 3	. 5028 . 5024 . 5043	. 0000 0004 +. 0015	. 565 . 565 1 . 567	. 027 . 016 . 049 . 011 . 022	. 541 . 548 . 544	0 0 0	4 0 4	. 0046 . 0034 . 0018	:11	123	J 	0.04	12, 820 13, 100	45. 6 42. 8	} 44.2	2. 80
								5% Inc	ch America	n National	Fine						
} }	3 3 3	0. 5476 . 5472 . 5468	-0.0022 0026 0030	0. 587 . 586 . 587	0. 033 . 000 . 000	0. 546 . 548 . 546	0 0 0	4 8 0	0. 0049 . 0035 . 0049	0. 16 . 16 . 15	209 209 196	202					3.07
	3 4 3	. 5468 . 5472 . 5468	0030 0026 0030	. 587 . 587 . 587	.000 .044 .027 .022	. 546 . 546 . 547	0 0	4 4 4	. 0038 . 0037 . 0048	, 15	196	J	0. 04 . 05	16, 230 14, 610	61. 4 70. 4	65. 9	0.01

									5% Inch Da	rdelet							
1 2 3 4 5 6	4 3 3 3 3 4	0. 5512 . 5507 . 5507 . 5504 . 5516 . 5512	+0.0012 +.0007 +.0007 +.0004 +.0016 +.0012		0. 131 . 098 . 164 . 115 . 109	0. 753 . 750 . 754 . 753 . 750 . 755	0 0 0 0 0	11 4 11 8 8	0.0011 .0013 .0014 .0022 .0007	0. 18 . 19 . 20 . 18	177 236 236 216	216	0. 06 . 07	14, 490 16, 450	86. 4 112	} 99. 2	2. 18
							3/4	Inch	American	National (Coarse						
1	5 5 5 5 5 5	0. 6079 . 6130 . 6154 . 6157 . 6094 . 6083	-0.0076 0025 0001 +.0002 0061 0072	0. 681 1. 686 682 684 682 682	0. 022 . 000 . 084 . 000 . 000 . 134	0. 651 . 657 . 652 . 649 . 645 . 655	0 0 0 0 0 0	0 0 7 3 3 3	0.0064 .0017 .0053 .0020 .0046 .0054	0. 11 . 13 . 13 . 14	209 196 229 216	212	0. 03	18, 720 18, 900	53. 8 66. 4	} 60. 1	3.53
							3	4 Inc	h America	n National	Fine						
1	5 5 5 5 5 5	0. 6571 . 6602 . 6590 . 6622 . 6610 . 6606	-0.0054 0066 0034 0046 0050	1 0. 703 . 707 . 707 . 707 . 707 . 707 . 708	0. 073 . 028 . 017 . 073 . 000 . 000	0. 657 . 651 . 655 . 653 . 655 . 651	0 0 0 0 0 0	3 0 0 0 7 3	0.0025 .0052 .0059 .0055 .0061 .0047	0. 17 . 15 . 15 . 17	257 264 286 293	275	0.06	21, 650 21, 540	118 101	} 110	2. 50
									¾ Inch	Dardelet							
1	5 5 2 5 5 5 5	0. 6728 . 6724 . 6740 . 6728 . 6724 . 6740	-0.0022 0026 0010 0022 0026 0010		0. 140 . 151 . 140 . 179 . 157 . 112	0. 875 . 873 . 875 . 878 . 874 . 876	0 0 0 0 0 0	13 13 20 20 27 37	0.0032 .0023 .0013 .0027 .0054 .0032	0. 17 . 25 . 22 . 17	286 354 370 293	326	0. 06 . 06	21, 770 22, 130	118 134	} 126	2. 59

Did not comply with requirements.

The thickness of each nut was measured using a micrometer caliper. All of the American National nuts, both coarse and fine, complied with the requirements as to thickness for semifinished regular nuts. No tolerances were given for the Dardelet nuts.

The obliquity of the bearing face of each nut was measured, using the fixture shown in figure 10. The nuts were screwed on a slightly tapered mandrel, a, having a corresponding thread. The mandrel was placed on the centers, b—b, and the dial micrometer, c, was clamped so that the micrometer contact rested on the bearing face of the nut. The mandrel was then rotated by hand. The obliquity in degrees was computed from the difference between the maximum and minimum micrometer readings. If the difference was zero, the bearing face was perpendicular to the axis of the threads. All the nuts complied with the requirements for both semifinished and finished regular nuts.

The diametrical clearance between the bolt and nut was measured using the fixture shown in figure 11. The bolt was held firmly in the fixture by the clamping plate, a, and thumbscrew, b. The spindle of the dial micrometer rested on the nut directly over the axis of the bolt. A small upward force was applied to the nut by the fingers, while the nut was rotated back and forth through a small angle, the minimum reading being recorded. This operation was repeated with a small downward force applied to the nut. The difference between the two readings was taken as the diametrical clearance between the bolt and nut. In measuring the clearance between a bolt and nut having Dardelet threads the same procedure was followed except that a small axial force, toward the head of the bolt, was applied to the nut in addition to the upward and downward forces. This axial force kept the nut in the position of maximum clearance.

Insofar as could be determined from these measurements of clearance all of the American National specimens, both coarse and fine, complied with the requirements for pitch-diameter tolerance for class 3, medium fit. No tolerances were given for the Dardelet specimens.

V. METHOD OF TESTING

1. GENERAL

As the results of impact tests nearly always show greater variations than the results of static tests, four of the six similar specimens of each material, thread, and size were tested under impact tensile loading and the other two under static tensile loading. The distance between the shoulder on the bolt and the bearing face of the nut was five times the nominal diameter of the bolt. In this distance, the thread was exposed one diameter from the face of the nut, as shown in figure 9.

2. IMPACT TESTS

The impact tests were made in the Charpy machine shown in figures 12, 13, and 14, located at Watertown Arsenal, Mass. The capacity was 2,170 ft-lb (300 kg-m).

As shown in figure 14, the bolt, a, was screwed into the pendulum, b, the spacer, c, and the collar, d, were placed on the bolt, then the nut, e, was screwed on hand-tight. If the nuts on the Dardelet

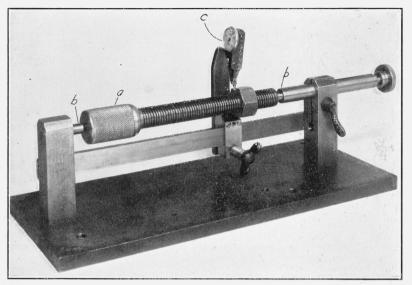


FIGURE 10.—Fixture used for measuring the obliquity of the face of the nut.

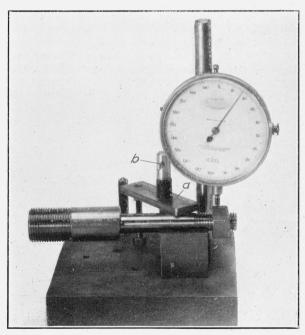
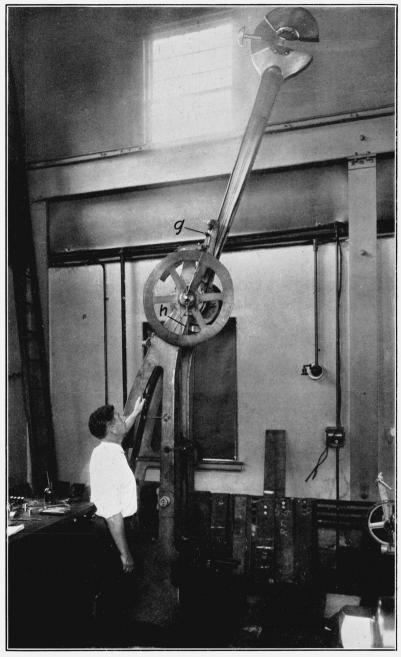



Figure 11.—Fixture used for measuring the diametrical clearance between the threads of the bolt and the threads of the nut.

 $\label{eq:figure 12.} \textbf{Figure 12.--Charpy impact machine, capacity 2,170 ft-lb (300 kg-m), pendulum raised.}$

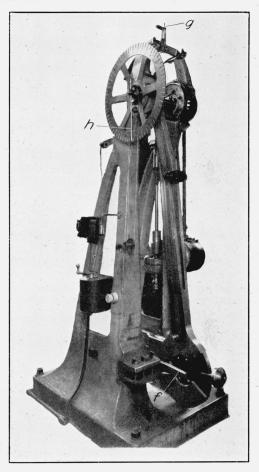
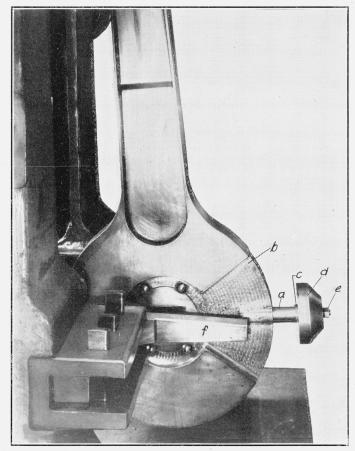
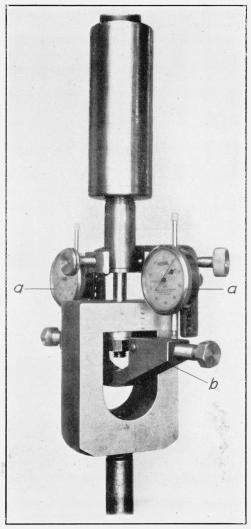
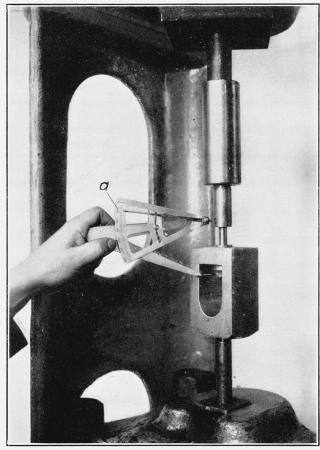





Figure 13.—Charpy impact machine, collar near the stops.

 $\label{eq:Figure 14.} \textbf{Figure 14.--Charpy impact machine, lower portion of pendulum with specimen in position.}$

 $\begin{tabular}{ll} Figure & 16. --Dividers & used & for & measuring & the & stretch & to & rupture & in & static & tensile \\ & & specimens. \end{tabular}$

specimens had been tightened as in actual use, the thrust faces of the threads would have been in contact. The work required to bring the thrust faces into contact was estimated from the load-stretch diagrams for the ½-in. bolts. For the chromium-nickel steel and the Monel-metal specimens this work was less than 1 percent of the area of the diagram and, therefore, of the static work. For the bronze and the brass specimens, the work was less than 1½ percent and for the cold-rolled steel specimens less than 2% percent. The values of the impact work should be decreased by about these percentages when estimating the impact work of Dardelet bolts which are under service tensile stress. The work required for American National bolts, both coarse and fine, to subject them to service tensile stress is much less than the work required for Dardelet bolts. Approximate computations based on the results of the static tests on ½ in. bolts showed that this work was less than one-half of 1 percent of the static work. For some of the steel specimens it was less than 1 percent of the static work.

A different spacer, c, was used for the specimens of each nominal diameter. The spacer was machined so that the sum of its thickness and the thickness of the collar was equal within a tolerance of 0.02 in.

to five times the nominal diameter of the bolt.

If there was a measurable angle between the axis of the large thread and the axis of the bolt, the bolt was rotated in the pendulum until the axis lay in a vertical plane. The collar, therefore, struck both stops, f, simultaneously. A prick punch was used to mark the

position of the nut on the bolt.

The pendulum was raised until it engaged the latch release, g, figures 12 and 13, where it was held at an angle of 70° above the horizontal. The pointer, h, was set at zero and the latch tripped, releasing the pendulum and allowing it to swing downward. The collar struck the stops and the specimen ruptured. Due to its residual energy, the pendulum continued past the vertical position. The pointer registered the maximum angle of swing after rupturing the bolt. This angle was read to the nearest ½° and the residual energy computed. The impact work required to rupture the specimen was obtained by subtracting the residual energy of the pendulum from its initial energy.

Some of the energy was expended in stretching the portion of the bolt which had not been turned down. The length of this portion differed for each size of specimen because the overall lengths of the bolts were the same and the length of the reduced portion was five times the nominal diameter or size. Approximate calculations based upon the materials having the highest ratio of ultimate strength to Young's modulus of the material and the greatest static load sustained by any specimen showed that this work could in no case exceed 2 percent of the total impact work for any of the ¾ in. specimens. This percentage would decrease as the nominal diameter of

the specimen decreased.

With the nut in the position indicated by the punch mark, the length of the ruptured specimens from the shoulder on the bolt to the bearing face of the nut was measured. The stretch was obtained by subtracting the initial distance (five times the nominal diameter

of the bolt) from this distance.

3. STATIC TESTS

The static specimens were tested in a screw-power, beam and poise testing machine having a capacity of 50,000 lb. The extensometer shown in figure 15 was attached to the specimen and simultaneous readings of the load and dials taken until the stretch increased much more rapidly than the load. The extensometer was then removed to prevent injuring the dial micrometers. Two micrometers, a-a, mounted on a collar were attached to the bolt by three screws, one-half of the diameter of the bolt above the shoulder. The clamp, b, was fastened by horizontal knife edges to the nut, one-half of the nominal diameter of the bolt below the bearing face of the nut. The gage length was therefore six times the nominal diameter of the bolt. The spindles of the micrometers rested on the horizontal upper surface of the clamp. The dial micrometers were calibrated by using a bench screw micrometer. It is believed that the error of the extensometer did not exceed 0.001 in.

The stretch obtained from the extensometer readings was taken as the stretch between the shoulder on the bolt and the face of the nut because the deformations at the shoulder of the bolt and of the

nut were so small as to be negligible.

Before the extensometer was removed, the points of a modified divider shown in figure 16 were applied to the specimen and the stretch for several loads was read simultaneously on both extensometer and divider. The points of the divider were placed in prick punch marks on the specimen. These marks were in the horizontal planes at which the extensometer was attached. The stretch of the specimen was indicated on the scale, a, by the lever, which had a ratio of 10:1. This divider was calibrated using a bench screw micrometer. It is believed that the error of the readings of the divider did not exceed 0.005 in. Readings of the divider and corresponding loads were taken as the stretch increased until the specimen ruptured.

VI. RESULTS

The results of the measurements and tests of the specimens are

given in tables 5 to 9, inclusive.

From the load-stretch readings, diagrams were plotted for each static specimen. Diagrams for one of the two duplicate specimens of all materials having nominal diameters of ½ in. are shown in figure These are typical of those for the other specimens. For all the specimens having American National fine and Dardelet threads, the stretch was greater than for those having American National coarse threads. For low loads the curves of the American National threads, coarse and fine, show that the stretch is approximately proportional to the load. For loads up to a few thousand pounds the stretch of the Dardelet specimens was much greater than that for the specimens having American National threads, due to axial movement of the nut on the bolt until the thrust faces came into contact. For higher loads, after the thrust faces came into contact, the stretch increased at about the same rate as for the specimens having American National threads. The static work was computed from the area under the load-stretch curve.

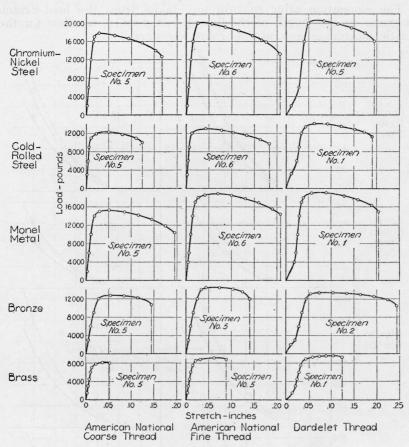


FIGURE 17.—Static load-stretch diagrams for ½-inch bolts.

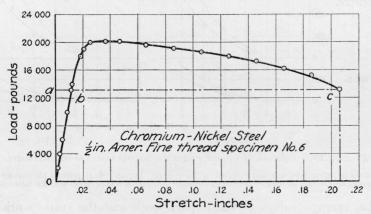


FIGURE 18.—Typical static load-stretch diagram.

The elongation after rupture was taken as the length of the line, b-c, to allow for the elastic shortening a-b, of the broken specimen.

The elongation after rupture was taken from the load-stretch diagrams as the length of the line, b-c, figure 18, to allow for the elastic shortening, a-b, of the broken specimen.

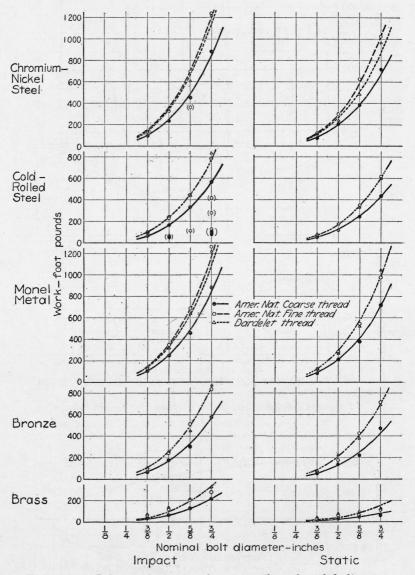


Figure 19.—Relation of impact and static tensile works to bolt diameter.

The average values of the impact work and the static work are shown graphically in figure 19, and the average values of the maximum static loads in figure 20.

The values in parentheses were not included in the average. Impact.—Each point is the average work for 4 specimens, except for the steel specimens. Static.—Each point is the average work for 2 specimens.

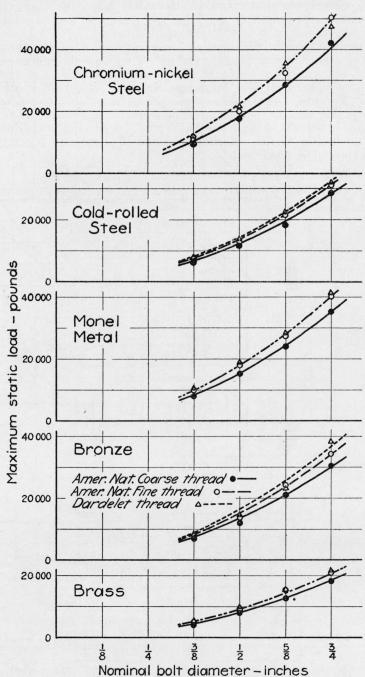


FIGURE 20.—Relation of maximum static loads to bolt diameters.

Each point is the average maximum load for 2 specimens.

VII. DISCUSSION

1. IMPACT TESTS

Of the 240 impact specimens all but two fractured in the threads. These two failed by stripping the threads. They were chromium-nickel steel, %-in. American National fine thread, specimen no. 2, and chromium-nickel steel, %-in. American National fine thread, specimen no. 1. The work for the former was the same as the lowest value for the other similar specimens. The work for the latter, however, was only 53 percent of the lowest value for the other similar specimens. No explanation of this unusual behavior of these two chromium-nickel specimens was found.

Table 10.—Differences in impact works for similar specimens

[The average impact works are given in tables 5 to 9, inclusive. The differences not in parentheses are only for the specimens included in the average. The differences in parentheses are for all the specimens including those having stripped threads and brittle failures.]

Chromium-Nickel Steel

	Maximum d	ifferences from	the average
Nominal diameter	American National coarse thread	American National fine thread	Dardelet thread
Inch 3/8 1/2 5/8 3/4	Percent +6. 4 +2. 2 +7. 5 -3. 1	Percent -3.0(-3.0) -2.8 +3.6(-47.9) +4.6	Percent +5.3 ±2.4 -8.3 -6.9
	Cold-Ro	lled Steel	
3/6 1/2 5/8 3/4	$ \begin{array}{c c} -5.9 \\ 0.0(-69.5) \\ \pm 4.5 \\ 0.0(-86.0) \end{array} $	$\begin{array}{c} +3.3 \\ \pm 4.4 \\ -2.5(-75.0) \\ 0.0(-83.3) \end{array}$	±5.3 ±2.9 +5.7 +2.6
	Mone	Metal	Bronze
3/8 1/2 5/6 3/4	0.0 -3.7 +2.9 -2.7	±2.3 +2.9 -8.2 -2.5	$\begin{array}{c} \pm 2.3 \\ -7.6 \\ \pm 1.4 \\ +1.6 \end{array}$
	Bro	onze	
3/8 1/2 5/8 3/4	$\begin{array}{c c} -19.4 \\ -4.0 \\ +19.9 \\ +21.6 \end{array}$	+8.7 -5.0 -13.1 -5.5	$ \begin{array}{c} -3.1 \\ -5.4 \\ +9.0 \\ -18.6 \end{array} $
	В	rass	eepic
3/8 1/2 5/8 3/4	+12.1 -9.1 +8.1 +8.0	$0.0 \\ -18.8 \\ +3.5 \\ \pm 6.5$	+6. 1 -5. 9 -18. 0 +13. 5

For the cold-rolled steel specimens having American National threads, coarse and fine, the impact works were very much more erratic than those for the specimens of other materials. For ten of the cold-rolled specimens the fracture was like that of a brittle

material and the impact work was much lower than that of the similar specimens. Typical specimens are shown in figure 21. For each pair the one on the left had a brittle failure and the one on the right a ductile failure. It is evident that the reduction of area was much greater for the specimens on the right. Metallurgical examination of these cold-rolled steel specimens gave no conclusive reason for the differences in behavior. A careful study of the threads on representative specimens, particularly of the minor diameter and the profile and surface of the thread at the root, suggested no explanation. However, the fact that none of the Dardelet specimens showed brittle failures suggests that there might have been a notch effect under impact loading for the specimens having American National threads.

The maximum percentage differences from the average impact works for each group of similar specimens are given in table 10. As noted above, very great differences were found in the brittle failures of the cold-rolled steel, and in one of the stripped-thread failures of the

chromium-nickel steel.

Excluding these failures, all of which occurred in specimens having American National threads, the remaining differences were about the same for all three types of thread.

The bronze and brass specimens were the least uniform.

The ratios of the average impact works are given in table 11. For all of the materials, the impact work for bolts having American National coarse threads was less than the impact work for bolts of the same size and material having American National fine threads. The ratios for all of the bolts except the brass bolts were about the same. The ratios for the brass bolts were somewhat lower than for bolts of the other materials.

Table 11.—Ratios of impact works

	Specimen	Ratios o	f average impa	ct work	
Nominal diameter	Material	American National coarse: American National fine	American National fine: Dar- delet	Dardelet: American National coarse	
Inch 36	Chromium-nickel steel	. 74 . 76 . 67	1 0. 99 . 97 1. 00 . 94 . 91	1. 42 1. 40 1. 31 1. 58 1. 97	
接 图 :	Chromium-nickel steel Cold-rolled steel Monel metal Bronze Brass Brass Cold Bras	2 . 73 . 71 . 73	. 96 . 93 1. 09 . 94 . 86	1. 46 ² 1. 48 1. 29 1. 45 2. 06	
56	Chromium-nickel steel Cold-rolled steel Monel metal Bronze Brass	² .74 .66 .59	1 1. 15 2 1. 02 1. 07 1. 15 . 93	1. 34 1. 31 1. 41 1. 47 1. 74	
34	Chromium-nickel steel Cold-rolled steel Monel metal Bronze Brass	2 · 73 · 70 · 69	1. 02 ² . 92 1. 03 . 95 . 84	1. 38 ² 1. 48 1. 39 1. 53 1. 54	
Average for all diameters	Chromium-nickel steel. Cold-rolled steel. Monel metal Bronze Brass	2 · 74 · 71 · 67	1 1. 03 2 . 96 1. 05 1. 00 . 88	1. 40 ² 1. 42 1. 35 1. 51 1. 83	

Stripped threads not included in the average (see table 5).
 Brittle failures not included in average (see table 6).

The impact work for bolts having American National fine threads was sometimes greater and sometimes less than for bolts having Dardelet threads.

For all of the materials the impact work for bolts having Dardelet threads was greater than the impact work for bolts of the same size and material having American National coarse threads. The ratios for the brass bolts were considerably greater than the ratios for the bolts of the other materials.

2. STATIC TESTS

Of the 120 static specimens, all fractured in the bolt threads. There were no brittle failures and in no case did the threads strip.

The maximum percentage differences from the average static works for similar specimens are given in table 12. For each of the threads these differences were small for the chromium-nickel steel, cold-rolled steel, and monel metal specimens. The differences for the bronze and the brass bolts were considerably greater.

Table 12.—Differences in static works for similar specimens

	Difference	s from the aver	rage 1		
Nominal diameter	American	Dardele			
	Coarse thread	Fine thread	thread		
Inch	Percent	Percent	Perceut		
3/8	1.3	1.7	0.9		
1/2	5.4	1.7	9. 1		
3/8 1/2 5/8 3/4	1.3	10.1	2. 9 3. 7		
	Cold-Rol	led Steel			
3/8	0. 2	0.3	1. 2		
1/2	2.5	1.1	3. 3		
3/8 1/2 5/8 3/4	5. 3	2.0	3. 9 3. 2		
%4	1.4	.8	3. 2		
	Monel	Metal			
3/8	1. 2	3. 3	0.8		
1/2	4.3	4. 3 3. 0	2. 6 2. 1		
3/8 1/2 5/8 3/4	4.3 2.7 .3	3.0	1.4		
	Bro	onze			
3/8	15. 7	0. 5	5. 1		
1/2	2.2	15. 9	. 9		
3/8 1/2 5/8 3/4	19. 4 27. 5	21. 6	23. 1 25. 6		
%	21.5	25. 9	25. 6		
	Br	ass			
3/8 1/2 5/8 3/	22. 1	32, 1	6. 4		
1/2	17.0	3.3	4.7		
3/8	3. 2 10. 5	6. 8 8. 2	12. 9 6. 3		

¹ As there were two similar static specimens the positive and the negative differences were the same numerically.

Spec. No. 4 3
Diameter 5% in.
Thread Am. Nat'l Fine

3/4 in. Am. Nat'l Fine 4 1 3/4 in. Am. Nat'l Coarse

Figure 21.—Cold-rolled steel specimens showing, for each pair, typical brittle failures on the left and typical ductile failures on the right.

The ratios of the average static works and of the average maximum static tensile loads are given in table 13. For all of the materials the static work for bolts having American National coarse threads was less than the static work for bolts of the same size and material having American National fine threads. The ratios for all of the bolts except the brass bolts were about the same. The ratios for the brass bolts were somewhat lower than for bolts of the other materials. The static work for bolts having American National fine threads was sometimes greater and sometimes less than for bolts having Dardelet threads. For all of the materials the static work for bolts having Dardelet threads was greater than the static work for bolts of the same size and material having American National coarse threads. The ratios for the brass bolts were much greater than the ratios for the bolts of the other materials.

Table 13.—Ratios of static works and maximum static loads

Specimen		Ratios o	Ratios of average static work			Ratios of average maximum static loads		
Nominal diameter	Material	American National coarse: American National fine	American National fine: Dardelet	Dardelet: American National coarse	American National coarse: American National fine	American National fine: Dardelet	Darde- let: American National coarse	
Inch 3/8	(Chromium-nickel steel_Cold-rolled steel_Monel metal_Bronze_Brass_	0. 65 . 67 . 68 . 69 . 55	1. 03 . 93 . 99 . 94 . 69	1. 50 1. 60 1. 48 1. 54 2. 63	0. 82 . 88 . 82 . 90 . 80	1. 04 . 98 1. 00 . 94 1. 02	1. 17 1. 16 1. 22 1. 18 1. 23	
1/2	Chromium-nickel steel_ Cold-rolled steel Monel metal_ Bronze Brass	. 68 . 66 . 74 . 76 . 43	1. 25 . 99 1. 06 . 77 . 78	1. 18 1. 53 1. 27 1. 70 2. 94	. 88 . 91 . 85 . 86 . 89	. 94 . 97 . 99 . 97 . 93	1. 20 1. 13 1. 20 1. 19 1. 21	
5/8	Chromium-nickel steel_ Cold-rolled steel Monel metal Bronze Brass	. 61 . 70 . 69 . 52 . 67	1. 29 1. 05 1. 05 1. 12 . 66	1. 26 1. 35 1. 38 1. 70 2. 24	. 89 . 85 . 87 . 88 . 84	. 91 . 99 . 98 1. 02 1. 00	1. 24 1. 19 1. 16 1. 12 1. 19	
3/4	Chromium-nickel steel_ Cold-rolled steel Monel metal Bronze Brass	.70 .70 .73 .66 .55	1. 07 1. 03 . 93 1. 03 . 87	1. 35 1. 39 1. 46 1. 46 2. 10	. 83 . 92 . 88 . 87 . 87	1. 06 . 99 . 98 . 90 . 98	1. 13 1. 10 1. 17 1. 28 1. 17	
Average for all diameters	Chromium-nickel steel Cold-rolled steel Monel metal Bronze Brass	. 66 . 68 . 71 . 66 . 55	1. 16 1. 00 1. 01 . 96 . 75	1. 32 1. 47 1. 40 1. 60 2. 48	. 86 . 89 . 86 . 88 . 85	. 98 . 98 . 99 . 96 . 98	1. 18 1. 14 1. 19 1. 19 1. 20	

For all of the materials, the maximum static load for bolts having American National coarse threads was less than the load for bolts of the same size and material having American National fine threads. The maximum static loads for bolts having American National fine threads were about the same as those for bolts having Dardelet threads. For all of the materials, the maximum static load for bolts having Dardelet threads was greater than the load for bolts of the same size and material having American National coarse threads.

The ratios for the maximum static loads for all of the materials were

about the same.

The static efficiency of a bolt may be defined as the ratio of the maximum tensile load of the bolt to the maximum tensile load of the shank of the bolt. The latter was computed by multiplying the ultimate strength of the material by the cross-sectional area of the The average bolt efficiencies and the ratios of the area at the root of the thread to the area of the shank are given in table 14. For all of the materials the bolt efficiency is greater than the ratios of the areas, showing that the tensile strength of the threaded portion of the bolts was greater than that of a cylindrical specimen having a diameter the same as the minor diameter of the bolt.

Table 14.—Static bolt efficiencies

		Material						
Nominal diameter	Thread	Chrome- nickel steel	Cold- rolled steel	Monel metal	Bronze	Brass	Root area, shank area	
		Bolt efficiency !					-lacting/	
Inch		Percent	Percent	Percent	Percent	Percent	Percent	
3/8	American National coarse	65. 3	70. 6	70. 3	70. 3	65. 2	61. 4	
	American National fine	79. 2	80. 2	85. 3	78. 0	81. 5	73. 2	
	Dardelet	76. 4	82. 2	85. 7	83. 2	80. 2	75. 1	
1/2	American National coarse_	69. 1	73. 5	74. 3	67. 3	71. 1	64. 0	
	American National fine	78. 1	80. 5	87. 9	77. 9	79. 7	75. 6	
	Dardelet	83. 2	83. 1	88. 9	79. 9	85. 8	77. 4	
5/8	American National coarse_	71. 7	72. 3	73. 2	75. 8	72. 1	65. 8	
	American National fine	80. 9	85. 5	83. 8	86. 6	85. 8	78. 2	
	Dardelet	88. 5	86. 1	85. 1	84. 6	86. 0	77. 4	
34	American National coarse_	73. 0	78. 4	74. 4	75. 0	72. 7	68. 4	
	American National fine	88. 0	85. 2	85. 0	86. 0	83. 4	79. 8	
	Dardelet	82. 8	86. 3	87. 0	95. 7	84. 8	81. 0	

¹ The ratio of the maximum tensile load of the bolt to the computed maximum tensile load of the shank

3. COMPARISON OF IMPACT AND STATIC PROPERTIES

Inspection of the broken specimens showed that most of the stretch occurred in the threaded portion one diameter in length between the bearing face of the nut and the shoulder of the bolt. Consequently, most of the work was absorbed by this portion. The work absorbed would be expected to be proportional to the product of this "effective length" by some area approximating the area at the root of the thread. For comparison it was decided to compute the "specific work" for both impact and static specimens as the ratio of the average values of the work given in tables 5 to 9 by the "effective root volume" taken as the length, 1 nominal diameter, times the cross-sectional area at the root of the thread computed from the nominal minor diameter. The specific work for the impact and the static specimens was then obtained by dividing the average values of the work by the effective root volume. The "effective stretch" was obtained by dividing the average stretch for similar specimens by the nominal diameter. The values for specific work and effective stretch are shown in figure 22.

The average values, for each material, of effective stretch and specific work for the bolts having American National fine threads are about the same as those for bolts having Dardelet threads. Except for the brass bolts the values for each material and type of thread

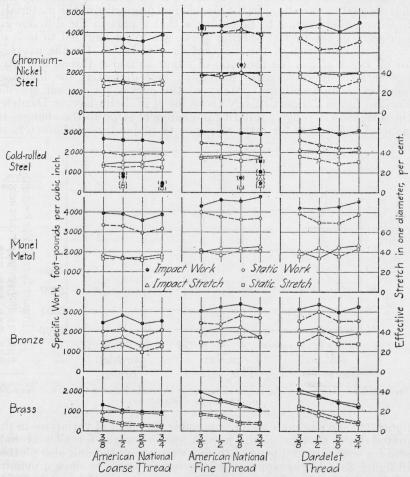


FIGURE 22.—Relation between the size of the bolt and the specific work and effective stretch.

The values in parentheses were not included in the average.

are about the same for the different bolt diameters. For the brass bolts the decrease in these values with an increase in the nominal diameter of the bolt probably is due to the fact that the hardness of the brass bars for the bolts decreased continuously toward the axis of the bar. Vickers numbers at points spaced ½6 in. along two mutually perpendicular diameters on cross sections of the brass bars showed that the center was much softer than the cylindrical surface. The amount of the harder material was greater for the bolts having the larger diameters than for those having the smaller diameters. Some of the other materials also were somewhat softer at the center but the

182

differences were not nearly so great as for the brass. Six of the 8 bars of chromium-nickel steel were somewhat harder at the center, which may explain the small increase in impact specific work for these bolts

with an increase in diameter.

The irregularities in the curves shown in figure 22 are probably due in large part to variations in the mechanical properties of the materials. However, there seems to be evidence that a part of the differences, especially in the impact specific work, are to be ascribed to lack of geometric similarity of the different sizes of bolts. On the average for all types of threads the ratio of minor to major thread diameter (see fig. 23) increases with increasing bolt diameter; the increase, however, is not uniform. Many of the curves for impact specific work in figure 22, particularly those for ½ in. bolts having Dardelet threads, show a rough similarity in change of slope to the changes in slope of the curves for ratio of minor to major thread diameters in

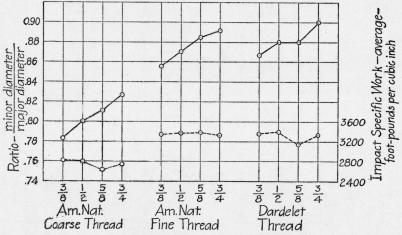


Figure 23.—Relation of the major diameter to the ratio between the minor diameter and the major diameter.

figure 23. To eliminate so far as possible the effect of variations in the material the average of the impact specific works for all materials and for each size and type of thread were computed and also plotted in figure 23. The comparison of the curves seems to show a definite relationship between impact specific work and ratio of minor to major thread diameter. Similar but less definite relationships are to be noticed in the static specific work, impact effective stretch, and static effective stretch. The variations in the individual values in all cases are too great to allow of a definite numerical evaluation of this effect of lack of similarity. For this reason it was decided to use the average of all sizes of bolts in making further comparisons.

The values in figure 22 were obtained from bolts having one diameter of thread exposed. If the thread had been exposed for a greater distance it is probable that the effective stretch and the

specific work would have been greater.

The ratios of the average impact work to the average static work and the ratios of the average impact stretch to the average static stretch for all types of thread and all sizes of bolt are given in table 15.

For the brass bolts the ratio of the stretches was greater than the ratio of works indicating that on the average the tensile loads were less under impact than under static loading. For the bronze bolts the ratios were about the same indicating that the tensile loads were about the same. For the steel and the monel metal bolts, the ratios of the works are greater than the ratios of the stretches, indicating that probably the tensile loads were greater under impact than under static loading.

Table 15.—Ratios of impact properties to static properties

Material	Thread	Impact stretch Static stretch	Impact work Static work	
Chromium-nickel steel	Coarse Fine Dardelet	1. 117 1. 013 1. 312	1. 190 1. 130 1. 268	
Average		1. 147	1. 196	
Cold-rolled steel	Coarse FineDardelet	1. 207 1. 091 1. 282	1, 348 1, 252 1, 305	
Average		1. 193	1. 302	
Monel metal	Coarse FineDardelet	1. 086 1. 083 1. 183	1. 210 1. 215 1. 170	
Average		1. 117	1. 198	
Bronze	Coarse Fine Dardelet	1. 270 1. 276 1. 340	1. 282 1. 250 1. 208	
Average		1. 295	1. 247	
Brass	Coarse Fine Dardelet	3. 104 2. 702 2. 594	2. 790 2. 450 2. 072	
Average		2.800	2. 437	

It seemed desirable to make a more detailed comparison of the relative effects of load and stretch in comparing static work with impact work. For this purpose, for each material, type of thread, and bolt diameter an "average static stress" (and an "average impact stress") was computed by dividing the "static specific work" (or "impact specific work") expressed in inch-pounds by the "static effective stretch" (or "impact effective stretch"). If the stretch used were the stretch under load at the time of fracture the "stresses" so computed would be the average of the tensile stresses during the breaking of the bolt. The actual stretches under load at the time of fracture could not be determined in the impact tests so that instead for both static and impact loads the residual stretches of the fractured specimens were used. The stresses thus computed were therefore larger than the actual average of the stresses during the breaking of the bolt. For comparative purposes, however, they gave a measure of the relative strength of the bolts under static and impact loads.

In addition an average "ultimate tensile strength" under static load of the material at the root of the threads was computed by dividing the maximum static load by the area at the root of the threads. Some consistent differences between the three types of thread were found by comparing the results of these computations. For all materials both the average ultimate tensile strength and the average static stress for the American fine thread were smaller than for the other threads, the difference in the average static stress being in all cases greater than in the ultimate tensile strength.

The average impact stress, however, was for all materials greatest for the American coarse thread and (except for the bronze bolts)

least for the Dardelet.

The effective stretch showed nearly the reverse of these relationships. For all materials except brass the static effective stretch was greatest for the American fine thread. For all materials the impact effective stretch was least for the American coarse thread and nearly equal for the American fine and Dardelet, averaging slightly higher for the Dardelet.

The consistency of these differences between the different types of thread indicates that for all the materials the type of thread affects in a consistent way each of the factors, static strength, static stretch, impact strength, and impact stretch upon which the ratio of impact work to static work and the ratio of the impact stretch to static stretch depend. The magnitude of the effect upon each factor, however, is different for each material so that similar consistency is not found in the values given in table 15.

It would be desirable to know definitely how each of these factors is influenced by the details of thread shape, such as depth of notch, angle at root, etc., and how this influence differs for different materials. This would, however, require an extensive further investigation. The present investigation planned primarily to give information about commercial forms of bolts, does not furnish the neces-

sary data.

That in general the impact work is greater than the static work is

confirmed by other investigators.

Beyer's ¹⁰ data given in his reports of tests on ¼ in. and ¾6 in. diameter cold-drawn steel bolts having U. S. Standard threads and Dardelet threads show that the ratio of impact to static work ranges from 0.82 to 2.31, the average ratio being 1.45. This wide range of ratios is probably due to the erratic behavior of cold-drawn steel in impact.

Russell ¹¹ found from transverse tests of rectangular cast-iron bars that the impact work was almost 44 percent greater than the static work. He suggests that this difference may be due to the increase of

temperature under impact.

In another study, Russell ¹² tested four tensile impact specimens and two static tensile specimens cut from flat bars of different thicknesses. The reduced section was 1 in. in length and ¼ in. in width, while the thickness varied. The impact work was greater than the static work as follows: Norway iron, 23.9 percent; Tennessee charcoal iron, 20.9 percent; Tennessee common iron, 39.4 percent; and soft Bessemer tire steel, 29.6 percent.

Thread and Nut Connections and Dardelet Thread and Nut Connections. Columbia University (New York, N. Y.). Report no. 2207 (June 1930), Effect of Length of Thread Exposure upon the Static Tensile Strength and Energy to Rupture of Standard V and Dardelet Thread and Nut Connections. Columbia University (New York, N. Y.).

¹¹ Experiments with a new machine for testing materials under impact, Proc. Am. Soc. Civil Engrs. 39, 237 (1898).

12 Tension impact tests of rolled steel. Eng. News 45, (no. 1) 14 (Jan. 3, 1901).

Hatt ¹³ found that there was not much difference between the tensile impact work and the tensile static work for most metals but that the impact work was somewhat greater for steel castings.

Blount, Kirkaldy, and Sanky 14 concluded from their tests "that the energy absorbed per cubic inch in the impact-tensile test is considerably greater than in the static-tensile test, the ratio being approximately 1.6, which may be due to the suddenness of the action

Cornu-Thenard 15 in 1919 made transverse tests of specimens 10 by 10 by 53.3 mm notched in accordance with the recommendations made at the Copenhagen Congress of the International Association for Testing Materials. For the shock tests the speed was 5.30 mps and for the static tests 60 mph. His results are as follows:

Steel	Ratio of impact to static work
Extra soft	
Half-hard, nickel, heat treatedHard, chromium-nickel, heat treated	
Hard, chromium-nickel, annealed	1. 04
Extra soft, coarse grained structure	

They show that except for very soft steel the impact work is greater than the static work. The difference for the chromiumnickel steel, heat treated, is about one-half that for our bolt specimens.

McAdam 16 in discussing the relation of the impact work to the static work refers to the work of other investigators and summarizes the work done on notched specimens at the United States Naval Experiment Station. Carbon and alloy steels were used. The ratio of the impact work to the static work varied from 1.03 to 1.72, the average being 1.36. He concludes that the available data indicate that the impact work, in general, is greater than the static work, because usually the stretch and reduction of area for impact specimens are greater than for static specimens.

Nisley, 17 at Watertown Arsenal, investigated the relation between the impact and static tensile works using specimens machined to a diameter of 0.543 in. for a distance of 2 in. The investigation was limited to one steel, a carbon content 0.39 percent, and six different heat treatments. Five specimens of each heat treatment were tested in the same Charpy impact machine as used in our tests of bolts, and five specimens of each heat treatment were tested in

static tension.

The average ratio of impact work to static work varied from 1.63 for heat treatment "A" (6 hr at 1,100° C and furnace cooled) to 1.31 for heat treatment "E" (1 hr at 850° C and water quenched,

drawn 1 hr at 600 °C and air cooled).

Petrenko 18 made transverse tests on notched specimens, using a Humfrey machine for the static tests, and an Izod machine for the impact tests. In each of these machines the specimen is fixed at one end and the force applied at the other end. Four notches having different dimensions were used.

Although Petrenko's numerical values do not agree closely with our results on bolts, as is to be expected because of the differences in

Tensile impact tests of metals, Proc. Am. Soc. Testing Materials, 4, 281 (1904).
 Comparison of the tensile, impact-tensile, and repeated-bending methods of testing steel, Proc. Inst. Mech. Engrs. 1-2, 715 (1910).

ngrs. 1-2, 715 (1919).

18 Sur les essais des flexion par choc de barreaux entaillés, Comp. Rend. Acad. d Sci. 168, 1315 (June 30, 1919).

16 Impact tests of metals. Proc. Am. Soc. Testing Materials, 22, part II, 37 (1922).

17 The relation between the dynamic and the static tensile tests, Army Ordnance, 20, 88-93 (Sept., Oct., 1923).

18 Comparative slow bend and impact notched bar tests on some metals, BS Tech. Pap. 19, (1924-25) T259.

the specimens and the method of applying the loads, the high ratios, particularly for brass, in our tests of bolts are in general agreement with his results.

A very careful and complete investigation of the relation between static work and impact work was made by H. C. Mann at Watertown Arsenal. The specimens were machined to a diameter of 0.5 in. for a distance of 2.5 in. The shoulder fillets had a radius of 0.062 in. Three specimens of each material and heat treatment were tested in the Charpy impact machine having a capacity of 2,170 ft-lb, and three of each in static tension. In the static test the stretch up to point of rupture was measured between the shoulders, using a dial micrometer. The chemical compositions of the steels are given in table 16 and the results of the impact and the static tensile tests are given in table 17.

Table 16.—Chemical composition of steels used in impact and static tensile tests from Watertown Arsenal Experimental Report no. 319

Steel	Chemical compositions							
5661	C	Mn	P	S	Si	Ni	Cr	v
	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent
K	0.38	0. 18	0.018	0.022	1.460	23.75	7.08	
0	. 11	. 35	. 019	. 022	. 210	3. 76	1.39	
P	. 39	. 46	. 013	. 025	. 220	3.44	1.58	
R	. 22	. 52	. 010	. 021	. 235	. 09	. 91	0.1
r	. 23	. 75	. 010	. 031	. 410	Trace	. 81	
J	. 44	. 71	. 023	. 021	. 455	. 24	. 77	
Χ	. 49	. 34	. 020	. 022	. 165	1.76	. 99	

Table 17.—Results of impact and static tensile tests from Watertown Arsenal Experimental Report no. 319

Steel		Microstructure after	Brinell	Impact work,	Static work.	Ratio	
Symbol	Description	heat treatment	number	average	average	Impact work Static work	
		(Austenitic	207	ft-lb 1, 250	ft-lb 983	1. 2'	
K	"Stainless"	Adsternite	196	1, 190	933	1. 28	
0	SAE no. 3,312	Sorbo-pearlitic	187	790	584	1. 3	
	(High nickel-chromium	Sorbitic	196	940	669	1.4	
P	SAE no. 3,340 nickel- chromium.	do	269	953	718	1. 3	
R	(SAE no. 6,120	Sorbo-pearlitic	149	937	631	1. 49	
	Chromium-vanadium	do	217	924	656 650	1. 4 1. 4	
T	SAE no. 5,120 Case hardening steel	Sorbitic	143 196	924 1, 023	743	1. 38	
		fdo	207	947	694	1. 30	
U	SAE no. 5,140	do	207	980	709	1. 38	
x	SAE no. 3,250	Troosto-Sorbitic	228 228	1, 003 993	750 735	1. 3- 1. 3-	

The report states that "The effect of volume has been investigated sufficiently to establish the fact that specimens of different volume but of the same microstructure absorb an amount of the energy of impact in proportion to the volume."

¹⁹ Watertown Arsenal Experimental Report no. 319.

VIII. CONCLUSIONS

Impact and static tensile tests were made on bolts with nuts having American National coarse threads, American National fine threads, and Dardelet threads. The nominal diameters of the bolts were ¾, ½, ¾, and ¾ in. The materials were heat-treated chromium-nickel steel, cold-rolled steel (Bessemer screw stock), monel metal, bronze (copper-silicon-manganese alloy), and brass. The length of each bolt from the head to the bearing face of the nut was five times the nominal diameter. The exposed threads on the bolt extended from the bearing face of the nut toward the head for one diameter. Four similar specimens of each material, diameter, and thread were tested under single-blow impact loading and two under static loading. The total number of specimens was 360. The following conclusions were drawn from the results of the tests:

1. In the impact tests two chromium-nickel bolts with American National fine threads failed by stripping the thread. Over one-fourth of the cold-rolled steel bolts with American National threads, both coarse and fine, had "brittle" failures. These anomalous failures gave erratic and low impact values. Otherwise, similar bolts having Dardelet threads gave no such erratic results.

2. Except for the brass bolts and those which showed stripped threads or brittle failures, the work per unit volume required to rupture the bolts either under impact loading or under static loading was for each material and for each type of thread approximately independent of the diameter of the bolts. There was, however, an indication that the work per unit volume was dependent somewhat upon the ratio of minor to major diameter of the thread.

3. Except for the brass bolts and those which had stripped threads or brittle failures, the stretch in the one diameter of exposed threads either under impact loading or under static loading was for each material and each type of thread approximately independent of the diameter of the bolts.

4. In all cases the impact works for bolts having American National coarse threads were less than the impact works for bolts of the same size and material having American National fine threads.

5. Except for the brass bolts and those which showed stripped threads or brittle failures, the impact works for bolts having American National fine threads were approximately the same as the impact works for bolts of the same size and material having Dardelet threads. The impact works for brass bolts having American National fine threads were on the average 12 percent less than the impact works for brass bolts of the same size having Dardelet threads.

6. In all cases the impact works for bolts having Dardelet threads were much greater than the impact works for bolts of the same size and material baying American National coarse threads

and material having American National coarse threads.

7. In all cases the static works for bolts having American National coarse threads were less than the static works for bolts of the same

size and material having American National fine threads.

8. Except for the brass bolts and those which showed stripped threads or brittle failures, the static works for bolts having American National fine threads were approximately the same as the static works for bolts of the same size and material having Dardelet threads. For the brass bolts the static works for bolts having American Na-

tional fine threads were on the average approximately 26 percent lower than the static works for bolts of the same size having Dardelet threads.

9. In all cases the static works for bolts having Dardelet threads were greater than the static works for bolts of the same size and mate-

rial having American National coarse threads.

10. In all cases the maximum static loads for bolts having American National coarse threads were less than the maximum static loads for bolts of the same size and material having American National fine threads.

11. In all cases the maximum static loads for bolts having American National fine threads were approximately the same as the maximum static loads for bolts of the same size and material having Dardelet threads.

12. In all cases the maximum static loads for bolts having Dardelet threads were greater than the maximum static loads for bolts of the same size and material having American National coarse threads.

13. For bolts of the same size and having the same threads the static-bolt efficiencies, defined as the ratio of the maximum static load for the bolt to the load computed by multiplying the cross-sectional area of the shank by the ultimate tensile strength of the material, were approximately the same for all of the materials.

Washington, December 19, 1934.