
Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

NISTfit: A Natively Multithreaded
C++11 Framework for Model

Development

Ian Bell1 and Matthias Kunick2

1National Institute of Standards and Technology,
Boulder, CO 80301 USA

2Zittau/Görlitz University of Applied Sciences
02763 Zittau, Germany

ian.bell@nist.gov
m.kunick@hszg.de

Software DOI: https://doi.org/10.18434/M39W9S

Key words: C++; HPC; optimization.

Accepted: January 24, 2018

Published: February 12, 2018

https://doi.org/10.6028/jres.123.003

1. Summary

The current trend in computer architecture is for increasingly parallel computation while the clock
frequency stagnates. The increase in computing speed is achieved by dividing a process into several threads
which are executed in parallel on multiple processors, processors with multiple cores, cores that are able to
handle multiple threads (hyper-threading), graphical processing units (GPU), or co-processors. In order to
take advantage of these new architectures, algorithms that have historically been implemented for serial
evaluation need to be refactored for parallelization. In this work, a native multithreading framework in
C++11 for scientifc and engineering model development is presented.

The motivation for NISTfit is to develop a modern C++11-based library for this problem that is:

• Cross-platform: NISTfit has only very minimal header-only dependencies (Eigen and ThreadPool),
and builds reliably on all major architectures; a CMake build fle is provided.

• Easy to use: There are a multitude of similar libraries for model ftting (e.g., MINPACK 1, levmar2,
Eigen’s LevenbergMarquardt module 3, to name but a few) that a) are based on archaic
FORTRAN/C/C++ constructs, b) require signifcant boilerplate to solve simple problems, or c) have
diffcult-to-build dependencies. It is the opinion of the authors of NISTfit that NISTfit strikes a

1http://www.netlib.org/minpack/
2http://users.ics.forth.gr/∼lourakis/levmar/
3https://eigen.tuxfamily.org/dox/unsupported/classEigen 1 1LevenbergMarquardt.html

1 How to cite this article:
Bell I, Kunick M (2018) NISTft: A natively multithreaded C++11 framework for model development.

J Res Natl Inst Stan 123:123003. https://doi.org/10.6028/jres.123.003.

https://doi.org/10.6028/jres.123.003
https://doi.org/10.18434/M39W9S
https://doi.org/10.6028/jres.123.003
http://www.netlib.org/minpack/
http://users.ics.forth.gr/~lourakis/levmar/
https://eigen.tuxfamily.org/dox/unsupported/classEigen_1_1LevenbergMarquardt.html
https://doi.org/10.6028/jres.123.003
mailto:m.kunick@hszg.de
mailto:ian.bell@nist.gov

Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

good balance of power and ease-of-use for simple ftting problems. The code utilizes modern C++11
constructs and will build on any C++11 compliant compiler.

• Parallelizable: The future is parallel, and NISTfit is able to achieve near-theoretical speedup as more
cores are made available to the ftting for suffciently expensive models.

2. Software Specifcations

NIST Operating Unit Materials Measurement Lab, Applied Chemistry and Materials Division,
Thermophysical Properties of Fluids Group

Category Optimization, high-performance computing

Operating Systems Cross-platform

Programming Language C++11, Python

Inputs/Outputs Please see sample code.

Disclaimer https://www.nist.gov/director/licensing

The source code is hosted on GitHub4, and a zip file of the code as of publication is available in the
Supplemental Materials.

3. Problem Statement

To begin, we frst need to defne the problem that we are trying to solve. In the scheme of least-squares
~minimization, we have a set of residual functions f that are each a residual between a data point and a model

prediction, as seen schematically in Fig. 1.

0.0 0.5 1.0 1.5 2.0
x

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

y

c0: 0.2
c1: 3
c2: 1.3

Fig. 1. Example of ftting data for decaying exponential problem (solid line: model, markers: “experimental” data
points).

4https://doi.org/10.18434/M39W9S

2 https://doi.org/10.6028/jres.123.003

https://doi.org/10.6028/jres.123.003
https://doi.org/10.18434/M39W9S
https://doi.org/10.6028/jres.123.003

Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

The i-th model prediction is dependent on the array of model parameters ~c, or

fi(~c) = ymodel(xi,~c) − yi (1)

Our goal then is to fnd the set of model parameters ~c that best ft the model to the given experimental data.
In this case, “best ft” means that we minimize the sum-of-squares error F given by

F = ∑ f 2 . (2)i
i

The Jacobian matrix J is required for many deterministic optimization methods and is given by � �� �� �⎡ ⎤
∂ f0 ∂ f0 ∂ f0 · · · ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∂ c0 ∂ c1 ∂ cm� �� �� �
∂ f1 ∂ f1 ∂ f1 · · ·
∂ c0 ∂ c1 ∂ cmJ = (3)

.� �� � � �
∂ fn ∂ fn ∂ fn · · ·
∂ c0 ∂ c1 ∂ cm � �

∂ fi
∂ c j

where in each partial derivative all other model parameters are held constant and where the term is

equivalent to � �� �
∂ fi ∂ [ymodel(xi,~c)] (4)= .
∂ c j ∂ c j ck 6 j=

In general, the partial derivatives found in the Jacobian matrix can be evaluated analytically (preferred), or
through the use of numerical derivatives if analytic partial derivatives are not available. A class
implementing numerical derivatives for the Jacobian matrix is available in NISTfit, though it is not further
described here.

The key point to note, and the core motivation for the development of NISTfit, is that evaluation of the
Jacobian matrix and the array of residual functions is an embarrassingly parallel problem. That is to say,
each row in J or residual in ~f is entirely independent of the other ones. Therefore, a library that is able to
evaluate J and ~f in parallel can yield a signifcant reduction in the time required to carry out one ftting

~evaluation. Furthermore, the evaluation of f and J represent the building blocks for a wide range of
deterministic optimization methods, and the tools developed here could serve as the kernel that is embedded
into more advanced optimization tools.

The exercise of solving a system of non-linear equations is mathematically related to the case of
least-squares minimization. Fundamentally, they both involve the use of the Jacobian matrix and the vector
of residuals to be driven to zero. In the case of Newton-Raphson method, there are as many model
parameters as residual functions, unlike the case of the generalized least-square ftting problem in which
there are more residual functions than model parameters. The Newton-Raphson method is known to be
unreliable for systems of equations that are very nonlinear, though for “simple” problems, the
Newton-Raphson system-of-nonlinear-equations solver can yield rapid convergence.

4. C++ Implementation

While there are many programming languages that could be used to develop a fexible and
computationally effcient optimization toolbox, C++ was selected in this case due to its computational
effciency, fexibility, and the facility with which it can be integrated into other high level languages like
Python. NISTfit leverages several of the capabilities introduced in the C++11 standard, most especially
native threading.

3 https://doi.org/10.6028/jres.123.003

https://doi.org/10.6028/jres.123.003
https://doi.org/10.6028/jres.123.003

Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

4.1 Architecture

One of the primary motivations for the use of object-oriented programming languages like C++ is their
extensibility. In this sense, extensibility means that the core code with a fxed application programming
interface (API) can be used to work on many different problems. Therefore, we discuss here the API for
NISTfit in some depth so that future users of NISTfit might be able to work with the public API. While
the public API of NISTfit is rather straightforward, tools like doxygen5 can be instrumental in
understanding how the pieces of complex C++ programs fit together. To that end, the doxygen-generated
documentation for NISTfit are provided in the Supplemental Materials, both in HTML and PDF formats.

The serial (one-at-a-time) evaluation of a set of residual functions is a trivial endeavor, whereas effcient
parallel evaluation through the use of C++11 threading is much more perilous. Some of the challenges
introduced when adding threading are:

• Initialization: The initialization and destruction of threads is a non-negligible contribution to the
runtime, and should be minimized as much as possible. In NISTfit, the threads are initialized at the
beginning of the optimization through the use of a ThreadPool6, the entire optimization is run, and as
the AbstractEvaluator falls out of scope, the threads are destroyed. Threads are fed their inputs via
a queue, and when not carrying out calculations, are sleeping, waiting for a condition variable to be
set.

• Load balancing: The load between threads should be as balanced as possible so that all the threads
start and fnish at the same time. As the number of data points increases, the number of points
evaluated by each thread by defnition approaches parity. Nevertheless, the balancing of the number of
evaluations per thread does not necessarily imply that the total amount of work will be balanced
across threads. If some outputs are more computationally involved than others, the differences in
thread evaluation times can be signifcant, implying that the faster threads may have to wait an
extended time for the slower threads to fnish

Two core components form the API of NISTfit as shown in Fig. 2: the AbstractOutput class, and the
AbstractEvaluator class. The AbstractOutput class contains the output, and the routines for
evaluating the model, and AbstractEvaluator class is the manager class, and owns the set of classes
derived from the AbstractOutput class. The evaluator class is also responsible for managing the threads.

4.2 AbstractOutput Class

The AbstractOutput class (or derived class thereof) carries out the evaluation of the model and the
construction of the row in the Jacobian matrix. The evaluate one function is used to carry out the
evaluation, and must be implemented for each model, as the example in Sec. 6 demonstrates. The class
derived from AbstractOutput must provide a threadsafe implementation of evaluate one.

4.3 AbstractEvaluator Class

The AbstractEvaluator class is the core evaluation class of NISTfit. This class is used to evaluate
all the AbstractOutput-derived instances that are owned by the AbstractEvaluator class, through the
use of serial- or thread-parallel evaluation. A class derived from AbstractEvaluator is confgured by the
following method:

1. an evaluator class deriving from AbstractEvaluator is instantiated,
5http://www.stack.nl/∼dimitri/doxygen/
6https://github.com/stfx/ThreadPool2

4 https://doi.org/10.6028/jres.123.003

https://doi.org/10.6028/jres.123.003
http://www.stack.nl/~dimitri/doxygen/
https://github.com/stfx/ThreadPool2
https://doi.org/10.6028/jres.123.003
http:together.To

Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

(a) Inheritance diagram for (b) Inheritance diagram for AbstractOutput
AbstractEvaluator

Fig. 2. The abstract base classes forming the public API of NISTfit (diagrams automatically generated by doxygen).

2. a vector of outputs, each derived from AbstractOutput, is passed into the instance via the
add outputs function. For each output, a reference is stored to the AbstractEvaluator that owns
it.

The evaluation of the Jacobian matrix J and the residual vector ~f is carried out by:

1. calling either the evaluate serial (for serial evaluation) or evaluate parallel (for
thread-parallel evaluation). For each evaluation, the evaluate one function of each
AbstractOutput is called, thereby calculating the residual vector entry and the row in the Jacobian
matrix,

2. retrieving a reference to the Jacobian matrix J and vector ~f via the get Jacobian matrix and
get error vector functions. These matrix-like objects are returned as const references in order to
avoid copying what can be a rather large amount of data.

4.4 Optimization

As with any application of threading to turn a serial algorithm into a parallel algorithm, the effciency
and speedup when adding thread-level parallelism are dependent on how much work is required to evaluate
each element in the array, load balancing (see above), and threading overhead (construction/destruction). In
general, the more work required to evaluate one element in the residual array, the more linear the speedup
can be as the number of threads is increased because the threading overhead becomes increasingly
negligible.

5 https://doi.org/10.6028/jres.123.003

https://doi.org/10.6028/jres.123.003
https://doi.org/10.6028/jres.123.003

Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

The object-oriented nature of C++ means that if the right architectural decisions are made about the
interface at the beginning of the development process, the core code can be extended to solve problems that
were not within the scope of the original problem statement. For instance, for NISTfit, the code could be
used to implement the computational kernel of ODRPACK, generic derivative-based optimization, or other
optimization methods.

There are a few key points that drive the effciency of NISTfit:

• Threads are used to evaluate the Jacobian and the array of residuals in parallel.

• Vectorized (or matrix-based) operations are used, delegating to pre-existing tuned linear algebra
libraries (Eigen).

• The base classes, and their derived classes, are all thread-safe by architecture, though the implementer
must be sure to maintain the thread-safety of their implementation.

4.5 Python Wrapper via pybind11

The open-source, header-only, library pybind11 can be used to develop thin wrappers between the C++
code and the Python programming language. The library pybind11 originated as a fork of the legendary
boost::python C++/Python interface generator, but has been extended to focus on modern C++ features,
and is used in this work to develop 1-to-1 wrappers between the C++ code and Python, one of the eminent
open-source languages for scientifc computing. The code snippet in Appendix A.1 demonstrates that a
relatively small number of lines of C++ code defnes the interface between C++ and Python, even for objects
like C++ classes that are inherited from abstract base classes; wrapping objects like these can be rather
challenging in general. The code in the interface fle is compiled into a Python module (a shared library) and
can be readily integrated into other Python code. In principle, abstract base classes could also be
derived/extended at the Python level, but the C++/Python calling overhead is non-negligible. The key point
here is speed, and keeping all the calculations at the C++ level reduces the interface overhead.

5. Levenberg-Marquardt

The Levenberg [1] and Marquardt [2] algorithm for the determination of model parameters through
minimization of the least-squares error is one of the most well-studied and popular numerical algorithms in
the optimization canon; Marquardt’s seminal work [2] has been cited more than 25 thousand times as of
publication. This algorithm has found such a wide range of applicability thanks to its exceptional stability
and simple form. A C++ implementation of the algorithm requires only a handful of lines of code (as will be
shown below), assuming a linear algebra library is already available.

The Levenberg-Marquardt implementation described in this work follows the comprehensive and clear
treatment of Madsen et al. [3]. Madsen et al. modify the algorithm proposed by Levenberg and Marquardt in
order to increase the stability of the method. A fowchart of the method is shown in Fig. 3.

5.1 Initialization

The Levenberg-Marquardt algorithm requires a starting point c~0 from which the optimization is run.
This point must be provided by the user. Once the initial guess values are loaded, some internal variables are
initialized:

• Set the penalty parameter ν to 2

6 https://doi.org/10.6028/jres.123.003

https://doi.org/10.6028/jres.123.003
https://doi.org/10.6028/jres.123.003s1
https://doi.org/10.6028/jres.123.003

Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

• The damping factor µ is set to µ = τ0 · max(diag(JT J)), where τ0 is a user-adjustable parameter to
control the initial damping. Madsen recommends a value of τo of 10−6 when the initial guess is
believed to be a good estimate of the local minimum, or a much larger value (1 or more) if the initial
estimate is not believed to be a good estimate of the local minimum

• The iteration counter k is set to zero

5.2 Iteration

r are evaluated (ideally, in parallel). ~1. The Jacobian matrix J and the residual vector

2. The step hlm is obtained from (JT (c)J(c)+ µI)hlm = −JT (c)~f (c)~

3. The new coeffcients cnew cold + hlm are calculated

~~~

~~~ =

4. The gain ratio ρ is obtained from
1

~

~F(c) − F(cnew)~

L 0 L h−() ()lm

L 0 L h~−() () = lm

ρ =
2

(5)

where
~f)

and the sum of squares function F is obtained from Eq. 2.

5. If ρ is greater than zero, the step is acceptable, the damping parameter is set to
µ = µ · max(13 , 1− (2ρ − 1)3) and the penalty parameter ν is reset to 2. Otherwise, if ρ is less than
zero, the step is unacceptable, the damping parameter is multiplied by a factor of ν , the penalty factor
ν is multiplied by 2, and the iteration is re-tried, taking a more conservative step.

6. When the error is suffciently small, or the maximum number of iterations has been reached, stop.

1
lm(µhlm − JThT

2
(6)

7 https://doi.org/10.6028/jres.123.003

https://doi.org/10.6028/jres.123.003
https://doi.org/10.6028/jres.123.003

Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

Initialize
k = 0
ν = 2
~c = ~c0

µ = τ0 ·max(diag(JT (~c)J))

k = k + 1
Solve for hlm:

(JT (~c)J(~c) + µI)hlm = −JT (~c)~f(~c)

Converged?

~cnew = ~c+ ~hlm
ρ = F (~c)−F (~cnew)

L(0)−L(~hlm)

ρ > 0?

~c = ~cnew
µ = µ ·max(13 , 1− (2ρ− 1)3)

ν = 2

µ = µ · ν
ν = 2 · ν STOPYes

No

Yes (good step)

No (bad step)

Fig. 3. Flowchart of the Levenberg-Marquardt algorithm (adapted from Algorithm 3.16 of Madsen et al. [3]) .

6. Results

In this section, we ft a decaying exponential function to artifcially generated data (see Fig. 1), and by
increasing the computational work per model evaluation, demonstrate near-theoretical speedup.

Here, the model function is given by

yi = exp(−c0xi)cos(c1xi)sin(c2xi). (7)

with entries in the Jacobian matrix given by � �
∂ yi

= −xi exp(−c0xi)cos (c1xi)sin (c2xi) (8)
∂ c0 c j 6=0 � �
∂ yi

= −xi exp(−c0xi)sin (c1xi) sin (c2xi) (9)
∂ c1 c j 6=1 � �
∂ yi

= xi exp(−c0xi)cos (c1xi)cos (c2xi) (10)
∂ c2 c j 6=2

In order to be able to analyze the impact on the speedup as the computational effort per model evaluation
increases, rather than using the native transcendental functions implemented in the standard math library,
their Taylor series expansions are used [4]:

expx =
∞

∑
m=0

8

xm
(11)

m!

https://doi.org/10.6028/jres.123.003

https://doi.org/10.6028/jres.123.003
https://doi.org/10.6028/jres.123.003

Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

sin x =
∞

∑
(−1)mx2m+1

(12)
(2m+ 1)!m=0

∞

∑
(−1)mx2m

(13)cos x =
(2m)!m=0

We then truncate each infnite series after the N-th term. A naı̈ve treatment of the factorial function is used,
further increasing the work per model evaluation. As a result, the computational effort per model evaluation
can be extremely high for relatively small N. No effort was made to optimize the effciency of these
implementations, the point being to yield a model that serves a proxy for a practical problem without
requiring additional explanation of the underlying physics.

We carried out the benchmark tests on two different machines, a single-processor desktop machine and a
two-processor computer well-suited to more involved numerical computation. The results for each
computer, as well as some additional discussion, are presented in the following sections.

6.1 Desktop

1 2 3 4 5 6 7 8
Nthreads (-)

0

2

4

6

8

Sp
ee

du
p

t s
er

ia
l/t

pa
ra

lle
l (

-)

Hyperthreading

N: 50

N: 5

native

1 2 3 4 5 6 7 8
Nthreads (-)

0

2

4

6

8
Sp

ee
du

p
t s

er
ia

l/t
pa

ra
lle

l (
-)

Hyperthreading

N: 50

N: 5

native

(a) Speedup for parallel evaluation of the residuals. (b) Speedup for the complete Levenberg-Marquardt
evaluation.

Fig. 4. Speedup for the decaying exponential ftting problem as a function of the number of threads Nthreads and the
computational effort (the number of terms N in the series expansions for the transcendental functions). The time for
each evaluation is based upon the minimum of the times for a few hundred evaluations at the C++ level.

The coeffcients ~c = [0.2, 3,1.3] were selected for the model, and 1200 “experimental data” points were
generated, linearly spaced for x in the domain [0, 2]. This optimization problem is rather sensitive to its
initial value, and [0.5, 2, 0.8] is selected as the initial values for the coeffcients ~c0. The pybind11 wrapper
was used to call the low-level C++ timing routines, and the Python code used to call the pybind11 wrapper
and generate the fgures can be found in Appendix A.6 and A.7.

Figure 4a shows the results of the speedup for the evaluation of the residuals and Jacobian matrix for
this model ftting exercise. As long as no hyper-threading is used, as N is increased (for up to the frst four
threads), the speedup approaches linear speedup. Once the number of threads exceeds the number of cores,
the linear speedup is no longer maintained due to the transition to hyperthreading. When the native math
functions are used, the speedup is not very signifcant.

Figure 4b presents the computational results of the full Levenberg-Marquardt evaluation for the
decaying exponential problem. The reader should note a striking similarity in the shape of the speedup curve

9 https://doi.org/10.6028/jres.123.003

https://doi.org/10.6028/jres.123.003
https://doi.org/10.6028/jres.123.003s1
https://doi.org/10.6028/jres.123.003

Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

in Figs. 4b and 4a (particularly for large values of N). This is because for this problem, as N increases, the
overall computational expense becomes dominated by the model evaluation (as opposed to the
Levenberg-Marquardt iterations), and thread-parallelism can be particularly benefcial. As a result, the
speedup is dominated by the speedup associated with the model evaluation.

Hardware:

• Intel i7-3770 CPU @ 3.4 GHz with 4 physical cores and up to 8 threads in total (2 threads per
physical core with HyperThreading technology)

• 16 GB RAM

• Windows 7 64-bit operating system

• Microsoft Visual Studio 2015 compiler

6.2 Multi-processor Machine

While the benchmark desktop computer described in Section 6.1 is a reasonable platform for general
calculations, the timing tests were also run on a machine with two processors (2 × Intel Xeon E5-2667 v4
@ 3.20GHz), each with 8 physical cores and 2 hyperthreads per core, making 32 possible threads in total.
The benchmark tests were run on this multi-processor machine; the results of these tests are shown in Fig. 5
for the decaying exponential optimization problem. This processor architecture is able to maintain a nearly
linear speedup as the number of threads is increased for large values of N, so long as the number of physical
cores is not exceeded. Beyond the number of physical cores, hyperthreading takes over, and the results with
hyperthreading on this machine are signifcantly slower than linear speedup.

One additional complication for the multi-processor machine is that the thread affnity proved to be an
important part of maximizing the the computational effciency. Thread affnity is used to pin a thread to a
given computational core. The default thread distribution scheme is architecture specifc, but generally,
when a thread is created, it must be attached to a core; the operating system decides what core it should be
attached to given the current load on the machine. In general, the thread distribution scheme works quite
well, but in the case of the evaluations of NISTfit, it was found that explicitly pinning each thread to a
computational core yielded non-negligible improvements in computational effciency. This speedup was
achieved by frst adding one thread per physical core, and then flling in with hyperthreads on the physical
cores; this made it possible to maintain the linear speedup for suffciently computationally expensive model
evaluations. On the contrary, when the thread affnity is not set, there is a marked fall-off from linear
speedup as more threads are added but while still using only the physical cores.

10 https://doi.org/10.6028/jres.123.003

https://doi.org/10.6028/jres.123.003
https://doi.org/10.6028/jres.123.003
mailto:i7-3770CPU@3.4GHzwith4physical

Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

0 5 10 15 20 25 30
Nthreads (-)

0

5

10

15

20

25

30

Sp
ee

du
p

t s
er

ia
l/t

pa
ra

lle
l (

-)

HyperthreadingAffinity
No affinity

N: 50

N: 5

native

0 5 10 15 20 25 30
Nthreads (-)

0

5

10

15

20

25

30

Sp
ee

du
p

t s
er

ia
l/t

pa
ra

lle
l (

-)

HyperthreadingAffinity
No affinity

N: 50

N: 5
native

(a) Speedup for parallel evaluation of the residuals. (b) Speedup for the complete Levenberg-Marquardt
evaluation.

Fig. 5. Speedup for the decaying exponential ftting problem as a function of the number of threads Nthreads and the
computational effort (the number of terms N in the series expansions), run on a two-processor machine with a total of 16
physical cores. The time for each evaluation is based upon the minimum of the times for a few hundred evaluations at
the C++ level.

Hardware:

• Two Intel Xeon E5-2667 v4 @ 3.20GHz, each processor has 8 physical cores (and 2 threads per core
with HyperThreading), for a total of 32 threads possible

• 64 GB RAM

• Xubuntu 17.10 64-bit operating system7

• g++ 7.2.0 compiler

7. Conclusions

This report demonstrates the use of NISTfit for a simplifed model ftting problem. As is to be
expected, as the work per model evaluation increases, the speedup from the use of threading also increases.
For suffciently expensive model evaluations, the speedup due to thread parallelism is signifcant, and
approaches the theoretical limit of parallelism with and without hyperthreading. On the other hand, simple
models do not beneft from parallelism.

The architecture of NISTfit is extremely fexible, and has already been applied to other practical
problems like ftting model parameters for cubic equations of state. Further work is ongoing to extend the
ftting paradigm to even more complex models. At its core, NISTfit is simply a thread-parallel evaluation
tool, and it is hoped that it can be extended to use other computational engines like graphical processing
units. Future work will involve the low-level coupling of the AbstractEvaluator architecture with
additional optimization algorithms like differential evolution or evolutionary optimization.

7When this computer was initially confgured, Xubuntu 17.04 had been installed, but it was not possible to achieve linear speedup for
an unknown reason, perhaps there was a bug in the provided version of the intel-microcode package. Upgrading to Xubuntu 17.10
and installing the intel-microcode package restored the speedup of the processor.

11 https://doi.org/10.6028/jres.123.003

https://doi.org/10.6028/jres.123.003
https://doi.org/10.6028/jres.123.003
mailto:E5-2667v4@3.20GHz

Volume 123, Article No. 123003 (2018) https://doi.org/10.6028/jres.123.003

Journal of Research of National Institute of Standards and Technology

Supplemental Materials

• Appendix A

– A.1 src/pybind11 interface.cxx

– A.2 include/NISTft/abc.h

– A.3 include/NISTft/examples.h

– A.4 include/NISTft/optimizers.h

– A.5 src/optimizers.cpp

– A.6 evaluators.py

– A.7 time NISTft.py

• zip fle of the code as of publication.
• doxygen-generated documentation for NISTfit in HTML and PDF formats.

Acknowledgments

The authors thank: Andy Prowl, whose description of the use of C++11 threading8 was instrumental to
the frst implementation of threading utilized in NISTfit, Tobias Löw (of Steag Energy Services GmbH) for
the recommendation to investigate thread affnity, Chris Muzny (of NIST) for the recommendation to add
numerical Jacobian construction and Tim Blattner, Walid Keyrouz, and Derek Juba (of NIST), for many
helpful recommendations with regards to profling and optimization of C++ code.

8. References

[1] Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics
2(2):164–168. http://www.jstor.org/stable/43633451.

[2] Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and
Applied Mathematics 11(2):431–441. https://doi.org/10.1137/0111030.

[3] Madsen K, Nielsen HB, Tingleff O (2004) Methods for non-linear least squares problems (2nd ed.)
http://orbit.dtu.dk/fles/2721358/imm3215.pdf.

[4] Kreyszig E (2006) Advanced Engineering Mathematics (John Wiley and Sons), 9th Ed.

About the authors: Ian Bell is a mechanical engineer in the Applied Chemicals and Materials Division of the Material Measurement
Laboratory of NIST. He conducts research in the modeling of the thermophysical properties of pure fuids and mixtures. Matthias
Kunick is a mechanical engineer in the Thermodynamics Dept. at the Zittau/Görlitz University of Applied Sciences. His current
projects focus on fast property calculations for pure fuids and mixtures. The National Institute of Standards and Technology is an
agency of the U.S. Department of Commerce.

8http://stackoverfow.com/a/15257055/1360263

12 https://doi.org/10.6028/jres.123.003

https://doi.org/10.6028/jres.123.003
https://doi.org/10.6028/jres.123.003s1
https://github.com/usnistgov/NISTfit/releases/tag/1.0
https://github.com/usnistgov/NISTfit/releases/tag/1.0
http://www.jstor.org/stable/43633451
https://doi.org/10.1137/0111030
http://orbit.dtu.dk/files/2721358/imm3215.pdf
http://stackoverflow.com/a/15257055/1360263
https://doi.org/10.6028/jres.123.003
http:NISTfit.py
http:evaluators.py

	Summary
	Software Specifications
	Problem Statement
	C++ Implementation
	Architecture
	AbstractOutput Class
	AbstractEvaluator Class
	Optimization
	Python Wrapper via pybind11

	Levenberg-Marquardt
	Initialization
	Iteration

	Results
	Desktop
	Multi-processor Machine

	Conclusions
	References

