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1. Summary

Our recent research on Monte Carlo simulation of light propagation in biomedical phantoms has
involved the implementation of an algorithm to solve for the optical attenuation and scattering coefficients 
of a single-layer material, or µa and µs [1]. It also involved the development of a parallel version of MCML 
[2], a popular light propagation model with over 2100 citations, according to ScienceDirect. The algorithm 
for the inverse problem involves three components: a profile log-likelihood evaluation, importance 
sampling, and an optimization procedure. In this article, we present two C++/OpenMP codes: MCMLpar, 
the parallel version of MCML, and MCSLinv, a program to solve the inverse problem for a single layer. 

In MCMLpar, [3] a particle class is introduced to represent photons. The particles all enter an optical 
medium at the same point, travelling parallel to the vector normal to the surface. The particle weights are 
initially set to the probability of transmitting into the material, calculated by the Fresnel equation using the 
air and first layer indices of refraction. Each particle’s path length to an interaction is calculated by 
sampling the exponential distribution with mean µt = µa + µs. If the interaction is within the layer, the 
particle’s direction is updated by sampling the Henyey-Greenstein distribution for the polar angle θ relative 
to the direction of travel. The relative azimuthal angle φ is sampled uniformly on [0, 2π). The particle’s 
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weight is then multiplied by µs/(µs+µa) to account for the chance that the interaction would have been 
attenuated. On the other hand, if the original path length would move the particle beyond the layer, the 
program determines whether to transmit or reflect the particle by sampling a Bernoulli distribution based on 
the Fresnel equations, averaging over polarizations. A transmission event changes the particle’s direction 
with Snell’s law. After scattering, transmitting, or reflecting, the particle propagates again with a new path 
length, and the process repeats until the particle leaves the medium. 

The particle leaves the material by transmitting outside of the sample. When this occurs, the particle 
weight is added to a scoring vector and a new particle is introduced. Additionally, several particles can be 
sent through the material at once because the code runs in parallel. If the particle’s weight passes below a 
threshold before the particle escapes, the roulette method determines whether the particle lives or dies [2]. 

MCSLinv [4] uses a profile log-likelihood to compare the scoring vectors from a forward simulation 
using the method of MCMLpar to experimental Angle-Resolved-Scattering (ARS) data. The ARS is given by 

 𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑃𝑃𝑠𝑠
Ω𝑃𝑃𝑖𝑖

where 𝑃𝑃𝑖𝑖  is the incident power measured by the detector when no sample is present and 𝑃𝑃𝑠𝑠 is the power 
scattered from the area of the sample included in the detector field of view at angles within the solid angle 
defined by Ω = 𝐴𝐴/𝐴𝐴2. In addition, MCMLpar may be used to create simulated data which can be read by 
MCSLinv. The log-likelihood is used to construct confidence regions by identifying all parameter pairs 
leading to a log-likelihood value within half of a χ2 percentile of the maximum log-likelihood value [2]. 
Photon interaction events are sampled with Monte Carlo in a standard way for reference values of the 
parameters. These are extended to a 1D grid for each type of interaction (e.g., propagation or scattering) 
using importance sampling. Because the sampling distributions are independent, the 2D grid is only created 
explicitly as the particle is scored. Calculating the likelihood for each parameter’s total summed weights 
yields a surface of likelihood values, which is smooth and has a single peak. 

The algorithm reduces the parameter search space at each iteration. The program initially runs the 
importance sampling simulation with a low number of particles (20 000 is typical) over a large range of 
parameters. The range of parameters is updated to only include values around the likelihood peak within 
some confidence region (99.9999 % is typical). The importance simulation runs again with twice as many 
particles and the smaller range of parameters. This repeats a user-defined number of times (search intervals 
typically converge within 7 iterations). At some point, the confidence regions are dominated by 
experimental error and additional Monte Carlo samples do not affect the results. 

The program outputs a file with the final maximum likelihood estimates for µa and µs. It also outputs 
the coefficients of a paraboloidal fit for the likelihood surface, which a provided Mathematica notebook 
uses to graph an elliptical confidence region around the µa and µs maximum likelihood estimates. 

2. Software Specifications

NIST Operating 
Unit(s) Physical Measurement Laboratory, Information Technology Laboratory 

Category Monte Carlo light propagation simulations for turbid media 

Targeted Users Researchers interested in measuring optical attenuation and scattering coefficients for a 
material 

Operating 
System(s) 

Cross-platform. MCMLpar requires installation of SPRNG 2.0b or SPRNG 5.0 [5]. 
MCSLinv requires installation of SPRNG 2.0b or SPRNG 5.0 and Eigen [6]. SPRNG 2.0b is 
available and recommended for Windows [7], while SPRNG 5.0 is recommended for Linux. 

Programming 
Language C++ (at least 2011), Mathematica 10.4 for post-processing. 

Inputs/Outputs MCMLpar: One input text file, one output csv file which may be read by MCSLinv. 
MCSLinv: Two input text files, one output csv file. Described in README.txt 

Documentation Documentation provided in Refs. [1,3,4] 
Accessibility N/A small-scale research tool 
Disclaimer https://www.nist.gov/director/licensing 
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3. Methods  
 
The software includes a Monte Carlo simulation and an inverse problem algorithm. The Monte Carlo 

simulation has analytic solutions when the absorption and scattering coefficients are set to almost zero, as 
well as in single-scattering tests. The numerical and analytic solutions were compared in each of these 
cases, and the results are summarized in a Mathematica notebook (which is also saved as a PDF). The 
Monte Carlo simulation was also compared to MCML for various sets of parameters, and completed the 
simulations with comparable speed and results. MCSLinv was tested with experimental data, and with a 
“ground truth” forward run. The code returned the “ground truth” parameter values within uncertainty, and 
the search region converged as expected for various levels of noise in the inputs. The experimental data 
trial yielded a forward ARS result that matched the real experimental data closely. 
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Summary



Our recent research on Monte Carlo simulation of light propagation in biomedical phantoms has involved the implementation of an algorithm to solve for the optical attenuation and scattering coefficients of a single-layer material, or a and s [1]. It also involved the development of a parallel version of MCML [2], a popular light propagation model with over 2100 citations, according to ScienceDirect. The algorithm for the inverse problem involves three components: a profile log-likelihood evaluation, importance sampling, and an optimization procedure. In this article, we present two C++/OpenMP codes: MCMLpar, the parallel version of MCML, and MCSLinv, a program to solve the inverse problem for a single layer.

In MCMLpar, [3] a particle class is introduced to represent photons. The particles all enter an optical medium at the same point, travelling parallel to the vector normal to the surface. The particle weights are initially set to the probability of transmitting into the material, calculated by the Fresnel equation using the air and first layer indices of refraction. Each particle’s path length to an interaction is calculated by sampling the exponential distribution with mean t = a + s. If the interaction is within the layer, the particle’s direction is updated by sampling the Henyey-Greenstein distribution for the polar angle θ relative to the direction of travel. The relative azimuthal angle φ is sampled uniformly on [0, 2π). The particle’s weight is then multiplied by s/(s+a) to account for the chance that the interaction would have been attenuated. On the other hand, if the original path length would move the particle beyond the layer, the program determines whether to transmit or reflect the particle by sampling a Bernoulli distribution based on the Fresnel equations, averaging over polarizations. A transmission event changes the particle’s direction with Snell’s law. After scattering, transmitting, or reflecting, the particle propagates again with a new path length, and the process repeats until the particle leaves the medium.

The particle leaves the material by transmitting outside of the sample. When this occurs, the particle weight is added to a scoring vector and a new particle is introduced. Additionally, several particles can be sent through the material at once because the code runs in parallel. If the particle’s weight passes below a threshold before the particle escapes, the roulette method determines whether the particle lives or dies [2]. 

MCSLinv [4] uses a profile log-likelihood to compare the scoring vectors from a forward simulation using the method of MCMLpar to experimental Angle-Resolved-Scattering (ARS) data. The ARS is given by



where  is the incident power measured by the detector when no sample is present and  is the power scattered from the area of the sample included in the detector field of view at angles within the solid angle defined by . In addition, MCMLpar may be used to create simulated data which can be read by MCSLinv. The log-likelihood is used to construct confidence regions by identifying all parameter pairs leading to a log-likelihood value within half of a χ2 percentile of the maximum log-likelihood value [2]. Photon interaction events are sampled with Monte Carlo in a standard way for reference values of the parameters. These are extended to a 1D grid for each type of interaction (e.g., propagation or scattering) using importance sampling. Because the sampling distributions are independent, the 2D grid is only created explicitly as the particle is scored. Calculating the likelihood for each parameter’s total summed weights yields a surface of likelihood values, which is smooth and has a single peak.

The algorithm reduces the parameter search space at each iteration. The program initially runs the importance sampling simulation with a low number of particles (20 000 is typical) over a large range of parameters. The range of parameters is updated to only include values around the likelihood peak within some confidence region (99.9999 % is typical). The importance simulation runs again with twice as many particles and the smaller range of parameters. This repeats a user-defined number of times (search intervals typically converge within 7 iterations). At some point, the confidence regions are dominated by experimental error and additional Monte Carlo samples do not affect the results.

The program outputs a file with the final maximum likelihood estimates for a and s. It also outputs the coefficients of a paraboloidal fit for the likelihood surface, which a provided Mathematica notebook uses to graph an elliptical confidence region around the a and s maximum likelihood estimates.



Software Specifications



		NIST Operating Unit(s)

		Physical Measurement Laboratory, Information Technology Laboratory



		Category 

		Monte Carlo light propagation simulations for turbid media



		Targeted Users 

		Researchers interested in measuring optical attenuation and scattering coefficients for a material



		Operating System(s)

		Cross-platform. MCMLpar requires installation of SPRNG 2.0b or SPRNG 5.0 [5]. MCSLinv requires installation of SPRNG 2.0b or SPRNG 5.0 and Eigen [6]. SPRNG 2.0b is available and recommended for Windows [7], while SPRNG 5.0 is recommended for Linux.



		Programming Language 

		C++ (at least 2011), Mathematica 10.4 for post-processing.



		Inputs/Outputs 

		MCMLpar: One input text file, one output csv file which may be read by MCSLinv.

MCSLinv: Two input text files, one output csv file. Described in README.txt



		Documentation 

		Documentation provided in Refs. [1,3,4]



		Accessibility 

		N/A small-scale research tool



		Disclaimer

		https://www.nist.gov/director/licensing





Methods 



The software includes a Monte Carlo simulation and an inverse problem algorithm. The Monte Carlo simulation has analytic solutions when the absorption and scattering coefficients are set to almost zero, as well as in single-scattering tests. The numerical and analytic solutions were compared in each of these cases, and the results are summarized in a Mathematica notebook (which is also saved as a PDF). The Monte Carlo simulation was also compared to MCML for various sets of parameters, and completed the simulations with comparable speed and results. MCSLinv was tested with experimental data, and with a “ground truth” forward run. The code returned the “ground truth” parameter values within uncertainty, and the search region converged as expected for various levels of noise in the inputs. The experimental data trial yielded a forward ARS result that matched the real experimental data closely.
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