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Cross-sensitivity matrices are used to translate the response of three-axis accelerometers into components of acceleration along 
the axes of a specified coordinate system. For inertial three-axis accelerometers, this coordinate system is often defined by the 
axes of a gimbal-based instrument that exposes the device to different acceleration inputs as the gimbal is rotated in the local 
gravitational field. Therefore, the cross-sensitivity matrix for a given three-axis accelerometer is not unique. Instead, it depends 
upon the orientation of the device when mounted on the gimbal. We define nine intrinsic parameters of three-axis accelerometers 
and describe how to measure them directly and how to calculate them from independently determined cross-sensitivity matrices. 
We propose that comparisons of the intrinsic parameters of three axis accelerometers that were calculated from independently 
determined cross-sensitivity matrices can be useful for comparisons of the cross-sensitivity-matrix measurement capability of 
different institutions because the intrinsic parameters will separate the accelerator-gimbal alignment differences among the 
participating institutions from the purely gimbal-related differences, such as gimbal-axis orthogonality errors, z-axis 
gravitational-field alignment errors, and angle-setting or angle-measurement errors.
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1. Introduction

There are many ways to carry out measurements of the inertial response of three-axis
accelerometers [1–5]. The most accurate methods rely on selecting optimal values for sets of
adjustable parameters in over-determined models of accelerometer response to measurements taken
with different orientations of the device under test (DUT)1 relative to the gravitational field or some
other accurately defined acceleration. The purpose of this manuscript is to describe a new
gimbal-based measurement and analysis method employing an over-determined model of the response
as a function of orientation of each of the accelerometers in the local gravitational field.
1A three-axis accelerometer will be referred to as a device under test (DUT) in this article, reserving the word “accelerometer” to
refer to each of the three individual accelerometers that comprise the DUT.
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Both the measurement method and the analysis method are optimized for estimating the intrinsic
parameters (defined below) of a DUT. These parameters are expected to be useful for interpreting the
results of multiple-laboratory comparisons of three-axis-accelerometer calibration capability and are
complementary to the cross-sensitivity matrix method widely used in applications of three-axis
accelerometers. Understanding the relation of our work to the work cited in the references presupposes
knowledge of our results, so it is postponed to the discussion at the end of the main text.

We define three coordinate systems as follows: a world-referenced coordinate system, (X̂ ,Ŷ , Ẑ), a
gimbal-referenced coordinate system, (x̂, ŷ, ẑ), and a device-referenced coordinate system, (û, v̂, ŵ).
Since the analysis presented here is independent of the origins of these coordinate systems, we choose
the origins to coincide at a point at the center of the top of the DUT, as illustrated in Fig. 1.

Fig. 1. Diagram of a gimbal composed of a β -rotation stage (blue ellipse) located on an α-rotation stage (red
outline). A DUT (tan box) composed of three nominally orthogonal accelerometers is mounted on the β stage.
Unit vectors x̂, ŷ, and ẑ, which are parallel to the corresponding orthogonal X ,Y , and Z axes of the world
coordinate system, are shown in red, green, and blue, respectively. The brown arrows represent vectors~u,~v, and ~w,
which encode the magnitude and direction of maximum responsivity of the respective u−,v−, and w−axis
accelerometers. It is assumed that the accelerometer and gimbal axes are approximately aligned as shown in the
figure.

The positive directions of the rotation angles α ′ and β ′ of the α and β stages are shown in Fig. 1 in
the appropriate color. Angles with primes are used to describe the rotation of the gimbal and DUT
relative to the gravitational field. Angles without primes are used to describe the rotation of the
gravitational field relative to the DUT and gimbal. The vectors~u,~v, and ~w point in the directions of
maximum responsivity of the u−,v−, and w−axis accelerometers. The magnitude of each of these
vectors is the intrinsic responsivity of the corresponding accelerometer. The (X ,Y,Z) coordinate
system is an orthonormal coordinate system that is fixed relative to the surface on which the gimbal is
mounted. The Z axis of this system is aligned with the local gravitational field. The (x,y,z) coordinate
system is an orthonormal system that is fixed with respect to the β stage of the gimbal, and therefore
fixed with respect to the DUT. This system is defined to be coincident with the (X ,Y,Z) coordinate
system when the gimbal is in the orientation shown. This orientation will be referred to as
configuration 1.

The derivations in this manuscript are based on three important assumptions that will be introduced
and repeated as needed. To start, assume that there is a different unique axis along which each of the
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three DUT accelerometers has a maximum response to the gravitational field, and represent these
unique axes by u,v, and w. With this assumption, three sets of intrinsic parameters of the DUT can be
defined, each consisting of three intrinsic parameters. The first set consists of the angles between the
u,v, and w axes, which in general will not be perfectly orthogonal. The second set of intrinsic
parameters consists of the magnitudes of the responsivities of the u-, v-, and w-axis accelerometers
along the u, v, and w axes, respectively. The third set consists of the offset signals of the respective
accelerometers in the absence of acceleration input stimuli.

Table 1. Key concepts, parameters, and conventions used in this manuscript.

Definitions and Conventions used in this Manuscript
Symbol Definition Context

x̂, ŷ, ẑ Unit vectors in gimbal coordinate system See Figs. 1 and 2
α ′x,α

′
y,β
′
z Angles of rotation around gimbal axes See Figs. 1 and 2

−αx,−αy,−βz Same angles, but from DUT point of view See Figs. 1 and 2
û, v̂, ŵ Unit vectors in DUT coordinate system See Figs. 1 and 2
~u,~v,~w Intrinsic responsivity vectors See Figs. 1 and 2

φuv,φvw,φwu Intrinsic angles between DUT unit vectors û, v̂, ŵ û · v̂ = cos(φuv)
r Meta-symbol that represents either u,v, or w ~r = rr̂ = rxx̂+ ryŷ+ rzẑ
s Meta-symbol that represents either x,y, or z rs, ŝ,θs, ρss′

Or Accelerometer r output with 0 acceleration input Output offset signal
~a General acceleration input experienced by DUT ~a = axx̂+ayŷ+azẑ
θs Meta-symbol that represents either αx,αy, or βz Rr(θs)

n = 1, . . . ,N Index of number of rotation angles αxn,αyn,βzn
g Acceleration due to gravity DUT input acceleration

~g(θsn) Gravity vector as experienced by DUT as function of θsn
m = 1, . . . ,M Index of the number of response measurements at each angle

εrsnm Noise in mth output value of accelerometer r at angle θsn
Rrm(θsn) mth value (m = 1, · · · ,M) of the measured DUT

response that contributes to average value Rr(θsn) = (1/M)∑
M
1 Rrm(θsn)

Rr(θsn) Average response of DUT accelerometer r as function of θsn
SE(Rr) Standard-error uncertainty of mean Rr±K SE(Rr)

K Coverage factor of uncertainty expression K = 2

P Cross-sensitivity matrix in gimbal coordinates P =

ρxx ρxy ρxz
ρyx ρyy ρyz
ρzx ρzy ρzz


Q Inverse cross-sensitivity matrix Q = P−1 =

qxx qxy qxz
qyx qyy qyz
qzx qzy qzz


[~r · ŝ] = Q Cross-responsivity matrix in mixed coordinates [~r · ŝ] =

ux uy uz
vx vy vz
wx wy wz


Table 1 introduces and defines the key concepts, parameters, and conventions used in this

manuscript. The meta-symbol r and the short-hand notation r ∈ {u,v,w} will be used in a single
equation or sentence to represent the u,v, and w accelerometer or direction in the set of equations or
sentences that is obtained by first replacing r with u, then with v, and then with w in the same single
equation or sentence.
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The same convention will be used for the meta-symbols s ∈ {x,y,z} and θ ′s ∈ {α ′x,α ′y,β ′z}, where
α ′x,α

′
y, and β ′z are the angle of rotation around axes parallel to the x,y, and z axes of the gimbal,

respectively. These rotation angles as seen from the point of view of the DUT are given by θs =−θ ′s .
Now assume that the maximum responsivity of each accelerometer (zero-offset-corrected signal

per unit input acceleration when aligned with the gravitational field) and the direction of maximum
responsivity of each accelerometer are both independent of acceleration. With this assumption of
linearity, the responsivity of the r ∈ {u,v,w} accelerometer can be expressed as a vector

~r = rr̂ = rxx̂+ ryŷ+ rzẑ, (1)

in the (u,v,w) coordinate system, as in the middle expression in Eq. (1), or it can be expressed as a
vector in the (x,y,z) coordinate system as in the right-most expression in this equation, where r = ||~r||
is the magnitude of the vector~r, and the unit vector r̂ =~r/r points in the direction of maximum
responsivity. Thus,~r, its magnitude, its direction, and its elements in the (u,v,w) coordinate system2

are intrinsic parameters of the DUT. This idea will be developed further in what follows.
Next, we define the response vector ~Rr of the r-axis accelerometer as

~Rr = Rrxx̂+Rryŷ+Rrzẑ. (2)

This vector, which describes the response along the direction of maximum response of the r-axis
accelerometer, is useful here because it can be expressed in the (x,y,z) coordinate system of the
gimbal, as can the acceleration vector

~a = axx̂+ayŷ+azẑ. (3)

However, Rr is not useful in general because ~Rr 6= Rr r̂ in general. Only in the special cases where
ax = ay = az or û = x̂, v̂ = ŷ, and ŵ = ẑ does the equality in Eq. (2) hold.

Next, assume that the errors associated with (1) the alignment of the gimbal z-axis with the local
gravitational field, (2) the orthogonality of the gimbal axes, and (3) the gimbal angle measurements are
all negligible. Based on this and the prior assumptions, it is useful to fit a linear model of the response
of each accelerometer to the measured response as a function of gimbal-rotation angle. We define α ′ to
be the rotation angle of the outer gimbal axis and β ′ to be the rotation angle of the inner gimbal axis.
Depending on the initial configuration of the DUT, α ′ may be considered to be either the x-axis of the
gimbal or the y-axis of the gimbal. When α ′ represents the x-axis, we write α ′x = α ′. Alternatively,
when α ′ represents the y-axis, we write α ′y = α ′. The inner axis of the gimbal is always taken to be the
z-axis, so we write β ′z = β ′. Figure 2 shows the three starting configurations of the DUT for the
response measurements.

With sufficient replication of the individual measurements of response at each set of angles, the
difference between the standard error of the fit and the standard error of the individual measurements at
each angle will determine the extent to which the above assumptions have been satisfied. This idea and
various sources of error not included in the model are discussed in more detail in Appendix B. The
remainder of this report comprises six sections, “Measurement Methods,” “Analysis Methods,”
“Relation of the intrinsic parameters to the conventional cross-sensitivity matrix,” “Relation to
Previous Work,” “Discussion and Conclusion,” and two appendices.

2. Measurement Method

The measurement method consists of recording the response of each axis accelerometer and the
rotation angle as the DUT is separately rotated through 360◦ around each of the three orthogonal axes
2This does not apply to its elements in either the world coordinate system or the gimbal coordinate system.

4 https://doi.org/10.6028/jres.122.032



Volume 122, Article No. 32 (2017) https://doi.org/10.6028/jres.122.032

Journal of Research of National Institute of Standards and Technology

of the gimbal α ′x,α
′
y, and β ′z . The measurement will be described in terms of the DUT-gimbal

configuration shown in Fig. 1. This configuration will be referred to as configuration 1, and all
measurements begin from this configuration.

Red, green, and blue arrows represent orthogonal unit vectors x̂, ŷ, and ẑ, respectively, in a
gimbal-based coordinate system, which is defined to coincide with the unit vectors (X̂ ,Ŷ , Ẑ) of the
stationary, orthogonal coordinate system when the DUT is in orientation A of Fig. 2.

Fig. 2. A, B, and C: Starting DUT orientations for measurements of accelerometer response during rotations
α ′x,α

′
y, and β ′z around gimbal axes x,y, and z, respectively.

Orientation A in Fig. 2 is the DUT orientation obtained with configuration 1 of Fig. 1. The
rotations around gimbal axes x̂ and ẑ required to obtain starting orientations B and C from starting
orientation A are also shown in Fig. 2. It is assumed that the gimbal unit vector ẑ is perfectly aligned
with the gravitational unit vector ĝ =~g/||g|| in A and C, whereas it is the gimbal unit vector ŷ that is
perfectly aligned with ĝ in B. Note that all three coordinate systems are right handed, but that α ′x and
β ′z follow left-hand rotation rules, whereas α ′y follows a right-hand rule. This choice was a compromise
to retain the angle measuring conventions of the gimbal and obtain the same form for the three
equations given as Eq. (5) below.

If the~u,~v, and ~w vectors are not orthogonal to each other, then they cannot, even in principle, be
perfectly aligned with the respective orthonormal x̂-, ŷ-, and ẑ-unit vectors of the gimbal. However, as
shown in Eq. (1), they can always be expressed in terms of the gimbal coordinate system as

~u =uxx̂+uyŷ+uzẑ, where u = ||~u||=
√

u2
x +u2

y +u2
z is the magnitude of~u,

~v =vxx̂+ vyŷ+ vzẑ, where v = ||~v||=
√

v2
x + v2

y + v2
z is the magnitude of~v,

~w =wxx̂+wyŷ+wzẑ, where w = ||~w||=
√

w2
x +w2

y +w2
z is the magnitude of ~w.

(4)

Next assume that the z axis of the gimbal has been aligned with gravity3 to the desired uncertainty
3We adopt the widely used convention that the gravitational acceleration vector points up, which is opposite to the direction of
the gravitational force vector.
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as described in detail in [6] or Appendix A.
Refer now to Fig. 2, which illustrates the measurement process. The gimbal is rotated separately

through angles α ′xn,α
′
yn, and β ′zn starting from positions A, C, and B, respectively, for n = 1, . . . ,N. The

dependencies of the gravitational vector~g on the corresponding angles αxn =−α ′xn,αyn =−α ′yn, and
βzn =−β ′zn, which are defined from the point of view of the DUT, are given by

~g(αxn) =−gsin(αxn)ŷ+gcos(αxn)ẑ,

~g(αyn) =−gsin(αyn)x̂+gcos(αyn)ẑ,

~g(βzn) =−gsin(βzn)x̂+gcos(βzn)ŷ,
(5)

respectively, as shown Figs. 2A, 2C, and 2B, respectively. Note that this result is accurate only to the
accuracy with which the angle settings correspond to the actual values of the angles and to the accuracy
with which the pertinent gimbal axis has been aligned with the gravitation unit vector ĝ in Figs. 2A-2C.

First, consider a single measurement by a single accelerometer at a single gimbal angle as a step to
developing the full measurement model. For instance, consider the mth (m = 1, . . . ,M) value of the
response of the w-axis accelerometer to gravity at rotation angle θsn, which, according to the
assumption of linearity, is given by

Rwm(αxn) = Ow +~w ·~g(αxn)+ εwxmn +δwxn = Ow−wygsin(αxn)+wzgcos(αxn)+ εwxmn +δwxn, (6)

where Ow is the nominally constant offset signal from the w-axis accelerometer, εwxmn is a normally
distributed random variable with population mean, sample mean, and sample standard error of the
mean given by 0, εwxn, and SE(εwxn), respectively, and δwxn, which is assumed to be zero for now, is
the error caused by approximating the actual response of the w accelerometer by the simple
three-parameter model of Eq. (6) with δwxmn = 0.

The w dependence of Eq. (6) associates the equation with the w accelerometer. The x dependence
associates the equation with orientation A in Fig. 2, and the m dependence associates the equation with
the mth measurement by the w accelerometer of the response Rwm(αxn) at the nth angle αxn.

Therefore, the average response at angle αxn is given by

Rw(αxn) =
1
M

M

∑
m=1

Rwm(αxn) =
1
M

M

∑
m=1

[
Ow−wygsin(αxn)+wzgcos(αxn)+ εwxmn]

= Owx−wygsin(αxn)+wzgcos(αxn),

(7)

where

Owx = Ow +
1
N

N

∑
n=1

1
M

M

∑
m=1

εwxmn = Ow +
1
N

N

∑
n=1

εwxn (8)

is the average offset (response to zero acceleration) of the w accelerometer during rotation around
gimbal axis x. Ideally, the average offset Owx would be independent of the gimbal axis about which the
gimbal is rotated. In practice, the value of the mean offset signal Owx will vary from measurement set
to measurement set due to offset drift, if any, and due to the residual noise that shows up in variations
in the mean value of εwxmn, which is zero only in the limit as M→ ∞.

Equations (7) for n = 1, . . . ,N represents a system of linear equations that can be solved for
Owx,wy, and wz by standard least-squares methods, and the corresponding standard (error) uncertainties
SE(Owx),SE(wy), and SE(wz) can be also be calculated by standard methods. Furthermore, the
off-diagonal elements in the variance-covariance matrix should be negligible compared to the diagonal
elements, because the terms in Eq. (7) are orthogonal over a uniformly sampled 360◦ rotation.
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There are eight more independent equations like Eq. (7) that describe the response of each of three
accelerometers to rotations of the DUT around each of a total of three gimbal axes. Therefore, there
are nine systems of overdetermined linear equations

Ru(αxn) = Oux +uy1 gsin(αxn)+uz1 gcos(αxn),

Rv(αxn) = Ovx + vy1 gsin(αxn)+ vz1 gcos(αxn),

Rw(αxn) = Owx +wy1 gsin(αxn)+wz1 gcos(αxn),

Ru(αyn) = Ouy +ux1 gsin(αyn)+uz2 gcos(αyn),

Rv(αyn) = Ovy + vx1 gsin(αyn)+ vz2 gcos(αyn),

Rw(αyn) = Owy +wx1 gsin(αyn)+wz2 gcos(αyn),

Ru(βzn) = Ouz +ux2 gsin(βzn)+uy2 gcos(βzn),

Rv(βzn) = Ovz + vx2 gsin(βzn)+ vy2 gcos(βzn),

Rw(βzn) = Owz +wx2 gsin(βzn)+wy2 gcos(βzn),

(9)

for n = 1, . . . ,N > 3, which can be solved by the same standard method used for Eq. (7).
The first three equations in Eq. (9) describe the measured responses of the u,v, and w

accelerometers, respectively, as the gimbal is rotated around the x-axis. Similarly, the second three
equations in Eq. (9) describe the measured responses of the u,v, and w accelerometers, respectively, as
the gimbal is rotated around the y-axis, and the third three equations in Eq. (9) describe the measured
responses of the u,v, and w accelerometers, respectively, as the gimbal is rotated around the z-axis.

Each line of Eq. (9) describes an independent system of equations like Eq. (7), because the
experimental data for each line are different. If each system of linear equations represented by a single
equation in Eq. (9) is solved independently, the solutions to the nine systems of equations provides two
independent estimates for each rs. The two estimates for these parameters can be represented concisely
as rsp, where the meta-symbol r represents any member of the set {u,v,w}, the meta-symbol s
represents any member of the set {x,y,z}, and the meta-symbol p represents any member of the set
{1,2} as shown in Eq. (9).

The asymmetric distribution of the 1’s and 2’s in Eq. (9) reflects the fact that ẑ is parallel to ĝ in
two starting orientations (A and C) in Fig. 2, whereas ŷ is parallel to ĝ in only one starting orientation
(B), and x̂ is not parallel to ĝ in any starting orientation. The two independent estimates for the same
parameter will be averaged over p = 1 and p = 2 at a later stage of the analysis.

It is also possible to solve the nine independent systems of linear equations represented by Eq. (9)
simultaneously, but it may make interpretation of the residuals of the fit more difficult. However, if all
of the equations represented by Eq. (9) are solved simultaneously, then the numerical subscripts in Eq.
(9) should be deleted, which sets rs2 = rs1 and provides the average values of rs1 and rs2 directly.

3. Analysis Method

Either simultaneously solve the nine systems of linear equations represented by Eq. (9) for the
adjustable parameters Ors,rs′ , and rs′′ , and calculate the corresponding standard (error) uncertainties
SE(Ors),SE(rs′), and SE(rs′′) for each combination of r ∈ {u,v,w} and s 6= s′ 6= s′′ ∈ {x,y,z},

or independently solve each system for the adjustable parameters Ors,rs′p, and rs′′p′ , and calculate
the corresponding standard (error) uncertainties SE(Ors),SE(rs′p), and SE(rs′′p′) for each combination
of r ∈ {u,v,w}, s 6= s′ 6= s′′ ∈ {x,y,z}, and p, p′ ∈ {1,2}.

If each system is solved independently, and if each of the sets {rs1,rs2,SE(rs1),SE(rs2)} is
consistent with the assumption that rs1 and rs2 are samples drawn from the same random distribution,
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for which SE(r1)≈ SE(r2) is a necessary but not sufficient condition, then estimate the s element of
the r-accelerometer vector as

rs =
rs1 + rs2

2
(10)

for r ∈ {u,v,w} and s ∈ {x,y,z}, with an estimated standard (error) uncertainty of

SE(rs) =

√
SE(rs1)2 +SE(rs2)2

2
. (11)

If this assumption is not satisfied, then estimate rs and SE(rs) with suitable alternatives.
If all of the sets {Orx,Ory,Orz,SE(Orx),SE(Ory), and SE(Orz)} are consistent with the assumption

that Orx,Ory, and Orz are samples drawn from the same random distribution, then estimate the r-offset
signal as

Or =
Orx +Ory +Orz

3
(12)

for r ∈ {u,v,w}, with an estimated standard (error) uncertainty of

SE(Or) =

√
SE(Orx)2 +SE(Ory)2 +SE(Orz)2

3
. (13)

If this assumption is not satisfied, then estimate Or and SE(Or) with a suitable alternative that is
consistent with the estimates of Or and SE(Or).

Intrinsic esponsivities The maximum responsivities of the three accelerometers, which are intrinsic
parameters, are estimated separately as

u =||~u||=
√

u2
x +u2

y +u2
z

v =||~v||=
√

v2
x + v2

y + v2
z

w =||~w||=
√

w2
x +w2

y +w2
z ,

(14)

where the values of ux, . . . ,wz are available directly from the solutions of Eq. (9) if the nine systems of
linear equations represented by these equations were solved simultaneously, or from Eq. (10) if the
nine systems of linear equations represented by Eq. (9) were solved independently. In either case, the
estimated standard (error) uncertainty is given by

SE(r) =

√[
rxSE(rx)

]2
+
[
rySE(ry)

]2
+
[
rzSE(rz)

]2
r

. (15)

Intrinsic angles The angles between the accelerometer axes can be calculated as

φuv = arccos(û · v̂) = arccos
(

~u ·~v
||u|| ||v||

)
= arccos

(
uxvx +uyvy +uzvz

u v

)
φvw = arccos(v̂ · ŵ) = arccos

(
~v ·~w
||v|| ||w||

)
= arccos

(
vxwx + vywy + vzwz

v w

)
φwu = arccos(ŵ · û) = arccos

(
~w ·~u
||w|| ||u||

)
= arccos

(
wxux +wyuy +wzuz

w u

)
,

(16)
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where the values of u,v, and w are available from Eq. (14), and, as already mentioned, the values of
ux, . . . ,wz are available directly from the solutions of Eq. (9) or Eq. (10). The standard (error)
uncertainties of the intrinsic angles are given by

SE(φrr′) =

√[
~rs ·SE(~r′s)

]2
+
[
~r′s ·SE(~rs)

]2
+ cosφrr′

[[
r SE(r′)

]2
+
[
r′ SE(r)

]2]
r r′ sinφrr′

. (17)

4. Relation of the Intrinsic Parameters to the Conventional Cross-Sensitivity
Matrix

The conventional cross-sensitivity matrix P is used to calculate the acceleration input vector~a
that produces the measured offset-corrected output vector of the DUT given by ~R− ~O with all
quantities expressed in the (x,y,z) gimbal coordinate system. Specifically,ax

ay
az

=

ρxx ρxy ρxz
ρyx ρyy ρyz
ρzx ρzy ρzz

Rx−Ox
Ry−Oy
Rz−Oz

= P

Rx−Ox
Ry−Oy
Rz−Oz

 . (18)

On the other hand, the intrinsic responsivity vectors~u,~v, and ~w are used to calculate the predicted
offset-corrected output from each DUT accelerometer. Specifically,

Ru−Ou =~u ·~a = uxax +uyay +uzaz

Rv−Ov =~v ·~a = vxax + vyay + vzaz

Rw−Ow = ~w ·~a = wxax +wyaY +wzaz.

(19)

We define

Q =

qxx qxy qxz
qxy qyy qyz
qxz qzy qzz

= P−1 (20)

to be the inverse of P . Multiplication of Eq. (18) by Q followed by a rearrangement of terms gives

*

Rx−Ox
Ry−Oy
Rz−Oz

=

qxx qxy qxz
qyx qyy qyz
qzx qzy qzz

ax
ay
az

=

qxx ax +qxy ay +qxz az
qyx ax +qyy ay +qyz az
qzx ax +qzy ay +qzz az

 . (21)

Equations (18) and (21) have the same form but complementary interpretations. The latter can be
read as “response = responsivity multiplied by stimulus (acceleration in this case),” and the former can
be read as “stimulus equals sensitivity multiplied by response.” Comparison of the right-hand sides of
Eq. (21) and Eq. (19) shows thatρxx ρxy ρxz

ρyx ρyy ρyz
ρzx ρzy ρzz

−1

= P−1 = Q =

qxx qxy qxz
qyx qyy qyz
qzx qzy qzz

=

ux uy uz
vx vy vz
wx wy wz

 , (22)

which establishes the relation of the elements of the cross-sensitivity matrix to the elements of the 
intrinsic responsivity vectors expressed in the same coordinate system. Equation (22) and Eqs. (9–17) 
are the top-level results of this report.

*Equation 21 corrected on March 6, 2019, by adding plus signs to the right matrix
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5. Relation to Previous Work

None of our references explicitly mentions the intrinsic parameters or their potential uses. Of the
references cited here, our work is most like that of Ref. [2]. However, that work is optimized for
efficiency in terms of time and computational complexity, requiring only manual rotations of the DUT
around each of three nominally orthogonal axes while lying on a flat surface. By contrast, our work is
optimized for minimizing the uncertainties in determinations of the intrinsic parameters of three-axis
accelerometers and relating the intrinsic parameters to the elements of the cross-sensitivity matrix.

Another important difference is that [2] mentions some ideas related to the intrinsic parameters in
passing, whereas we focus directly on the nine intrinsic parameters. For instance, [2] distinguishes
between sensor-sensitivity axes and sensor-coordinate axes and calculates angles between the former
and the latter, but it does not calculate the angles between the sensor-sensitivity axes, which are the
intrinsic angles.

IEEE standard 1293 [1] provides a standard nomenclature, a format for reporting, and informative
examples of measurement and analysis procedures for linear single-axis, nongyroscopic
accelerometers. The focus of that work is generality, covering a wide range of accelerometer types and
sources of error. Despite the apparent limitation to “linear single-axis accelerometers” implied by the
title, nonlinearity errors and two- and three-axis devices are covered extensively in the annexes. The
work described in our manuscript as well as that in the references given here and that in the references
cited in those references typically describe optimizations for specific applications, extensions, or
replacements of the material in standard 1293.

References [4] and [3] treat high-accuracy inertial navigation systems. The former is optimized for
self-calibrating rotating systems composed of three nominally orthogonal accelerometers and three
nominally orthogonal gyroscopes. The latter is optimized for systems composed of three nominally
orthogonal, spatially separated accelerometers without gyroscopes. Reference [5] describes electronic
procedures for calibrating capacitive accelerometers without any motion. Reference [6] describes an
alternative procedure for aligning the gimbal axes with the local gravitational field instead of that given
in Appendix B.

6. Discussion and Conclusion

Equations (5–17) parameterize the response of a three-axis accelerometer DUT in terms of the
intrinsic (not necessarily orthogonal) coordinate system of the DUT plus the intrinsic background (DC
offset) signals Ou,Ov, and Ow from the three accelerometers. The goal of this parameterization is the
set of nine intrinsic parameters listed in Table 2.

Table 2. The three intrinsic offset parameters of a three-axis accelerometer are the offset signals of the individual
accelerometers. The three intrinsic responsivity parameters are the responsivities of the individual accelerometers
along their axes of maximum responsivity, and the three intrinsic angles are the angles between the axes of
maximum responsivity.

Intrinsic Parameters
Intrinsic Intrinsic Intrinsic
Offsets Responsivities Angles

Ou u φuv
Ov v φvw
Ow w φuw
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The intrinsic responsivities can be measured directly or calculated from a conventional
cross-sensitivity matrix P as ux uy uz

vx vy vz
wx wy wz

= P−1 (23)

and the cross-sensitivity matrix can be calculated from the intrinsic responsivities by inverting both
sides of Eq. (23).

The measurement geometry described in Eq. (5) is optimized for calculating the intrinsic
parameters of a DUT. However, since this parameterization is independent of the DUT coordinates in
any given coordinate system, it is not expected to be of use in applications of three-axis
accelerometers. Instead, it is expected to be useful in comparisons of cross-sensitivity measurement
capability.

For instance, suppose measurements by two different laboratories of the cross-sensitivity matrix of
the same three-axis accelerometer agree very well for the on-axis elements but agree much less well
for the off-axis elements. Comparison of the intrinsic parameters of the DUT that can be calculated
from the two different cross-sensitivity matrices will isolate the differences caused by
gimbal-associated errors from those caused by differences in the DUT-gimbal alignment present
during the different measurements.

Therefore, an interlaboratory comparison of cross-sensitivity could be organized by a central
laboratory that would carry out a very accurate determination of the intrinsic parameters of one (or
more) DUTs. It would then distribute that DUT to participating laboratories that would measure the
cross-sensitivity following their standard procedures. Comparison of the intrinsic parameters
calculated from the cross-responsivity matrices reported by the different laboratories would establish
the state of the gimbal-related measurement errors, and the remaining differences in the
cross-sensitivity results could be reliably assigned to alignment differences.

Another potential use is to distinguish packaging-induced strain from misalignment during
packaging of three-axis accelerometers for which the cross-sensitivity matrix has been measured in a
precisely aligned batch process prior to packaging. Suppose a manufacturer has developed a batch
process to simultaneously measure the cross-sensitivity of a large number of three-axis accelerometers
in such a way that the alignment relative to the measuring instrument can be repeated during
packaging. Further suppose that the cross-sensitivity matrix of a small sample of packaged devices is
measured, and the results differ from the batch-process measurement results by more than some
specified tolerances.

Comparison of the intrinsic parameters calculated from the cross-sensitivities measured before and
after packaging can provide a diagnostic on the packaging process. If the difference between all of the
before-and-after intrinsic parameters falls within some specified tolerances, then the packaging process
is not reproducing the alignment in the batch measurement as well as desired. On the other hand, if the
differences between some of the before-and-after intrinsic parameters fall outside the specified
tolerances, then the packaging process is straining the accelerometer die more than expected. In either
case, the manufacturer will know what aspect of the packaging process needs to be improved.
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7. Appendix A. Aligning the Gimbal Axes with Gravity

This appendix describes a simple method to align the three gimbal axes with gravity as shown in
Fig. 2A, 2B, and 2C subject to two assumptions. The first is that the three gimbal axes are orthogonal
with uncertainties well less than those desired in the uncertainties of the angles between any two
accelerometer axes. The second is that the uncertainty of a 90◦ rotation around each axis capable of
360◦ is also well less than that desired in the uncertainty in the angles between any two accelerometer
axes. Ideally, it should be necessary to align the gimbal z-axis with the local gravitational field only
once, but it would be prudent to check the alignment periodically.

Let Ru(α
′
x,α

′
y,β
′
z) and Rv(α

′
x,α

′
y,β
′
z) be the respective responses of the u-axis and v-axis

accelerometers as a function of angles α ′x,α
′
y, and β ′z when the gimbal axes are in orientation A defined

in Fig. 2 starting from configuration 1 of Fig. 1. In this case,

γ
′
x ≈ arcsin

(
Rv(0◦,0◦,0◦)−Rv(0◦,0◦,180◦)

Rv(270◦,0◦,0◦)−Rv(90◦,0◦,0◦)

)
(24)

γ
′
y ≈ arcsin

(
Ru(0◦,0◦,0◦)−Ru(0◦,0◦,180◦)

Ru(0◦,270◦,270◦)−Ru(0◦,90◦,270◦)

)
(25)

which approximate the angles through which the gimbal must be rotated around axes parallel to the
gimbal x and y axes, respectively, to align the gimbal z axis with the local gravitational field. Since
these expressions are not exact, nominal values determined from a small number of replications can be
used for the quantities in the denominators, and a few rapidly converging iterations may be required to
obtain to the minimum-error alignment.

Depending upon the nature of the gimbal being used, the required tilting can be implemented with
leveling axes provided specifically for this purpose. If no leveling axes are available, then one of the
required tilts can be obtained by redefining α ′x such that γ ′x = 0. Due to constraints imposed by a
two-axis gimbal, the required rotation through γ ′y cannot be implemented by a rotation of α ′y. The only
solution would be to place shims under one of the edges of the gimbal that is parallel to the y axis when
the gimbal is in orientation A of configuration 1. This is not only much less convenient, but also more
difficult to execute with high precision. This is the reason that many gimbals provide a leveling axis
with a limited range but sufficient precision to complete the alignment of the gimbal z axis with the
local gravitational field.

Assume that the procedure described above has been completed. In this case, the standard error
uncertainties in the x- and y- axis angles between the z axis of the gimbal and the gravity unit vector
are given by the standard-error uncertainties SE(γ ′y) and SE(γ ′x), respectively. If both the uncertainty in
the orthogonality of the gimbal axes and the uncertainty in the gimbal rotation-angle settings are small
compared to the uncertainty in the alignment of the z axis with the gravity unit vector ĝ, then the
uncertainty of the alignment of the y axis of the gimbal with ĝ will be comparable to that obtained in
the alignment of the z axis of the gimbal with ĝ.

8. Appendix B. Interpretation of the Residuals of the Fits

As mentioned at the end of Sec. 2, the measurement and analysis procedures described here
provide checks on and measures of the cumulative effect of all of the errors that are not included in the
models of the DUT that are fit to the measured data. This discussion will be presented in terms of
measurements of the response of the w accelerometer to rotation about the x axis, but the results can be
readily generalized to measurements of the response of the r accelerometer to rotation about the s axis.

The residuals of the individual measurements of Rwm(αxn) for m = 1, · · · ,M should be tested for no
correlation and normality before being averaged. If they fail the test for no correlation, then the
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sampling rate or some similar parameter of the data acquisition system should be modified
accordingly. If they pass the test for no correlation, then the test for normality can identify other
problems that need to be addressed such as occasional outliers or nonnegligible offset drift during the
measurement period. Once all of the Rwm(αxn) data passes the tests for no correlation and normality,
the model equation can be fit to the data. If the variance of the residuals of the fit is significantly larger
than the quadrature sum of the variances of the residuals of the M measurements of Rwm(αxn) at each
αxn, then the residuals of the fit contain information about deviations of the accelerometer response
from the simple linear model of Eq. (9).

These deviations can be divided into two classes. The first class includes deviations of the
performance of the gimbal from the assumed ideal, that are implicit in Eq. (5). These include
nonorthogonality of the gimbal axes, errors in setting the gimbal angles, and errors in aligning the
gimbal axes with the gravitational field. The second class includes deviations of the performance of the
accelerometers from the assumed ideal, that are implicit in Eq. (9). These include but are not limited to
nonunique directions of maximum responsivity of the gimbal accelerometers, offset drifts large enough
relative to noise to alter the assumed normal distribution of the values of Rw, but small enough to
remain hidden in the Rwm(αxn) data at each angle, and various types of nonlinearity. Small
nonlinearities show up as a sinewave in the residuals. Clipping causes clumps of data at the extremes
of the residuals and dead-band causes clumping of data around some point (often zero) away from the
extremes of the residuals.
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