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1. Summary

We have developed a utility to both stitch cube maps into other types of texture maps (equirectangular,

dual paraboloid, and octahedral), and stitch those other types back into cube maps. The utility allows for 

flexibility in the image size of the conversion - the user can specify the desired image width, and the height 

is computed (cube, paraboloid, and octahedral mappings are square, and spherical maps are generated to 

have 16:9 aspect ratio). Moreover, the utility is sampling-agnostic, so the user can select whether to use 

uniform or jittered sampling over the pixels, as well as the number of samples to use per pixel. The rest of 

this paper discusses the mathematical framework for projecting from cube maps to equirectangular, dual 

paraboloid, and octahedral environment maps, as well as the mathematical framework for the inverse 

projections. We also describe two sampling techniques: uniform sampling and correlated multi-jittered 

sampling. We perform an evaluation of the sampling techniques and a comparative analysis of the different 

projections using objective image quality assessment metrics. 

2. Software Specifications

NIST Operating Unit(s) ITL, ACMD 

Category Image Projection and Sampling 

Targeted Users Virtual Reality Developers 

Operating System(s) Linux 

Programming Language C++11 
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Inputs/Outputs 
Cube map images for input and single projected environment map 

images on output (or vice versa). 

Documentation https://github.com/usnistgov/cubemap-stitch 

Accessibility N/A 

Disclaimer https://www.nist.gov/director/licensing 

3. Projecting from Cube Maps

A cube map may be thought of as the set of six images that six 90-degree field-of-vision cameras 

would capture if placed in orthogonal directions to one another at a fixed distance from the origin observer. 

The six faces are: up, down, left, right, floor, and ceiling. Figure 1 illustrates how the cubic texture map is 

assembled from each of these image captures. The cubic texture map can equivalently be thought of as a 

projection of the unit sphere onto the cube faces when they are arranged correctly in three dimensions. In 

other words, each point 𝑃 on one of the faces is assigned the color of some point 𝑄 on the surface of the 

environment’s unit sphere such that 𝑃, 𝑄, and the origin are collinear. 

Fig. 1. Cube map texture layout and assembly from the six sides of a cube. 

When converting a cube map, we seek to populate some other 𝑛-pixel by 𝑚-pixel texture map in which 

each pixel is assigned an (𝑅, 𝐺, 𝐵) coloring1. We determine the color coordinates pixel-by-pixel; consider a 

single pixel in this map (𝑖, 𝑗) ∈ {0, … , 𝑛 − 1} × {0, … ,𝑚 − 1}. We sample a set of points 𝑆 =  {𝑃1, … , 𝑃𝑘}
from within this pixel using one of the techniques in Sec. 5. For each of these points 𝑃𝑙 , we compute the

1 In practice, 𝑅, 𝐺, and 𝐵 each represent an 8-bit data type describing a color intensity; each intensity is given as an integer between 0 
and 255 (inclusive). 
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https://doi.org/10.6028/jres.122.025
https://github.com/usnistgov/cubemap-stitch
https://www.nist.gov/director/licensing


Volume 122, Article No. 25 (2017) https://doi.org/10.6028/jres.122.025 

Journal of Research of the National Institute of Standards and Technology 

3 https://doi.org/10.6028/jres.122.025 

point on the unit sphere surface corresponding to the pixel. This computation varies depending on the type 

of texture map we wish to generate, and is addressed in more detail in Sec. 3.1, 3.2, and 3.3. Once the unit 

vector is obtained, we can apply the algorithm described in Listing 1 to determine the cube face and pixel 

on the face corresponding to it. We extract the coloring from this pixel: (𝑅𝑙 , 𝐺𝑙 , 𝐵𝑙). Once this process is

repeated for all points in the set 𝑆, the pixel of interest (𝑖, 𝑗) is simply assigned the following average: 

(𝑅, 𝐺, 𝐵)(𝑖,𝑗) = (∑
𝑅𝑙

𝑘

𝑘
𝑙=1 , ∑

𝐺𝑙

𝑘

𝑘
𝑙=1 , ∑

𝐵𝑙

𝑘

𝑘
𝑙=1 ). (1) 

Once this process is repeated for all pixels (𝑖, 𝑗), our texture map conversion is complete. Note that in 

some cases, a single texture map image is insufficient. For instance, in the case of dual paraboloid (Sec. 

3.2) or octahedral (Sec 3.3) projections, we require two texture maps. In such cases, the unit vector is 

computed not only given the point 𝑃𝑙  but also the index of whichever of the two images the point was

sampled from. 

convertUnitRayToCubeFacePixel(float x, float y, float z, int &i, int &j, int &n) 

{ 

float xMag = abs(x); 

float yMag = abs(y); 

float zMag = abs(z); 

if ((xMag > yMag && xMag > zMag) || (xMag <= yMag && yMag <= zMag)) { 

if (p.x < 0.0) { 

n = 2; // Back Face 

i = (int) (((-z/xMag) + 1.0)*input_width/2); 

j = (int) (((y/xMag) + 1.0)*input_height/2); 

} else { 

n = 3; // Front Face 

i = (int) (((z/xMag) + 1.0)*input_width/2); 

j = (int) (((y/xMag) + 1.0)*input_height/2); 

} 

} else if (xMag > yMag && xMag <= zMag) { 

if (p.z < 0.0) { 

n = 0; // Left Face 

i = (int) (((x/zMag) + 1.0)*input_width/2); 

j = (int) (((y/zMag) + 1.0)*input_height/2); 

} else { 

n = 1; // Right Face 

i = (int) (((-x/zMag) + 1.0)*input_width/2); 

j = (int) (((y/zMag) + 1.0)*input_height/2); 

} 

} else if(xMag <= yMag && yMag > zMag) { 

if (p.y < 0.0) { 

n = 5; // Ceiling Face 

i = (int) (((x/yMag) + 1.0)*input_width/2); 

j = (int) (((-z/yMag) + 1.0)*input_height/2); 

} else { 

n = 4; // Floor Face 

i = (int) (((x/yMag) + 1.0)*input_width/2); 

j = (int) (((z/yMag) + 1.0)*input_height/2); 

} 

} 

} 

Listing 1: Conversion algorithm for a unit ray to a cube face and pixel. 

https://doi.org/10.6028/jres.122.025
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3.1 Equirectangular Projection 

Here we address how to determine the unit vector (𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣) for the texture map point 𝑃𝑙 = (𝑥, 𝑦) in
an equirectangular projection [1]. Recall that an equirectangular texture map is simply a planar 

representation of a unit sphere in which latitude is encoded as length and longitude is encoded as height. 

Therefore, the point on the unit sphere that corresponds to our texture point (𝑥, 𝑦) is given in spherical 

coordinates as: 

{
𝜃 = 𝑥𝜋.

𝜑 =
𝑦𝜋

2
.    (2) 

Figure 2 depicts the spherical coordinates of a unit vector in ℝ3. Note that a unit vector in three-

dimensions can be uniquely determined by two spherical coordinates (𝜃, 𝜙); we can apply the standard 

transformation between spherical and Euclidean space to obtain the unit vector (𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣) from spherical

coordinates: 

{

𝑥𝑣 = cos(𝜙) cos(𝜃) .

𝑦𝑣 = sin(𝜙) .

𝑧𝑣 = cos(𝜙) sin(𝜃) .

(3) 

Fig. 2. Spherical coordinates of a unit vector. 

Figure 3 is the equirectangular texture map projection of the environment depicted in the cubic texture 

map in Fig. 1, created using the aforementioned conversion algorithm. 

Fig. 3. Equirectangular environment map. 

https://doi.org/10.6028/jres.122.025
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3.2 Dual Paraboloid Projection 

A dual paraboloid mapping [2] consists of two images that represent the environment’s unit sphere 

flattened through two paraboloid reflectors, above and below the x-y plane. In the positive hemisphere 

image, the points on the image are mapped to unit vectors that have a positive z-coordinate, and in the 

negative hemisphere image, the points on the image are mapped to unit vectors that have a negative z-

coordinate. 

As illustrated in Fig. 4, points on the two images are mapped to unit vectors in the following way. If 

the point 𝑃𝑙 = (𝑥, 𝑦) is drawn from the positive image, then we determine the point at which the top

paraboloid intersects the line passing through (𝑥, 𝑦) that is orthogonal to the x-y plane. Mathematically, this 

intersection is: 

(𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) = (𝑥, 𝑦,
1

2
−

1

2
(𝑥2 + 𝑦2)).  (4) 

If instead the (𝑥, 𝑦) is drawn from the negative image, then we determine the point at which the 

bottom paraboloid intersects the line passing through (𝑥, 𝑦) that is orthogonal to the x-y plane. 

Mathematically, this intersection is: 

(𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) = (𝑥, 𝑦,
1

2
(𝑥2 + 𝑦2) −

1

2
).     (5) 

Fig. 4. Dual paraboloid mapping. 

Now we normalize this point (which can be thought of as a ray from the origin to the paraboloid) to 

obtain our desired unit vector (𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣):

https://doi.org/10.6028/jres.122.025
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{

𝑥𝑣 =
𝑟𝑥

√𝑟𝑥
2+𝑟𝑦

2+𝑟𝑧
2
.

𝑦𝑣 =
𝑟𝑦

√𝑟𝑥
2+𝑟𝑦

2+𝑟𝑧
2
.

𝑧𝑣 =
𝑟𝑧

√𝑟𝑥
2+𝑟𝑦

2+𝑟𝑧
2
.

(6) 

Figures 5 and 6 are the negative-z and positive-z (respectively) paraboloid texture map projections of 

the environment depicted in the cubic texture map in Fig. 1. 

Fig. 5. Negative-z dual paraboloid environment map. 

Fig. 6. Positive-z dual paraboloid environment map. 

3.3 Octahedral Projection 

An octahedral mapping [3] also consists of two images. These represent the environment’s unit sphere 

flattened through the top and bottom of an octahedral reflector, above and below the x-z plane. In the 

positive hemisphere image, the points on the image are mapped to unit vectors that have a positive y-

coordinate, and in the negative hemisphere image, the points on the image are mapped to unit vectors that 

have a negative y-coordinate. 

As illustrated in Fig. 7, points on the two images are mapped to unit vectors in the following way. If 

the point 𝑃𝑙 = (𝑥, 𝑦) is drawn from the positive image, then we determine the point at which the

octahedron’s faces residing in the 𝑦 ≥ 0 half-space intersect the line passing through (𝑥, 𝑧) that is 

orthogonal to the x-z plane: 

https://doi.org/10.6028/jres.122.025
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(𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) = (
𝑧+𝑥

2
,
𝑧−𝑥

2
, 1 − (|𝑟𝑥| + |𝑟𝑦|)). (7) 

If instead the (𝑥, 𝑧) is drawn from the negative image, then we determine the point at which the 

octahedron’s faces residing in the 𝑦 < 0 half-space intersect the line passing through (𝑥, 𝑧) that is 

orthogonal to the x-z plane: 

(𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) = (
𝑧−𝑥

2
,
𝑧+𝑥

2
, |𝑟𝑥| + |𝑟𝑦| − 1). (8) 

Fig. 7. Octahedral projection mapping. 

Note that in the above equations, computing 𝑟𝑧 is dependent upon first computing 𝑟𝑥 and𝑟𝑦 . Now we

simply normalize this point using Eq. (6) in Sec. 3.2 to obtain our desired unit vector (𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣). Figures 8

and 9 are the positive-y and negative-y (respectively) octahedral texture map projection of the environment 

depicted in the cubic texture map in Fig. 1. 

Fig. 8. Positive-y octahedral environment map. 

https://doi.org/10.6028/jres.122.025
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Fig. 9. Negatve-y octahedral environment map. 

4. Projecting to Cube Maps

When converting to a cube map from some other texture map, we seek to populate the six individual 𝑛-

pixel by 𝑛-pixel face maps. We traverse each of these maps pixel-by-pixel, and assign to each pixel an 

(𝑅, 𝐺, 𝐵) coloring. Consider a single pixel in this map (𝑖, 𝑗) ∈ {0, … , 𝑛 − 1}2 on face 𝑓 ∈ {1, … ,6}. We

sample a set of points 𝑆 = {𝑃1 , … , 𝑃𝑘} from within this pixel, and for each of these points 𝑃𝑙 = (𝑓, 𝑝𝑖 , 𝑝𝑗)

we compute the corresponding point on the unit sphere surface (a unit vector (𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣)). This

computation is described in Listing 2. 

convertCubeFacePixelToUnitRay(float &x, float &y, float &z, float pi, float pj, int face) 

{ 

double i = (2 * pi)/output_width - 1; 

double j = (2 * pj)/output_height - 1; 

/* Left */ if (face == 0) {z = -1; x = i; y = j;} 

/* Right */ if (face == 1) {z = 1; x = -i; y = j;} 

/* Back */ if (face == 2) {x = -1; z = -i; y = j;} 

/* Front */ if(face == 3) {x = 1; z = i; y = j;} 

/* Bottom */ if(face == 4) {y = 1; x = i; z = j;} 

/* Top */ if(face == 5) {y = -1; x = i; z = -j;} 

double mag = sqrt((x * x) + (y * y) + (z * z)); 

x = x/mag; y = y/mag; z = z/mag; 

} 

Listing 2: Conversion algorithm for a cube face and pixel to a unit ray. 

We then determine the point (𝑥, 𝑦) (or (𝑥, 𝑧) in the octahedral case) on the source texture map plane 

that corresponds to the unit vector (𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣). Note that in paraboloid and octahedral maps, we must also

identify on which of the two halves of the source map this pixel resides. How this information is 

determined is detailed in Secs. 4.1, 4.2, and 4.3. Once the point is located, we round it to obtain the pixel 

(𝑖𝑠, 𝑗𝑠) that it resides in:

i_s = (int) (((x  + 1.0) * input_width) / 2); 

j_s = (int) ((([y or z] + 1.0) * input_height) / 2); 

Once the above pixel (𝑖𝑠, 𝑗𝑠) is determined, we extract the coloring from this pixel: (𝑅𝑙, 𝐺𝑙 , 𝐵𝑙). Once

this process is repeated for all points in the set 𝑆, the pixel of interest (𝑖, 𝑗) is assigned the color average 

determined by Eq. (1) in Sec. 3. Once this process is repeated for all pixels (𝑖, 𝑗) on all faces 𝑘, our texture 

map conversion is complete. 

https://doi.org/10.6028/jres.122.025
https://doi.org/10.6028/jres.122.025


Volume 122, Article No. 25 (2017) https://doi.org/10.6028/jres.122.025 

Journal of Research of the National Institute of Standards and Technology 

9 https://doi.org/10.6028/jres.122.025 

4.1 Inverse Equirectangular Projection 

In order to determine the point (𝑥, 𝑦) on the plane given the unit vector (𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣), we apply the

inverse of the transformation in Sec. 3.1. We have that the spherical coordinates of the unit vector are given 

by: 

{
𝜙 = arcsin(𝑦𝑣) .

𝜃 = arctan (
𝑧𝑣

𝑥𝑣
) .

(9) 

Now we scale these coordinates to produce the point (𝑥, 𝑦): 

{
𝑥 =

𝜃

𝜋
.

𝑦 =
2𝜙

𝜋
.

(10) 

4.2 Inverse Dual Paraboloid Projection 

In order to determine the point (𝑥, 𝑦) on the plane given the unit vector (𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣), we must first find

the point (𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) at which the unit vector intersects one of the two paraboloids. Note that a line in ℝ3

with slope (𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣) is given by the parametric equation (𝑥, 𝑦, 𝑧) = 𝑡(𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣).
When 𝑧𝑣 ≥ 0, we are interested in the intersection between this line and the top parabola. The point of

intersection can be solved using the equation of the top parabola: 

𝑧𝑣𝑡 =
1

2
−

1

2
((𝑥𝑣𝑡)

2 + (𝑦𝑣𝑡)
2). (11) 

𝑡2 (
𝑥𝑣
2+𝑦𝑣

2

2
) + 𝑧𝑣𝑡 −

1

2
= 0. (12) 

𝑡 =
−𝑧𝑣±√𝑥𝑣

2+𝑦𝑣
2+𝑧𝑣

2

𝑥𝑣
2+𝑦𝑣

2 .      (13) 

Note that the unit vector satisfies 𝑥𝑣
2 + 𝑦𝑣

2 + 𝑧𝑣
2 = 1. In addition, we can reject the solution resulting in

𝑡 < 0 because we require 𝑧 = 𝑧𝑣𝑡 ≥ 0 and we have that 𝑧𝑣 ≥ 0 for this case. Therefore, we have:

𝑡 =
−𝑧𝑣+1

(1−𝑧𝑣
2)
=

−𝑧𝑣+1

(1+𝑧𝑣)(1−𝑧𝑣)
=

1

1+𝑧𝑣
.     (14) 

Thus, the point of intersection is given by: 

(𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) = (
𝑥𝑣

1+𝑧𝑣
,
𝑦𝑣

1+𝑧𝑣
,
𝑧𝑣

1+𝑧𝑣
).      (15) 

Thus we have the point (𝑥, 𝑦), which is drawn from the positive-z (top) map: 

{
𝑥 =

𝑥𝑣

1+𝑧𝑣

𝑦 =
𝑦𝑣

1+𝑧𝑣

.      (16) 

When 𝑧𝑣 < 0, we are interested in the intersection between the line and bottom parabola. The point of

intersection can be solved for using the equation of the bottom parabola: 

https://doi.org/10.6028/jres.122.025
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𝑧𝑣𝑡 =
1

2
((𝑥𝑣𝑡)

2 + (𝑦𝑣𝑡)
2) −

1

2
.      (17) 

𝑡2 (
𝑥𝑣
2+𝑦𝑣

2

2
) − 𝑧𝑣𝑡 −

1

2
= 0. (18) 

𝑡 =
𝑧𝑣±√𝑥𝑣

2+𝑦𝑣
2+𝑧𝑣

2

𝑥𝑣
2+𝑦𝑣

2 .      (19) 

Note that the unit vector satisfies 𝑥𝑣
2 + 𝑦𝑣

2 + 𝑧𝑣
2 = 1. Also, we can reject the solution resulting in 𝑡 < 0

because we require 𝑧 = 𝑧𝑣𝑡 < 0 and we have that 𝑧𝑣 < 0 for this case. Therefore, we have:

𝑡 =
𝑧𝑣+1

(1−𝑧𝑣
2)
=

𝑧𝑣+1

(1+𝑧𝑣)(1−𝑧𝑣)
=

1

1−𝑧𝑣
.     (20) 

Thus, the point of intersection is given by: 

(𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧) = (
𝑥𝑣

1−𝑧𝑣
,
𝑦𝑣

1−𝑧𝑣
,
𝑧𝑣

1−𝑧𝑣
).      (21) 

Thus we have the point (𝑥, 𝑦), which is drawn from the negative-z (bottom) map: 

{
𝑥 =

𝑥𝑣

1−𝑧𝑣

𝑦 =
𝑦𝑣

1−𝑧𝑣

.     (22) 

4.3 Inverse Octahedral Projection 

In order to determine the point (𝑥, 𝑦) on the plane given the unit vector (𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣), we must first find

the point (𝑟′𝑥 , 𝑟′𝑦 , 𝑟′𝑧) at which the unit vector intersects the octahedron. Owing to the geometric properties

of an octahedron, this point of intersection is given as: 

{

𝑟𝑥
′ =

𝑥𝑣

|𝑥𝑣|+|𝑦𝑣|+|𝑧𝑣|
.

𝑟𝑦
′ =

𝑦𝑣

|𝑥𝑣|+|𝑦𝑣|+|𝑧𝑣|
.

𝑟𝑧
′ =

𝑧𝑣

|𝑥𝑣|+|𝑦𝑣|+|𝑧𝑣|
.

      (23) 

Note that the above transformation is based on defining the octahedral surface with the equation |𝑥| +
|𝑦| + |𝑧| = 1 in some ℝ3 coordinate system. While this definition produces an elegant representation of the

octahedron, the consequence is that the image plane of the two-dimensional x-z texture map that we seek to 

populate is rotated relative to the x’-z’ plane used in the ℝ3 coordinate system. Therefore, the point (𝑥, 𝑧) is
not simply equal to (𝑟𝑥

′, 𝑧𝑥
′ ) and we must incorporate the rotation into the transformation from (𝑟𝑥

′, 𝑦𝑦
′ , 𝑟𝑧

′) to
(𝑥, 𝑧). When 𝑦𝑣 ≥ 0, this transformation is given as follows, where the point (𝑥, 𝑦) is drawn from the

positive-y (top) source image. 

{
𝑥 = 𝑟𝑥

′ − 𝑟𝑧
′.

𝑦 = 𝑟𝑥
′ + 𝑟𝑧

′.
(24) 

When 𝑦𝑣 < 0, this transformation is given as follows, where the point (𝑥, 𝑦) is drawn from the

negative-y (bottom) source image. 

{
𝑥 = 𝑟𝑧

′ − 𝑟𝑥
′.

𝑦 = 𝑟𝑧
′ + 𝑟𝑥

′.
(25)
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5. Sampling Techniques

We describe two strategies to sample points {𝑃𝑙 , … , 𝑃𝑘} from some pixel (𝑖, 𝑗) in the output space of the

transformation: uniform sampling and correlated multijittered sampling [4]. For convenience, we assume 

the number of points we sample, 𝑘, is a perfect square. The justification for this is seen when examining the 

algorithms that produce the samplings. Because the ordered pair identifying the pixel represents the 

coordinates in ℝ2 of the pixel’s top left corner, all points sampled are drawn from the set 𝑋(𝑖,𝑗), where

𝑋(𝑖,𝑗) = {(𝑥, 𝑦) ∈ ℝ
2 | 𝑖 < 𝑥 < 𝑖 + 1 and 𝑗 < 𝑦 < 𝑗 + 1}. Uniform sampling produces a uniform √𝑘 by √𝑘

grid of points on the selected pixel. The algorithm for uniform sampling is given in Listing 3. 

generateUniformSamples(vector<Point2D> &points) 

{ 

int const n = points.size(); 

for(int j = 0; j < n; j++) { 

for(int i = 0; i < n; i++) { 

points[j*n+i].x = ((double) (i+1))/(n+1); 

points[j*n+i].y = ((double) (j+1))/(n+1); 

} 

} 

} 

Listing 3: Uniform sampling 

Note that uniform sampling is deterministic; it produces the same grid of points on every run. By 

contrast, correlated multi-jittered sampling produces a relatively uniform set of points but injects some 

randomness into the sample selection. This type of jittered sampling involves (1) generating a randomized 

canonical arrangement and then (2) randomly shuffling this arrangement. The canonical arrangement is 

produced by stratifying the pixel into a √𝑘 by √𝑘 grid of jitter cells, and then stratifying each of those jitter 

cells into a  √𝑘 by √𝑘 grid of sub-cells. For each jitter cell 𝐶, we randomly select a sample in the sub-cell 

corresponding to 𝐶’s location in the pixel. The effect is that each jitter cell contains one randomly-placed 

sample such that every row and every column of sub-cells in the pixel contains exactly one sample. Figure 

10 shows the canonical arrangement of samples with a single pixel. 

Fig. 10. Canonical arrangement of samples within one pixel. 

To produce the final arrangement, all that is left is to apply a random shuffle to the x-coordinates of the 

selected samples, and then apply the same shuffle to the y-coordinates of the selected samples. Figure 11 

displays an example of a final shuffled selection of points. 
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Fig. 11. Shuffled arrangement of samples within one pixel. 

To evaluate these sampling strategies against one another, we selected a set of test cube maps and 

transformed them into equirectangular projections (using both uniform and correlated multi-jittered 

sampling with different numbers of samples). We observed two key points by visually examining the 

produced images: 

(1) Images produced with a higher number of samples per pixel were less aliased than images

produced with a lower number of samples per pixel. An example of the quality improvement

associated with a higher number of samples is given in Fig. 12. However, visual results indicate

that increasing the number of samples past 36 stops producing visually perceptible quality

improvements.

(2) Jittered sampling produces images with less aliasing in projections rendered with a low number of

samples. However, the benefit of using jittered sampling declines as more samples are used per

pixel.

Fig. 12. Comparing different samples per pixel. The top image was projected with a single centered sample, while the bottom image 

was projected with 25 samples per pixel. The 25 samples per pixel produce a noticeable improvement in visual quality. 
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We also performed an objective comparison of the generated images using the Δ𝐸 color distance 

metric [7]. A set of 8 test frames (cube maps) were converted to equirectangular projections using both 

types of sampling algorithms (at different numbers of samples). For each converted frame, the Δ𝐸 value 

between the projection and a pseudo-ground-truth2 image was computed. From the resulting data set, we 

were able to compute, for each number of samples 𝑘 ∈ {4,9,25, …400}, a set of eight values {𝑣1, … , 𝑣8}.
Each 𝑣𝑖 represents the difference between the uniform-to-ground-truth Δ𝐸 value and the jittered-to-ground-

truth Δ𝐸 value for one frame. For each 𝑘, a Student’s T-Distribution was used to construct a 90% 

confidence interval based on the eight uniform-jittered differences. 

Figure 13 shows these confidence intervals. This graph generally confirms the aforementioned 

observations (jittered sampling produces images closer to the ground truth than uniform sampling does, but 

the benefit declines as the number of samples increases). However, we see that quantitative color-

difference results are unable to clearly delineate the point at which a higher number of samples ceases to 

produce visually observable quality benefits. In general, our results in evaluating sampling algorithm are 

consistent with the results of prior literature [4] [5] [6]. 

Fig. 13. Confidence intervals for difference between uniform sampling Δ𝐸 and multi-jittered sampling Δ𝐸. The error bars are standard 

error. 

6. Comparative Analysis of Projections

Equirectangular, dual-paraboloid, and octahedral mappings can be compared with one another using 

the following procedure. We select a particular cube map, transform it into each of the three other types of 

texture maps, and then transform each of those texture maps back into a cube map. We then compare each 

of the three generated cube maps to the original, using both the Δ𝐸 metric as well as the SSIM structural 

2 For each cube map, the pseudo-ground-truth image was an equirectangular projection of that cube map computed using 400 samples. 

Using such an image as a ground-truth reference is reasonable because 400 samples is well beyond the point at which increasing the 
number of samples produces quality benefits. The ground-truth here is therefore the best possible conversion. 
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similarity metric [8]. If one of the three transformations has a lower Δ𝐸 and/or a higher SSIM, then this 

transformation is better able to preserve the information contained in the source image than the other 

transformations. The results of this comparison are summarized in Figs. 14 and 15, each of which displays 

a box plot of 50 test frames. These results indicate that no method of transformation has any statistically 

significant benefit over the others in preserving the information contained in the source image. Note that for 

each test frame, the output images were sized such that all three texture maps contained roughly the same 

total number of pixels. Moreover, the cube maps produced from the conversions were of exactly the same 

size as the originals. 

Fig. 14. Δ𝐸 measurement between original cube map and projected/inverse projected cube map over 50 test frames. 

Fig. 15. SSIM measurement between original cube map and projected/inverse projected cube map over 50 test frames. 
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