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This paper presents an experimental and theoretical study of aqueous diesel contamination and decontamination of a polyvinyl chloride 
(PVC) surface and an iron (Fe) surface. A test apparatus designed for the purpose of studying adsorption of diesel from a flowing dilute 
diesel/water mixture was used to measure the mass of diesel adsorbed per unit surface area (the excess surface density) and the bulk 
concentration of the diesel in the flow using a fluorescence based measurement technique. Both bulk composition and the excess 
surface density measurements were achieved via a traverse of the fluorescent measurement probe perpendicular to the test surface. The 
diesel adsorption to each test surface was examined for three different Reynolds numbers between zero and 7000. Measurements for a 
given condition were made over a period of approximately 200 h for a diesel mass fraction of approximately 0.15 % in tap water. For a 
Reynolds number of approximately 7000, the largest excess layer thickness was approximately 4.4 μm, which was measured on a PVC 
surface. Averaging over all contaminating flow rates and exposure times, the excess layer thickness on the PVC surface was 
approximately 2.0 μm. Reynolds number had little or no effect on the accumulation of diesel on an iron surface, which was 
approximately 0.71 μm. The adsorbed diesel on the PVC and iron surfaces was removed by flushing with tap water. Models to predict 
excess layer thickness during flushing and contamination were developed. The models predict flushing times to within 7 h and predict 
the influence of pipe surface on contamination level. 
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Nomenclature 

English Symbols 
A regression constants in Eq. (7) 
BT diffusion length, m 
c concentration, mol m-3

c mass concentration, kg m-3 
Dwd diffusion coefficient, m2 s-1 
F fluorescence intensity 
Fc corrected fluorescence intensity measurement 
Fr raw fluorescence intensity measurement 
Io incident intensity, V 
KD dimensionless number convection to diffusion Eq. (15) 

KJ entrainment velocity ratio Eq. (13)
l path length, m 
le thickness of excess layer, m 
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M mass of excess layer, kg 
Mc molar mass of contaminant, kg mol-1 
m  mass flow rate, kg s-1 
Re Reynolds number 
pw wetted perimeter of channel, m 
t time, s 
T temperature, K 
u local axial velocity, m s-1 
u* friction velocity, m s-1 
U expanded uncertainty 
ui standard uncertainty 
v local velocity in y-direction, m s-1 

v’ turbulent fluctuating velocity in y-direction, m s-1 
V bulk axial velocity, m s-1 
x mass fraction of diesel 
y coordinate perpendicular to pipe surface, m 
 
Greek Symbols 
δ penetration depth, m 

Γ surface excess density, kg m-2 
ε extinction coefficient 
ϑ ratio of modified to constant viscosity 
λ wavelength, m 
µ dynamic viscosity, kg m-1 s-1 
ν kinematic viscosity, m2 s-1  
ρ mass density of liquid, kg m-3 
Φ quantum efficiency of fluorescence 
 
English Subscripts 
0 zero reference jar 
100 maximum reference jar 
a ambient 
ag air gap 
b bulk 
d pure diesel 
e excess layer 
i inlet 
l liquid 
le excess layer 
m emission, mixture 
ng no air gap 
o outlet or exit 
s solid surface 
Tb reference bath temperature 
TT test section temperature 
x excitation 
w tap water 
 
Superscripts 
- average 
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1. Introduction 
 
      Since the signing of the Executive Order establishing the Office of Homeland Security, Federal agencies 
have been working on ways to improve the security of the general public. In one example, the National 
Institute of Standards and Technology (NIST) worked with the U.S. Environmental Protection Agency 
(EPA) to devise ways to safeguard the nation’s drinking water supply. EPA conducted potable water 
research with NIST designed to fundamentally understand the attachment and detachment mechanisms of 
contaminants to solid plumbing materials under dynamic water flow conditions. The results of this work 
provide EPA with an investigative tool to support the development of a response to water contamination 
events and a potential detection technique for timely warning of such events. 
      The purpose of this study is to use a NIST fluorescence based measurement technique [1] to add to the 
existing data on aqueous diesel adsorption to solid surfaces and to support the development of flushing and 
contamination models. In a previous study [1], the diesel excess surface density was measured on an 
oxidized copper surface. The present study expands the database [1] to diesel attachment to a polyvinyl 
chloride (PVC) surface and to an iron surface.  In this way, we not only gain vital fundamental modeling 
information but we lay the groundwork for a possible early detection/monitoring system for sticky 
contaminants. These efforts have formed the foundation for future work that will focus on using the NIST 
water loop and the calibration technique to measure the accumulation and removal of diesel as a function of 
free-stream diesel concentration and contaminated water flow rate.   
      Commercial diesel was used rather than a chemically simpler surrogate in order to demonstrate the use of 
the technique with an actual potential contaminant. One may question the likelihood of diesel as a potential 
contaminant. However, a few months into this study the author was contacted by an Environmental Engineer 
that had a diesel contamination problem to solve in a newly constructed embassy in Washington DC. 
Somehow approximately 13 kL of diesel got pumped into a 322 kL potable water storage tank for the 
building. The Engineer’s main concern was that he did not want to have to replace all of the PVC and copper 
piping in the embassy. This is not to say that diesel is a highly probable contaminant. Nevertheless, studying 
diesel is justified because it can and has contaminated drinking water and, because it is sticky, can represent 
something toward a worst case scenario for contaminant removal by flushing.  
      Diesel was also a desirable test contaminant because it has been found to exhibit a strong fluorescence. 
However, because of the complexity and the variability of diesel, the diesel for the project was restricted to a 
single batch. In this way, we can ensure the consistency of the properties of pure diesel1 such as its liquid 
density and fluorescence characteristics.  
  
 
2. Experimental Apparatus and Uncertainties 
 
      The PVC, iron and copper test surfaces were machined from new material into approximately 8 mm 
thick disks with a diameter of approximately 38 mm. The surfaces were installed into the test apparatus 
clean and with minimal to no oxidation. PVC was chosen rather than chlorinated polyvinyl chloride 
(CPVC), which is more commonly used for potable water plumbing than PVC, because PVC was available 
in a thickness sufficient to machine the test disk. Considering that CPVC is chlorinated PVC, it was believed 
that its contamination and flushing characteristics would be representative of those of PVC.  
      Figure 1 schematically shows the flow loop for measuring diesel on pipe substrates. The primary 
components of the loop are the pump, the reservoir, and the test chamber with the test section. The inside 
surfaces of the approximately 96 mm by 1.6 mm rectangular flow cross-section of the aluminum test chamber, 
shown in Fig. 2, were black anodized to minimize stray light reflections. The channel was designed to have the 
same flow area as a 13 mm (nominally 0.5 inch) diameter copper pipe. The test chamber had a circular cavity 
to accept the solid pipe test surface. The height of the channel was 1.6 mm so that the probe could be flush to 
the top of the test section while maintaining proximity to the test surface for measurement purposes without 
being an obstruction to the flow. A centrifugal pump delivered the contaminated water to the entrance of the 

                                                 
1 “Pure diesel” is used here to denote that the particular batch of diesel, which will be consistently used throughout this project, is not 
mixed with water. 
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rectangular test chamber at room temperature. The pump head was removable so that it could be easily 
replaced in order to test a different contaminant. The flow rate was controlled by varying the pump speed with 
a frequency inverter. A heat exchanger immersed in the reservoir was supplied with brine from a temperature-
controlled bath to maintain the entrance temperature to the test chamber at ambient temperature (293.8 K). 
This was done to ensure that the diesel was at the same temperature as it was during the fluorescence 
calibration to avoid the temperature effect on fluorescence [2]. An additional temperature-controlled bath was 
used to maintain the fluorescence standards at the same ambient temperature. As described in a succeeding 
section, the fluorescence standards were used to calibrate the range of the fluorescence measurements.  
 

 
 

Fig. 1. Schematic of test loop. 
 

 
 

Fig. 2. Schematic of spectrofluorometer, test section, and linear positioning device. 
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      The standard uncertainty (ui) is the positive square root of the estimated variance ui
2. The individual 

standard uncertainties are combined to obtain the expanded uncertainty (U), which is calculated from the 
law of propagation of uncertainty with a coverage factor. All measurement uncertainties are reported at the 
95 % confidence level except where specified otherwise.   
      Residential copper pipe was used to plumb together the various components of the loop. Redundant 
volume flow rate measurements were made with an ultrasonic doppler and a turbine flowmeter with expanded 
uncertainties of ± 0.12 m3 h-1 and ± 0.03 m3 h-1, respectively. As shown in Fig. 1, three water pressure taps 
before and after the test chamber permitted the measurement of the upstream absolute pressure and the 
pressure drops along the test section with expanded uncertainties of ± 0.24 kPa and ± 1.5 kPa, respectively. 
Also, a sheathed thermocouple measured the water temperature at each end of the test chamber to within an 
uncertainty of ± 0.25 K. The dissolved oxygen level, the conductivity, and the pH, were monitored at the 
water reservoir with associated B-type uncertainties of  ± 0.5 %, ± 50 µ Ω/cm, and ± 0.3, respectively.  
      Figure 1 also shows the inlet and exit taps that were used to flush the test section with fresh tap water. In 
preparation for flushing, the test section was isolated from the rest of the test loop by closing valves. Then 
the fluid was drained from the test chamber and returned to the reservoir. Next, a tap water supply was 
connected to a test chamber port. The other test chamber port was connected to a filter to absorb any diesel 
before it was sent to a drain. 
      Figure 2 shows a view of the spectrofluorometer that was used to make the fluorescence measurements and 
the test chamber with the fluorescence probe perpendicular to the flattened pipe test surface. Figure 3 shows a 
simplified schematic of the right angle spectrofluorometer consisting of a xenon light source, an excitation and 
an emission monochromator, and an emission photomultiplier tube (detector). As sold off-the-shelf, the 
spectrofluorometer was designed to accept 45 mm × 10 mm × 10 mm fluorescent samples or cuvettes filled 
with fluorescent material. The spectrofluorometer was modified by replacing the cuvette holder with a special 
adapter with lenses and mirrors to remotely excite and measure fluorescence via a bifurcated optical bundle. 
Two optical bundles consisting of 84 fibers each originated from the spectrofluorometer. One of the bundles 
transmitted the excitation light, i.e., the incident intensity (Io), to the test pipe surface. The other bundle carried 
the emission, i.e., the fluorescence intensity (F), from the test surface to the spectrofluorometer. The optical 
bundles originating from the spectrofluorometer merge transmitting and receiving fibers randomly into a single 
probe before entering the test section chamber. The sensor end of the fluorescence probe is sheathed with a 
quartz tube to protect it from reacting with the contaminant in the test fluid.  
 

 
 

Fig. 3. Schematic of right angle spectrofluorometer [1]. 
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      The excitation wavelength (λx) and the emission/detection wavelength (λm) were set to 434 nm and 485 nm, 
respectively, for all tests. Further details on the fluorescence measurement technique are given in Ref. [1].  
 
 
3. Test Fluids 
 
      Number 2 diesel fuel is nominally 75.2 % by volume saturated hydrocarbons in four components and 
24.7 % by volume aromatic hydrocarbons in eight components [3]. Consequently, due to the complex mixture 
of hydrocarbons in diesel, only Number 2 diesel fuel was used from a single batch throughout the experiment 
to avoid property variations from different batches. Kedzierski [1] provides the measured viscosity and density 
of the pure diesel liquid that was used in the present experiment and obtained from the NIST fuel depot. A 
nominally 1.5 % by mass diesel mixture was prepared with local Gaithersburg, MD tap water for the 
exposure/flow rate tests. The measured dissolved oxygen level, the conductivity, and the pH, of the water at 
24 ºC before mixing with diesel were found to be, 86.4 %, 358 µΩ cm-1, and 7.04, respectively. 
      Because diesel and water are not miscible, the suction inlet to the pump was designed to entrain diesel 
from the reservoir and into the water flow.  As shown schematically in Fig.1, the opening of the pump 
suction line in the reservoir is situated approximately 10 mm below the liquid-air interface. The return flow 
entering the bottom of the reservoir ensured good flow mixing of any components of diesel that may have 
been hydrolyzed and settled to the reservoir bottom. Figure 4 depicts the colloidal flow within the test 
section and the fluorescent measurement probe above it for the contamination and decontamination test 
conditions. The size of the droplets in the dispersed flow is estimated to be of the order of micrometers and 
is exaggerated in Fig. 4 for illustration purposes. Both test conditions are shown to have an excess layer 
thickness (le) of undiluted, potentially hydrolyzed diesel adsorbed to the test surface. Because the molar 
mass of the diesel is unknown, the surface excess density (Γ) is defined in this work on a mass basis as [4]: 
 

e d b b( )l xΓ ρ ρ= −      (1) 
 
The density of liquid diesel is ρd. The density of the flowing bulk mixture (ρb) is evaluated at the bulk mass 
fraction of the mixture (xb). The surface excess density is roughly the mass of diesel attached per surface 
area. The Γ and le are the primary measurements of this study. The le is measured in the y-direction, as 
shown in Fig. 4, with the origin at the fluid-surface interface.     
 

 
 

Fig. 4. Cross-sectional illustration of test section during contamination and flushing. 
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4. Measurements and Uncertainties 
 
4.1  Fluorescence/Mass Calibration 
 
      Fluorescence as a means for detecting a contaminant has its advantages in that its absorption and 
fluorescence spectra are like a fingerprint that can be used in its identification. Consequently, by isolating the 
wavelength of light that the contaminant fluoresces, its intensity can be used to identify its mass. Full detail of 
the fluorescence based measurement technique used in this study is given in Ref. [1] and given in brief below. 
      Two different calibration methods had to be combined due to the additional complexity caused by 
immiscible liquids. Both calibration techniques were used to quantify different functional aspects of the Beer-
Lambert-Bougher law [5], which forms the basis of the calibration equation. The first method was used to 
obtain the relationship between diesel composition and fluorescence intensity for a fixed light path length 
(fixed probe height above the test surface). The path length effect is known as excitation absorbance [6], 
which results from the diesel nearest to the light source receiving more excitation than the diesel that is further 
away. The first method would have been sufficient had the bulk composition of the flow remained the same as 
it was charged in the reservoir.  Due to the immiscibility of the two fluids, the bulk composition of the flow 
differs from that in the reservoir. As a result, a second method is necessary to determine both the contaminant 
mass fraction and the excess layer thickness. The second method that was developed in this study relies on a 
perpendicular traverse of the flow stream with the measurement probe. To achieve this, a linear positioning 
device with a graduated knob was adapted to the quartz tube as shown in Fig. 2. The second method (traverse 
method) is used to calibrate the effect of contaminant thickness (path length) and the proximity of incident 
intensity. The traverse method is essential for splitting the total measured fluorescent intensity into two 
components: that from the diesel on the test surface and that from the diesel in the bulk flow stream. In this 
way, the mass of diesel on the test surface and the composition of the fluid stream are determined.  
 

 
 

Fig. 5. Schematic of fluorescence/composition calibration jar [1]. 
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      Two standard calibration jars (see Fig. 5) were used as references standards to set the lower (0) and 
upper (100) limits of the intensity signal on the spectrofluorometer for raw measurements made at the test 
section (Fr). A jar that contained only pure water was used to zero the intensity. A second jar that contained 
pure diesel was used to set the intensity on the spectrofluorometer to 100. All raw-measured intensities (Fr) 
were numerically normalized by the intensity from the zero-jar (F0) and the maximum-jar (F100) as:   
 

r 0

100 0

F F
F

F F
−

=
−

      (2) 

 
where the intensity of the contamination data was adjusted by no more than 0.3 % to account for the small 
(typically within ± 1 K) difference in temperature between the test section and the bath containing the maximum- 
and the zero-jars [1]. The maximum correction for the flushing data was approximately 1.5 %, which was larger 
than for the contamination measurements due to the colder temperature of the house tap water. 
      The linear form of the Beer-Lambert-Bougher law [5] shows that the measured fluorescence intensity is 
related to the incident light intensity (Io), the extinction coefficient (ε), the concentration of the fluorescent 
diesel (c), the path length of light (l), and the quantum efficiency of the fluorescence (Φ) as:  
 

[ ]2.3 0.05oF I cl clε ε= Φ → ≤     (3) 
 
      The linear criteria for Eq. (3) ( 0.05clε ≤ ) is satisfied for 78 % of the calibration data, and the 
absorbance (εcl) did not exceed 0.063 for all of the data. As a result, the calibration measurements shown in 
Fig. 6 gave: 

1
m-1 2 -1 209.23[ ]

c2.3 1.04735 m kg  l
oI M eε

−− Φ =    when fitted to Eq. (3) [1]. Using the calibration and 
expressing the concentration in terms of the bulk mass fraction and the bulk liquid density gives the 
calibration of the fluorescence intensity in terms of the mass fraction and path length as: 
 

1
m

2
209.23[ ]

b b b b
c

2.3 m1.04735
kg

loI
F lx lx e

M
ε

ρ ρ
−− Φ

= =  
 

   (4) 

   
Note that the concentration of the fluorescent diesel has been replaced with the product of the bulk contaminant 
(diesel) mass fraction (xb) and the density of the bulk mixture (ρb) divided by the molar mass of the contaminant 
(Mc). The mixture densities were calculated from a linear mass weighted basis of the pure fluid specific volumes.  
 

 
Fig. 6. Overall calibration of Beer-Lambert Bougher law for diesel on copper disk [1]. 
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      Because the actual concentration of the diesel entrained in the water flow stream is unknown, Eq. (4) 
cannot be directly used to obtain the excess layer of diesel on the pipe surface. The Γ and the le must be 
obtained from additional information that is obtained from a perpendicular traverse of the flow stream. As 
shown in Fig. 2, a linear positioning device with a graduated knob was used to traverse and locate the quartz 
tube relative to the test surface and thus measure the path length of the incident light through the fluid. 
Measurements of the fluorescence intensity (F) for various path lengths provided sufficient information for 
obtaining both the bulk mass fraction and the excess layer thickness. The methodology for this is explained 
in the following. 
      The total fluorescence signal (F) can be separated into three components along the path length while 
assuming a uniform bulk mass fraction. The total intensity is the sum of that contributed by the bulk 
concentration (Fl(xm = xb)) for the entire path length and that in the diesel excess layer (Fle(xm = 1)) minus 
the intensity that would have been due to the bulk concentration but did not occur because it was displaced 
by the excess layer (Fle(xm =  xb)). 
 

e e
( ) ( ) ( 1)l m b l m b l mF F x x F x x F x= = − = + =     (5) 

 
Substitution of Eq. (4) into the components of the above equation and grouping like terms gives: 
 

[ ]-1
c2.3 o b b e b b e dF I M lx l x lε ρ ρ ρ= Φ − +    (6) 

 
Here ρd is the density of liquid diesel. 
      For a given probe traverse, the only variable in Eq. (6) is the path length. Consequently, Eq. (6) can be 
arranged in terms of two regression constants for a single traverse: 
 

( ) 1209.23[m ]
0 1

lF A A l e
−−= +     (7) 

 
Figure 7 illustrates the fit of Eq. (7) for a PVC data set at a Reynolds number of 7000.  
 

 
 

Fig. 7. Sample F vs. l fit for a PVC dataset. 
 
 
      Comparison of Eqs. (6) and (7), yields the bulk mass fraction as: 
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1

m209.23
1 1

-1 2 -1
d c d2.3 1.04735 m kg

l

b
o

A e Ax
I Mρ ε ρ

−−

= =
Φ   

    (8) 

 
and the excess layer thickness as: 
 

1
m

0 0
e 2 -1209.23 -1

d 1d c 1

.
1.04735 m kg2.3l

o

A A
l

Ae I M A ρρ ε
−

= =
  −Φ −  

   (9)2 

 
      As shown in Appendix A, the average uncertainty of le for the measurements with the iron and the PVC 
surface for the contamination measurements was approximately ± 0.06 µm, and ± 0.1 µm, respectively. The 
average uncertainty of xb was approximately ± 0.00008. 
 
 
4.2  Flushing 
 
      The diesel bulk mass fraction of the tap water used during the flushing tests is zero. For flushing tests, 
Eq. (8) produced a non-zero bulk mass fraction with a magnitude close to the uncertainty of the 
measurement, i.e., typically 0.008 % (80 ppm). An alternative approach for the flushing tests that forces the 
bulk mass fraction to be zero is to start by setting xb = 0 in Eq. (6) and taking its derivative with respect to 
the path length.  
      Rearranging the resulting differentiated equation and solving for the excess layer thickness yields: 
 

0 1 1

e 1 -1 2 -1
d c d

1
209.23[m ]

209.23[m ] 2.3 1.04735 m kgo

dF A A l
dll

I Mρ ε ρ

−

−

 
− − 

 = =
Φ   

  (10) 

 
      Equations (9) and (10) are equivalent for negligible A1, which is the case for flushing. However, Eq. (10) was 
used to obtain the le for all of the flushing measurements because of its more explicit derivation. The average 
value of le was used for a given measurement probe traverse. As shown in Appendix A, the average uncertainty 
in le for the iron and the PVC flushing tests was approximately ± 0.02 µm, and ± 0.05 µm, respectively.  
 
4.3  Air Gap Method 
 
      A secondary methodology was developed that relies on the gradient of F rather than its absolute value in 
order to confirm the measurement of le as obtained from Eq. (9). The advantage of a gradient approach 
would be the elimination of a bias error on the measurement of F if it existed. As shown in Fig. 4, part of the 
excitation is reflected from the diesel-air interface and is not available to induce fluorescence. Consequently, 
the calibration must be adjusted to account for the air gap during the drained test chamber measurements. 
Kedzierski [1] provides the derivation of the air-gap le and the result is given here as: 
 

1
mag ag 209.23[ ]

c

e
m m m m

0.0121[m] kg0.01156
2.3 m

l

o

dF dF
M e

dl dll
I x xε ρ ρ

−

−
 = = −  Φ  

   (11) 

 
 

                                                 
2 The methodology presented here is a refinement of that given in Ref. [1]. Equations (8) and (9) are more explicit than those presented 
in Kedzierski [1], but give the same results. 
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5. MEASUREMENT RESULTS 
 
5.1  Excess Layer Thickness 
 
      The test apparatus shown in Fig. 1 was used to submit either a PVC disk or an iron disk to exposure tests 
with fixed bulk concentration of diesel in tap water under varying flow conditions. More specifically, 
contamination measurements over an approximate 200 h time period were made for three different Reynolds 
numbers (Re) varying from 0 to 7000. 
 

b

4Re
w

m
pµ

=


     (12) 

 
where the wetted perimeter of the channel was 195 mm, the viscosity of the mixed bulk flow (µb) was 
calculated using a nonlinear mixture equation, and the mass flow rate ( m ) was obtained from the turbine 
meter. Flushing measurements were done for a fixed Re of approximately 5000. The range of Reynolds 
numbers result from using a range of volume flow rates that a half-inch diameter tube would experience in 
typical buildings. After each contamination test, the test surface was cleaned with acetone and clean tap 
water.  
 
5.2  Contamination Tests 
 
      Figure 8 provides the measured diesel layer thickness on a PVC surface as caused by an exposure to a 
flowing water/diesel (99.85/0.15) mixture, i.e., diesel at approximately 0.15 % bulk mass fraction (1500 ppm). 
The exposure time is the duration of the exposure test: it is the time that the test surface is exposed to the 
contaminated flow starting with a clean surface. The open circle, square, and triangle symbols represent 
contamination measurements obtained from Eq. (9) for the Re = 0, 3200, and 7000 conditions, respectively. 
 

 
 

Fig. 8. Effect of exposure time and flow rate on thickness of the diesel excess layer for a 0.15 % bulk freestream mass fraction on a 
PVC disk.  
 
      Figure 8 shows that the Re = 3200 and the soak (Re = 0) contamination tests gave similar results. More 
specifically, the excess layer thickness was established immediately upon exposure of the PVC surface to the 
water/diesel mixture and remained nearly constant for the 200 h test duration.  Only a marginal increase in the 
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time-averaged le was observed from approximately 1.32 µm to 1.48 µm when the Reynolds number was 
increased from 0 to 3200, respectively. However, an increase in the Reynolds number to 7000 resulted in 
roughly a 142 % increase in the time-averaged le over the soak condition to an average value of approximately 
3.2 µm. In addition, the Re = 7000 condition did not produce a nearly constant le with respect to exposure time 
as did the Re = 0 and Re = 3200 conditions. Rather, the Re = 7000 condition gave a maximum diesel thickness 
of approximately 4.4 µm at an exposure time of 20 h. With further exposure to 140 h, the diesel thickness 
decreased from this maximum to nearly the thickness at the initial contamination, which was approximately 
3 µm. For the PVC surface, the approximate average le for the Re = 0, 3200, and 7000 conditions was 
1.32 µm, 1.48 µm, and 3.16 µm, respectively. Averaging overall contaminating flow rates and exposure times, 
the average le for xb = 0.15 % on the PVC surface was approximately 2.0 µm.  
      Figure 9 gives the measured diesel layer thickness3 on an iron surface due to exposure to a flowing 
water/diesel (99.85/0.15) mixture, i.e., the same composition as for the PVC surface. In general, the flow 
rate had little effect on the diesel excess layer thickness. For the iron surface, the approximate average le for 
the Re = 0, 3200, and 7000 conditions was 0.87 µm, 0.66 µm, and 0.60 µm, respectively. Averaging over all 
contaminating flow rates and exposure times, the average le for xb = 0.15 % on the iron surface was 
approximately 0.71 µm. Consequently, the PVC surface adsorbs approximately 180 % more diesel than the 
iron surface. The average accumulation of diesel on a copper surface for xb = 0.2 % was comparable to the 
PVC surface being approximately 2.3 µm [1].  
 

 
 
Fig. 9. Effect of exposure time and flow rate on thickness of the diesel excess layer for a 0.15 % bulk freestream mass fraction on an 
iron disk. 
 
      Figure 10 crossplots all of the contamination excess layer measurements of Fig. 8 as a function of Reynolds 
number. Figure 10 shows that the maximum diesel excess layer thickness on the PVC surface of approximately 
4.4 µm occurred between Reynolds number of 5700 and 6300. The peak le for Reynolds number near 3200 was 
approximately 2 µm, which is approximately 55 % less than the maximum le for the Re = 6000 tests. Another 
20 % reduction in the peak le on the PVC surface was observed when the nominal Reynolds number was reduced 
from 3200 to 0. The peak le for the soak tests (Re = 0) was approximately 1.6 µm for the PVC surface.  
 

                                                 
3 The soak measurements on the iron surface were corrected, as outlined in Appendix B. to account for additional rust resulting when 
the surface was exposed to air during repair of the apparatus. 
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Fig. 10. Diesel excess layer thickness as a function of Re for PVC surface and water/diesel (99.85/0.15). 
 
      Figure 11 crossplots all of the excess layer measurements on the iron surface (Fig. 9) as a function of 
Reynolds number. Figure 11 shows that the maximum film thickness of approximately 1.3 µm occurred for 
the soak tests on the iron surface. The peak le on the iron surface decreases slightly from the soak condition 
for increasing Reynolds number. The peak le on the iron surface for Reynolds number near 3200 and 6000 
was approximately 1.1 µm and 1.0 µm, respectively. The dashed lines given in Figs. 10 and 11 indicate the 
maximum measured excess layer for tests on the PVC and the iron surface. The variation in Reynolds 
number for a given set of tests for “fixed” Reynolds number was caused by an approximate 1 % variation in 
the water temperature during startup and the an approximate 15 % variation in the water flow during the 
nearly 200 h test duration. 
 

 
 

Fig. 11. Diesel excess layer thickness as a function of Re for iron surface and water/diesel (99.85/0.15). 
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5.3  Flushing Tests 
 
      The flushing tests that were done after each contamination test are shown in Figs. 8 and 9. Measurements 
of le during flushing of the surface after the Re = 0, 3200, and 7000 contamination tests are represented by 
the filled circle, square, and triangle symbols, respectively. For the PVC surface, most of the flushing 
measurements are close to but less than zero. The average of all the flushing measurements on the PVC 
surface is approximately –0.2 µm. It is likely that an unknown bias error has caused the measurement to be 
less than zero because 0.2 µm is larger than the uncertainty of the le measurement. The negative thicknesses 
are interpreted as a clean surface. Consequently, the surface is clean nearly immediately after the inception 
of flushing. Negative thicknesses were observed with the exception of the flushing tests after the Re = 7000 
contamination (of the PVC surface) where the initial le was about 0.6 µm. The le decreased from 
approximately 0.6 µm to approximately 0.13 µm after flushing for approximately 3.6 h. This corresponds 
roughly to a 0.13 µm h-1 removal rate, which is similar in magnitude to the flushing diesel removal rate, 
0.10 µm h-1, found for a copper surface [1]. 
      The le averaged over all exposure times and Reynolds number for the flushing test on the iron surface 
was roughly 0.44 mm. The flushing tests after the Re = 7000 contamination were the most successful in  
getting the surface clean ( 0.2 mel µ= − ⋅ ) assuming that negative thickness beyond the uncertainty implies a  
clean surface. On average, the flushing after the Re = 0 and the Re = 3200 tests left similar quantities of 
diesel on the surface, 0.6 µm and 0.8 µm, respectively. These numbers indicated that flushing after the 
Re = 3200 contamination tests did not show any diesel removal, while the flushing after the soak tests gave 
only roughly a 0.3 µm diesel removal. However, both flushing tests after Re = 0 and the Re = 3200 
contamination tests were corrected as outlined in Appendix B. The corrected measurements have an 
estimated uncertainty of ± 0.8 mm. Consequently, it is likely that the iron surfaces were flushed clean after 
Re = 0 and the Re = 3200 contamination tests on the iron surface given that the measurements are within the 
measurement uncertainty and that the non-corrected flushing measurements indicated that the iron surface 
was clean after flushing. 
 
5.4  Gap Test Check 
 
      Filled symbols in Figs. 8 and 9, shown between 150 h and 200 h, represent le measurements that were 
made at the end of the exposure tests after the test section was drained using the air-gap technique as a 
secondary measurement technique. The average uncertainty of the le obtained from the air-gap measurement 
was approximately ± 400 % of the measurement. As a result, it is not surprising that the le obtained from the 
air-gap measurement and that from Eq. (9) or Eq. (10) ranged between being 300 % smaller and 200 % 
larger. It is not clear why the air-gap check gave good agreement with the measurements presented in 
Kedzierski [1] but failed to provide confirmation of the present measurements. 
 
6.  Model Development 
 
      The derivations of the models to predict the thickness of the contaminant excess layer on plumbing 
surfaces for the contamination and the flushing conditions are presented in Appendix C. Each model 
assumes that transfer of mass to and from the surface occurs solely in a direction that is perpendicular to the 
surface, i.e., in the y-direction shown in Fig. 4. The flushing model predicts the thickness of the excess layer 
as a function of time, contaminant transport properties, and flushing Reynolds number. The contamination 
model gives the maximum contaminant excess layer thickness that can occur for a given contaminant bulk 
mass fraction and surface affinity. 
 
6.1  Flushing Model 
 
      The model for flushing with contaminant-free water is based on the conservation of contaminant mass 
within the excess layer (le). Because the excess layer is thin, it is approximated as stagnate in the axial 
direction such that the net motion of diesel is solely perpendicular from the surface in the y-direction. The 
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model is governed by turbulent convection and diffusion of contaminant from the surface. The effect of 
diffusion is modeled by the ratio of the diffusion coefficient (Dwd) to the transition depth (BT) over which the 
concentration difference occurs. The turbulent convection is modeled by the contaminant viscosity (νd), the 
friction velocity ( *u ), and an entrainment constant (KJ) that relates the average entrainment velocity  
( max / 2v′ ) to the local axial-velocity (u) in the viscous sublayer as: 
 

J max /K v u′≡       (13) 
 
      The resulting equation to predict the contaminant excess layer (le) as a function of flushing time (t) and 
initial excess layer thickness (le0) is 
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where the dimensionless constant KD is a ratio of the convective to the diffusive influences 
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For KD = 1, convection and diffusion fluxes of contaminant from the surface are equal at the beginning of 
the flushing. Values of KD larger than 1 indicate that convection is more important than diffusion of 
contaminant from the surface. 
      The friction velocity is calculated from an equation given by Kays and Crawford [7] with the average 
(bulk) axial velocity (and fluid properties) of the flushing water (V) and its Reynolds number as: 
 

0.25
* 0.039Reu V −=      (16) 

 
      Flushing measurements for contamination levels larger than those of the scope of the present project 
were taken in order to establish changes in the measured excess layers that were large enough to fit to Eq. 
(14). These experiments flushed diesel from a PVC surface with tap water flowing at a Reynolds number of 
approximately 5000. The initial diesel excess layer was approximately 31.4 µm. Figure 12 shows the 
flushing measurements that were used to obtain the KJ and Ddw/BT constants from a least squares regression 
of the Fig. 12 data to Eq. (14). The regression constants are: 
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Figure 12 plots Eq. (14) using the regressed Eq. (17) and (18) constants. The model predictions are within 
± 4 µm of all the measured le. 
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Fig. 12. Flushing measurements used to fit coefficients of model. 
 
      The entrainment constant, KJ, is expected to be less of a function of the properties of the 
contaminant/flushing pair than is the diffusion constant. The ratio of the axial bulk velocity to its peak 
fluctuating component may be nearly constant because the bulk velocity is the potential for the fluctuating 
velocity. Considering this and that Kays and Crawford [7] show that the ratio of the peak fluctuation 
turbulent velocity components is constant, the KJ may be relatively constant for a particular flushing fluid 
and for various Reynolds number. It is expected that the KJ presented here would be valid for water and 
liquids with similar kinematic viscosity.4  Conversely, the Ddw/BT depends on the properties of both the 
contaminant and the flushing fluid.  
      The required time (t) to flush the surface clean is derived in Appendix C and is presented here:  
 

d
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     (19) 

 
      Table 1 compares predictions using Eq. (19) with observed values. All of the flushing times are 
predicted to within 7 h and all but one prediction is conservatively overestimated. 
 

Table 1. Comparison of flushing model predictions to measurements. 
 

Surface Re le0 (μm) KD Flushing time for 
clean Eq. (19) (h) 

Observed 
flushing time for 

no change (h) 
PVC 0 1.5 0.29 6.4 0≈  
PVC 3200 1.5 0.29 6.4 0≈  
PVC 7000 2.5 0.49 9.7 8≈  
Iron 0 1.0 0.20 4.3 0≈  
Iron 3200 1.0 0.20 4.3 0≈  
Iron 7000 0.5 0.10 2.3 5≈  

 
 
 

                                                 
4 However, KJ may be altered by the adhesion forces that must be overcome to remove the contaminant from the wall. 
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6.2  Contamination Model 
 
      For the contamination case, where a balance between deposition of contaminant on the surface and 
removal of the contaminant from the surface must be achieved, surface adhesion requires that a distinction 
be made between the velocity of the contaminant toward the surface (vi) and that away from it (vo). Very 
near the wall there is an additional resistance to flow away from the surface as caused by the attraction of 
diesel molecules to the molecules of the pipe surface. Likewise, for the same region near the pipe, the 
attractive forces induce a reduction in the resistance of flow toward the surface. Considering that it is flow 
that is being modeled, a simply way to approximate this behavior is via a modified viscosity. For example, 
the entrainment velocity (evaluated using the properties of the contaminated flow) given in Appendix C (Eq. 
(C8)) for flow approaching the pipe surface becomes: 
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     (20) 

 
Here, the kinematic viscosity is less than the constant property viscosity (νd) for distances from the surface 
less than the penetration depth, δ, because adhesive forces assist the flow of contaminant to the surface 
within this region. The magnitude of the penetration depth is determined by the affinity of the contaminant 
for the pipe surface. Consequently, each contaminant\pipe combination will have its own value of δ. The 
hyperbolic tangent was chosen for its simplicity and because it closely matched what was believed to be the 
required relationship with respect to le. 
      Likewise, surface adhesion acts to deter the flow of contaminant from the wall according to an assumed 
hyperbolic cotangent relationship with respect to le. Here the leaving velocity is approximated as a local increase 
in viscosity above the constant property value as the pipe surface is approached for distances less than δ: 
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Figure 13 provides an example of the ratio of the adhesive influenced viscosity to the constant property 
viscosity of diesel (ϑ) as a function of the distance from the iron surface. For this example, the excess layer 
is 0.5 µm and the penetration depth is 14 µm. The viscosity ratio is plotted as a function of y to illustrate the 
waning and waxing influences of the adhesive forces between iron and diesel as a model concept. However, 
as far as the contamination model is concerned, ϑ is evaluated only at le = 0.5 µm. 
      Considering that the exposure time of a pipe surface to a contaminant may not always be known, a 
conservative decontamination response would be to flush for the maximum contaminant film thickness 
(excess layer) for the given concentration of contaminant in the flow. The maximum contaminant excess 
layer, which occurs at steady state where the contaminant deposition balances the removal at the wall, can be 
determined by setting the partial derivative of the excess layer with respect to time to zero (see Appendix C) 
and solving the resulting equation for le, yielding: 
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    (22) 

 
Equation (22) can be used to determine the maximum possible contamination level and used as input to Eq. 
(19) in order to calculate the required flushing time to obtain a clean surface. Mathematically, Eq. (22) is 
valid for values of xb between zero and 1; however, it has been validated for only dilute solutions. 
      Average values of the penetration depth were found by back-substituting the measured diesel bulk mass 
fraction and the measured [le]max into Eq. (22) and solving for δ.  The δ was found to be surface dependent: 
150 µm, 42 µm, and 16 µm for copper, PVC, and iron, respectively. Figure 14 shows the maximum 
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contamination layer for the three pipe surfaces as a function of xb as predicted by Eq. (22). Because of the 
presumed stronger affinity between copper and diesel, the copper surface has greater contamination levels 
for a given xb as compared to the PVC and iron surfaces. The greater affinity is modeled via the larger 
penetration depth. 
 

 
 

Fig. 13. Modified kinematic viscosity to account for adhesive forces between iron and diesel derived for two flow conditions (Re = 
3200 and Re = 7000). 
 
 
 

 
 

Fig. 14. Maximum contamination diesel layer on various pipe surfaces as predicted by Eq. (22). 
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7. Future Work 
 
      The overall goal of this project is to develop the tools that are necessary for adequately responding to a 
contamination event. These tools have been envisioned to consist of measured data, predictive models, and a 
computer program that embodies the data and models. The software would allow the user to input 
information that is specific to a contamination event and to receive estimates of contamination levels and 
required flushing times. Such an all-encompassing goal requires a significantly large effort in order to ensure 
that the software makes reliable predictions for all possible contaminants. In order to achieve this task in a 
reasonably short time, the model must be physically based, yet simple, so that it may be easily adjusted and 
extrapolated for different contaminants.  
      In this light, the models developed in this project require additional enhancement to ensure that the best 
possible predictions can be provided. Possibly, the major effort toward this end will be using measured data 
to calculate the constants KJ, Ddw/BT, and δ for potential contaminants (like toluene, see Appendix D) and 
pipe surfaces. In the course of this effort, it will be determined whether or not KJ is merely a function of the 
properties of the flushing fluid. In addition, it can be determined if δ is constant for a particular 
contaminant/surface pair.  In the short term, more flushing measurements at different initial le are required to 
validate the flushing constants considering that only one data set was used to obtain them. It may be 
appropriate to lump the diffusion that occurs during contamination into the adhesion effect. On the other 
hand, inclusion of a diffusion component in the contamination model may be necessary. These questions can 
be answered with further experimentation and model enhancement. 
      In addition, tests on plumbing surfaces with higher levels of oxidation and mineral deposits, as expected 
to be present in an existing home, are necessary to determine these effects on flushing times.  
      Although it is believed that the primary result of a variation in the diesel composition would have been a 
variation in the fluorescence of the diesel and the invalidation of the calibration, it is also possible that diesel 
with a differing composition may have resulted in different accumulation and removal characteristics. 
Considering this, future work with a detailed analysis of the composition of diesel for different batches 
should be done to determine the significance of this effect on the results.    
 
8. Conclusions 
 
      A detailed account of the continued development of a fluorescence based measurement technique for 
measuring the mass of contaminant on solid surfaces in the presence of water flow has been provided. A test 
apparatus was designed and developed to use the fluorescent properties of diesel for the purpose of studying 
its adsorption and desorption to and from plumbing pipe materials. A calibration technique was developed to 
measure both the mass of diesel adsorbed per unit surface area (the excess surface density) and the bulk 
concentration of the diesel in the flow.  
      Measurements for a given condition were made over a period of approximately 200 h for a diesel mass 
fraction of approximately 0.15 %. The largest excess layer thickness was approximately 4.4 µm, which was 
measured on a PVC surface for a Reynolds number of approximately 7000. The peak contaminant thickness 
on the PVC surface was shown to increase for increasing Reynolds number. Averaging over all 
contaminating flow rates and exposure times, the excess layer thickness on the PVC surface was 
approximately 2.0 µm. Reynolds number had little or no effect on the accumulation of diesel on an iron 
surface, which was approximately 0.71 µm. On average, the PVC surface adsorbed approximately 180 % 
more diesel than the iron surface. Both the PVC and iron surfaces were readily flushed with tap water. 
      Models to predict excess layer thickness on plumbing surfaces during flushing and contamination were 
developed. The flushing model predicts the thickness of the excess layer as a function of time, contaminant 
transport properties, and flushing Reynolds number. The required time to flush clean given an initial 
contaminant thickness can also be calculated. All of the flushing times were predicted to within 7 h. The 
contamination model gives the maximum contaminant excess layer thickness that can occur for a given 
contaminant bulk mass fraction and surface affinity. The contamination model accounts for the relative 
affinity between pipe surface and contaminant by predicting greater contamination levels on the PVC than 
on the iron surfaces. Together, the flushing and contamination models can be used as tools to develop a 
response to a contamination event. 
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9. Appendix A: Uncertainties 
 
      Figure A.1 shows the relative (percent) uncertainty of the diesel excess layer thickness (Ule) as a function 
of le for the iron test surface. Measurements of le on the iron surface with uncertainties larger than 10 % were 
discarded. Of the retained measurement sets, the average uncertainty in le for the contamination and the 
flushing tests was approximately ± 8 %, and ± 4 % of le, respectively. Overall, the average uncertainty of le 
on an absolute basis for the iron surface contamination and flushing tests was approximately ± 0.06 µm and 
± 0.02 µm, respectively.  
 

 
 

Fig. A.1. Relative uncertainty of le for 95 % confidence level for iron surface xb = 0.15 %. 
 
 
      Similarly, Fig. A.2 shows the relative (percent) uncertainty of the diesel excess layer thickness (Ule) as a 
function of le for the PVC test surface. For the PVC surface, contamination and flushing measurements le 
with uncertainties larger than 10 % and 20 %, respectively, were discarded. Of the retained measurement 
sets, the average uncertainty in le for the two lowest Reynolds number contamination tests and the Re = 7000 
contamination tests was approximately ± 6 %, and ± 3 % of le, respectively. Overall, the average uncertainty 
of le for the measurements with the PVC surface for the contamination measurements was approximately 
± 0.1 µm. The average uncertainty in le for the PVC flushing tests was approximately ± 17 % of le, which 
was approximately ± 0.05 µm.  
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Fig. A.2. Relative uncertainty of le for 95 % confidence level for PVC surface xb = 0.15 %. 
 
      Figure A.3 shows the relative (percent) uncertainty of the bulk freestream diesel mass fraction (Uxb) as a 
function of xb for the iron test surface. Of the retained measurement sets, the average uncertainty in xb for the 
contamination tests was approximately ± 4 % of xb. Overall, the average uncertainty of xb on an absolute 
basis for the iron surface was approximately ± 0.006 % (± 60 ppm).  
 

 
 

Fig. A.3. Relative uncertainty of xb for 95 % confidence level for iron surface. 
 
      Figure A.4 shows the relative (percent) uncertainty of the bulk freestream diesel mass fraction (Uxb) as a 
function of xb for the PVC test surface. Of the retained measurement sets, the average uncertainty in xb for 
the contamination tests was approximately ± 5 % of xb. Overall, the average uncertainty of xb on an absolute 
basis for the PVC surface was approximately ± 0.008 % (± 80 ppm).  
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Fig. A.4. Relative uncertainty of xb for 95 % confidence level for PVC surface. 
 
 
10. Appendix B: Measurement Correction 
 
      This appendix outlines how two flushing tests and one contamination test were corrected to account for 
additional rust resulting when the iron surface was exposed to air during a one-time repair of the apparatus. 
The bottom of the quartz probe housing became ajar just prior to the flushing tests that were done after the 
Re = 3200 contamination tests. Due to exposure of air during the repair, rust developed on the iron test 
surface causing a reduction in the measured fluorescence intensity. Consequently, flushing tests after Re = 0 
and the Re = 3200 contamination tests were corrected as were the soak contamination measurements. 
      The correction was accomplished by comparing repeated contamination measurements before repair and 
after repair for the same bulk mass fraction of diesel and the same Reynolds number. Figure B.1 shows the 
excess layer as a function of exposure time for Re = 7000 and xb = 0.0015 for contamination tests before and 
after the test apparatus repair. The correction was devised to adjust the fluorescence intensity by a constant 
such that the average le of the before and after data sets were equal. Given that both data sets appeared to 
exhibit random trends with respect to time, it was assumed that a steady state between contaminant 
deposition and removal had been achieved for the entire data set. For this reason, the entire data range for 
both data sets were used to obtain an average for each.  
      Because the oxidation of the iron had relatively ceased once it was re-immersed in the test water, the 
effect of the rust on the signal intensity was expected to be constant. In order to ensure that the adjustment to 
the intensity ( cF∆ ) was a constant, the effect of the increased incident intensity with increased proximity to 
the surface was accounted for by the exponential term in the expression for the corrected fluorescence 
intensity (Fc): 
 

1209.23[m ]
c c

lF Fe F
−

= + ∆      (B1) 
 
The correction was found to be: c 0.001F∆ = and the exponential term came from the calibration given in 
Eq. (4). Once the intensity was corrected, Fc was used in place of F in the determination of le. The estimated 
uncertainty of le on an absolute basis for the corrected measurements was approximately ± 0.8 µm.  
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Fig. B.1. Basis for correction of iron surface measurements made after test apparatus repair. 

 
 
11. Appendix C: Model Development 
 
      The derivations of the models for the prediction of the thickness of the contaminant excess layer on 
plumbing surfaces for the contamination and the flushing conditions are presented in this appendix. Each 
model assumes that transfer of mass to and from the surface occurs solely in a direction that is perpendicular 
to the surface. The flushing model predicts the thickness of the excess layer as a function of time, 
contaminant transport properties, and flushing Reynolds number. The contaminant model gives the 
maximum contaminant excess layer thickness that can occur for a given contaminant bulk mass fraction and 
surface affinity. 
 
11.1 Flushing Model 
 
      The flushing model is based on the conservation of contaminant mass within the excess surface density 
layer. Because the excess layer is thin, it is approximated as stagnate in the axial direction such that the net 
motion of diesel is solely perpendicular from the surface in the, y-direction. From the corresponding 
continuity equation, the rate of change of change of mass (M) in the excess layer with respect to time (t) is 
equal to the mass flow of contaminant ( dm ) from the excess layer-flushing water interface: 
 

i o d
M m m m
t

∂
= − = −

∂
        (C1)5 

 
The mass of the excess layer can be represented by the product of the contaminant density (ρd), the surface 
area of the excess layer-water interface (A), and the thickness of the excess layer (le), i.e.:  
 

d eM A AlΓ ρ= =      (C2) 
 

                                                 
5 Here im and om are the mass flow rates of contaminant entering and leaving the excess layer control volume, respectively. No flow 
enters the excess layer from the plumbing surface. Consequently, im  is zero. 
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The diesel is transported from the surface via convection and diffusion. For turbulent flushing, convection of 
the diesel from the interface between the excess layer and the flushing water is caused by the pumping  
action of the fluctuating y-velocity component, [ ] ey l

v
=

, that entrains diesel from the excess layer into the  

bulk water flow. Diffusion also occurs perpendicular to the surface because of the difference in diesel mass 
concentration between the excess layer ( dc ) and the water ( wc ). The following equation approximates the 
diffusion with an expression for equimolal diffusion [8] that contains a diffusion coefficient (Dwd) and a 
transition depth (BT) over which the mass concentration difference occurs. The total mass flux of diesel from 
the excess layer is the sum of the convective and the diffusive components: 
 

[ ] ( )d wd
d d w

T
ey l

m D
v c c c

A B=
= + −



    (C3) 

 
The effect of upstream diesel entrainment is assumed to not significantly increase the mass concentration of 
diesel in the flushing water. As a result, the cw is approximated as zero. In addition, the diesel excess layer is 
neat diesel, i.e.: 
 

d d d dc x ρ ρ= =       (C4) 
 
The average entrainment velocity (v) is approximated by half the magnitude of the maximum fluctuating 
component of the turbulent y-velocity ( maxv′ ): 
 

max

2
v

v
′

=       (C5) 

 
From the law of the wall, the axial velocity component in the viscous sublayer [9]: 
 

2
*

max
d

uu y u
ν

′= ∝       (C6) 

 
where νd is the kinematic viscosity of the diesel, maxu′ is the maximum fluctuating component of the turbulent 
axial velocity component, and *u  is the friction velocity given by Kays and Crawford [7]: 
 

0.25
* 0.039Reu V −=      (C7) 

 
where V is the bulk average velocity of the flushing water in the axial direction and Re is the Reynolds 
number based on the hydraulic diameter evaluated for the properties of the flushing water. 
      Kays and Crawford [7] also show that the fluctuation turbulent velocity components may be related by a 
constant max max/K v u′ ′≡ . If it is assumed that maxu′  is proportional to the axial velocity, i.e., maxu Ju′ ≡ , and 
the constant J is lumped into the constant KJ

6, maxv′ can be written as: 
 

[ ]
[ ] 2

2J * dmax J * e
/

2 2 2
e e

e

y l y l
y l

K u yv K u l
v

ν

ν
= =

=

 ′  
= = =    (C8) 

 
 

                                                 
6 J max /K KJ v u′≡ ≡  
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      Substitution of Eqs. (C2), (C3), (C4). and (C8) yields the following first order partial differential 
equation that governs the removal of the excess layer (le) during flushing: 
 

2
e J * e dw

d T

.
2

l K u l D
t Bν

∂
+ = −

∂
     (C9) 

Multiplying both sides of the differential equation by the integrating factor 
2

J *

2
K u

t
e ν  gives: 

 
2

J *

d
2 2

J * J *

d d

2
e

2
2 2e J * e dw

d T

.
2

K u
t

K u K u
t t

l e
l K u l D

e e
t B t

ν

ν ν

ν

 
 ∂
  ∂  + = − = ∂ ∂ 

   (C10) 

 
Separating and integrating the last two terms of the above equation and ensuring that le = le0 at t = 0 yields: 
 

2
J *

d2d dw d dw
e e02 2

J * T J * T

2 2
.

K u
tD D

l l e
K u B K u B

νν ν − −
= + + 

 
                       (C11) 

 
      The required time to flush le0 to le = 0 can be determined by setting le to zero in the above equation and 
solving for the elapsed time t: 
 

d
2 2

J * J * e0 T

d dw

2 1ln
1

2

t
K u K u l B

D

ν

ν

 
 −  =
 

+ 
 

    (C12) 

 
11.2  Contamination Model 
 
      For the contamination case where a balance between deposition of contaminant on the surface and 
removal of the contaminant from the surface must be achieved, surface adhesion requires that a distinction 
be made between the velocity of the contaminant toward the surface (vi) and that away from it (vo). Very 
near the wall there is an additional resistance to flow away from the surface as caused by the attraction of 
diesel molecules to the molecules of the pipe surface. Likewise, for the same region near the pipe, the 
attractive forces induce a reduction in the resistance of flow toward the surface. Considering that it is flow 
that is being modeled, a simply way to approximate this behavior is via a modified viscosity. For example, 
the entrainment velocity (evaluated using the properties of the contaminated flow) given in Eq. (C8) for flow 
approaching the pipe surface becomes: 
 

[ ]
2

J * e
i

e
d2 tanh

ey l

K u l
v

l
ν

δ

=
=

 
 
 

     (C13) 

 
Here, the modified kinematic viscosity is less than the constant property viscosity (νd) for distances from the 
surface less than the penetration depth, δ. The magnitude of the penetration depth is determined by the 
affinity of the contaminant for the pipe surface. Consequently, each contaminant\pipe combination will have 
its own value of δ. The hyperbolic tangent was chosen for its simplicity and because it closely matched what 
was believed to be the required relationship with respect to le. 

http://dx.doi.org/10.6028/jres.121.014
http://dx.doi.org/10.6028/jres.121.014


 Volume 121 (2016) http://dx.doi.org/10.6028/jres.121.014  
Journal of Research of the National Institute of Standards and Technology 

 
 
 

 339 http://dx.doi.org/10.6028/jres.121.014  

      Likewise, surface adhesion acts to deter the flow of contaminant from the wall according to an assumed 
cotangent relationship with respect to le. Here the leaving velocity is approximated as a local increase in 
viscosity above the constant property value as the pipe surface is approached for distances less than δ: 
 

[ ]
2

J * e
o

e
d2 coth

ey l

K u l
v

l
ν

δ

=
=

 
 
 

    (C14) 

 
For the case where diffusion is negligible, the balance between the deposition and removal of contaminant at 
the wall becomes: 
 

   
(C15) 

 
Substitution of M from Eq. (C2) reduces the above mass balance to: 
 

[ ] [ ]e
i b o

e ey l y l

l
v x v

t = =

∂
= −

∂
    (C16) 

 
Substitution of vi and vo into Eq. (C16) gives the following first order differential equation for surface 
contamination from a bulk flow with a contaminant mass fraction of xb: 
 

2
e J * e b

e ed

1
2 tanh coth

l K u l x
l lt ν
δ δ

 
  ∂  = −  ∂     

        

   (C17) 

 
Considering that the exposure time a pipe surface to a contaminant may not always be known. A conservative 
decontamination response would be to flush for the maximum contaminant film thickness (excess layer) for the 
given concentration of contaminant in the flow. The maximum contaminant excess layer, which occurs at steady 
state where the deposition balances the removal at the wall, can be determined by setting the partial derivative 
of the excess layer with respect to time to zero in Eq. (C17) and solving the resulting equation for le, yielding: 
 

[ ] b
e bmax

b

1
ln 0 1

2 1
x

l for x
x

δ  +
= → → < <  − 

   (C18) 

 
 
12. Appendix D: Fluorescence of Toluene 
 
      This appendix presents the fluorescence of a potential next contaminant to study using the fluorescence 
measurement technique presented in this paper. Figure D.1 schematically shows the test setup to measure the 
fluorescence emission of toluene on PVC, copper, and iron surfaces. Each emission was measured with the 
spectrofluorometer instrumented with two fiber optical bundles orientated nearly perpendicular to each other at 
the test surface. The excitation bundle was orientated at a slight angle from the horizontal with respect to the 
toluene film that was on the test surface. The emission bundle was perpendicular to the test film and surface.  
      The toluene film was confined to each test surface by an open-ended quartz box that was sealed around the 
10 mm x 30 mm outside perimeter of the base with modeling clay. In order to achieve a repeatable film thickness 
of approximately 1 mm, single drops of toluene were dropped onto the surface until it was fully wetted.  

[ ] [ ]( )i o i b d o d
e ey l y l

M m m v x v A
t

ρ ρ
= =

∂
= − = −

∂
 
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      Each emission spectrum was produced with a constant excitation wavelength of 355 nm. Figure D.2 shows 
the fluorescence emission of toluene on three pipe surfaces: PVC, copper, and iron. Figure D.2 shows that the 
surface materials do not significantly affect the emission spectrum. Each emission spectrum has approximately the 
same shape and the same peak wavelength. The tests show that maximum signal intensity for toluene is found 
between 375 nm and 425 nm and that toluene is a potential contaminant candidate that can be detected with the 
measurement technique that is presented in this paper. The uncertainty of the mean intensity and wavelength 
measurement for this particular experimental setup was approximately ± 20 %, and ± 2 nm, respectively. 
 

 
 
 

Fig. D.1. Schematic of experimental setup to measure fluorescence emission of toluene on three pipe surfaces: PVC, copper, and iron. 
 

 
 

Fig. D.2. Fluorescence emission of toluene on three pipe surfaces: PVC, copper, and iron. 
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