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The emerging concept of smart manufacturing systems is defined in part by the introduction of new technologies that are promoting 
rapid and widespread information flow within the manufacturing system and surrounding its control. These systems can deliver 
unprecedented awareness, agility, productivity, and resilience within the production process by exploiting the ever-increasing 
availability of real-time manufacturing data. Optimized collection and analysis of this voluminous data to guide decision-making is, 
however, a complex and dynamic process. To establish and maintain confidence that smart manufacturing systems function as intended, 
performance assurance measures will be vital. The activities for performance assurance span manufacturing system design, operation, 
performance assessment, evaluation, analysis, decision making, and control. Changes may be needed for traditional approaches in these 
activities to address smart manufacturing systems. This paper reviews the current methods and tools used for establishing and 
maintaining required system performance. It then identifies trends in data and information systems, integration, performance 
measurement, analysis, and performance improvement that will be vital for assured performance of smart manufacturing systems. 
Finally, we analyze how those trends apply to the methods studied and propose future research for assessing and improving 
manufacturing performance in the uncertain, multi-objective operating environment.1 
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1. Introduction

Maintaining high performance required for today’s manufacturing systems requires employing methods
and tools to manage performance throughout the system life cycle. During system design, for example, 
methods and tools model, analyze, and test the system so that anticipated manufacturing needs and operating 

1 No approval or endorsement of any commercial product by the National Institute of Standards and Technology is intended or implied. 
Certain commercial software systems are identified in this paper to facilitate understanding. Such identification does not imply that these 
software systems are necessarily the best available for the purpose. 
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environments are investigated before the system is built. In the operation of the system, methods and tools 
are employed to ensure that the system maintains planned performance through monitoring, assessing 
performance, and responding appropriately to performance deviations. In this paper, we review three 
categories of methods and tools used in manufacturing systems for the following high-level objectives: 

• Performance measurement
• Performance analysis
• Performance improvement

We discuss how these methods, tools, and systems can be used in, and are impacted by, emerging changes to 
the manufacturing environment. The new era of manufacturing systems, known as smart manufacturing 
systems (SMS), is marked by a wide availability of operational performance data that was previously not 
available for performance management. In the past, such data was either not collected at all or, when 
collected, was used primarily for production control on the factory floor. The availability of Information and 
Communications Technologies (ICT), such as ubiquitous sensors and wireless communications, is resulting 
in an onslaught of readily accessible data that could also be used for planning at higher organizational levels, 
so long as context and meaning can be deduced from the data. Poor interoperability of this data is still a 
barrier, in large measure because the data is digital, and therefore commonly available in proprietary, 
mutually incompatible, formats. Current efforts to solve the data interoperability challenge across 
manufacturing hierarchical levels will blur historical lines between organizational planning and operational 
control. 
      Another shift in the manufacturing environment relates to the type of performance being measured. 
Traditionally, productivity and quality were the primary gauges of performance. A more productive system is 
one with higher throughput for a given amount of input resources, which positively impacts a business’s 
bottom line. However, two other motivating factors are now taking on a more critical role: sustainability and 
agility. Sustainable manufacturing refers to the creation of manufactured products employing processes that 
are non-polluting, energy- and natural-resource conserving, and economically sound to the manufacturing 
organization and consumers. Sustainable manufacturing focuses on three main impact areas: environmental, 
economic, and social. Agility refers to an organization’s ability to anticipate, respond quickly to, and even 
take advantage of, changing market demands and changing flow of supplies as well as responding to internal 
disruptions and disturbances. Increased attention to these two new performance factors could negatively 
impact productivity but is crucial for an organization to succeed in today’s markets. Techniques for assessing 
and balancing multiple factors using operational data in real time are still needed and are an area of ongoing 
research in SMS. In a 2010 report, the Smart Manufacturing Leadership Coalition (SMLC), an independent, 
public-private partnership, defined a vision for SMS [1]. That vision states that the future holds a 
“fundamental shift in manufacturing processes toward demand-dynamic economics, flexible factories, and 
demand-driven supply chain service enterprises.” As discussed in Davis et al. [2], the SMLC believes that 
this vision is multi-dimensional – it must be implemented vertically across planning levels and horizontally 
across the product life cycle. In this paper, we focus on one part of that vision: the manufacturing plant. 
      Fundamental to assuring performance is measuring performance. All of the methods and techniques 
described in this paper rely on measurement. Performance measurement provides the state of performance. 
At higher levels in the factory, the measurements are rolled up into key performance indicators (KPIs). An 
organization can include, within its strategy, the improvement of a set of KPIs (e.g., environmental 
sustainability), which may influence the specification of hardware and software as well as data collection and 
measurement policy. For example, SMS are accompanied with greater investment in automation and ICT to 
pursue KPIs that are defined by today’s performance objectives. Performance measurement is followed by 
performance analysis so that critical factors governing performance are identified and decisions are made for 
improvement. 
      Our motivation in this paper is to understand current trends in existing methods and tools in support of 
SMS, and to identify opportunities provided by emerging technologies for performance assurance within the 
manufacturing plant. The rest of the paper is arranged as follows. Section 2 is a background to SMS, 
performance measures, and aggregate performance indicators. Section 3 reviews a variety of methods and 
tools, and the previous research in their application to manufacturing operations management. Section 4 
discusses performance assurance issues and the adaptation of current methods and tools for SMS. Section 5 
concludes the paper with a summary and future research needs. 
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2. Background
This section overviews the performance challenges and approaches to performance measurement and

improvement. 

2.1 Understanding Performance Assurance for Smart Manufacturing Systems 

      Performance assurance establishes confidence that the system performs as intended. This requires the 
ability to assess a proposed design and monitor performance of a manufacturing system operation. In 
essence, performance assurance emphasizes the proactive approach, i.e., forecasting and monitoring, and 
preventing problems [3]. Figure 1 provides an illustration of the context of the manufacturing performance 
assurance challenge. This figure shows a system with a given input purposed to result in a level of desired 
performance but subjected to both internal and external disruptions and disturbances. By our definition, 
disruptions are those whose occurrence results in temporary shutdown of at least one unit of the 
manufacturing operations, while disturbances are events that do not lead to stoppage of production. Internal 
disruptions and disturbances can be both planned and unplanned events on the manufacturing floor. 
Traditionally, these events are anticipated and appropriately planned for to achieve and maintain required 
performance. 
      Figure 2 offers a schematic representation of a rigorous approach to manufacturing performance 
assurance during system design and development. The first activity is to specify appropriate KPIs. The 
second activity is to establish the target system performance envelope according to the KPIs. The goal is that 
the system built will achieve and maintain minimum performance requirements, within the set bounds, 
irrespective of disturbances and disruptions. The third activity is to determine needed system components to 
deliver the required performance. The integration of such components (physical and virtual) requires 
developing a system architecture. The system component models of hardware, software, information, and 
tools are integrated based on system engineering principles and tools [4]. Lastly, predictive tools such as 
simulations are applied to test the system performance in a virtual environment to determine if the desired 
system behavior will be obtained. The results of the test may show that the system needs modifying or 
redesigning with a different set of components and retesting until the system performance for the anticipated 
range of operational conditions and inputs is within the performance envelope.  
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system 
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Fig. 1. Performance assurance context for a manufacturing system. 
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Fig. 2. Performance assurance process during manufacturing system design. 

      Performance assurance requires methods and tools to track performance, recognize the effects and 
sources of disruptions and disturbances, and guide decision making. Tracking a system over time with a view 
to improving performance through corrective actions can be modeled using classical control theory. 
Applying control theory to a manufacturing system has been a research area for some time and is still 
ongoing. As early as 1979, Parnaby [5] argued that manufacturing systems are too complex to apply control 
theory for continuous real-time overall optimization. Instead, he proposed a theoretically-based heuristic 
procedure for discontinuous control. Considering that today’s manufacturing systems are more automated, 
monitored, and controlled, research that includes continuous control is now sensible. There are different 
methods of control, including supervisory control, discrete-event control, hierarchical control, intelligent 
control, optimal control, and adaptive control. We describe one of these types of control: adaptive control, 
and how it can be applied to performance management. 
      Adaptive control is a set of techniques that provides a systematic approach for automatic adjustment of 
control settings in real-time to achieve or maintain required performance as system operating parameters 
change [6]. Knowledge of system characteristics is obtained while the system is operating and a controller 
adapts to the changes. In addition, the control laws change themselves as the system changes. In SMS, the 
adaptive control approach could conceivably be used to monitor performance as the internal situation (e.g., 
increase in energy usage of a machine) of the manufacturing system changes and determine required inputs 
to achieve or maintain required performance. 
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      Performance assurance for SMS is analogous in purpose and scope to that of software systems and 
architecture and therefore, similar approaches and methods are applicable [7]. Performance assurance 
systems for software ensure that the software features and functionality meet requirements and that the code 
is bug free. By analogy, the “features” of manufacturing systems are hardware, software, and management 
systems while “functions” are behaviors defined by the purpose for which each system is built. “Bug free” is 
the elimination or minimization of performance failures triggered by disruptions and disturbances and the 
system being properly aligned with the intended performance objectives. 
      Dan Shoemaker [8] reviewed the state of the practice for software assurance. Two notable activities in 
this area include the Standard Assurance Environment standards emerging from Object Management Group 
(OMG) [9] and the Common Weakness Enumeration (CWE) repository at MITRE [10]. The OMG 
environment developed a rigorous framework and method for the user to specify test cases for systems 
assurance. The CWE is a database of known weaknesses in systems engineering, including discussion of the 
problems and solutions. The CWE also includes a risk assessment framework for analyzing and prioritizing 
the potential weaknesses relative to a given project to better understand where to focus testing efforts. 

2.2 Performance Assurance as Quality Assurance 

      The purpose of performance assurance is for a system to perform as intended. A closely related activity 
for a product is quality assurance [11]. Quality assurance covers all activities (from product design to 
delivery) performed so that a product or service fulfills its performance requirements. If a manufacturing 
system is considered as a product, then the principles of product quality assurance can apply to a 
manufacturing system.  
      Table 1 compares the objectives, methods, and scope of product quality assurance with those for 
manufacturing system performance assurance. Performance is defined relative to how well specific 
objectives and goals are achieved. Examples of these are overall equipment effectiveness [12], agility [13], 
and energy consumption [14]. Regardless of the goals that an organization may have, the first activity is 
always focused on taking measurements. As such, making measurements is discussed next. 

Table 1. Comparing performance assurance with quality assurance. 

Product quality assurance System performance assurance 
Objectives Achieving high-quality product and 

preventing design/production mistakes/defects 
Achieving high performance and preventing 
performance deterioration 

Tools and Methods Statistical methods 
Right first time 

Systems engineering methods and tools 
Diagnostics and prognostics methods 

Scope Fit for purpose System performs as desired 
Simulation purpose 
(Exemplar method) Failure testing Simulated testing over the performance envelope 

2.3 Importance of Measurement 

      Measurement provides necessary information to decision makers and plays a role in monitoring 
performance, enhancing communication, and diagnosing and solving management problems [15]. Taticchi et 
al. [16] noted that the process of measurement is crucial to improving business performance. Keegan et al. 
[17] and Ahmad et al. [18] proposed that performance measures should be derived from and be aligned with
the business strategy. They synthesized a set of common performance objectives for manufacturing, namely:
safety and environment, flexibility, quality, and dependability. They carried out an extensive review of
performance measures used at that time, and synthesized those necessary for “world-class manufacturing,”
namely: top management commitment, customer service, price/cost, quality, facility control, speed,
innovation, and technology.
      Hon [19] extensively reviewed performance measures and identified that in addition to cost, 
manufacturing-oriented factors commonly assessed use are quality, productivity, time, and flexibility. Chen 
et al. [20] identified measures to be on-time delivery, cost of quality, and quality rate. We discuss how 
existing sets of indicators and measures can be adapted for SMS. But first, we clarify related terminology 
used in this paper. 
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      The terms indicators, metrics, and measurements are sometimes used interchangeably. Technically, they 
are different. Feng et al. [21] distinguished indicators from metrics. An indicator is a parameter, which points 
to, provides information about, or describes the state of a phenomenon with significance and relevance to 
performance objectives. According to ISO 22400-1 [22], a KPI is one that is critical to the current and future 
success of the organization. Indicators should, among other things, be numerically and precisely quantifiable. 
On the other hand, a metric is a measurable quantity for tracking an indicator or indicators. A metric can be 
composite, i.e., made up of two or more measurements. Measurements are the magnitude or values of actual 
data gathered from the process based upon a standard or unit of measurement. To track the performance of a 
system with respect to an indicator, it is necessary to perform appropriate and accurate measurements. To 
develop a measurement system for performance of manufacturing processes, we can borrow questions 
proposed by Tsourveloudis et al. [23]. For instance, what do we measure? How and when do we measure? 
How do we interpret the results? In this paper, we discuss factors that determine what and when to measure.  
How to measure will be covered in future work.  

2.4 Measuring to Achieve Strategic Goals 

      Digalwar et al. [24] established that a prerequisite to managing performance is measuring performance. 
The nature of performance is that it is constantly changing and is unique to the system and operational 
situation. Establishing a single set of performance metrics across manufacturing enterprises would not only 
be impractical, but would also fail to address the dynamic nature of performance. Competitive priorities 
identified for performance management typically vary from one firm to another and shift with business 
demands. Measurements and metrics for performance management originate from both internal and external 
sources and are also driven by performance priorities of each organization [25]. In most cases, a 
manufacturing strategy is formulated to exploit core competencies or to target market segments that help 
achieve competitive advantages, and appropriate measures are determined based on the above-mentioned 
performance priorities and their origins. 
      Developing measurements that are useful for decision making has been a challenge for some time and is 
commonly discussed in the context of a knowledge or DIKW (Data, Information, Knowledge, Wisdom) 
pyramid [26]. This first pyramid in Fig. 3 illustrates how intelligence, or wisdom, is built by drawing 
conclusions from data, turning it first into information when context is added, then into knowledge where 
meaning is drawn from the information, and finally into wisdom where it can be used to guide decision 
making. The image suggests that each level in the hierarchy can be derived from the others. We adopt this 
image to illustrate the importance of measurement to performance assurance.  
      The second pyramid in Fig. 3 applies this image in the context of performance management. At the top 
level of the pyramid are the strategic goals. At the base are the measured values. Measurements are 
abstracted by metrics into indicators. Indicators provide a context for the measures turning them into 
information. Indicators in turn can be structured to logical deductions leading to KPIs, which are the basis for 
decision making. The final pyramid provides an example of measures, indicators, a KPI and a strategic goal. 
The strategic goal example is sustainability, for which a major factor can be water consumption during 
production. The measurements for water are water consumed, waste water, and number of parts produced. 
The percentage of water reclaimed is one of the indicators calculated from the measures. Ultimately, interest 
is in water usage per part as a KPI that can be compared with previous periods, a benchmark, a set target, or a 
standard. Other KPIs can be likewise abstracted. 
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Fig. 3. The DIKW pyramid (left) applied to performance management (center) and manufacturing sustainability due to water consumption (right). 

2.5 Existing Sources of Metrics and Indicators 

      Metrics abound. Every organization and, indeed, every opportunity for measured improvement has its 
own metrics. The performance measurement frameworks discussed in Sec. 3 produce a large number of 
metrics. Other sources for metrics include industry associations, public repositories, and research projects. 
Metrics developed from manufacturing research often take on the focus of a given performance objective, 
such as productivity, energy consumption, agility, and sustainability. We summarize some of these. 
      In 2014, Technical Committee 184/Subcommittee 5 (TC 184/SC 5) within the International Organization 
for Standardization (ISO), published the first two, i.e., ISO 22400-1 [22] and ISO 22400-2 [27], of four parts 
of the ISO 22400 standard on KPIs for manufacturing operations management. Manufacturing Enterprise 
Solutions Association (MESA) and the Supply Chain Council are two industry associations, particularly 
relevant to Smart Manufacturing, that publish material related to performance metrics. NIST has also 
established a public repository of metrics for sustainability assessment which consolidates the work of a 
number of organizations in the sustainable manufacturing area [28].  
      Further, MESA has established a metrics working group as a forum for manufacturers to share 
information and best practices about performance measurement and improvement [29]. The group hosts 
several activities, including the development and maintenance of a metrics guide book. MESA is also 
working with ISO on plant-level assessment standards by defining KPIs at the level of manufacturing 
operations management to help supply chain partners by providing commonly accepted performance 
measures [22, 27]. NIST, in a joint effort with the MESA metrics group, is developing a method and models 
for selecting KPIs appropriate for any manufacturing process. The standardized method should simplify the 
KPI selection process while maintaining the reliability and validity of measurements [28].  
      The Supply Chain Council published the Supply Chain Operation Reference (SCOR) [30]. The SCOR 
model was established for evaluating and comparing supply chain performance. SCOR consists of four major 
sections: performance, processes, practices, and people. The first, i.e., performance, specifies metrics to 
describe process performance and define performance goals. It also acts as a diagnostic tool for improving 
supply chain management and can also help in implementing targeted strategic objectives. SCOR was 
designed for supporting the supply chain of an organization but is useful within the organization as well. 
      A key requirement of SMS is that they should minimize impact on the natural environment. Research 
efforts are underway to develop indicators for sustainable manufacturing. In 2001, the Lowell Center for 
Sustainable Production, University of Massachusetts, proposed an indicator framework for raising 
companies’ awareness and towards sustainable manufacturing [31]. The research proposed twenty-two 
indicators and a guide to their application in manufacturing production. Kibira et al. [32] specified high-level 
indicators for the environmental, economic, and social dimensions of sustainability. Joung et al. [33] 
categorized indicators for sustainable manufacturing, while Feng et al. [34] and Reich-Weiser et al. [35] 
overviewed metrics for sustainable manufacturing.  
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3. Methods for Assuring Performance of Manufacturing Systems

Thomann [36] defined methods as “rules or procedures that guide someone in accomplishing a purpose.”
Methods consist of guidelines or rules of thumb. The procedures of evaluation may be both qualitative and 
quantitative. Tools are based on methods and are often supplied as computer software. A software tool may 
be based on more than one method. In this section, we review performance measurement systems, research 
trends in performance measurement, performance analysis systems, emerging methods for performance 
analysis, performance improvement systems, and software tools. 

3.1 Performance Measurement Frameworks 

      Performance measurement is the process of collecting, analyzing, and reporting performance information. 
The decision on what to measure stems from the objectives and policies of the organization. Measurements 
from the shop floor are analyzed and results are rolled to higher levels to determine system performance. 
These processes are illustrated in Fig. 4. This section reviews a sample of the measurement frameworks. 
Performance assurance involves (i) setting a performance target level and (ii) comparing prevailing 
performance against the target. The most commonly used performance measurement frameworks are: 

• balanced score card [37],
• performance measurement matrix [38],
• strategic measurement and reporting technique – SMART [39],
• performance prism [40].

Efforts to enhance these frameworks to advance measurement systems to address changing industrial needs, 
and discussed in this paper, have been: 

• integration of performance measurement [41],
• dynamic measurement [42],
• enhancement of performance measurement systems with various techniques and tools [43, 44],
• change management [45].

3.1.1 Balanced Score Card 

      Traditionally, manufacturers have used financial measures to evaluate performance [46]. Such measures 
typically assess current performance against previous periods. Current manufacturing systems are, however, 
characterized by change, and the effects of this change must be tracked both periodically and continuously 
[2, 47]. Therefore, cost and profit measures alone would not be timely in revealing areas within the 
organization that need to be improved. Manufacturing systems need measures for evaluating and guiding 
future investments, and long-term retention and acquisition of customers, suppliers, and employees.  
      The balanced score card (BSC) was developed to provide such features. In addition to financial measures, 
the BSC includes “operational measures on customer satisfaction, internal processes, and the organization’s 
innovation and improvement activities–operational measures that are the drivers of future financial 
performance” [37]. Since the BSC was first developed, it has undergone two refinements to make it easier to 
define measures and to provide more relevance [48, 49]. Table 2 summarizes the perspectives and 
measurements for the balanced score card.  
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Fig. 4. Flow of performance information from shop floor to enterprise level. 

Table 2. Balanced score card measurements. 

Perspective Generic measurements 
Financial Return on capital employed, value added, sales, capital flow 
Customer Customer satisfaction, retention, acquisition, profitability, market share 
Internal business process Innovation – how well the company identifies customer needs 

Operations – quality, cycle time, costs 
After-sales service – repair, service, returns 

Learning and growth People – employee retention, training, skills, morale 
Systems – measures of availability, real-time information 

3.1.2 Performance Measurement Matrix 

      The performance measurement matrix was also developed to answer the need for balanced measurement. 
It was proposed by Keegan et al. [38] after realizing that many organizations have far too many irrelevant 
performance measures. It was felt that some of these measures were obsolete and inconsistent and that they 
could actually frustrate implementers of organizational strategy. The premise of the performance 
measurement matrix is that measures have to be classified into financial and non-financial impacts on 
business performance, each depending on both internal and external drivers. Neely et al. [50] modified the 
original performance measurement matrix. The modified measurement matrix assumes two basic types of 
performance measures, those that relate to results (competitiveness, financial performance), and those that 
focus on the determinants of the results (quality, flexibility, resource utilization, and innovation). The results 
are termed “lagging” while the determinants are “leading” indicators. 

3.1.3 Strategic measurement and reporting technique – SMART 
      The SMART performance measurement framework was developed by Wang Laboratories, Inc. to 
improve performance measurement over the traditional measures [39]. SMART integrates organizational 
objectives with operational performance [51]. The SMART performance criteria and their definitions, which 
originated with Doran [52], used in the SMART framework have become iconic: 

• Specific – what are we going to do for whom?
• Measurable – is it quantifiable?
• Attainable/Achievable – can we get it done within the time frame?
• Relevant – will this objective affect the desired goal?
• Time bound – when will this objective be accomplished?

The SMART framework uses both external and internal performance measures. There are four levels in
the pyramid of objectives and measures (Fig. 5): corporate vision and strategy, market and financial 
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performance measures for business units, objectives and measures (e.g., customer satisfaction and flexibility, 
and quality, delivery, process time), and cost for each department and work center. SMART’s strength is in 
its direct intention of integrating corporate objectives with operational performance, as well as its focus on 
managing strategic objectives. However, as Striteska et al. [53] have pointed out, SMART’s weakness in 
comparison with BSC and the measurement matrix is that it does not provide a mechanism for specifying 
KPIs. 

Operations

Product 
quality

Delivery Cycle time Waste

Customer 
satisfaction

Flexibility Productivity

Markets Financial

Corporate 
vision Business 

units

Business 
operating  
systems

Department 
and work 
centers

Objectives

Measures 

Fig. 5. The SMART performance measurement framework. 

Fig. 6. Performance prism. 

3.1.4 Performance Prism 

      The focus of the performance prism is to identify all of the stakeholders and to deliver appropriate value 
to them [40]. As the name suggests, its concepts can be illustrated using a triangular prism, as Fig. 6 shows. 
The base represents stakeholder contribution while its opposing side represents stakeholder satisfaction. 
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Three sides represent the strategies, capabilities, and business processes that deliver products and services. 
There are five perspectives that the prism seeks to integrate through five fundamental questions: 

• Stakeholder Satisfaction: Who are the stakeholders and what do they want and need?
• Stakeholder Contribution: What is wanted and needed from the stakeholders?
• Strategies: What strategies need to be put in place to satisfy these sets of wants and needs?
• Capabilities: What capabilities – people, practices, technology and infrastructure – need to be put

in place to allow us to operate processes more effectively and efficiently?
• Processes: What processes need to be put in place to satisfy the wants and needs?

3.1.5 Comment on Performance Measurement Systems 

      Performance measurement systems and frameworks need improvements to be more relevant for smart 
manufacturing assurance. The features lacking in existing frameworks are: 

• Integration with other management and manufacturing systems and data,
• Multi-level dynamic performance assessment,
• Real-time dynamic performance assessment across multiple criteria,
• Integration into operational control systems, which would require not only evaluation of multiple

performance indicators but mechanisms for specifying constraints for optimizing among multiple
criteria,

• Methods and framework for collecting and communicating measurements from the shop floor.
Research efforts to address the first two bullets are reviewed in Secs. 3.2.1 and 3.2.2 while the remaining

three bullets are discussed in Secs. 5.1 and 5.2. 

3.2 Enhancements to Performance Measurement Frameworks 

      This section discusses integrated performance, multi-level performance measurements, and the use of 
tools to enhance measurement frameworks. We also address needs for performance measurement 
frameworks to address change in operating environment.  

3.2.1 Integrated Performance Measurement 

      Integrated performance measurement systems introduce a proactive closed-loop control system in 
performance management where corporate strategies are employed in all business processes, activities, and 
tasks. Feedback is obtained through actual measurement from the lowest level activities progressively to 
higher levels, e.g., from business activities, to business processes and business units all the way up to 
corporate level. Integrated performance measurement seeks to establish structural relationships between 
performance measures, and develop a reference model for comparing different integration approaches [54, 
55].  

3.2.2 Multi-level, Dynamic Performance Measurement 

      Research into this area is geared to developing measurement systems in continuous pursuit of company 
objectives. An example is the integrated dynamic performance measurement system (IDPMS), which 
provides an approach to support alignment of objectives across managerial and operational levels [41]. The 
system comprises and integrates three main areas that facilitate performance measurement and improvement, 
i.e., management, process improvement team, and shop floor. The system has feedback loop between the
shop floor and the process improvement team. The three areas are linked through specification and reporting
on the defined areas of success, performance measures, and performance standards. The feedback on
performance as the operating environment changes provides the dynamic updates [42]. These concepts are
illustrated in Fig. 7.
      Although research in this area has been ongoing for almost two decades, fully developed systems in use 
are not common in literature. The results from this research, if published, could be used to complement 
performance improvement frameworks such as the Plan-Do-Check-Act cycle (discussed in Sec. 3.6). 
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Fig. 7. The integrated dynamic performance measurement system framework.  

3.2.3 Integration with New Tools and Techniques 

      Specific tools and techniques to enhance performance measurement include Data Envelopment Analysis 
(DEA) [43] and Analytical Network Process (ANP) [44]. Examples of applications of these are Ucal and 
Öztaysi [56], who used ANP to quantify performance of a manufacturing system based on selected 
performance criteria and sub-criteria of a manufacturing firm, and Benbarka [57], who explained how DEA 
can be used as a tool to measure organizational performance over time.  
      Other forms of enhancing measurement systems are expected through application of emerging 
technologies. The prospects for adapting current approaches to performance assurance are to be discussed in 
Sec. 4. In the following bullets, we summarize recent technology trends that will impact measurement 
frameworks: 

• increased availability of real-time system information,
• improved acquisition and communication of information such as customer orders to the design and

production system, enhancing the ability for mass customization,
• improved integrated performance management systems for addressing multiple objectives of

manufacturing,
• increased proliferation of continuous improvement programs and standards,
• integrated performance measurement becoming part of overall planning and operational systems.

Some of the main challenges to leveraging the above trends in technology are inconsistent information
quality and lingering interoperability limitations [58, 59]. SMS applications are composed of different 
components and heterogeneous technologies. New standards need to be developed or existing standards 
enhanced for interfacing between different platforms to enable data processing, analytics, and use. 
Automated tools still require human expertise to reliably extract and identify relevant data for existing 
analytical tools. 

3.2.4 Research to Develop New Frameworks 

      Wibisono [60] argued that performance measurement systems are becoming obsolete and that new 
dynamic frameworks are needed. In particular, the observation is that current systems cannot balance short-
term vs long-term measures, internal vs external measures, and financial vs operational measures. He 
identified nine steps in formulating an improved performance measurement system for manufacturing. These 
are (i) determine a PMS framework, (ii) identify company environment, (iii) formulate a company’s mission 
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statement, (iv) analyze current PMS, (v) determine performance variables, (vi) determine cause-effect 
amongst variables, (vii) determine performance standards, (viii) determine improvement priority, and (ix) 
formulate recommendations to address gaps in performance. Wibisono’s ideas were tested by conducting 
interviews and a field survey in ten large manufacturing industries. Each company provided experts to 
validate the framework in terms of their KPIs, suitability of the indicators, benchmarking of the indicators, 
and linkage amongst the indicators. The response from this exercise indicated that the framework would offer 
advantages over the existing balanced score card and performance prism, which require “further 
adjustments” before implementation. 

3.2.5 Performance Measurement and Change in Operating Environment 

      Manufacturing systems are characterized by constant change. Major changes that routinely affect 
manufacturing systems include type of products made and environmental regulations, yet most assessment 
and measurement systems used today tend to be static. Change also affects the ability of measurement 
frameworks to address user assessment needs. To address change needs, Salloum [61] developed a 
framework for manufacturing organizations to develop dynamic performance measurement systems. To be 
effective, performance measurement systems have to be integrated into existing management information 
systems (MIS). In this context, Nudurupati et al. [62] proposed roles for MIS in implementing a performance 
measurement system from its design through implementation, use, and review.  
      The above publications indicate that future performance measurement frameworks for SMS might enable 
users to continuously update measurement systems as technology and strategic goals change.  

3.2.6 Change Management 

      Change management is the systematic approach to dealing with transitioning from one state of an 
organization to a different future state. Recognition that purely financially based performance measures are 
no longer adequate has led to changes in performance measurement frameworks. Concerted efforts are 
needed while transitioning from using one framework to another especially since it has been observed that 
many attempted implementations of new systems fail [63]. This is because the process of implementing new 
performance measurement systems requires careful change management. Engineering change management is 
a process for which the Automotive Industry Action Group (AIAG) has done extensive work in collaboration 
with global OEM-supplier VDA-Germany, GALIA-France, Odette-Sweden, and JAMA-Japan [45]. AIAG 
has published recommendations for change management that could be applied globally. 

3.3 Performance Analysis Methods 

      Smart manufacturing systems are characterized by machines being outfitted with sensors and monitors 
and then networked together using wireless technologies. These devices and technologies are collecting 
larger amounts of data than was previously available [64]. The data being collected across the manufacturing 
operation—and external data from customer orders, product field data, and suppliers—is flooding into 
manufacturing enterprises. This abundance of data calls for enhanced or new analysis methods. 
      The methods discussed in this section are widely used in analysis and decision making among 
manufacturing systems. Methods commonly employed for analyzing data produced by manufacturing 
systems employ a variety of techniques, each with its own strengths, limitations, and success record 
depending on the situation to which it is applied. Established methods include statistical methods and 
machine learning, decision theory, computer simulation, and operations research. 

3.3.1 Statistical Methods and Machine Learning 

      Manufacturing engineers on the shop floor cannot observe or record a system’s entire body of data and 
have traditionally relied on a collected sample to draw conclusions about the system. The data mining and 
analytical methods being developed, however, are poised to provide conclusions from not only large volumes 
of static data but also in real time from large streaming data. These methods are discussed in subsequent 
sections. Still, conventional statistical techniques (as reviewed in the next two paragraphs) will continue to be 
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important since they are also part of advanced analytics methods being developed by research organizations 
and industry.  
      Statistical analysis methods include statistical process control, correlation analysis, regression analysis, 
hypothesis testing, categorical modeling, analysis of variance (ANOVA), general linear model, 
computational statistics, and computational Bayesian modeling. Statistical methods are particularly useful 
during operation to measure, predict, and control performance of systems. One area of application is quality 
control where statistical methods analyze regular measurements of a quality characteristic of a product [65]. 
The analysis results indicate whether the system is operating as intended. Correlation analysis determines 
whether there is a relationship between sets of data; and where a relationship exists, it is determined through 
regression analysis. Hypothesis testing tests a claim about a parameter in a population, using measured data. 
Analysis of variance is used to compare three or more data sets. 
      Statistical methods applications in manufacturing are for process improvement and productivity gains, in 
addition to product quality improvement. Because of the increasing complexity of the systems and the larger 
number of parameters involved, statistical methods, through modeling, optimization of manufacturing 
parameters, and monitoring and control, have greatly increased [66]. One of the critical areas for statistical 
methods for performance assurance is in establishing and maintaining reliability of manufacturing 
equipment. Raheja et al. [67] define assurance as processes for ensuring that a product performs well during 
its expected life. In the case of machines on the shop floor, accelerated experiments and other assurance 
methods are used to reduce equipment failures during actual use. Barabady [68] used the term “production 
assurance” to describe the methods for ensuring that equipment and machines are available to meet the 
requirements for demand deliveries. Lastly, statistical methods are now poised to analyze the vast data 
available to obtain more insight and to better predict future system status [69]. 
      Machine learning is a discipline of constructing algorithms that can recognize and learn from patterns in 
data [70]. The algorithms can be from a variety of fields including statistics and information theory. Machine 
learning uses data as a learning set for future decisions. Statistical methods and machine learning are poised 
to become leading methods for performance assurance because of the large increase in data obtained from 
manufacturing systems in real time. Section 3.6 discusses the role of these methods in continuous 
performance improvements based on data analysis. 

3.3.2 Operations Research Methods 

      The field of Operations Research (OR) comprises analytical methods that are employed to obtain optimal 
or near-optimal solutions to complex decision problems. Examples of the methods are linear programming, 
nonlinear programming, stochastic programming, network flow programming, integer programming, queuing 
theory, inventory theory, and data envelopment analysis. OR methods help model the structure of complex 
situations, and utilize this understanding to predict system behavior and improve system performance. OR 
applications in manufacturing include part routing, workflow improvements, elimination of bottlenecks, 
inventory control, business process re-engineering, site selection, facility layout, and general operational 
planning [71].  
      A major area of OR for manufacturing applications is production scheduling [72]. Solutions to scheduling 
problems can lead to improved performance through optimal use of resources. Engau [73] proposed OR 
methods for solving environmental sustainability problems. There are a number of OR techniques and 
methods from which to select for particular applications in specific SMS environments. To optimize multiple 
performance objectives, OR methods can be combined with data analytics and simulation models. For 
example, they could be used in conjunction with multi-criteria decision making methods to optimize 
manufacturing performance through several simulated scenarios. In summary, potential areas for OR are: 

• Optimizing layout and configuration of the manufacturing system,
• Deriving a production plan that optimizes a given objective such as minimum cost,
• Assessing, comparing, and tracking performance of different units.

This potential notwithstanding, currently OR has had little impact in real life manufacturing
environments. This is mainly because solutions from these models are often obtained after unrealistic 
assumptions and are time-consuming [74]. Moreover, the situation on the shop floor changes continuously. 
Summary of general weaknesses of OR are: 
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• They mainly apply where factors can be quantified. In many cases such as human behavior, this
many not be possible,

• They involve assumptions that require assigning quantitative values to factors, with a result that can
be subjective and inaccurate,

• They are less efficient for systems with continuously changing data,
• The techniques and models described in literature are often different from those actually used in

practice [75],
• Optimal solutions are often computationally complex [75].

3.3.3 Decision Theory 

      Decision theory is the study of preferences, uncertainties, and other issues related to making choices for 
obtaining the best outcome of a situation. Dieter and Schmidt [76] described several steps for making 
decisions. The steps start with determining and prioritizing objectives, and end with making and evaluating 
the future impact of the decisions. The authors also describe three situations that make decision making 
difficult. These are (i) decision under uncertainty—each state of nature has an assigned probability of 
occurrence, (ii) decision under risk—each action can result in two or more outcomes, but the probabilities of 
occurrences unknown, and (iii) decision under conflict—where decisions to improve any performance 
objective results in a deterioration of another. 
      A first step in making a decision is to precisely describe the objective(s). The potential presence of more 
than one objective has led to the development of multi-criteria decision-making methods. Multiple criteria 
decision making (MCDM) refers to making decisions in the presence of multiple, often conflicting, criteria. 
Triantaphyllou [77] determined that there are many ways to classify MCDM problems and that one of them 
is by the type of data they use. Data can be deterministic, stochastic, or fuzzy. However, the methods for 
solving MCDM problems are largely of two types, and they depend on the problem setting: one type utilizes 
a finite number of alternative solutions, while the other utilizes an infinite number of solutions.  
      During manufacturing system design or operation, the characteristics, parameters, or attributes upon 
which a decision has to be made can take any value within a given range. Therefore, the potential alternative 
solutions can be infinite. The problem is then referred to as a multiple objective optimization problem. 
Selection of a solution can depend on the preferences of the stakeholders. Triantaphyllou [77] reviewed a 
number of MCDM methods used. They include the weighted sum method (WSM), weighted product method 
(WPM), and analytic hierarchy process (AHP), elimination and choice translating reality (ELECTRE), and 
technique for order preference by similarity (TOPSIS). Another common approach is to rank the alternatives 
from the best to the worst, based on the stakeholder’s preference precedence. The Analytical Hierarchy 
Process (AHP), developed by Saaty [78, 79] is one of the most commonly used ranking methods in 
industries. It can handle both qualitative and quantitative attributes.  
      SMS with multiple objectives related to several indicators would benefit from multi-criteria decision 
making methods. An example of MCDM in manufacturing is the selection of a process plan and machine 
settings for manufacturing a machined product. Performance indicators are often conflicting such that 
improving one (e.g., energy consumption) diminishes the performance of another (e.g., cutting tool life). 
Given that, in a typical job shop, there are alternative resources that can generate the same feature on a part, 
specifying the best set of resources (i.e., the optimal selection of process plan) is the main objective problem. 
The resources and corresponding processes can be specified in an operation method matrix. Before 
determining the process plan that has the optimal impact on environmental sustainability and productivity, a 
range of process plan parameters (process settings) has to be assigned. MCDM through multi-objective 
optimization can address this problem. 

3.3.4 Computer Simulation 

      Simulation provides the ability to model, analyze, and iteratively test manufacturing systems in a virtual 
environment to optimize plans before implementation, after which, failures become costlier. The main 
methods for simulation are system dynamics, discrete event simulation, virtual reality modeling, agent-based 
simulation, and Monte Carlo simulation. A simulation model can incorporate production schedules, 
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priorities, equipment capabilities, layout, costs, and other factors. Different simulation models can be built to 
analyze a system depending on the stage in the system life cycle. Simulation models built for manufacturing 
system concept development and design traditionally differ from models for operational decision-making. 
Here we examine these models in turn; however, in SMS these distinctions may begin to blur as more real-
time data becomes available. 
      An early application area for computer simulation in manufacturing decision-making was the general 
domain of production system design. The results of running simulation models are useful to plan for long-
term demand and demand variations to determine plant capacity requirements, and inventory levels. The 
main goal identified by Košturiak et al. [80] is that in a production system design, the planned and actual 
requirements and resources are correlated as much as possible. To facilitate this undertaking, Chomiakow 
[81] used system dynamics to develop a generic pattern for modeling manufacturing plants that includes
factors such as production capacity and inventory, demand and sales, costs, and sales price. The generic
pattern can be adapted to different systems and operating environments.
      The design and development of a manufacturing system is preceded by the discovery of general 
production requirements through the use of system dynamics models. The output of these models can form 
the input to discrete-event simulation models for decision making regarding process design, resources 
selection, and layout. Negahban and Smith [82] carried out a survey which showed that the major concerns 
investigated by discrete-event simulation during systems design are production rates, general system layout, 
material handling, cell systems, and automation equipment. At the process level, virtual reality modeling 
facilitates workstation design and human task performance analysis.  
      Simulation is often criticized for not directly providing optimal solutions. Nonetheless, it is one of the 
most widely applied methods for assuring manufacturing performance [83, 84]. Simulation enables data input 
at fine levels of detail and limitless configurations, sometimes referred to as “what if” scenarios, to be 
considered. Simulation can be used to generate and fill gaps in missing data so that a manufacturing system 
can be analyzed by other methods. It can provide system operation visualization capabilities to allow better 
understanding of component interactions and performance. Simulation applications are projected to have 
wider applications in SMS. For example, Shao et al. [85] demonstrated how simulation can be used to 
generate data to evaluate manufacturing data analytics applications. For this approach to be effective in real 
application, however, data-generating models require improved verification and validation methods. Other 
potential applications include use of simulation in the loop for continuous SMS performance improvement 
and for filling gaps in system-collected data. 
      Despite great potential for SMS, in their report on role of simulation for future manufacturing, McLean 
and Leong [86] observed major challenges for wide-spread application of this technology. These are (i) cost, 
which is mainly driven by requirement for modeling expertise and cost of software acquisition, and (ii) data 
interface problems, which are due to limited interoperability between manufacturing applications and 
simulation tools. Other problems are the burden of having to produce each new simulation from scratch, the 
need for a diverse set of skills, verification and validation of models, data availability, and interpretations of 
simulation outputs. In addition, simulation models may need high levels of fidelity to be of use in SMS.  
      Since that publication [86], there have been efforts to address some of the above challenges, although the 
solutions are still limited in scope. For example, simulation tools are providing more visualization 
capabilities, which allow the user to manipulate objects and optimize a design in a virtual environment. Such 
tools enable the creation of a virtual enterprise that can be operated side-by-side with the real system to 
optimize operation in real time. Secondly, simulation tools are becoming more readily available and easier to 
learn. Regarding integration of tools, many simulation applications are still not easy or possible to integrate if 
obtained from different vendors. However, efforts have been initiated for integration through developing 
standards for neutral data representations. Examples are the Core Manufacturing Simulation Data (CMSD) 
and the OAGIS standards.  
      The CMSD standard was developed so that data can be shared between simulations and manufacturing 
applications [87]. CMSD can facilitate exchanging data across different simulation models in a supply chain 
or between departments. A limitation is that it does not support integrating simulations along a vertical scale, 
i.e., across hierarchical levels. Another standard for data interoperability is the OAGIS [88] from the Open
Applications Group. OAGIS approaches the integration problem by establishing integration scenarios for a
set of applications including enterprise resource planning, production scheduling, manufacturing execution
system, and capacity analysis. The main emphasis of the OAGIS standard is at the enterprise level. There is

http://dx.doi.org/10.6028/jres.121.013
http://dx.doi.org/10.6028/jres.121.013


Volume 121 (2016) http://dx.doi.org/10.6028/jres.121.013  

Journal of Research of the National Institute of Standards and Technology 

298 http://dx.doi.org/10.6028/jres.121.013  

also the ISA-95 standard, which defines interfaces between enterprise activities and shop floor activities [89]. 
This standard is oriented primarily towards the operations level. There remain gaps in these standards for 
modeling the exchange of data between and amongst different manufacturing applications, models, and 
simulation tools.  

3.4 Emerging Methods for SMS Performance Analysis 

      Systems engineering is a discipline expected to play a significant role in SMS. Systems engineering uses 
requirements analysis to develop functional and physical definitions as a basis for systems and product 
designs [4]. OMG standardized SysML as a language for representing system designs for more widespread 
deployment of system engineering by creating a market for vendor support of SysML-based tools [90]. 
SysML is a diagramming method based on the Unified Modeling Language (UML) and is specifically 
tailored to the needs of system representation. SysML supports the coupling of system requirements with the 
system design. A large advantage in this approach is that requirements for a system can be managed along 
with the system. Changes to either can be automatically processed to identify the implications for the other. 
SysML also facilitates system deployment in automating the development of tests of an implemented system 
based on the planned requirements. Fundamentally, SysML supports a style of design known as Model-based 
System Engineering where the model of a system becomes the master of the system as opposed to a more 
traditional document-centric approach [91]. 
      As already observed, manufacturing system operations need decision making to achieve and maintain 
desired performance. Such decisions must be made using different types of models and large amounts of 
dynamically collected data. These models, including operations research, data analytics, and machine 
learning, need unification so that the user does not have to generate inputs multiple times using different data 
abstractions. Decision Guidance Management System (DGMS) is an example of a platform that provides 
such unification. DGMS is a productivity platform for fast development of applications that require closed-
loop data acquisition, learning, prediction, and decision optimization [92]. Brodsky and other researchers at 
George Mason University conceived DGMS to support closed-loop data acquisition learning, prediction, and 
decision optimization by using a decision-guidance database and a productivity tools’ platform for fast 
development of decision-guidance databases. Decision guidance management systems (DGMS) support 
what-if analysis, monitoring and control, statistical learning, and decision optimization using the Decision 
Guidance Query Language. Application of DGMS to SMS is still in the research stage but its potential has 
been demonstrated for decision making to minimize energy consumption in machining operations [93]. 

3.5 Performance Improvement Methods 

      Performance improvement involves analyzing the operations of an organization and setting up 
approaches to improve performance. A widely used performance improvement method is Plan-Do-Check-
Act (PDCA) [94]. PDCA is a four-step cycle for affecting positive change and has been applied in various 
areas of performance improvement [95]. Performance improvement methods such as Lean manufacturing, 
Six Sigma, and Total Quality Management that are discussed later in this section were conceived and are 
implemented on the basis of the PDCA cycle. The PDCA cycle emphasizes that even after improvements 
have been identified and implemented, further improvements are sought. PDCA is now the foundation of all 
ISO management standards [96]. The PDCA approach is to plan, implement, check for improvements, and 
act by revising plans to achieve better results, in a continuous cycle. PDCA can be used at any stage of the 
SMS life cycle and can be integrated with other methods. In the following section, we review derivatives of 
the PDCA cycle in manufacturing and provide an introduction to real-time performance improvement 
approaches.  

3.5.1 Derivatives of the PDCA Cycle 

      Deming [97] introduced the Plan-Do-Study-Act (PDSA) cycle, which is a modification of the PDCA. In 
PDSA “study” replaces “check.” PDSA also involves asking questions such as “what did we learn?” and 
“what went wrong?” It is considered to be more effective than PDCA. Langley, Nolan, and Nolan [98] 
modified the PDSA cycle by appending three activities and produced a “model for improvement.” The 
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activities added are: defining an acceptable level of performance, feeding back information to learn whether 
the change is an improvement, and specifying the changes necessary to result in improved performance. 
Another derivative is the Define-Measure-Analyze-Design-Verify (DMADV), which is sometimes called 
Design for Six Sigma (DFSS). DFSS is useful for designing and testing [99]. There is also the Design-
Measure-Analyze-Improve-Control (DMAIC) [100], which stresses means for identifying root cause of 
problems and developing solutions. The solutions to the problems can be generic or specific to the given 
problem. Although many of these methods were developed for quality improvement, they equally apply to 
other performance objectives. They are also often used hand-in-hand with lean techniques for eliminating 
waste in manufacturing. 

3.5.2 Lean Manufacturing, Six Sigma, and Total Quality Management 

      Lean manufacturing, Six Sigma, and Total Quality Management are among the common performance 
improvement methods used in manufacturing. The following paragraphs overview these methods. 
      Lean manufacturing is a systematic process for eliminating waste within manufacturing processes [101]. 
Waste is any activity that does not add value to the final product. Lean manufacturing emerged from the 
Toyota Production System (TPS), which aims to minimize work-in-progress inventories in the manufacturing 
process. TPS uses Just-in-Time tools. The goal of lean manufacturing is broader than TPS in that it focuses 
on the systematic elimination of all forms of waste from the operations [102]. One major method to 
implement lean manufacturing is to use the PDCA cycle where waste reduction is performed on a 
continuous, iterative basis. Tools have been developed to identify, measure, and eliminate waste in 
manufacturing systems.  
      Six-Sigma is a paradigm that emphasizes the idea of getting to the root cause of quality problems to 
improve the process [103]. It achieves this by a process of continuous improvements such as the PDCA cycle 
[104]. Six-Sigma was originally developed by Motorola during the 1980s. Six Sigma techniques and tools 
aim to have only 3.4 defective parts per million cases. Improving a process inevitably incurs a cost to 
implement and the decision for improvement of each process in the manufacturing system depends on the 
strategic importance of the process as well as the benefits expected. 
      Total Quality Management (TQM) focuses on achieving objectives of providing products and services 
with a level of quality that the customer wants [105]. The approach to achieving these objectives is employee 
involvement and developing an integrated systematic approach for continuous improvement. TQM evolved 
out of the work done by Deming to improve quality of Japanese-manufactured products. When American 
manufacturers started losing market share to Japanese products, they decided to employ TQM techniques in 
the 1980s. Ford Motor Company, under Chief Executive Officer Donald Petersen, was one of the first major 
manufacturers to implement TQM in the U.S. Almost instantly upon TQM implementation, Ford’s market 
share rebounded and for two consecutive years; 1986 and 1987 was more profitable than General Motors 
[106, 107]. There are twelve points to implement TQM: committed leadership, adoption and communication 
of TQM, closer customer relationships, closer supplier relationships, benchmarking, increased training, open 
organization, employee empowerment, zero-defects mentality, flexible manufacturing, process improvement, 
and measurement. 

3.5.3 Using Real-time Data Analytics for Continuous Performance Improvement 

      Continuous improvement refers to ongoing efforts to improve products or processes. Improvement can 
occur in a “breakthrough” event all at one time or may manifest itself in the form of “incremental 
innovation” over time [108]. Incremental innovation is the action of performing a series of small 
improvements in the product or production process. Incremental innovation implies real changes in the 
product design as required by consumers or changes in the manufacturing process due to, for example, 
advances in technology [109]. The concept of continuous improvement has existed in manufacturing since 
the beginning of the industrial revolution. The techniques that have been discussed in this section (Sec. 3) are 
part of the activities that generally drive an organization towards “continuous improvement.” An example 
framework for continuous performance improvement of manufacturing systems was proposed by Hernandez-
Matias et al. [110]. This framework increases the capability of modeling tools to model systems by creating a 
structured database with different levels of detail to obtain KPIs. The following paragraphs discuss how data 
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from a manufacturing process can be harnessed for real-time continuous improvement of manufacturing 
systems. 
      Many engineered systems are designed with clear objectives and are usually operated under controlled 
conditions; therefore, performance improvement activities based on mechanistic models and first principles 
can be reliably applied [111]. During operation, however, circumstances emerge that were not factored into 
the design. In such cases, data becomes an indispensable asset for improvement. The large amount of 
constantly streaming data seen today has created a need to increase pace in the advancement of data analytics 
methods. Many new approaches are under development to use state-of-the-art real-time data-processing 
technologies recently available from the information technology community [112]. Among these are the real-
time analytical systems being looked at to augment performance improvement activities of enterprises. 
Driven by the motivation to increase adaptability and responsiveness of SMS, new capabilities are being 
developed for analytics’ solutions to process large amounts of data to develop actionable intelligence and 
may even be introduced into automated controls.  
      A McKinsey report defined four types of data analytics important to manufacturing: data visualization, 
correlation analysis, significance testing, and neural networks [113]. The report describes the application of 
these techniques to identify patterns to prioritize data collection and analysis, identify core determinants of 
performance deviations, test the significance of variables in root cause analysis of problems, and model 
complex processes for optimization. These types of analysis can be applied in a manufacturing environment 
to improve performance at all levels of the business from machine performance issues through higher-level 
enterprise optimizations. For example, at the machine level, Park et al. [114] described a data-driven method 
for energy prediction for a milling machine that would help make design decisions based on energy demands. 
At the enterprise level, Song et al. [115] used data analytics to identify system bottlenecks and improve the 
design of system flow.  
      To realize the potential of big data for performance improvement of an organization, understanding the 
relationship between proper analytical techniques and disparate data sources to extract usable insight is 
currently under investigation, but has yet to see widespread application. Creating fully deployable analytics 
solutions is a complex process requiring skills from many disparate areas. To successfully build a real-time 
analytical solution for a manufacturing organization requires rethinking and reengineering operational 
processes and data collection, storage, and analysis [116]. Advanced tools, software, and systems are 
required to capture, store, manage and analyze data sets, all in a timeframe that preserves the intrinsic value 
of data [117]. Kumaraguru et al. [118] identified the need for integrating such data analytical tools into a 
continuous performance management cycle for SMS. In view of this, Zhao et al. [119] noted that focused 
research efforts are needed to link the foundational elements of SMS with operational and enabling elements 
of such systems. 
      Continuous performance improvement methods frequently employ data-driven prediction models. 
Bridging the gap between predicted performance and actual performance will need diagnostic and problem-
resolution capabilities. Continuous monitoring of indicators and metrics at different strategic, tactical, and 
operational levels in real-time will enable drilling-down to root causes of performance problems. Further, in 
order to determine the best course of action based on metrics, models that describe relationships between 
indicators, metrics and data at different levels of the decision hierarchy is required. This is an area of research 
as integrated system modeling approaches such as virtual factory or the digital twin that are being advanced. 
The next section provides a sample of software tools that are currently available for various purposes in 
manufacturing analysis and decision making. 
      As we close discussion on data analytics, it is pertinent to mention a new technique: process mining. 
Process mining is similar to data analytics and has potential to enhance performance improvement efforts. 
Process mining focuses on analyzing information from event logs produced by manufacturing and business 
processes to plan, analyze, and optimize operations in a dynamic environment [120, 121]. Process mining has 
already proved feasible and effective in identifying areas in processes that need improvement. Yahya [122] 
provides existing industrial works on process analysis in manufacturing using process mining. 

3.6 Software Tools 

      Many commercial platforms, tools, and performance management systems have been developed for 
specific evaluation, analysis, and improvement of manufacturing systems. Table 3 provides a sample of 
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methods and software categories. Many vendors also provide solutions with abilities to integrate data from 
different organizational departments and subsystems. While Table 3 categorizes software according to 
methods of application discussed in this paper, they are often marketed for specific functions such as bill-of-
materials processing, planning and scheduling, order promising, demand forecasting, and inventory 
management. MESA has compiled a list of software vendors from among its members [123]. To analyze 
tools available from vendors, various dimensions for classifications may be employed. One approach is to 
identify tools needed in each phase of a manufacturing system life cycle that includes conceptual design, 
detailed design, testing, improvement, and operation. Another dimension could be tools required for various 
hierarchies of business processes from enterprise decision-making to shop floor activities.  
      Alternatively, software tools can be analyzed after classifying their applications with respect to 
performance objectives of SMS. An example of a performance objective is sustainability. Sustainability 
relies heavily on life cycle assessment, which is a technique to assess the environmental and potential 
impacts of a product, process, or service. Tools have been developed over the years for analyzing operations 
to achieve some aspect related to the other high-level objectives of smart manufacturing. 

Table 3. Example software tools from each category. 

Category  Method Purpose  
Performance 
measurement 

Learning, statistical, various 
analyses 

Implementing a nine-step metric assessment, action planning, 
and performance collaboration  

Performance analysis Statistical method Addressing operational readiness, equipment monitoring, 
maintenance, and system effectiveness and improvement 

Machine learning Inductive inference 
Operations research  Optimization 
Simulation Manufacturing process Simulation  
Data analytics  Predictive analytics 
Process mining Extracting knowledge from event logs 

Performance 
improvement  

Lean Six Sigma Lean process improvement  
Total quality management Automating processes, integrating business systems, and 

fostering collaboration and continuous improvement 

4. Applying Performance Management Methods to SMS

This section discusses development of an SMS performance-assurance system based on the methods
discussed. It first reviews current manufacturing performance objectives at a higher level as discussed in the 
introductory chapter. These are: agility, which is driven by the need for rapid adaptability of manufacturing 
processes in response to customer needs and internal impediments; sustainability, which is driven by an 
increased global awareness of the impact of human activity on the natural environment; and, productivity, 
which is a business driver for maximizing returns on investments. We then discuss sources of and challenges 
to overcoming performance exceptions and data collection. This section ends with proposed general steps for 
performance assurance methodology. 

4.1 Targeted Performance Objective for Smart Manufacturing – Agility 

      A central theme for performance of SMS is agility because of the need to respond to unpredictable events 
that are a feature of today’s manufacturing environment. The high-level focus to achieve agility is on 
customer satisfaction, learning, and willingness to change. Agility provides an organization with strategic 
ability to adjust operations as requirements change and able to reorganize after major stress or shock. Jung et 
al. [124] illustrates an understanding of agility by tracking the percentage of orders that are perfectly fulfilled 
where there is a disturbance in operations that lead to inferior system performance. A resilient organization 
minimizes performance deterioration in any measure during such conditions. Agility is the key for achieving 
resiliency. To make manufacturing systems more agile, solutions such as modular organizations, flexible-
manufacturing systems, lean manufacturing, holonic manufacturing systems, and virtual corporations have 
been proposed and deployed.  
      Literature review shows that many researchers have investigated agile performance of manufacturing 
systems over the years [125, 126, 127, 128, 129]. Each research analyzed particular attributes of agility, 
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mainly at two organizational levels: enterprise and manufacturing operations. In a major review of 
performance measurements, Hon [19] perceived agility from only the perspective of flexibility and 
responsiveness but did not define agility measures. Sherehiy et al. [128] carried it further and added 
responsiveness, culture of change, speed, integration and low complexity, high quality and customized 
products, and mobilization of core competencies.  
      The SCOR model describes business activities associated with satisfying a customer’s demand and 
identifies performance attributes for reliability, responsiveness, agility, costs, and asset management 
efficiency [30]. SCOR defines agility as the “ability to respond to market place changes to gain or maintain 
competitive advantage.” Although this perspective has traditionally viewed agility as a capability to 
effectively respond to events that are external to the organization, a recent trend has been to include internal 
events as well. SCOR defines non-computable agility metrics for flexibility and adaptability. While the 
model specifies computable metrics for the other performance attributes, i.e., reliability, responsiveness, 
costs, and asset management, it does not do the same for flexibility and adaptability, even though these 
attributes would enable defining the necessary specific measurements for agility. However, the SCOR model 
identifies business processes for which agility measures can be specified. 
      To design an agile manufacturing system, it is necessary to focus on essential characteristics that affect 
agility, e.g., changeover time, product variety, and versatility. Modeling methods and tools (e.g., simulation) 
can be used to select and investigate   agility performance of a particular configuration of the manufacturing 
system when subjected to disturbances and disruptions. A trade-off can then be made between the cost of the 
required system components and the desired system performance. Ramasesh et al. [126] applied this 
simulation approach and developed a modeling methodology for appraising a system’s performance and 
justifying decisions by exploring the financial value of investing in technologies that facilitate defined agility 
characteristics.  

4.2 Targeted Performance Objective for Smart Manufacturing – Sustainability 

      There are various ways and levels of assessing the sustainability of manufacturing systems, processes, 
and products. One of the most commonly used methods is Life Cycle Assessment (LCA); however, the 
approach is mainly product-centric in that the assessment treats the manufacturing stage of a product as a 
single transformation event. As such, the majority of research efforts for manufacturing sustainability have 
not particularly focused on process assessment. The sustainability of operations of a manufacturer can be 
improved directly through operational process change, if the state of sustainability performance could be 
assessed. Process level assessment requires methods and tools for modeling the operation of the production 
process to analyze the inputs, transformation process, outputs, and its environmental impacts such as energy 
consumption [130, 131]. Such methods use manufacturing data associated with material and manufacturing 
process to quantify the inputs, outputs, and by-products. This approach enables aggregation of impacts and 
comparison of alternative processes. In this section, we overview tools, standards, and life cycle data. We 
also discuss how sustainable manufacturing practices can be integrated into continuous improvement efforts. 

4.2.1 Standards for Sustainable Manufacturing 

      Over the last few decades, many standards have been developed so that manufacturing companies can 
steer their operations towards sustainable practices. Candidate standards for process assessment include ISO 
20140-1:2013, Automation Systems and Integration, which provides a framework for assessment of 
environmental influence of manufacturing processes from a work unit to the entire factory [132]. ISO 20140-
1:2013 is for automation systems and integration and defines the requirements for the environmental-
influence data to be captured from individual manufacturing equipment. 
      Other standards include BS 8905, which provides a framework for the concepts, techniques, tools, and 
methodologies that can be used to support decisions regarding the sustainable use of materials including use 
in the manufacturing process, i.e., conversion of materials into products [133]. There are also standards for 
assessing particular products such as electronics [134, 135], plastics [136], or office equipment [137]. These 
product standards are used to analyze the environmental impact of a product during its entire life cycle based 
on given impact categories.  

http://dx.doi.org/10.6028/jres.121.013
http://dx.doi.org/10.6028/jres.121.013


Volume 121 (2016) http://dx.doi.org/10.6028/jres.121.013  

Journal of Research of the National Institute of Standards and Technology 

303 http://dx.doi.org/10.6028/jres.121.013  

      Although best-known for sustainability assessment, LCA standards in the ISO 14000 series are not 
specifically suitable for manufacturing processes as they were developed for the entire product life cycle. To 
focus on sustainability in manufacturing, standards are needed that assess material consumption, energy 
usage, and waste in associated manufacturing processes and operations. ASTM International recently formed 
a subcommittee on Sustainable Manufacturing to oversee development of standards to complement already-
existing standards such as ISO 20140 [132], ISO 50001 [138], and ULE 880 [139]. Already, the first two 
standards were recently accepted: ASTM E2986-15 [140] and ASTM E3012-16 [141].  ASTM E2986-15 is a 
guide for gate-to-gate evaluation of environmental aspects of sustainability of manufacturing processes. The 
second standard, ASTM E3012-16, is a guide for sustainability characterization of manufacturing processes. 
These two standards will support the calculation of sustainability performance of a specific process and 
thereby provide a basis for assessing and improving sustainability of manufacturing systems. 

4.2.2 Reference Data 

      Reference data is needed to consistently quantify resource consumption and environmental impacts of 
manufacturing processes, products, and services. This data is needed both during design and operation of a 
manufacturing system. An example of this data is life cycle inventory (LCI) data. LCI is the amount of 
resources and ways they are used during manufacture of a product, as well as residual materials generated 
during processing, and scrap at the end of a product’s life. In an effort to avail this data, a consortium, the 
Unit Process Life Cycle Inventory (UPLCI), at Wichita State University is, among others, developing and 
compiling life cycle data from researchers and manufacturers [142, 143]. There is also the Cooperative Effort 
on Process Emission in Manufacturing Project (CO2PE!), a collaborative effort that has developed a 
methodology for availing high-quality LCI data for assessment and in-depth analysis of individual 
manufacturing unit processes [144].  The LCI Data Commons is a US government effort to consolidate and 
provide reference data as well [145]. 

4.2.3 Sustainable Practices and Continuous Improvement 

      Sustainable practices may affect traditional performance since optimum operating parameters of a system 
for both performance objectives may not be the same. Walker [146] proposed the enhancement of 
performance analysis systems to include environmental sustainability. We also note that some of the 
objectives of sustainable manufacturing are the same as those of performance improvement methods. 
Although performance improvement methods such as lean manufacturing, Six Sigma, and TQM do not 
directly address sustainability, these strategies can improve sustainability performance by reducing waste and 
lowering resource consumption [147]. These strategies can purposely be aligned to become part of the 
organization’s sustainable manufacturing strategy [148]. Smart manufacturing planning can include these 
strategies to simultaneously achieve objectives of process efficiency and sustainability without modifications 
to their underlying principles.  

4.3 Targeted Performance Objective for Smart Manufacturing – Productivity 

      Traditionally, productivity is defined as the measure of output compared with a given input [149]. 
Examples of inputs are labor hours, machine hours, and material. Productivity can be measured at different 
levels of the organizational hierarchy from a single machine to the entire organization. Productivity is 
distinguished from commonly used performance objectives such as return-on-investment (ROI), which is a 
cost-based measure often used at the highest level in the organization. Analytical tools such as simulation and 
statistical analysis play a role in analyzing productivity through examination of their output reports. 
Advanced statistics can also analyze historical process data, identify patterns and relationships among 
discrete process steps and inputs, and optimize factors with the greatest effect on yield and productivity 
[113]. With SMS, the shift is to use real-time shop-floor data and to develop advanced analytics to track 
productivity performance and improve operations in real time. 
      With the need for proactive or forward-looking measurements, some researchers believe that new metrics 
are needed for productivity since traditional metrics such as utilization rate are not helpful for isolating 
problem causes and identifying opportunities for improvement [117]. Cesarotti et al. [12] proposed overall 
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equipment effectiveness (OEE) as a quantitative measure of productivity of production equipment in 
industry. OEE has been used to monitor and control production and can be used to enhance availability, 
performance, and quality by using smart technologies. Muchiri et al. [150] reviewed the application of OEE 
as a measure of manufacturing performance.  
      In addition to a new outlook towards productivity measurement for smart manufacturing, different 
strategic objectives and operating situations may require different measures. Herron et al. [151] developed a 
methodology for quantifiable productivity improvement that starts with a productivity needs analysis, to give 
an overview of the current manufacturing situation and identify key productivity measures. Since 
productivity is highly linked with equipment availability, a manufacturing system can be designed for high 
productivity by selecting manufacturing equipment that is easily maintained so as to minimize any possible 
downtime during operations. This would be complemented by making asset status an essential part of the 
company information system. Many productivity factors can be measured only during operation of the 
system through tracking, monitoring, predictive analytics, and control. In this regard, SMS will need a 
framework to define productivity measures relevant to the industry and operating conditions.  
      While discussion of productivity metrics is on-going, a new perspective on assessment of SMS recently 
emerged. Davis et al. [2] point out that performance objectives focusing on productivity (input/output) should 
be replaced by those that target improving customization, flexibility, responsiveness, energy efficiency, and 
overall environmental effectiveness. White [152] presented case studies of actual implementations of new 
measurements, modeling, analysis and control for SMS while Cesarotti et al. [12] proposed additional 
measures including capacity utilization, saturation, quality, and availability. 

4.4 Challenges to Overcoming Operational Exceptions 

      An important decision concerning performance measurement is when to measure. Traditionally, 
performance measurements are conducted periodically to detect performance deviations, as well as 
spontaneously when an event takes place that may potentially lead to performance deterioration. Long- and 
short-term performance goals determine the planned period between consecutive performance measurements, 
whereas measurements triggered by operational exceptions are rarely predictably scheduled [153]. A sample 
of operational exceptions, described as disruptions and disturbances, is shown in Table 4. The consequence 
of disruptions and disturbances is deterioration in performance. Two such events that occur with high 
frequency in manufacturing operations are hereby selected for further discussion: (i) system failures, 
including failure of equipment, tools, sensors, and control systems; and (ii) customer order reprioritizations, 
including rush orders, changes in priorities, changes in part mix, and order cancellations. Approaches to 
reduce the impact of these types of events are discussed in the next two paragraphs. 
      Two strategies to minimize the impact of system failures on performance are periodic performance 
monitoring and preventive maintenance scheduling. Preventive maintenance is typically scheduled based on 
statistical distributions of past data. This preordained scheduling strategy may not be optimal. This traditional 
approach is termed preventive-maintenance forecasting. On the other hand, periodic performance monitoring 
is a maintenance practice based on predictive analytics that relies on monitoring of performance metrics and 
continuous evaluation of operations. In predictive analytics, machine learning techniques are employed and 
system failures are predicted based on patterns of data in routinely monitored performance metrics. By 
identifying performance deterioration patterns in real-time, preventive maintenance can be scheduled only 
when the failure is imminent, consequently cutting down unnecessary preordained scheduled maintenance as 
in the case of forecasting. This strategy may offer a more optimal solution. Determining what to measure so 
as to predict maintenance needs is an active research area and significant progress is being made as a result of 
ubiquitous sensors [154]. 
      Customer order reprioritization is a production planning and control problem. Typically, a master 
production schedule is developed from firm customer orders, demand forecasts, and resources availability. 
The arrival of a new, higher-priority, order or change in an existing order creates a “disturbance” that 
invalidates the existing schedule by requiring production reprioritization. Changes in a schedule often impact 
cycle times and thus invalidate already-promised due dates. In addition, customer orders often arrive with 
unpredictable frequency. Reprioritizing orders and other activities has to rely on information to dynamically 
integrate manufacturing needs through the production system. Appropriate response to changing production 
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requirements and priorities requires multi-level integrated production planning, modeling, and monitoring. 
Research work is needed in this area. 

Table 4. Operating characteristics requiring agile manufacturing systems. 

Internal  External 
Disturbances Labor shortage 

Deterioration in quality output 
Changing labor performance levels 
New equipment installation  
New software installation  
Product quality deterioration 
Changed product routing 
New product introduction 

Rush order  
Order cancellation  
Order change 
Product returns 
Customer order reprioritization  
Raw material unavailability 
Changing regulations 

Disruptions System failure 
Scheduled maintenance 
New production line configuration 
Changed product line 

Natural disasters, e.g., bad weather  
Power or water outages  
Delayed material supply 
Poor or wrong material supply 

4.5 Challenges with Collection and Use of Data for Performance Improvement 

      Kennerley and Neely [155] classified factors affecting the evolution of performance measurement 
systems under process, people, systems, and culture. Further reflecting upon the systems perspective, they 
suggested that the evolution of performance management systems will vitally depend on flexible IT systems 
to effectively and efficiently acquire, collate, sort, analyze, interpret, and disseminate data. Since then, there 
has been an explosion in availability of data for manufacturing enterprises. The major source of data is the 
manufacturing system shop floor using smart devices. 
      There are inherent challenges in making sense of all this data at each level of the DIKW pyramid (Fig. 3).  
At the data level, there are challenges of collecting and using data, sometimes called the 7 Vs of big data—
large volume, high velocity, large variety, uncertain veracity, uncertain validity, volatility (timeliness), and 
value [156]. Structured Query Language [157] is one of the means of storing and retrieving the data. In 
addition to devices, automated data collection needs communication interfaces for obtaining data directly 
from machine controllers or a collection device developed for the machine. The data are communicated using 
a neutral format such as XML.  
      At the information level, challenges exist with regards to associating data with the relevant performance 
question. In addition to collected operational data, there is other data from disparate functional units involved 
in product design, manufacturing planning, enterprise planning, and human-machine interfaces. This includes 
resources data, inventory data, manufacturing process data, life cycle inventory data, and product data. 
External sources such as customer orders and partners in the production network also generate data. This type 
of large-scale data collection and transformation poses data compatibility and interoperability issues. Most 
systems today are not designed to integrate at such a scale. 
      The challenge of providing relevant and compelling views of information for different users exists at the 
knowledge level. The ability to deliver such views pervasively across the organization will provide decision 
guidance. At this level, the challenges lie in the ability to correlate the KPIs to operating parameters and to 
create a plan for making appropriate adjustments to meet performance targets.  

5. Conclusion

This paper has discussed how existing methods and tools can be enhanced by emerging technologies to
measure, analyze, and improve the performance of SMS. Performance measurement frameworks were 
developed for enterprise level assessment. The availability of workstation, machine, and process data, and the 
need to assess performance at these levels, will require that these methods are also adapted to lower 
operational levels. Interoperability and communication will become more crucial if this shop floor data and 
performance analyses are to be used for enterprise level planning.  Also related to communication is cyber 
security in smart manufacturing due to increasing interconnections between products and manufacturing 
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systems. If the information infrastructure is not adequately secured, performance objectives may not be 
achieved. Major concerns include theft of technical information, alteration of data, and deliberate disruption 
of controls. Research efforts are underway to address this problem [158, 159]. Performance analysis methods 
such as computer simulation project system performance according to a defined set of inputs. The availability 
of large streaming data puts additional requirements on the modeling and analysis of systems. Regarding 
performance improvement, it has been discussed that methods such as DMAIC provide a framework for 
selecting improved system components and configurations during systems design as defined by performance 
objectives. Below we describe activities for applying the principles we have discussed and conclude with 
directions for further research. 

5.1 Activities for Performance Assurance for SMS 

      The activities supporting performance assurance SMS can be broken down as follows: 
• Set strategic goals,
• Establish key performance indicators (KPIs),
• Define SMART (specific, measurable, actionable, realistic, time-based) metrics that relate to the

goals,
• Establish and set performance benchmarks,
• Test the system over a performance envelope,
• Measure performance against benchmarks,
• Trace the source(s) or causes(s) of problems,
• Take actions that will result in desired performance.

Setting strategic goals: These are the long-term achievement targets of an organization, and clearly
articulating them is a crucial responsibility of management. These goals, in turn, drive definition of the 
indicators and measures that track performance of the manufacturing system. The complex challenges of 
SMS require an organization to set high-level goals and targets that balance system responsiveness and 
adaptability with productivity and sustainability needs. 
      Establishing KPIs: This is the process of specifying KPIs that should be emphasized. KPIs that define 
SMS performance are mainly related to responsiveness to changes of demand, environmental sustainability, 
and high return on investments. Other KPIs can be defined depending on such factors as type of industry, 
geography, production costs, and regulations. 
      Choosing SMART metrics and perform measurements: This activity specifies computable metrics that 
track performance according to the KPIs. During system development, data used in analysis is based on 
original equipment manufacturer specifications, as well as projections of system operation and external 
environments. During system operation, sensors, radio-frequency identification (RFID) of component parts, 
meters, and other instruments collect data in real time. Choosing appropriate measurements will be 
instrumental to appropriate ICT hardware and software investments. 
      Establishing performance benchmarks: Performance benchmarks are the desired performance levels of 
indicators and are often influenced by external drivers. There are different ways of setting performance 
benchmarks such as considering the best organizations or best-in-class performance. Other means of setting 
benchmarks include surveys, interviews, focus group meetings, and site visits. They may also be based on a 
standard or may be obtained from publications. 
      Testing the system: Testing includes forecasting the operation of a system to determine if required 
performance can be achieved. The process is often carried out in a virtual environment. A performance 
envelope is defined by setting a minimum and maximum range of desired performance according to the KPIs 
and metrics. Because of multiple KPIs, conflicts may occur, for instance between cost and quality. Typically, 
each KPI has bounds of acceptability. A measure of the trade-off between cost and quality can be 
productivity. Smart manufacturing also requires a performance envelope related to sustainability. Thus, if 
productivity and sustainability set the boundaries for performance, agility, as defined by ability to respond to 
disruptions and disturbances, has to be maintained within that performance envelope.   
      Measuring performance: Performance measurement is a report on the state of the KPIs. Measurement 
frameworks have been discussed in previous sections. Performance evaluation compares obtained measures 
with benchmarks so as to look for deviations. Performance measurements require data: some is collected 
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other data is stored in databases. Through improvements in computing technology, data stored across many 
applications and databases, each with a specific functional role, can now be better accessed from multiple 
network-linked locations. For example, material data can be accessed by more than one functional unit of the 
enterprise including procurement, product development, testing, manufacturing, and marketing.  
      Tracing the source of performance problems: This activity is carried out after noticing measurements that 
are inferior to benchmarks (or set targets) in one or more KPIs. The manufacturing processes and 
measurements relevant to the KPIs are investigated to determine the source of poor performance. Data 
analytics methods and techniques such as Pareto Analysis, Cause & Effect Analysis, and Failure Mode Effect 
Analysis can be applied to distinguish multiple factors contributing to performance problems in a complex 
system. 
      Taking action to produce required performance: The actions needed to produce the desired performance 
are obtained from decision models based on performance analysis and improvement methods reviewed. 
Multi-objective optimization models are examples of such models. The models can be constructed and 
employed for decision making based on current state of the system, data analysis, and required future 
performance. The type of models and the input data depends on the type of system, performance indicator, 
and operating environment, among other factors. 

5.2 Future Research: Addressing Requirements for Performance Assurance for SMS 

      While automated equipment such as sensors, embedded systems, and networks collect and communicate 
performance data, they also introduce new forms of possible failure and increase the requirements for 
modeling and analyses. We summarize, at a high level, the challenges and needed research directions for 
measurement, analysis, and improvement of SMS.  
      Performance measurement: Performance-measurement frameworks were originally developed for use at 
the enterprise level of the organization, using data collected only periodically. Measurement and assessment 
are now needed, however, continuously and in real time, requirements that are further complicated by the 
challenges of operation in a big-data environment. Realization of performance measurement for SMS 
requires research in the following areas: 

• Identifying correct data elements: Accurate performance assessment of SMS cannot be
accomplished without proper data sourcing, collection, and supply. Data analytics is a viable
method to associate data type to required performance, but research is needed to improve this
method to continuously update an analyzed data set, adding new elements while removing no-
longer-needed ones,

• Assessing in real time: The capability to consistently provide current-status models throughout an
SMS does not yet exist. Research is needed, for example, to partition streaming data into data blocks
that are continuously updated. Other needs include improved performance measurements that use
efficient computational algorithms to perform assessments, and highly interoperable interfaces to
assure distribution of those assessments.

      Performance analysis: Performance analysis requires developing a mathematical, logical, abstract, or 
other type of model of a system. The models for SMS need high levels of abstraction, especially at the 
process level of the hierarchy. The larger number of indicators and metrics for SMS increase requirements 
for analysis that is likely to be more complex, costly, and time-consuming. To enable performance analysis 
for SMS, research work is needed in the following areas: 

• Integrated analysis: Methods such as simulation, data analytics, and optimization can be combined
to obtain better analysis results. To this end, research work is needed to develop better integration
interfaces between and among analysis models and data sources such as the shop floor and
databases,

• Dynamic optimization: This is the process of determining the maximum or minimum of an
objective function over time. Research work will be needed to effectively combine real-time
assessment methods with optimization.

      Performance improvement: The activities for performance measurement and analysis are geared to 
achieving performance improvement. Performance improvement requires feedback from performance 
assessment so as to decide on an appropriate course of action. Major challenges are timely and accurate 
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communication of performance information and the decision action that needs to be made. Therefore, 
research in the following areas is needed: 

• Enhancement of performance improvement frameworks: Performance improvement
frameworks such as DMADV or DMAIC rely on planning, assessment, and analysis. Research work
should be directed to enhancing these frameworks to provide the timely information retrieval and
sharing required by SMS,

• Adaption of approaches for performance improvement in other domains: Common weakness
enumeration has been developed for assurance of computer software. This method identifies
common known weaknesses in software including a discussion of solutions. If high-fidelity models
can be developed for SMS, research can investigate, classify, and create a database of common
failures in performance of SMS. While new situations emerge that were not factored into system
design, those that are encountered as the system is operated can be regularly included in the
database. This can help direct system testing efforts during development and determine proper
response after performance failure.

      Finally, standards are fundamental to enabling the flow of information and control the manufacturing 
enterprise. Lu et al. [160, 161] first, analyzed standards requirements and then reviewed organizations 
working to develop and align standards to enable smart manufacturing systems. Kibira et al. [162] analyzed 
standards for simulation-based production planning and identified standards needs into two major application 
categories: data collection and interoperability. Lastly, Choi et al. [163] analyzed current technologies and 
associated standards for assuring performance of smart manufacturing systems. These on-going works will 
result in the creation of standards-based manufacturing ecosystems that are able to leverage emerging 
technologies to foster incremental, pervasive, reliable, and resilient improvements in manufacturing 
performance. 
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