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1.  Introduction 
 
          Neutron Resonance Spin-Echo (NRSE) [1,2] is an alternative to the conventional Neutron Spin-Echo 
(NSE) technique [3], whereby the long solenoids of the latter are replaced by r.f. spin-flippers separated by 
regions in which there is ideally no magnetic field. For this reason, NRSE is occasionally referred to as 
“Zero-Field Spin-Echo”. Neutron Spin-Echo spectrometers have the distinguishing characteristic of being 
able to resolve neutron scattering energy exchanges that are much smaller than the energy bandwidth of the 
incident neutron beam. This contrasts with conventional time-of-flight spectrometers, where the minimum 
time uncertainty is limited by the incident pulse duration and the associated velocity spread of the incident 
beam. Some of the important issues for high-resolution NRSE spectrometer design are explored in the 
following sections. 
 
 
2.  Classical Description of Resonance Spin-Echo 
 
2.1  Classical Principle of Operation 
 
      In a common NRSE configuration, four short resonant r.f. flipper coils replace the static field 
boundaries of the classical NSE spectrometer and the intervening space has zero magnetic field. The r.f. 
fields in the first and second coils must be phased-locked and in the third and fourth coils. The phase of the 
r.f. field at the times of neutron passage through the coils acts effectively as a neutron clock (as opposed to 
the number of Larmor precessions performed in the solenoids of a conventional NSE instrument). In the 
following illustration, we adopt the coordinate system used by Gähler and Golub in Ref. [2], which differs 
from the one used in Ref. [1]. 
      With reference to Fig. 1 (a), consider an incident monochromatic beam of neutrons of velocity vn, 
traveling along the y-axis, initially polarized parallel to the x-axis. In the flipper coil, a static magnetic field 
of magnitude B0 is applied in the z direction and an oscillating r.f. field is applied in a plane perpendicular 
to B0 (i.e., in the xy plane). We use the notation lπ to define the length (in the beam direction) of the region 
of intersection of the static field region (length lB0) and the r.f. field region (length lrf), i.e., 
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Fig. 1. (a) Coordinate system showing initial neutron polarization direction. (b) Larmor precession (with angular velocity ω0) of the 
neutron magnetic moment, µn, in the xy plane due to a static magnetic field B0 applied along the z-axis; (c) Larmor precession (at 
angular velocity ωp) of µn with respect to the resonant component of the r.f. field, Brf, as viewed in a frame which is rotating with Brf. 
At resonance ωrf = ω0. 
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0

,B rfl l lπ = ∩      (1) 
 
since lB0 and lrf cannot be identical. Therefore, if the static field region completely encloses the r.f. region, 
lπ = lrf and if the r.f. region completely encloses the static field region lπ = lB0. Note that lπ is distinct from 
the length of the coil, which is a useful parameter in some instances and is defined by 
 
     

0
.coil B rfl l l= ∪      (2) 

 
If one field region completely encloses the other, Eq. (2) may be restated as 
 
              ( )0

max , .coil B rfl l l=      (3) 

 
In r.f. flipper coils, the static field usually completely encloses the r.f. field region. Therefore, when 
discussing flipper coils we assume, by default, that lπ ≡ lrf and lcoil ≡ lB0, as indicated in Fig. 1, and that the 
r.f. field is always in a region in which there is a perpendicular static field, with the possibility of a short 
static-only field region either side of the r.f. coil. The following provides a classical illustration of the 
NRSE principle. It agrees with the quantum mechanical result, provided that the following approximations 
are valid: 

1. |B0| >> |Brf | (see Refs. [4,5]). 
2. The interacting component of the oscillating field is considered as a purely rotating field. 
3. The Zeeman splitting due to B0 (2µnB0) << the kinetic energy of the neutron, mnv2/2. 

Therefore, decomposing the oscillating field into two counter-rotating components, as shown in Fig. 2, the 
resonant component is the one that rotates in the same direction as the Larmor precession induced by the 
static field, B0; it is described by 
 
    ( )ˆ ˆcos sin ,rf rf rf rfB B i t j tω ω= +



    (4) 

 
where the sign of ωrf is chosen appropriately. The present approximation ignores the much weaker 
interaction of the counter-rotating (non-resonant) component of the r.f. field. We consider first the neutron 
spin with respect to the static field B0. If B0 >> Brf, the neutron spin may be assumed to precess in the xy 
plane with Larmor angular frequency 
 
 

 
 
Fig. 2. A sinusoidal oscillating field of angular frequency ωrf and amplitude 2Brf may be considered as being composed of two 
counter-rotating components at angular frequency ωrf, each of magnitude Brf. 
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      0 0 ,n Bω γ=      (5) 
 
where γn is the gyromagnetic ratio of the neutron, defined as the ratio of the magnitude of the neutron 
magnetic moment to the magnitude of its angular momentum, where 
 

            8 -1 -12
 = 1.832472 10  rad s Tn

n

µ
γ = ×



    (6) 

 
and µn is the maximum component of the neutron magnetic moment measurable along a single axis. For B0 
measured in Tesla, we have 
 
              [ ]-1 8

0 0radss 1.832472 10 T ,Bω   = ×      (7) 
 
or 
 
         [ ] [ ]0 0MHz 29.1647 T .Bν =     (8) 
 
If the r.f. angular frequency, ωrf, is tuned exactly to the value ω0, one component of the r.f. field rotates 
about the z-axis synchronously with the precessing neutron spin (i.e., is “on resonance” –  Fig. 1 (b)). In 
this case, we can write 
 
          [ ]-1 8

0rad s 1.832472 10 Trf Bω   = ×                on-resonance  (9) 
 
and 
 
    [ ] [ ]0MHz 29.1647 Trf Bν =                      on-resonance.  (10) 
 
Because we are ignoring the effects of the counter-rotating (non-resonant) r.f. component, Fig. 1 (b) shows 
only the resonant component of the r.f. field. 
      In the rest frame of the resonant component of Brf (i.e. the frame rotating in the xy plane at angular 
speed ωrf  = ω0), the neutron spin precesses around the axis defined by the direction of Brf in this frame (Fig. 
1 (c)) at angular frequency ωp, where 
 
        .p n rfBω γ=      (11) 
 
As a result, the precession angle, β, around this axis depends on the time spent in the r.f. (combined) field 
region, i.e., 
 

        rf n n
n rf n rf rf rf n

n

l m
B t B B l

v h
γ

β γ γ λ= ≈ =    (approximation valid for small beam divergence), (12) 

 
where t is the time of flight of the neutron across the region lrf. Note that the approximation in Eq. (12) 
implies that the beam divergence is sufficiently small that the substitution t ≈ lrf /vn can be made. In order to 
create a π flip of the neutron spin around Brf (such that the neutron spin returns to the xy plane), the 
magnitude of Brf must be tuned in order to satisfy 
 

  n
rf

n rf n n rf n

v hB
l m l

π π
γ γ λ

≈ =              for small beam divergence  (13) 
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from which we have 
 

                 [ ]
[ ] [ ]

5 5

o o

6.782232 10 6.782232 10T .
m A m A

rf

rf n n

B
l lπλ λ

− −× ×
=

   
      

    (14) 

 
Note that the peak amplitude of the applied r.f. field has twice the magnitude of the resonant component 
(i.e., pk

rfB = 2Brf). In other words, 
 

           [ ] [ ]
[ ] [ ]

4 4

o o

1.35645 10 1.35645 10T 2 T .
m A m A

pk
rf rf

rf n n

B B
l lπλ λ

− −× ×
= =

   
      

    (15) 

 
Typically, the time of flight through such coils (of several cm in length) is around 50µs (within a factor of a 
few, depending on the neutron wavelength), therefore Brf is typically a few tenths of a mT. By contrast B0 
may range up to about 25 mT or more, so clearly for the larger values of B0 the assumption B0 >> Brf is 
valid. 
      At exact resonance, where π-flips return the spin initially in the xy plane back into the xy plane after 
passage through the combined field region, it is relatively straightforward to visualize the operation. 
Following Ref. [1], we denote the phase of the neutron spin in the xy plane relative to some fixed origin by 
ϕ and the phase of the resonant component of Brf with respect to the same origin by ψ. If the initial phase 
angle of the neutron spin lags the resonant component of Brf by α on entry into the r.f. field (see Fig. 1 (c)), 
and Eq. (13) is satisfied, then the neutron spin will lead Brf by α in the rotating frame on exiting the field 
region. Transforming back into the laboratory frame at the coil exit, we add on the phase change of the r.f. 
field during the neutron flight time through the coil (≡ω0lπ /vn) plus the (usually small) additional Larmor 
precession angle in the xy plane due to the B0 field-only regions either side of the r.f. coil (≈ω0(lB0-lπ )/vn). 
Consequently, we find that the neutron spin has changed its xy-plane phase angle in the coil by an amount 
≈ 2α +ω0lB0/vn. Thus for an ideal π-flipper, the neutron spin phase change in the coil is governed by the 
operator 
 
                    ,ϕ ψ ψ ϕ′ ′= + −      (16) 
 
where “unprimed” and “primed” refer to the “entrance” and “exit” of the coil respectively. When the coil is 
tuned for resonance 
 

                    0
0 ,B

n

l
v

ψ ψ ω′ ≈ +      (17) 

 
the operator in Eq. (16) can be rewritten as 
 

            0
02 .B

n

l
v

ϕ ψ ω ϕ′ ≈ + −      (18) 

 
Again small beam divergence is implied by replacing the time of flight through the coil by lB0/vn. If a zero 
field region of length LAB exists between the first coil (A) and second coil (B), the phase of the neutron spin 
leaving coil A is preserved until its entry into coil B (a time LAB/vn later), whilst the r.f. field in coil B 
(which is phase-locked to the field in coil A) advances by an amount ω0LAB/vn. Thus, we have 
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     0
02 .B

B A A A
n

l
v

ϕ ϕ ψ ω ϕ′= ≈ + −     (19) 

 
We have chosen the initial polarization direction (along the x-axis) to define ϕA=0, therefore Eq. (19) 
becomes 
 

              0
02 B

B A
n

l
v

ϕ ψ ω≈ +      (20) 

 
and 
 

           
( )0

0 0 .AB BAB
B A A

n n

L lL
v v

ψ ψ ω ψ ω
+

′≈ + ≈ +    (21) 

 
Reapplying Eq. (18) at the exit of a second identical coil (B) with the same field directions, one obtains 
 

    
( )0

02 .AB B
B A B

n

L l

v
ϕ ϕ ϕ ω

+
′ ′− = ≈     (22) 

 
On exiting coil B, the total spin phase change is now independent of the initial r.f. phase angle, ψΑ, at the 
entrance to coil A (which is random for a continuous neutron beam). Similar arguments hold for the third 
and fourth coils (C and D), other than the signs of the spin phase changes are reversed by applying the 
static fields in the opposite direction to those in coils A and B, i.e., 
 

      
( )0

02 .CD B
D C

n

L l

v
ϕ ϕ ω

+
′ − ≈ −     (23) 

 
This means that the phase locking of the r.f. fields between coils A and B may be performed independently 
of that in coils C and D, provided that the frequencies are equal. The spin turn in each arm of the 
spectrometer is proportional to the neutron time of flight in each arm irrespective of the time of entry. The 
net spin phase change in the whole spectrometer is therefore 
 

( ) ( ) ( ) ( )0 0 0 0

0 02 2 ,AB B CD B AB B CD B
D A n

i f i f

L l L l L l L l
B

v v v v
ϕ ϕ ϕ ω γ

   + + + +
   ′= − ≈ − = −
      

 (24) 

 
where we have substituted vi for vn in Eq. (22) (incident beam) and vf for vn in Eq. (23) (scattered beam) to 
account for the possibility of neutron speed changes in scattering events. 
      This expression is entirely analogous with that for a conventional NSE spectrometer if the lengths of 
the precession solenoids, L, of the latter (operating with axial fields of magnitude B0) are associated with 
the quantities 2( LAB+lΒ0) or 2(LCD+lΒ0). In the NRSE configuration LAB+lΒ0 and LCD+lΒ0 correspond to the 
separation of the midpoints of the coils in each arm of the spectrometer, with LAB and LCD typically >> lΒ0. 
The factor “2” implies a factor 2 advantage in NRSE resolution when comparing equivalent B0L in both 
techniques. However, large values of B0 are usually more easily achieved in the long solenoids of a NSE 
spectrometer than in the compact r.f. flippers of the NRSE instrument (see for example Sec. 7.3.3.1). A 
generalization of Eq. (24) for different coil lengths is given in Sec. 3.3 and in Sec. 3.4, where it is shown 
how a “bootstrap” coil configuration [2] further increases the resolution factor from 2 to 2N, where N is 
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commonly a small even integer (N ≥ 2). Henceforth, we concentrate on elastic or quasielastic applications 
of the NRSE technique. 
 
2.2  Dispersion of the Flipper Coils 
 
2.2.1  Single Flipper 
 
      For polychromatic beams, the coil is tuned for π spin flips for the mean incident neutron velocity, 〈vi〉 
(or mean incident wavelength, 〈λi〉) such that, according to Eq. (12), we require 
 

  i
rf

n rf n n rf i

v hB
l m l

π
π

γ γ λ
= =           coil π-flip tuning condition.  (25) 

 
It is clear that exact π turns about Brf occur for a unique neutron velocity or wavelength if |Brf | is kept 
constant1. The wavelength-dependence of the precession angle around Brf is referred to henceforth as 
dispersion. For a general wavelength, λi, corresponding to a deviation from the mean ∆λi = λi-〈λi〉, we 
have: 
 

    ( ) 1 .i i
i

i i

λ λ
β λ π π

λ λ
 ∆

+ =  
 

     (26) 

 
Equation (26) neglects the distribution in neutron flight times through the coil caused by beam divergence, 
which is typically narrow compared with that caused by the wavelength distribution. The particular case for 
λi < 〈λi〉 is illustrated in Fig. 3, resulting in a less-than-π precession of the neutron magnetic moment around 
Brf in the rotating frame. Similarly, an over-rotation occurs for λi > 〈λi〉. Thus, we see that some 
depolarization occurs due to the velocity spread and the maximum component in the xy plane no longer 
attains unity. For moderate ∆λ, the depolarization is largely determined by the component of the magnetic 
moment out of the xy plane, (i.e., the angle ε), however, a (usually) smaller shift in the spin direction within 
the xy plane also occurs (i.e., the angle χ). For symmetric distributions of λ with respect to the mean, the 
angle ε is uniformly distributed above and below the xy plane and its magnitude depends on the angle α. It 
is zero for α = 0 and maximum for α = π/2. In fact, 
 

2 2 2cos cos sin cosε α α β= +     (27) 
 
and 
 

    
2 2cos sin coscos .

cos
α α βχ

ε
−

=     (28) 

 
We see from Fig. 3 that for ∆λ → 0, β → π, ε → 0, and therefore χ → 0, as expected. 
      For a continuous neutron beam with symmetrically-distributed wavelengths the ratio of the polarization 
“with dispersion” to that ignoring dispersion (or for a purely monochromatic beam, I(λi) = δ (λi)) after 
passage through the device is therefore 
 
 

                                                 
1 It has been proposed to ramp |Brf | for situations where the neutron energy is strongly correlated with its time of emission, for 
example at pulsed neutron sources. However for continuous sources this is not feasible. 
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Fig. 3. Classical precession of the neutron magnetic moment around the resonant component of the r.f. field in the rotating frame of 
the r.f. field component. 
 
 

      
( ) ( ),

2 2 2

,

cos cos cos sin cos 1 sin 1 cos .
I i i

disp i

ideal i I

P
P

λ ψ λ α

λ
ε χ α α β α π

λ

  
= = − = − +      

 (29) 

 
Qualitatively this is the component (or dot product) of the actual unit spin unit vector projected onto the 
“perfect” spin direction, averaged over all α and over the neutron wavelength spectrum, I(λi). We note that 
α is random over 2π radians for a continuous beam and we may set 〈sin2α〉 = 1/2 in Eq. (29). Also using the 
identity cosβ = 1-2sin2(β/2), the average over α becomes 
 

  2sin
2

disp i

ideal i

P
P

λπ
λ

 
=   

 
              averaged over α, continuous beam.  (30) 

 
This is exactly the quantum-mechanically derived result for the spin flip probability for the π flipper (see 
Eq. (89) in Sec. 4.2.1.1) when the flipper is tuned for resonance and for exact π flips for the mean neutron 
wavelength 〈λi〉. Performing the average of Eq. (30) over the normalized incident wavelength spectrum 
I(λi), we have finally 
 

          
( )

( )
,

2sin .
2

I i

disp i
i i

ideal i

P
I d

P
λ ψ

λπλ λ
λ

 
=   

 
∫     (31) 

 
For normalized rectangular intensity distributions with 〈λi〉-∆λFW/2 ≤ λi ≤ 〈λi〉+∆λFW/2 with Ipk = 1/∆λFW, 
we have 
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1

2rectangular sin
2

1 sin .
2 2

i FW

i

disp i
i

ideal FW icoil
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  (32) 
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Defining the fractional full width of the spectrum by ΛFW, i.e., 
 
     ,FW FW iλ λΛ = ∆     (33) 
 
Eq. (32) is expressed more neatly as 
 

    ( )
1

1 1rectangular sin .
2 2

disp
FW

ideal FWcoil

P
P

π
π

 = + Λ Λ  
   (34) 

 
For triangular intensity distributions with FWHM = ∆λFWHM, we can use the normalized function 
 

    ( ) ( )1 1 i i
i

FWHM FWHM

I
λ λ

λ
λ λ

 −
= + 

∆ ∆  
 

 
in the interval 〈λi〉-∆λFWHM ≤ λi ≤ 〈λi〉, therefore 
 

       ( ) 2

1
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∫   (35) 

 
In analogy with Eq. (33) we set 
 
        ,FWHM FWHM iλ λΛ = ∆      (36) 
 
then this integral becomes 
 

      ( ) ( )2 2
1

1 1triangular 1 cos .
2

disp
FWHM

ideal FWHMcoil

P
P

π
π

= + − Λ  Λ
   (37) 

 
For Gaussian intensity distributions with FWHM = ∆λFWHM, we use the normalized function 
 

               ( ) ( )2

2 2

4 ln 2 4ln 2exp ,i i i
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I λ λ λ
π λ λ

 
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   (38) 

 
therefore, 
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∫  (39) 

 
Using the definition of ΛFWHM from Eq. (36) for the Gaussian distribution this integral becomes 
 

          ( )
2 2

1

1Gaussian 1 exp .
2 4 ln 2

disp FWHM

ideal coil

P
P
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   (40) 
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2.2.2  Approximation for M Flippers 
 
      The above equations apply to a single flipper coil. If there are M identical flippers (e.g. M = 8 for a 
4-coil N = 2 bootstrap instrument), and we assume that the neutron spectrum is unmodified through the 
spectrometer (elastic scattering, negligible absorption etc.), we can make the following approximation, 
provided that the cumulative spin rotation out of the xy plane remains small: 
      We rewrite Eq. (30) approximately as the product of the M flipper coil efficiencies, prior to averaging 
over the spectrum, I(λi), i.e., 
 

          ( ) 2sin .
2

disp M i

ideal i

P
M

P
λπ
λ

 
≈   

 
    (41) 

 
The overall average flipping efficiency for the spectrometer is therefore described for the rectangular, 
triangular, and Gaussian incident spectra by expressions similar to Eqs. (32), (35), and (39), but with the 
sin2 replaced by sin2M, i.e., for the rectangular spectrum: 
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  (42) 

 

where 
n
k

 
 
 

 is the binomial coefficient. 

      Likewise for triangular I(λi): 
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Finally, for Gaussian I(λi) 
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The accuracy of the approximation for M > 1 is demonstrated by some special case Monte Carlo 
calculations in Sec. 8.2. Table 1 and Table 2 show predicted values of disp ideal M coils

P P  for uniform, 

triangular, and Gaussian wavelength distributions for M = 8 (i.e., a typical 4-coil, N = 2 bootstrap 
configuration) and for M = 6 (e.g., a MIEZE-II type, N = 2 bootstrap configuration – see Sec. 9) 
respectively. The Gaussian results, which are quite similar to the triangular case, were obtained by 
numerical integration of Eq. (44) between the limits 〈λi〉 and 〈λi〉+2∆λFWHM. Using larger upper limits of 
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integration showed no change in the fifth significant figure and no significant effects of spectral truncation 
are encountered for Λ up to 0.5 in this case. The values in the tables, which are apparently independent of 
the Fourier time, represent theoretically maximal signals with polychromatic incident beams in an 
otherwise perfectly-constructed spectrometer with perfect polarizers. When other instrumental 
imperfections are present, typically the tabulated values are approached in the short Fourier time limit. 
 
 
Table 1. Flipping efficiency versus full width (FW) (rectangular distribution) or full width at half maximum (FWHM) (triangular, 
Gaussian distributions) for M = 8 π coils. The pairs of values in parentheses for the triangular and Gaussian distributions are values of 
ΛFWHM and corresponding Pdisp/Pideal that give equivalent rms wavelength deviation with respect to the mean as the rectangular 
distribution with the value of ΛFW given in the first column. For the triangular distribution this implies ΛFWHM,triang = ΛFW,rect/√2. For the 
Gaussian distribution this implies ΛFWHM,gauss = √((2/3)ln2)ΛFW,rect. 
 

ΛFW/FWHM 
Pdisp/Pideal (M=8) 

Rectangular (Eq. 42))       Triangular (Eq. (43)) Gaussian (Eq. (44)) 

0.1 0.98378       0.96831 (0.0707 ,0.98386) 0.96613 (0.0680,0.98393) 

0.2 0.93778       0.88600 (0.1414,0.93888) 0.88155 (0.1360,0.93986) 

0.3 0.86916       0.78127 (0.2121,0.87390) 0.77880 (0.2039,0.87765) 

0.4 0.78750       0.67898 (0.2828,0.79961) 0.68064 (0.2719,0.80788) 

0.5 0.70237       0.59115 (0.3536,0.72511) 0.59587 (0.3399,0.73834) 

 
 
 
Table 2. Flipping efficiency versus full width (FW) (rectangular distribution) or full width at half maximum (FWHM) (triangular, 
Gaussian distributions) for M = 6 π coils. The pairs of values in parentheses for the triangular and Gaussian distributions are values of 
ΛFWHM and corresponding Pdisp/Pideal that give equivalent rms wavelength deviation with respect to the mean as the rectangular 
distribution with the value of ΛFW given in the first column. For the triangular distribution this implies ΛFWHM,triang = ΛFW,rect/√2. For the 
Gaussian distribution this implies ΛFWHM,gauss = √((2/3)ln2)ΛFW,rect. 
 

ΛFW/FWHM 
Pdisp/Pideal (M=6) 

Rectangular (Eq. 42))       Triangular (Eq. (43)) Gaussian (Eq. (44)) 

0.1 0.98779       0.97600 (0.0707,0.98783) 0.97427 (0.0680,0.98787) 

0.2 0.95266       0.91138 (0.1414,0.95329) 0.90715 (0.1360,0.95387) 

0.3 0.89874       0.82378 (0.2121,0.90158) 0.81999 (0.2039,0.90396) 

0.4 0.83194       0.73158 (0.2828,0.83959) 0.73102 (0.2719,0.84529) 

0.5 0.75870       0.64689 (0.3536,0.77402) 0.64987 (0.3399,0.78399) 

 
Special Note 
      Gähler and Golub [2] ignore the (usually small) angle χ and give an expression for 〈cos ε〉 in terms of the root mean square (rms) 
value of ε, εrms, which is valid for small ε. For these reasons, their expression does not predict exactly the quantum mechanical flipping 
efficiency. The reader should beware of substituting, for example, FWHM values for δv into Eq. (33) of Ref. [2]. The latter equation is 
valid for discrete ±δv with respect to the mean, therefore their expression must be averaged over the appropriate velocity distribution, 
F(vn). For sufficiently small ε, the approximation is 
 

2 2cos 1 2 1 2 cos rmsP ε ε ε ε≈ − = − ≈ . 
 
with the combined effect of M similar π coils approximated by summing the ε’s in quadrature [ii], whence 
 

        ( ) cos cos rmsP M M Mε ε≈ ≈ . 
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2.3  Coil Resonance Width 
 
      The coil flipping efficiencies given in the previous section are for optimally-tuned coils (exact 
resonance ωrf = ω0, and exact π-flips for the mean wavelength 〈λi〉). They account only for dispersion. For 
moderate ∆λ/λ, dispersion leads mainly to excursions of the spin vector out of the intended x-y plane 
accompanied by a usually small rotation of the spin component within the x-y plane. An additional question 
concerns non-optimal tuning of the coils arising either from (i) systematic differences between the Larmor 
frequency (ω0) and r.f. frequency (ωrf) or (ii) that caused by static field inhomogeneity when ωrf  = 〈ω0〉; i.e., 
to what tolerance must ωrf match ω0? Alternatively, what is the resonance width? Alvarez and Bloch [6] 
provided a quantum mechanical result for the flipping efficiency (valid for static field magnitudes that are 
much larger than the oscillating field magnitude), which (almost) in their original notation is 
 

          ( ) ( )2 22 2
1 12 1

2 2
1 1

2 2
sin ,

2
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H H
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

  (45) 

 
where t is the time spent in the oscillating field, µH1t equates to β/2 (Eq. (12)), H1 is the amplitude of the 
oscillating field ≡ 2Brf = pk

rfB , and 
 
                  *

0 0H H H∆ = −      (46) 
 
is the difference between the actual value of the static field and the value required for exact resonance (i.e., 
when ω0 =ωrf). Thus, Eq. (46) can be re-expressed as 
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In our notation Eq. (45) becomes 
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  (48) 

 
where it is understood that lπ = lrf for the typical flipper coil. For the special case that Brf is tuned to produce 
exact π flips for the mean wavelength 〈λi〉, Eq. (48) becomes (see also Eq. (11)) 
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 Brf tuned for exact π flips at λn = 〈λn〉, (49) 

 
which, for exact resonance (ωrf  = ω0) reduces to Eq. (30). 
      These equations quantify the effects of detuning the r.f. frequency from the nominal Larmor frequency 
or the effects of static field inhomogeneities (giving rise to a spread of ω0 values). The latter is of concern 
for the spectrometer design tolerances. Equation (49) is plotted versus the frequency difference (in kHz) for 
lπ = 3 cm (for a single wavelength λn = 〈λn〉) in Fig. 4. The Alvarez and Bloch formalism ignores certain 
rapidly oscillating terms when the static field magnitude is large compared to the oscillating field 
magnitude. When this is not the case, the oscillating field decreasingly approximates to a pure rotating field 
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Fig. 4. Coil flipping efficiencies calculated using Eq. (49) for a π -flipper with lπ = 3 cm whose r.f. field magnitude Brf is tuned to 
produce exact π-flips for monochromatic, well collimated beams of wavelength λn (zero dispersion approximation). These curves are 
plotted as a function of the difference in the Larmor frequency ν0 and the r.f. frequency νrf in kHz. 
 
 
and the counter-rotating component increasingly plays a role. One manifestation of this is a shift in the 
resonance frequency as discussed in Ref. [5] (see Sec. 7.3.6.1). Eventually the r.f. flipper cannot function 
when B0/Brf falls below a certain threshold. The full width at half maximum of these resonance curves for a 
general value of lπ is very well fitted by 
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A useful quantity is the frequency shift for a 1 % drop in the flipping efficiency. This is well fitted by the 
following similar expression 
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Thus for longer wavelengths and longer coils the resonance sharpens, requiring increased tuning accuracy. 
Consequently, the tolerable field inhomogeneity also decreases with increasing lπ and λn. 
 
2.4  Influence of π-Flipper Efficiency on Polarization 
 
      The term “flipper efficiency” usually excludes spin-independent effects such as scattering or 
absorption. Thus for a π-flipper of efficiency f, a fraction f of the spin-down component of a beam is 
converted to spin-up and vice-versa. Conversely, fractions (1-f ) of the spin-down and spin-up components 
are transmitted with no change of their spin directions. For an incoming beam with spin-up and spin-down 
intensities 0I +  and 0I −  respectively, the corresponding intensities in the outgoing beam are 
 

( )1 0 01I fI f I+ − += + −     (52) 
 
and 
 

( )1 0 01 .I fI f I− + −= + −     (53) 
 
The incident beam polarization is, by definition, 
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therefore, by the same definition, the outgoing beam has polarization 
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Thus, the outgoing beam polarization is just the incoming beam polarization multiplied by the factor (1-2f). 
Note that for a perfect π-flipper (f = 1), P1= -P0, as expected. 
 
 
3.  Illustrations of Idealized 4-Coil NRSE Instruments 
 
      In the following examples, we illustrate the performance of a 4-coil unit NRSE spectrometer by 
assuming “perfect” π-flipper coils (Sec. 3.1). In Secs. 6 and 7, we discuss departures from the idealized 
performance due to the non-ideal nature of the components. 
 
3.1  The Perfect π-Flipper Coil 
 
      We define the “perfect” π-flipper coil as having the following properties: 

1. “Dispersionless” – the exact π flip operation is assumed to be independent of wavelength (i.e., all 
neutron spins start and finish in the xy plane - see Sec. 2.2). 

2. Perfectly uniform and stable applied static field B0 within the beam passage. 
3. Perfectly stable (frequency and magnitude) and sinusoidal r.f. field Brf. 
4. Perfect perpendicularity of the static, r.f. fields, and beam direction (⇒ zero divergence beam). 
5. Perfectly-defined field boundaries along the beam direction. 
6. Zero stray fields or leakage fields in the “zero-field” regions. 
7. Perfectly transmitting for neutrons. 

http://dx.doi.org/10.6028/jres.119.005
http://dx.doi.org/10.6028/jres.119.005


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.005 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 72 http://dx.doi.org/10.6028/jres.119.005 

 

Consider the coordinate system in Fig. 5. where the origin of the y-axis is chosen to coincide with the 
entrance to the first π flipper (A). We will assume that the static field magnitude, B0, in coils A and B is 
equal and that the static field magnitude, B1, in coils C and D is the same, i.e., 
 
     0 0 0

A BB B B= =      (56) 
 
and 
     0 0 1.

C DB B B= =      (57) 
 
When the π-flipper r.f. frequency is on-resonance, we can write 
 
             0 0

A B
rf rf n Bω ω ω γ= = =     (58) 

 
             1 1.

C D
rf rf n Bω ω ω γ= = =     (59) 

 
 
 

 
 

Fig. 5. A 4-single π coil NRSE instrument. 
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For elastic and small energy transfer quasielastic scattering (where the detailed balance factor is essentially 
1 and the scattering function is symmetrical around zero energy transfer), we have 〈vi〉 = 〈vf〉. Therefore, the 
magnitude of the r.f. field is tuned to create π-flips for the mean incident velocity 〈vi〉 for all coils. This 
implies 
 

           ik
rf

n k n n k i

v hB
l m l

π
π

γ γ λ
= =      for k= A, B, C, D.   (60) 

 
For elastic and small energy transfer quasielastic scattering (where the detailed balance factor is essentially 
1 and the scattering function is symmetrical around zero energy transfer), we have 〈vi〉 = 〈vf〉. Therefore, the 
magnitude of the r.f. field is tuned to create π-flips for the mean incident velocity 〈vi〉 for all coils. This 
implies 
 

           ik
rf

n k n n k i

v hB
l m l

π
π

γ γ λ
= =      for k= A, B, C, D.   (60) 

 
3.2  A Note About Signs 
 
      In Sec. 3.3 and especially in Sec. 3.5 we must account for reversals of the directions of the static fields 
B0 from one coil to the next. This is important because the reversed direction of B0 reverses the direction of 
the Larmor precession and consequently switches the resonant r.f. field component to the counter-rotating 
component (that has a different absolute phase angle). This latter situation is simplified mathematically 
(with no loss of generality) if we assume that the r.f. field oscillates along the x-axis, since the shift of r.f. 
phase angle that accompanies the change of sign of B0 amounts only to a flip of the sign of ψ. In the 
following sections, expressions for the phase changes throughout the spectrometer are written in tabular 
form, initially with signs that account for general static field directions in the coils. 
 
3.3  A 4-Single π-Coil, “Perfect” Dispersionless NRSE with Zero Stray Fields And Well-Collimated 
       Beams 
 
      The 4-single π flipper arrangement is illustrated in Fig. 5. We use the operator (Eq. (16)) for the neutron 
spin phase in the coil regions and assume truly zero field in the gaps between the coils (allowing Eq. (19) to 
be used). Phase locking of the r.f. frequency between coils A and B and between C and D is assumed 
(allowing expressions of the type (21) to be used), but no phase locking of the r.f. between the two arms of 
the spectrometer is required (hence ψC is unrelated to ψA). By assuming well-collimated beams (cosθ ≈ 1), 
we have replaced neutron flight times with expressions of the type l/vn or L/vn where l or L is a dimension 
along the beam (y) axis. We now construct a table of phases through the spectrometer, applying the above 
assumptions and signs to account for general static field directions. For example, sgn(B0) = “+” if the static 
field lies along +z and sgn(B0) = “-” if the static field lies along –z. The result is shown in Table 3. 
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Table 3. Phases for “perfect” single π coils with zero stray fields between coils showing how the field direction signs for the resonant 
component of the r.f. field apply (Brf is chosen to oscillate along the x axis). 
 

Location y Neutron spin phase angle ϕ r.f. field phase ψ 

Entrance A 0 0 ψA 

Exit coil A lA 2ψA+sgn(B0
A)(1/vi)γn|Β0|lA ψA+sgn(B0

A)(1/vi)γn|Β0|lA 

Entrance B lA+LAB 2ψA+sgn(B0
A)(1/vi)γn|Β0|lA 

sgn(B0
A)sgn(B0

B)[ψA+sgn(B0
A)(1/vi)γn|

Β0|(lA+LAB)] 

Exit coil B lA+LAB+lB 
2sgn(B0

A)sgn(B0
B)[ψA+sgn(B0

A)(1/vi)γn|Β0|(
LAB+lA)]+sgn(B0

B)(1/vi)γn|Β0|lB-2ψA-
sgn(B0

A)(1/vi)γn|Β0|lA 

sgn(B0
A)sgn(B0

B)[ψA+sgn(B0
A)(1/vi)γn|

Β0|(lA+LAB)]+sgn(B0
B)(1/vi)γn|Β0|lB 

Sample 
(non-spin 
flip or 
coherent 
scatterer) 

lA+LAB+lB+LBS 
2sgn(B0

A)sgn(B0
B)[ψA+sgn(B0

A)(1/vi)γn|Β0|(
LAB+lA)]+sgn(B0

B)(1/vi)γn|Β0|lB-2ψA-
sgn(B0

A)(1/vi)γn|Β0|lA 

sgn(B0
A)sgn(B0

B)[ψA+sgn(B0
A)(1/vi)γn|

Β0|(LAB+lA)]+sgn(B0
B)(1/vi)γn|Β0|(lB+L

BS) 

Entrance C lA+LAB+lB+LBS+LSC 
2sgn(B0

A)sgn(B0
B)[ψA+sgn(B0

A)(1/vi)γn|Β0|(
LAB+lA)]+sgn(B0

B)(1/vi)γn|Β0|lB-2ψA-
sgn(B0

A)(1/vi)γn|Β0|lA 
ψC 

Exit coil C lA+LAB+lB+LBS+LSC+lC 

2ψC+sgn(B0
C)(1/vf)γn|Β1|lC-

(2sgn(B0
A)sgn(B0

B)[ψA+sgn(B0
A)(1/vi)γn|Β0|

(LAB+lA)]+sgn(B0
B)(1/vi)γn|Β0|lB-2ψA-

sgn(B0
A)(1/vi)γn|Β0|lA) 

ψC+sgn(B0
C)(1/vf)γn|Β1|lC 

Entrance D lA+LAB+lB+LBS+LSC+lC+LCD 

2ψC+sgn(B0
C)(1/vf)γn|Β1|lC-

(2sgn(B0
A)sgn(B0

B)[ψA+sgn(B0
A)(1/vi)γn|Β0|

(LAB+lA)]+sgn(B0
B)(1/vi)γn|Β0|lB-2ψA-

sgn(B0
A)(1/vi)γn|Β0|lA) 

sgn(B0
C)sgn(B0

D)[ψC+sgn(B0
C)(1/vf)γn|

Β1|(lC+LCD)] 

Exit coil D lA+LAB+lB+LBS+LSC+lC+LCD+lD 

2(sgn(B0
C)sgn(B0

D)[ψC+sgn(B0
C)(1/vf)γn|Β1

|(lC+LCD)])+sgn(B0
D)(1/vf)γn|Β1|lD-

{2ψC+sgn(B0
C)(1/vf)γn|Β1|lC-

(2sgn(B0
A)sgn(B0

B)[ψA+sgn(B0
A)(1/vi)γn|Β0|

(LAB+lA)]+sgn(B0
B)(1/vi)γn|Β0|lB-2ψA- 

sgn(B0
A)(1/vi)γn|Β0|lA)} 

sgn(B0
C)sgn(B0

D)[ψC+sgn(B0
C)(1/vf)γn|

Β1|(lC+LCD)] +sgn(B0
D)(1/vf)γn|Β1|lD 

 
 
 
Applying the signs shown in Fig. 5 (i.e., sgn(B0

A) = sgn(B0
B) = “+” and sgn(B0

C) = sgn(B0
D) = “-”), we 

reconstruct Table 3 as shown in Table 4. 
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Table 4. Phases for “perfect” single π coils with zero stray fields between coils applying the field direction signs indicated in Fig. 5. 
 

Location y Neutron spin phase angle ϕ r.f. field phase ψ 

Entrance A 0 0 ψA 

Exit coil A lA  2ψA+(1/vi)γn|Β0|lA ψA+(1/vi)γn|Β0|lA  

Entrance B lA+LAB   2ψA+(1/vi)γn|Β0|lA ψA+(1/vi)γn|Β0|(LAB+lA) 

Exit coil B lA+LAB+lB (1/vi)γn|Β0|(2LAB+lA+lB) ψA+(1/vi)γn|Β0|(LAB+lA+lB) 

Sample 
(non-spin 
flip or 
coherent 
scatterer) 

lA+LAB+lB+LBS  (1/vi)γn|Β0|(2LAB+lA+lB) ψA+(1/vi)γn|Β0|(LAB+lA+lB+LBS) 

Entrance C lA+LAB+lB+LBS+LSC (1/vi)γn|Β0|(2LAB+lA+lB) ψC  

Exit coil C lA+LAB+lB+LBS+LSC+lC  2ψC-(1/vf)γn|Β1|lC-(1/vi)γn|Β0|(2LAB+lA+lB) ψC-(1/vf)γn|Β1|lC 

Entrance D lA+LAB+lB+LBS+LSC+lC+LCD  2ψC-(1/vf)γn|Β1|lC-(1/vi)γn|Β0|(2LAB+lA+lB) ψC-(1/vf)γn|Β1|(lC+LCD) 

Exit coil D lA+LAB+lB+LBS+LSC+lC+LCD+lD  (1/vi)γn|Β0|(2LAB+lA+lB)-
(1/vf)γn|Β1|(2LCD+lC+lD) 

ψC-(1/vf)γn|Β1|(lC+LCD+lD) 

 
 
Observations 

1. The lack of a relation between the r.f. phases in each arm of the spectrometer is immaterial. This is 
because the r.f. phases, ψA, and ψC, on entry to coils A and C cancel on leaving coils B and D 
respectively. 

2. The final spin phase angle of the neutron exiting coil D is independent of the distances between 
the second coil B and the sample (LBS) and the sample and the third coil C (LSC). 

3. The final neutron spin phase from Table 4 is: 
 

( ) ( )

( ) ( )

0 1'

0 1

2 2

2 2
.

AB A B CD C D
D

i f

AB A B CD C D
n

i f

L l l L l l
v v

B L l l B L l l
v v

ω ω
ϕ

γ

 + + + +
= − 

  
 + + + +

= − 
  

   (61) 

 
If all coils are identical in length (i.e., lA = lB = lC = lD = lΒ0 = lcoil = l), then the phase angle of the neutron 
spin at the exit of coil D reduces to 
 

            
( ) ( ) ( ) ( )0 1 0 1' 2 2 .AB CD AB CD

D n
i f i f

L l L l B L l B L l
v v v v

ω ω
ϕ γ

   + + + +
= − = −   

      
  (62) 

 
Equation (62) is expressed more neatly by introducing L0 and L1, the distances between the mid-points of 
the coils in the first arm and second arm respectively, where 
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   0 ABL L l= +      (63) 
 
and 
 
        1 CDL L l= +      (64) 
 
so that Eq. (62) becomes 
 

           ' 0 0 0 01 1 1 12 2 .D n
i f i f

L B LL B L
v v v v

ω ω
ϕ γ

   
= − = −   

      
   (65) 

 
3.4  The “Bootstrap” Coil Technique 
 
3.4.1  Bootstrap Configurations 
 
      Gähler and Golub [2] appreciated that spin-echo configurations of resonant π-flippers are not limited to 
single π-flipper unit arrangements. Multiple flippers placed back-to-back with alternating static field 
directions can replace the single π-flippers at the zero-field region boundaries. Several 4-coil unit spin-echo 
arrangements are shown in Fig. 6. When more than one π-flipper (N > 1) comprises one unit, the 
combination is referred to as a “bootstrap coil”. The technique was first demonstrated experimentally in 
Ref. [7]. Note that the static field directions in the second arm mirror-image those in the first arm. Because 
closed magnetic field loops are produced within the coil unit for even-N, leakage fields outside the coil 
regions are strongly reduced with respect to odd-N combinations and it has been demonstrated [8] that the 
field homogeneity within the beam area is improved for N = 2 with respect to N = 1. Furthermore, the 
(small) leakage fields each side of the even-N bootstrap coil cancel to first order because the Larmor 
precession that they induce is approximately equal in magnitude but of opposite sign. 
 
 

 
 

Fig. 6. Some possible π-flipper spin-echo arrangements. 

http://dx.doi.org/10.6028/jres.119.005
http://dx.doi.org/10.6028/jres.119.005


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.005 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 77 http://dx.doi.org/10.6028/jres.119.005 

 

3.4.2  Practical Limits to the Value of N 
 
      Bootstrap coils with N flippers effectively multiply the spin turn by a factor of N, thereby increasing the 
resolution of the spectrometer by the same factor N. This is illustrated for N = 2 in Sec. 3.5. However, 
instrumental non-ideality ultimately limits the maximum practical value of N. 

1. The most obvious limitation is that N multiplies the number of coil windings traversed by the 
neutron beam, multiplying the absorption and scattering by the same factor. 

2. The total power dissipation is proportional to N, negatively impacting the already challenging task 
of heat removal from the coils units. 

3. The dispersion of the π-flippers means that increasing non-zero z-components of the spin vectors 
result as the neutron traverses additional coils. Gähler and Golub show [2] that the expectation 
values of 〈σx〉 and 〈σz〉 each contain 2N terms in sinm(µBrf l/vn) and/or cosm(µBrf l/vn) where m 
runs up to N and vn is the neutron velocity. Because these rapidly-varying functions of velocity 
lead to depolarization of the beam, Gähler and Golub also show that ∆vn /vn must become 
increasingly small as N increases to compensate. 

In view of the compromises imposed by 1, 2, and 3, and the advantages of even-N for stray field 
suppression, N = 2 is almost universally used in existing NRSE spectrometers. 
 
3.5  A 4 “Perfect” Dispersionless N = 2 Bootstrap Coil NRSE with Zero Stray Fields and Well- 
       Collimated Beams 
 
      In the bootstrap pair, the main consequence of the field direction reversal mid-way across the coil unit 
is that the resonant component of the r.f. field switches to the counter-rotating component in the second π-
flipper. This reverses the sign of ψ and of ω0. In order to illustrate features that are likely present in a real 
bootstrap coil, it is assumed that the transition from one π-flipper of the pair to the other takes place across 
a small gap lg, which is equal for all coils. This gap is also assumed to be “zero field” (or a region where the 
stray fields of the adjacent coils exactly cancel). By adopting the procedure outlined in Sec. 3.3 and 
applying the specific field direction signs indicated in Fig. 6 for N = 2, we obtain the values given in Table 
5. 
 
Observations 

1. The lack of a relation between the r.f. phases in each arm of the spectrometer is immaterial. 
2. The final spin phase angle of the neutron exiting coil D2 is independent of the distances between 

the coil B2 and the sample (LBS) and between the sample and the coil C1 (LSC). 
3. The final neutron spin phase from Table 5 is: 
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D n
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f
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v

B l l l l L l

v

ϕ γ

  + + + + +  
 

=  
 + + + + +  − 

  

   (66) 

 
If the individual π-flippers are identical in length (i.e., lA1 = lA2 = lB1 = lB2 = lC1 = lC2 = lD1 = lD2 = lB0) and we 
consistently use the symbol l to define the total length of the bootstrap unit, i.e., l = 2lB0 + lg (including the 
gap in the middle), then the phase angle of the neutron spin at the exit of coil D2 (Eq. (66)) reduces to 
 

     
[ ] [ ]0 1'

2 4 .AB CD
D NRSE n

i f

B L l B L l
v v

ϕ ϕ γ
 + +

= = − 
  

   (67) 
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Table 5. Phase angles for a “perfect” 4-N = 2 bootstrap coil NRSE applying the static field signs as indicated in Fig. 6 for N = 2. 
 

Location y Neutron spin phase angle ϕ r.f. field phase ψ 

Entrance A1 0 0 ψA1 

Exit A1 lA1 2ψA1+(1/vi)γn|Β0|lA1 ψA1+(1/vi)γn|Β0|lA1  

Entrance A2 lA1+lg  2ψA1+(1/vi)γn|Β0|lA1 -ψA1-(1/vi)γn|Β0|(lA1+lg) 

Exit A2 lA1+lg+lA2 -4ψA1-(1/vi)γn|Β0|(3lA1+2lg+lA2) -ψA1-(1/vi)γn|Β0|(lA1+lg+lA2) 

Entrance B1 lA1+lg+lA2+LAB -4ψA1-(1/vi)γn|Β0|(3lA1+2lg+lA2) -ψA1-(1/vi)γn|Β0|(lA1+lg+lA2+LAB) 

Exit B1 lA1+lg+lA2+LAB+lB1 2ψA1+(1/vi)γn|Β0|(lA1-lA2-2LAB-lB1) -ψA1-(1/vi)γn|Β0|(lA1+lg+lA2+LAB+lB1) 

Entrance B2  lA1+2lg+lA2+LAB+lB1 2ψA1+(1/vi)γn|Β0|(lA1-lA2-2LAB-lB1) ψA1+(1/vi)γn|Β0|(lA1+2lg+lA2+LAB+lB1) 

Exit B2  lA1+2lg+lA2+LAB+lB1+lB2 
 (1/vi)γn|Β0|(lA1+4lg+3lA2+4LAB+3lB1+lB2) 

= 
ϕB2’ 

ψA1+(1/vi)γn|Β0|(lA1+2lg+lA2+LAB+lB1+
lB2) 

Sample 
(non-spin 
flip or 
coherent 
scatterer) 

lA1+2lg+lA2+LAB+lB1+lB2+LBS ϕB2’ 
ψA1+(1/vi)γn|Β0|(lA1+2lg+lA2+LAB+lB1+l

B2+LBS) 

Entrance C1 
lA1+2lg+lA2+LAB+lB1+lB2+LBS+

LSC ϕB2’  ψC1 

Exit C1 
lA1+2lg+lA2+LAB+lB1+lB2+LBS+

LSC+lC1 2ψC1-(1/vf)γn|Β1|lC1-ϕB2’ ψC1-(1/vf)γn|Β1|lC1  

Entrance C2 
lA1+3lg+lA2+LAB+lB1+lB2+LBS+

LSC+lC1 2ψC1-(1/vf)γn|Β1|lC1-ϕB2’ -ψC1+(1/vf)γn|Β1|(lC1+lg) 

Exit C2 
lA1+3lg+lA2+LAB+lB1+lB2+LBS+

LSC+lC1+lC2 -4ψC1+(1/vf)γn|Β1|(3lC1+2lg+lC2)+ϕB2’ -ψC1+(1/vf)γn|Β1|(lC1+lg+lC2) 

Entrance D1 
lA1+3lg+lA2+LAB+lB1+lB2+LBS+

LSC+lC1+lC2+LCD -4ψC1+(1/vf)γn|Β1|(3lC1+2lg+lC2)+ϕB2’ -ψC1+(1/vf)γn|Β1|(lC1+lg+lC2+LCD) 

Exit D1 
lA1+3lg+lA2+LAB+lB1+lB2+LBS+

LSC+lC1+lC2+LCD+lD1 2ψC1+(1/vf)γn|Β1|(-lC1+lC2+2LCD+lD1)-ϕB2’ -ψC1+(1/vf)γn|Β1|(lC1+lg+lC2+LCD+lD1) 

Entrance D2 
lA1+4lg+lA2+LAB+lB1+lB2+LBS+

LSC+lC1+lC2+LCD+lD1 2ψC1+(1/vf)γn|Β1|(-lC1+lC2+2LCD+lD1)-ϕB2’ ψC1-(1/vf)γn|Β1|(lC1+2lg+lC2+LCD+lD1) 

Exit D2 
lA1+4lg+lA2+LAB+lB1+lB2+LBS+

LSC+lC1+lC2+LCD+lD1+lD2 

ϕB2’-
(1/vf)γn|Β1|(lC1+4lg+3lC2+4LCD+3lD1+lD2) 

= 
(1/vi)γn|Β0|(lA1+4lg+3lA2+4LAB+3lB1+lB2) 

-(1/vf)γn|Β1|(lC1+4lg+3lC2+4LCD+3lD1+lD2) 

ψC1-
(1/vf)γn|Β1|(lC1+2lg+lC2+LCD+lD1+lD2) 
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By comparing Eq. (67), with the equivalent equation for the single (N = 1) π-flipper case (Eq. (62)), we see 
that there is an additional doubling of the spin phase angle change by using bootstrap pairs. It can be shown 
[2] that this additional factor of 2 actually corresponds to N, the number of coils in the bootstrap coil unit, 
therefore we can rewrite Eq. (67) quite generally as 
 

      
[ ] [ ]0 12 .AB CD

NRSE n
i f

B L l B L l
N

v v
ϕ γ

 + +
= − 

  
    (68) 

 
Finally, Eq. (68) is represented more neatly by introducing L0 and L1, the distances between the mid-points 
of the bootstrap coil units for the first arm and second arm respectively, so that Eq. (68) becomes 
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   (69) 

 
      With regard to differences that may exist in the flippers of a real spectrometer, it is interesting to note 
from Table 5 that the inner π-flippers in each arm contribute three times the spin turn of the outer coils 
whereas the zero-field gaps between the coils of a pair (designated by lg) contribute at the same rate per unit 
length as the inter-coil zero-field gaps (see also Eq. (66)). 
 
3.6  Coils with Dimensional Uncertainties 
 
      In order to analyze the effect of dimensional uncertainties, we assume that the center lines of each π 
coil are fixed and that the coil length (winding flatness on each side of the coil) fluctuates by ∆lB0, 
according to equal, but independent, Gaussian distributions of width ∆f FWHM = ∆lB0

FWHM/√2. The zero-field 
flight paths between the coils are assumed truly zero field so that the neutron spin direction does not change 
in them. 
      We define the coil length deviation on the left and right hand sides of the coil as ∆ fL and ∆ fR 
respectively, where ∆ f is negative if the coil surface is on the -y side of the nominal position (neutron 
arrives earlier) and positive if on the +y side of the nominal position (neutron arrives later). The r.f. phase at 
the entrance to the first coil varies with respect to the nominal value due to fluctuations in the coil length 
where 
 

    ( ) ( )0sgn rfA
A in L

n

B f A
v

ω
ψ ψ= + ∆ , 

 
where ψin is the instantaneous phase of the resonant component of the r.f. field with respect to the neutron 
spin at the coil entrance in the perfect situation. At the coil exit the r.f. phase is 
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therefore, from Eq. (16), the neutron phase at the exit of π coil A is 
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          ( ) ( ) ( )( )002 sgn rfA
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On entry to the second coil B, we have B Aϕ ϕ′=  and 
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At the exit of coil B, we have 
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Therefore the neutron phase at the exit of π coil B is 
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 (70) 

 
At the entrance to a third coil C, we have C Bϕ ϕ′= . Assuming that the r.f. in coil C is phase locked to coil 
B (we do this so that this 4 π-flipper coil argument can be extended to an N = 2, 4 π-flipper per 
spectrometer arm arrangement in Sec. 3.6.2) 
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At the exit of coil C, we have 
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so that 
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At the entrance to the 4th coil D D Cϕ ϕ′=  and 
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At the exit of coil D, we have 
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so that the neutron phase at the exit of the 4th coil is 
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 (71) 

 
We now consider two cases. 
 
3.6.1  First Arm of a 4-N=1 π-Coil NRSE 
 
      In this case, the net spin turn in the first arm of the spectrometer in the absence of stray fields is given 
by Eq. (70) with sgn(B0

A) = sgn(B0
B) = “+” so that 
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  (72) 

 
3.6.2  First arm of a 4-N=2 π-Coil NRSE 
 
      In this case, the net spin turn in the first arm of the spectrometer in the absence of stray fields is given 
by Eq. (71) where, for consistency with previous notation used in Sec. 3.5, we interpret “LAB” as the 
nominal gap lg between the bootstrap coil pair, “LBC” as “LAB” and “LCD” as lg of the second coil pair. We 
also change the notation A→A1, B→A2 etc. for consistency with notation in the previous discussion of 
bootstrap coils (Sec. 3.5). In this case we have sgn(B0

A1) = sgn(B0
B2) = “+” and sgn(B0

A2) = sgn(B0
B1) = “-” 

and Eq. (71) becomes 
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 (73) 

 
 
4.  Quantum Mechanical Description of NRSE 
 
      Gähler, Golub, and Keller [8] have discussed particle beam magnetic resonance in quantum mechanical 
terms and derived formulas for spin ½ particles passing along the y-axis. They show that for neutron 
magnetic interaction energies that are very much smaller than the neutron kinetic energy entering the field 
region (µ B0 ≪ ½mnvi

2 - where reflected matter waves at field boundaries may be neglected), the quantum 
mechanical treatment reproduces the classical results with wave interpretations of physical processes such 
as Larmor precession. 
 
4.1  Polarized Beam Traversing a Static Field 
 
      A spin s = ½ particle such as the neutron has spin angular momentum of magnitude 

( )1 3 2s s + =   with a component measured along any given axis of magnitude ms, where ms = ± ½. 
Consider a beam initially polarized along the x direction traveling along y. The wave function is written as 
a plane wave (which may be considered as the superposition of equally probable spin-up and spin-down 
states with respect to the z-axis) 
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   (74) 

 
When the neutron enters a static magnetic field applied along the z-direction, the field gradient at the 
boundary and the associated magnetic force causes the kinetic energy of the ±σz spin states to split by an 
amount ±µnB0 with the opposite splitting of the orientational potential energy. Inside the field, where there 
is no field gradient, the kinetic energies of the ±σz spin states differ. If the total splitting is expressed as 
 
         

0 0 02 ,B nE Bµ ω∆ = =       (75) 
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the wave function inside the static field region is 
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   (76) 

 
where ω0 is interpreted as the classical Larmor precession frequency. The expectation value of the 
polarization along x inside the field region is 
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 (77) 

 
Here, the relative phase of the spin-up and down waves is a cosine function of the distance traveled through 
the field. This is exactly equivalent to Larmor precession in the classical case. 
      On exiting the field, the ±σz spin states once again become degenerate and the neutron spin states retain 
the accumulated relative phase angle ω0lB0/vi with which they exited the field region. This phase angle does 
not change in the subsequent zero-field region, which is classically equivalent to the termination of the 
Larmor precession in the zero field region. This situation is illustrated in Fig. 7. Further accounts of these 
energy changes are found in Refs. [9-13]. 
      Equation (75) is sometimes expressed in terms of a wavevector magnitude splitting of the two states. 
For NRSE applications it is always true that ∆EB0 ≪ ωi, the incident neutron energy, therefore we can 
write 
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2

2 n n

i

m B
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k
µ

∆ ≈
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     (78) 

 
and the accumulated phase difference is lB0∆k. 
 
 

 
 
Fig. 7. When a neutron, of initial energy Ei = ωi , enters a constant static magnetic field region, the field gradient at the boundary 
causes the spin states that are parallel and antiparallel to the field direction to be split symmetrically by ±µnB0 with respect to Ei. Inside 
the field, the total (kinetic + potential) energy remains fixed at ωi. The total splitting is ω0, where ω0 is the classical Larmor angular 
frequency. Usually ω0 « ωi, such that reflections at the field boundaries can be ignored. On exiting the coil, the degeneracy of the 
two states is re-established, but the relative phase of the matter waves associated with the + and - states is shifted by an amount 
ω0 lB0/vi, corresponding to classical Larmor precession of the spin around the field direction during its passage through the field. 
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4.2  Passage Through a Static Field with Superimposed Perpendicular Oscillatory Field 
 
      With a superimposed perpendicular oscillating field (see Krüger [14]), tuned such that ω0 ≈ ωrf, 
transitions between the Zeeman split states (separated by ∆E = ω0) are induced via exchange of quanta 
with the r.f. field. Golub, Gähler, and Keller [13] treat a general case consisting of three regions; two static 
field regions (I and III) sandwiching an intermediate region (II) were the static field coexists with a 
perpendicular oscillating field of length d along the beam direction. These authors use the properties of Eq. 
(74) to simplify the problem by treating the +z and –z components of the eigenvector separately. Further, 
they assume ωrf ≪ ωi (equivalent to the µB0 ≪ ½mnvi

2 assumption above) where ½mnvi
2 = ωi (whereby 

reflected matter waves at the potential boundary can be ignored and various simplifying approximations 
e.g. δkB0 ≈ ω0/vi etc. can be made outside of the exponentials). Using the symbols 0,1T ±  for the transmission 
amplitude with subscript “0” for elastic (no exchange of quanta – i.e., no spin flip) and “1” for inelastic 
(exchange of quanta with spin flip) and “+” and “-” for spin-up and spin-down final spin states respectively 
with respect to z, it can be shown: 
 

             

0

1

0

1

cos sin

sin
2

cos sin

sin
2

di A Av

A

dip Av

A

di A Av

A

dip Av

A

d dT e i T
v v

dT i e T
v

d dT e i T
v v

dT i e T
v

ε

ε

ε

ε

ω ωεα
ω

ω ω
α

ω

ω ωεα
ω

ω ω
α

ω

−+ +
↑↑

−+ −
↓↑

− −
↓↓

− +
↑↓

    + ≡    
    

 − ≡ 
 

    − ≡    
    

 − ≡ 
 









   (79) 

 
where α+ and α- are the amplitudes of the incoming + and - spin states respectively and 
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with the parameter ε proportional to the resonance detuning, defined by 
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where ωp =γnBrf is the classical Larmor precession frequency of the neutron spin around Brf (Eq. (11)). 
Substituting the values from Eq. (79) into Eq. (318) of Ref. [13], the wave function in region III becomes 
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The probability of a spin-flip involving a photon exchange with the r.f. field is 
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which is equivalent to the expression given by Rabi, Ramsey, and Schwinger for the spin flip probability 
(Eq. (17) of Ref. [15]). Correspondingly, the non-spin flip probability (where the energy does not change) 
is 
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which is equal to (1-spin flip probability), as expected. 
 
4.2.1  Special Cases 
 
4.2.1.1  Exact resonance (ω0 =ωrf) – general case 
 
      This is the condition for which ωrf  = ω0, therefore ε = 0, ωA = ωp/2, consequently 
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  (85) 

 
and the probability of a spin-flip involving a photon exchange with the r.f. field is 
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and the non-spin flip probability is 
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    (87) 

 
We see that unless ωpd/vi = (2N+1)π, where N is an integer, an incomplete spin inversion occurs 
(corresponding to a flipper efficiency < 1); i.e., r.f. π-flippers only produce exact π-flips for a unique 
velocity (as was shown classically in Sec. 2.2). 
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4.2.1.2  Exact resonance (ω0 =ωrf ), with dispersion, flipper tuned optimally for vi =〈vi〉 
 
      If, additionally, the flipper is tuned optimally for the average velocity 〈vi〉, we have 
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ω π=      (88) 

 
Thus, Eqs. (86) and (87) may be re-expressed as 
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and 
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respectively. Note that the quantum mechanical spin-flip probability for a neutron of wavelength λi 

(Eq. (89)) is exactly equivalent to the quantity cos cosdisp

ideal

P
P

ε χ=  derived from the classical treatment 

(see Sec. 2.2 and Eq. (30)). 
 
4.2.1.3  Exact resonance (ω0 =ωrf ), exact π-flips for all velocities (i.e., no dispersion or 
             monochromatic) 
 
      “No-dispersion” implies that the classical condition for exact π-flips around Brf is satisfied for all 
velocities, i.e., we replace ωpd/vi by π for any vi in Eq. (85), which becomes 
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and the probability of a spin-flip involving a photon exchange with the r.f. field is 
 
          ( ) ( )2 2
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and the non-spin flip probability (where the energy stays the same) is 
 
          ( ) ( )2 2

0 01 2 0.T T+ −= =     (93) 
 
Note that under these conditions exact spin inversion occurred in region II. 
      Region II is defined from 0 ≤ y ≤ d so that shifting the coordinate system to the exit of region II, we 
have 
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The expectation value of σx at the exit of the coil is 
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 (95) 

 
Thus, at a fixed position y, the spin precesses at angular frequency 2ω0. Because the superimposed r.f. field 
induces a spin state inversion in the resonant coil, the kinetic energy splitting of ±ω0/2 induced by the 
static field gradient at the entrance to the coil adds to the splitting produced by the opposite field gradient at 
the coil exit (rather than canceling as it would with a static field alone). Thus the two spin states emerge 
from the coil with frequencies split by ±ω0 = 2ω0 (≡ 2ωrf at resonance) with correspondingly different 
momenta. The beating due to this difference in ω and k of the two spin states after exiting the coil 
corresponds to a Larmor precession seen at a fixed position y. This precession in a zero field has been 
observed directly in a MIEZE (“Modulation of Intensity Emerging from Zero Effort!”) setup [16]. 
      The argument of Eq. (95) equates with the spin phase angle of a neutron exiting coil A in Table 4, 
where the neutron spin was initially polarized along x, and where exact resonance (ω0 = ωrf) and zero 
dispersion were also assumed, i.e., 
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with the argument in Eq. (95) evaluated at y = 0 (the coil exit) 
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    (97) 

 
By identifying ψA with ωrft and d with lA, we see that the two equations are equivalent. 
      Qualitatively, a kinetic energy splitting of the two spin states occurs on entry to the coil (∆Ek = ω0) due 
to the static field gradient, whilst the total energy (= kinetic + potential) remains constant initially. The total 
spin inversion that occurs in the flipper involving exchange of photons with the r.f. field (see Eq. (92)) 
causes the total energy of the two states to become split by 2ω0, but leaves their kinetic energy unchanged 
(still split by ∆Ek = ω0). At the coil exit, when crossing the static field boundary, the kinetic energy 
splitting does not disappear (as it did in the static-only field case (Sec. 4.1)). If 100 % spin inversion occurs 
due to the r.f. field, an additional splitting in kinetic energy (by ω0) due to the static field gradient at the 
exit boundary takes place (i.e., the kinetic energy splitting doubles at the exit of the first coil (∆Ek = 2ω0)). 
This explains the 2ω0 precession frequency in region III (see Eq. (95)). This situation is shown (for perfect 
spin state inversion) in Fig. 8. Further accounts of these energy changes are found in Refs. [9-13]. 
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Fig. 8. An r.f. flipper tuned for perfect spin flips for a non-dispersive flipper (or a monochromatic beam). The r.f. region is 
deliberately shown shorter than the static field region (as is the case for an r.f. coil placed inside a static field coil). The flipper is tuned 
for exact π-flips within the r.f. field region so that γnBrf lrf /vi =π. In this case, by the time the neutrons exit the r.f. field region a 
complete inversion of the spin states has occurred via exchange of photons with the r.f. field (of angular frequency ωrf = ω0). The 
absorption and emission of r.f. photons means that, in contrast to the case shown in Fig. 7, the total energy of individual spin states is 
not conserved, as shown. The splitting of the total energy reaches a maximum of 2ω0 at the exit boundary of the r.f. field, whilst the 
additional splitting in kinetic energy experienced due to the spin inversion does not manifest itself until the neutron crosses the static 
field boundary on the exit side of the coil. Because the kinetic energies of the two states differ by 2ω0 at the exit of the coil, the 
relative phase of the spin-up and down states go in and out of phase corresponding to a Larmor precession in the subsequent zero field 
region of angular frequency 2ω0. This precession in zero field has been referred to as anomalous or “wrong” Larmor precession by 
Mezei [10]. 
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4.2.1.4  Off-resonance, exact π-flips for all velocities (i.e., no dispersion or monochromatic) 
 
      “No-dispersion” implies that the classical condition for exact π-flips around Brf is satisfied for all 
velocities, i.e., ωrd/vi = π, therefore from Eq. (80) 
 

            
2 2
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d
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so there is no convenient simplification of the wave function for ε ≠ 0. 
 
4.2.1.5  Passage through a second similar coil a distance L downstream (on-resonance, no dispersion 
             or monochromatic) 
 
      Golub, Gähler, and Keller [13] extrapolate the wave function exiting the first coil through a zero-field 
path length, L, to the entrance of a second similar coil downstream (equivalent to the first arm of a N = 1 
NRSE) and show that the wave function exiting the second coil is given by 
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so that the expectation value of the polarization with respect to x at the exit of the second coil is 
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  (100) 

 
The presence of the second similar flipper coil with the same static field orientation “mirror images” the 
neutron energy history shown in Fig. 8 so that the kinetic and total energies of the two spin states revert to 
their starting value Ei. Therefore, the precession occurring downstream of the first coil is not observed 
downstream of the second coil. The final spin phase angle, 2ω0(L+d)/vi, agrees exactly with the classical 
result for the phase change in the first arm of the N = 1 spectrometer, as expected (see Eq. (62)). 
 
4.3  What is the Effect of lrf ≠ lB0? – Coil Tuning 
 
      For any spin inversion to take place, the r.f. field must be applied in a region where the static field is 
also present (i.e., there is a Zeeman splitting to induce transitions between states). Secondly, the r.f. photons 
must have a frequency close to that of the splitting (resonance) so that transitions occur with high 
probability (Sec. 2.3). Finally, for optimum flipping probability, Eq. (13) must be satisfied in the overlap 
region between the static and r.f. fields, of length lπ, applying the definition in Eq. (1). 
 
4.3.1  Monochromatic Beam with Static Field Region Enclosing the r.f. Region (lcoil = lB0, lπ = lrf) 
 
      A monochromatic beam eliminates the complication of dispersion and for a tuned coil, therefore the 
spins remain in the x-y plane after passage through the coil. This is exactly the situation depicted in Fig. 8. 
The static-field-only regions each side of the r.f. region behave as Larmor precession regions as described 
in Sec. 4.1 where the spins precess at rate ω0 around the z-axis with the corresponding spin phase angle 
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shift in the x-y plane. However, because the effect of the spin inversion in the “r.f. + B0” region (length lπ = 
lrf) is not manifested until the neutron reaches the exit of the static field region, the effective Larmor 
precession continues at a rate ω0 over the entire coil length (lcoil = lB0) and at a rate 2ω0 in the zero field 
region after the coil. Thus for an initial spin direction along x, the phase of the spin a distance L 
downstream of the static field region is given by 
 
   ( ) ( )00 2x BL l Lσ ω= +                  lB0 encloses lrf .   (101) 

 
Using the definition of coil length in Eq. (3), we have 

0coil Bl l= , therefore we can equally write 
 
   ( ) ( )0 2x coilL l Lσ ω= +                  lB0 encloses lrf    (102) 
 
with lπ = lrf so that the specific π-flip condition is 
 

   rf
n n rf n

hB
m l

π
γ λ

=                        lB0 encloses lrf.   (103) 

 
4.3.2  Monochromatic Beam with r.f. Region Enclosing the Static Field Region (lcoil = lrf, lπ = lB0) 
 
      This case time-averaged is depicted in Fig. 9. Note that in the “r.f.-field-only” regions each side of the 
static field, the time-averaged field direction is random with respect to the neutron spin and so the average 
kinetic energy and total energy of the neutron spin states remain unchanged. Spin inversion and photon 
exchange occur only in the region where the static and r.f. fields are coincident, where all the change in 
total energy takes place. As before, the effect of the spin inversion on the kinetic energy is only felt at the 
static field boundary after which the time-averaged r.f. field does not change the total or kinetic energy. 
Thus for an initial spin aligned along x, the phase of the spin a distance L downstream of the static field 
region is given by 
 
   ( ) ( )00 2x BL l Lσ ω= +                  lrf encloses lB0.    (104) 

 
However, using the definition of coil length in Eq. (3), lcoil = lrf, no longer allows us to write an expression 
for σx in terms of the coil length lcoil as in Eq. (102). Therefore, if we always define L as the distance 
downstream of the static field region, Eq. (101) may be used for both geometrical cases. For this case, we 
have lπ = lB0 so that the specific π-flip condition is 
 

   
0

rf
n n B n

hB
m l

π
γ λ

=                        lrf encloses lB0.   (105) 

 
4.3.3  With Dispersion or When Detuned from Resonance (B0 Region Encloses Brf) 
 
      When dispersion is present or when the coil is not resonant for all neutrons (e.g., due to static field 
inhomogeneities), a fraction of the spins do not flip in the superimposed “static field + r.f. field” region. 
The unflipped neutrons behave similarly to neutrons in a pure static field (see Sec. 4.1 above), whilst the 
flipped component is subject to the behavior described in Sec. 4.2 and subsequent sections. This situation is 
illustrated (for the case where the B0 field region encloses the r.f. field region) in Fig. 10. 
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Fig. 9. The oscillating r.f. field by itself does not change the average energy of the neutrons. In the field overlap region (length lπ=lB0), 
the spin inversion occurs where all the change in the total energy of the two spin states occurs and where the effective Larmor 
precession angular frequency is ω0. The additional splitting of the kinetic energy brought about by the spin inversion occurs at the exit 
of the static field region, after which the effective Larmor precession frequency is 2ω0. 
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Fig. 10. This is similar to the situation shown in Fig. 8, but with a reduction in flipping efficiency due to dispersion (Sec. 2.2) or a 
departure from the exact resonance condition (Sec. 2.3). A fraction of the neutrons that are not flipped return to their original kinetic 
energy state on leaving the static field region (light gray dashed lines). These neutrons have no splitting of their total energy. The 
flipped neutron fraction is represented by the dark gray dashed lines. 
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5.  Analysis of the Spin-Echo Signal 
 
      The following applies to an idealized spectrometer (no uncertainty on B, L etc.). The effects of 
instrumental uncertainties on the spin-echo signal are discussed in the Sec. 6. The emphasis here is on 
quasielastic applications of the NRSE. The terms in Eq. (68) corresponding to the neutron spin phase gain 
in the first arm and loss in the second arm of the spectrometer, expressed vectorially, are respectively: 
 

              0 0
1 2 ˆ.n

B L
Nϕ γ=

i 0v L
     (106) 

 
and 
 

              1 1
2 2 ,ˆn

B LNϕ γ= −
f 1v .L

     (107) 

 
where γn is the neutron gyromagnetic ratio, i,fv is the initial/final neutron velocity vector and 0 1

ˆ
,L is a unit 

vector parallel to the axes of the first and second arms of the spectrometer (and perpendicular to the coil 
axis). The “-” sign in Eq. (107) implies that the field directions in the second arm are such that they reverse 
the spin phase angle change with respect to the first arm. 
 
5.1  Small Divergence Approximation 
 
      For small beam divergences and coil axes that are perpendicular to iv  and fv , we can approximate 
Eqs. (106) and (107) by 
 

     0 0
0 2 n

i

B L
N

v
ϕ γ=      (108) 

 
and 
 

1 1
1 2 n

f

B LN
v

ϕ γ= −     (109) 

 
respectively, where vi and vf are scalars, so that the net spin turn at the analyzer is given by Eq. (69). For 
quasielastic non-spin flip scattering that is sufficiently low energy transfer (δ v ≪ vi), we can write 
 
         f iv v vδ≈ +      (110) 
 
so that Eq. (69) is approximately 
 

            
( )

( )
( )0 0 1 1 0 0 0 0

22 2 ,i i
NRSE n n

i i i

B L B L v B L v BL v B L v
N N

v v v v
δ δ δ

ϕ γ γ
δ

 − + + 
≈ ≈   +    

  (111) 

 
where 
 
              ( ) 0 0 1 1BL B L B Lδ = −     (112) 
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is often called the spectrometer asymmetry. It is conventional to perform NRSE asymmetric scans by fixing 
the static field and scanning δL = L0 –L1. Also we will assume that B0 = B1 and replace δ (BL) by the 
slightly less general expression δ (BL) = B0(L0 –L1) = B0δL in the following. 
      The measured quantity in neutron spin-echo is related to the polarization of the scattered beam. If the 
polarization is analyzed in the same direction as the polarization direction of the incident beam (assumed 
here to be the x axis), the polarization of the scattered beam is related (classically) to the cosine of ϕNRSE, 
averaged over all the scattered neutron trajectories i.e., 
 
     cos ,x NRSEP ϕ=      (113) 
 
where 〈〉 implies a statistical average over a large sample of scattered neutrons. From Eq. (111) we have 
 

             

0
0 2

0 0 0 0 0 02 2

cos cos 2

cos 2 cos 2 sin 2 sin 2 .

i
x NRSE n

i

n n n n
i ii i

Lv L v
P N B

v

L v L vN B N B L N B N B L
v vv v

δ δ
ϕ γ

δ δ δ δγ γ γ γ

 +
= =  

 

      
= −      

      

    (114) 

 
This expression must be averaged over all possible values of vi (the incident spectrum) and all possible 
values of δv (= vi - vf) determined by the scattering. Noting that Q is approximately independent of ω, i.e., 
 

     2
sin ,n im v

Q θ≈


     (115) 

 
where 2θ is the scattering angle, we can write 
 
        ( ) ( ) ( ), , .iP v v d v S Q dδ δ ω ω     (116) 
 
For small energy transfers (small ω and vi ≈ vf ) we have from the definition of kinetic energy: 
 

            ( ) ( )
2 .f i

n i n fn f i

v v v
m v m vm v v

ω ω ωδ = − = ≈ ≈
+

  

   (117) 

 
If S(Q,ω) is symmetric in ω (usually a good approximation for quasielastic scattering) and substituting δv ≈ 
ω/mnvi from Eq. (117), the average over the δv distribution characteristic of the scattering sample for a 
given vi becomes 
 

             ( ) ( )0 0 0
3

2 2
cos , cosn n

x i
i n i

N B N B L
P v L S Q d

v m v
γ γ

δ ω ω ω
∞

−∞

  
=   

   
∫



   given vi,  (118) 

 
where the “sine” part of the expansion in Eq. (114) disappears in the integral for symmetric S(Q,ω) and the 

denominator ( ), 1S Q dω ω
∞

−∞

=∫  for a normalized scattering function is implicit. Note that the quantity 

preceding ω in the second cosine argument in Eq. (118) when δ (BL) = 0 (i.e., B0L0 = B1L1) is often referred 
to as the spin-echo time, τNRSE, i.e., 
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where 
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   (120) 

 
Equation (118) must be averaged over the normalized incident velocity distribution, F(vi), so the final 
polarization is 
 

      ( ) ( )0 0 0
3

0

2 2
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x i i
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

   symmetric S(Q,ω), (121) 

 

where the denominator ( )
0

1i iF v dv
∞

=∫  is implied. Expressed in terms of the normalized incident wavelength 

distribution, I(λi), Eq. (121) becomes 
 

  ( ) ( )
2

30
0 0

0

2cos , cosn n n n
x i i i i

N m B N mP I L S Q B L d d
h h

γ γλ λδ ω λ ω ω λ
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−∞

    =          
∫ ∫    symmetric S(Q,ω).  (122) 

 
The extent to which the spectrometer asymmetry cosine term contributes to the wavelength-dependence of 
the integrand depends on the situation. Since Q is also a function of λ, Q-dependent scattering also 
contributes to the wavelength-dependence of the integrand. However, for now we assume this part of the 
wavelength-dependence is weak or else the scattering is Q-independent. It should be remembered that Eq. 
(122) is valid for an essentially “perfect” spectrometer, i.e., negligible beam divergence and uncertainty in 
the value of B0 and L0, and negligible flipper coil dispersion. These effects must be included separately. The 
effect of flipper coil dispersion has already been dealt with in Sec. 2.2 and the other instrumental effects are 
considered in Sec. 6. Examples are compared with simulation results in Sec. 8. 
 
5.2  Special Cases for No Sample, Isotope Incoherent Elastic Scattering, or Small ω (“Resolution 
       Function”) 
 
      Isotope incoherence implies scattering that is both Q-independent (so the λ-dependence of the 
scattering function can be ignored). Elastic scattering, or small ω, implies that there is negligible neutron 
wavelength change through the spectrometer and therefore the second cosine term in Eq. (122) is either 
unity or very close to unity. For the cosine term to exceed 0.99 requires ωτNRSE ≤ 0.045π. Under these 
conditions Eq. (122) becomes 
 

   ( ) ( ) ( ) ( )
0

0 cos ,x i i iP I A S d dω λ λ ω ω λ
∞ ∞

−∞

→ ≈ ∫ ∫    (123) 

 
where for brevity we define 
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            02 n nN m B
A L

h
γ

δ=      (124) 

 
and the integral over ω evaluates to S(Q) since there is no other ω-dependence. The integral over λi is 
readily performed for simple wavelength spectral functions, allowing analytical approximations for the 
“resolution” echo signal to be obtained in the absence of depolarizations resulting from instrumental 
imperfections. Expressions for purely monochromatic, rectangular, and triangular incident wavelength 
distributions are given in the following. The less trivial results for rectangular and triangular distributions 
are compared with simulations in Sec. 8.6. 
 
5.2.1  Purely Monochromatic Beam 
 
      For a purely monochromatic incident beam, I(λi) = δ (λ0), and we have simply: 
 

       ( ) ( ) ( ) ( ) ( )0 00 cos cos ,xP A S d S Q Aω λ ω ω λ
∞

−∞

→ ≈ =∫       I(λi) = δ(λ0).  (125) 

 
Therefore, in the absence of instrumental imperfections (see Sec. 6), the resolution function has a pure 
cosinusoidal form of constant amplitude for any δ (BL) with a periodicity given by 
 

    ( ) 0
2

0

1 .
n n n

vhBL
m N Nπ

ππδ
γ λ γ

= =      (126) 

 
5.2.2  Rectangular Incident Wavelength Spectrum 
 
      For a rectangular incident wavelength spectrum of full width ∆λFW, centered about λi = 〈λi〉, the 
wavelength-dependent integral in Eq. (123) becomes: 
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provided that the lower wavelength limit of integration is greater than zero, so that 
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    Rectangular incident spectrum, (127) 

 
apart from depolarizations resulting from instrumental imperfections and flipper coil dispersion. 
 
5.2.3  Triangular Incident Wavelength Spectrum 
 
      The triangular incident spectrum is useful in many practical situations as it is approximately the shape 
delivered by neutron velocity selectors when the source spectrum varies slowly within the selected 
wavelength range. For a triangular incident spectrum of FWHM = ∆λFWHM and mean wavelength 〈λi〉, the 
wavelength-dependent integral in Eq. (123) becomes 
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provided that the lower wavelength limit of integration is greater than zero, so that 
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S Q
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A
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    Triangular incident spectrum, (128) 

 
apart from depolarizations resulting from instrumental imperfections and flipper coil dispersion. 
 
5.3  Special Cases for Quasielastic Neutron Scattering (QENS) Symmetric Scans 
 
      In this case, δL → 0 in Eq. (122) and we have: 
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For quasielastic scattering, the scattering function is represented by a Lorentzian 
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( )2 2

1, ,
Q

S Q
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γ
ω

π γ ω
=

+
    (130) 

 
where γ (Q) = Γ (Q)/ , where Γ(Q) is the energy half-width at half maximum. Performing the integral over 
ω, we have 
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We now consider the possible λ-dependence of Γ(Q). Following Hayter and Penfold [17], we consider a 
common case of self-diffusion at low Q at fixed scattering angle, θ. For simplicity, we ignore the very 
small change in energy of the neutrons on scattering, so we may make the approximation 
 

          ( )
2 2

2
2
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i

DQ DQ π θ
λ

Γ = ≈


    QENS, self-diffusion low Q (Q ≈ Qel),    (132) 

 
where θ is the scattering angle, so that Eq. (131) becomes 
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where we have set 
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5.3.1  Purely Monochromatic Beam 
 
      For a purely monochromatic incident beam, I(λi) = δ (λ0), and Eq. (133) becomes simply: 
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      I(λi) = δ (λ0).  (135) 

 
5.3.2  Rectangular Incident Wavelength Spectrum 
 
      For a rectangular incident wavelength spectrum of full width ∆λFW, centered about λi = 〈λi〉, Eq. (133) 
becomes 
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5.3.3  Triangular Incident Wavelength Spectrum 
 
      For a triangular incident spectrum of FWHM = ∆λFWHM and mean wavelength 〈λi〉, Eq. (133) becomes 
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5.3.4  Gaussian Incident Wavelength Spectrum 
 
      For a Gaussian incident spectrum of FWHM = ∆λFWHM (standard deviation σ) and mean wavelength 
〈λi〉, Eq. (133) becomes 
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  (138) 

 
5.4  Detected Signal 
 
5.4.1  Perfect Polarizer, Analyzer and Non-Spin Flip Scattering 
 
      In an NRSE instrument, for a perfect polarizer and analyzer, the non-spin flip quasielastic signal in the 
detector is 
 

         ( ) ( ) ( )1 1 11 cos 1 cos 1 ,
2 2 2NRSE NRSE xI Pϕ ωτ+ = + = + = +   (139) 

 
where Px has been derived for some specific cases in the preceding section and is proportional to the 
intermediate scattering function. Measuring scattering in the time domain rather than in energy has the 
significant advantage that the scattering function is obtained from the measured data by simple division by 
the instrumental resolution function, rather than by deconvolution. This feature allows for very sensitive 
line shape analysis. 
      Monte Carlo simulations illustrating the behavior of Eq. (139) in various situations are shown in Fig. 
11. In these examples there are no sample size effects and ∆B0 = ∆lB0 = 0 (zero field inhomogeneity and 
perfect dimensions of the flipper coils), but the effects of beam divergence, incident neutron bandwidth, 
and non-elastic scattering are illustrated. The effects of spectrometer imperfections are analyzed further in 
Sec. 6 and additional simulation examples are given in Sec. 8. Columns 1 to 3 of Fig. 11 are for elastic, 
non-spin-flip (isotope incoherent elastic) scattering (or no sample). Column 4 is for quasielastic, isotope 
incoherent (non-spin-flip) scattering. Additionally for columns 1 and 4 zero beam divergence is assumed. 
These particular simulations were performed for a 4-N=2 bootstrap coil NRSE with L1 = 2.0 m, lB0 = 
3.0 cm, lg = 0.0 cm, and λ0 = 8 Å, for 10-3 ≤ B0(T) ≤ 0.025. The asymmetric scan is performed with |B0| =| 
B1|, with (L0 - L1) varied ten minimum periods each side of the symmetric position (i.e., between 

0 010 max
nv NBπ γ± , where B0

max is the maximum applied static field [0.025 T], corresponding to τNRSE = 
19.1 ns). δ (BL) was varied by changing L1 with respect to L0. (i.e., δ (BL) = BδL). The incoming and 
outgoing beam divergence, if any, is equal and uniform up to a maximum ∆θi,max = ∆θf,max = ∆θmax, and is 
symmetrical with respect to the nominal axes for both spectrometer arms (see also Sec. 6.4). Under these 
conditions, the echo maximum is found at L0 = L1. The left hand column of Fig. 11 illustrates the effect of 
broadening ∆λi for elastic, non-spin flip scattering (or no sample). In the extreme, purely monochromatic 
case of ∆λi = 0, the signal is cosinusoidal with respect to δL (as predicted by Eq. (125) with δ (BL) = BδL 
for one signal period given by Eq. (126). For ∆λi > 0, the maximum signal is achieved at the symmetrical 
spectrometer setting and, as ∆λi increases, the primary envelope of the echo signal tightens around this 
point. Note that the period (in L) also decreases inversely proportional to B0 (= B1) (and hence τNRSE), as 
predicted by Eq. (126). The second and third columns show the effect of increasing the neutron flight path 
differences via increasing beam divergence for (i) a purely monochromatic incident beam (column 2), and 
(ii) a triangular wavelength distribution with ∆λi/〈λi〉 = 10 % (column 3). The fourth column demonstrates 
the increasingly rapid decay of the echo point signal with respect to τNRSE as the quasielastic width is 
increased (as predicted by Eq. (135) for a purely monochromatic incident beam (∆λi = 0)). 
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Fig. 11. Some examples of Monte Carlo-simulated NRSE echo signals in the vicinity of the echo point demonstrating the effects of 
varying different parameters in isolation. These particular simulations were performed for a 4 N=2 bootstrap coil NRSE with L1 = 
2.0 m, lB0 = 3.0 cm, lg = 0.0 cm, and λ0 = 8 Å. The axis oriented into the paper represents the static field B0 from 10-3 T at the front to 
0.025 T (τNRSE ≈ 19 ns for these spectrometer parameters) at the rear for each plot. The horizontal axis more parallel to the plane of the 
paper is the spectrometer asymmetry (L0 – L1), in units of mm, between about ± 1.7 mm for each plot. Columns 1 to 3 are for elastic 
non spin-flip scattering (or no neutron energy change through the spectrometer). For the pure monochromatic elastic scattering 
examples there is no coil dispersion. Column 4 is for quasielastic non spin-flip scattering. For each of these simulations there are no 
sample size effects and ∆B0 = ∆lB0 = 0 (zero field inhomogeneity and perfect dimensions of the flipper coils). Additionally for columns 
1 and 4 zero beam divergence is assumed. 
 
 
5.4.2  Imperfect Polarizers with Non-Spin Flip Scattering or No Sample 
 
      Real polarizing devices transmit a fraction of the wrong spin state, which results in a reduction of the 
NRSE signal. It is important to correct data in such a way as to isolate depolarization due to sample 
dynamics from instrumental depolarization as far as it is possible. Considering the quantum mechanical 
description of the polarization in terms of spin-up and spin-down neutrons, the polarizing efficiency of a 
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“+” polarizer is numerically equal to the polarization of an initially unpolarized beam obtained after action 
of the polarizer. Using the definition in Eq. (54), the polarization after the action of the initial polarizer is 
 

     P P
P

P P

I IP
I I

+ −

+ −

−
=

+
     (140) 

 
where PI +  and PI −  are the intensities of + and - neutrons in the beam after the polarizer P. Note that PP can 
vary between +1 and -1. The incoming unpolarized beam of total intensity I0 is described by equal + and - 
components, i.e., 
 

     0
0 0 .

2
I

I I+ −= =      (141) 

 
The total intensity after the polarizer 
 

         0
02

tot
P P P P P

I
I I I T T I+ − += + = =     (142) 

 
where we have used the boundary condition that for perfect + polarization efficiency (PP =1), only the + 
state neutrons of the originally unpolarized beam are transmitted (i.e., one half of the neutrons of the 
incoming beam) and we assume that this total number is conserved for inefficient polarizers. TP is the spin-
independent transmission factor of the device with 0 < TP < 1 due to effects such as absorption or 
scattering. From Eqs. (140) and (142) it is easy to show that after the polarizer: 
 

    ( ) ( )0 01 1
4 2P P P P P
I I

I T P T P
+

+ = + = +     (143) 

 
and 
 

    ( ) ( )0 01 1 .
4 2P P P P P
I I

I T P T P
−

− = − = −     (144) 

 
Therefore, the combined action of the polarizer (P) with the analyzer (A), both oriented to transmit + spin 
neutrons, for non-spin flip scattering is expected to give transmitted intensities 
 

             ( ) ( )( ) ( )( )0 01 1 1 1 1 .
2 4 8
P

PA A A P A P A P A P A
I III T P T T P P T T P P

++
+ = + = + + = + +   (145) 

 
Likewise  
 

             ( ) ( )( ) ( )( )0 01 1 1 1 1
2 4 8
P

PA A A P A P A P A P A
I III T P T T P P T T P P

−−
− = − = − − = − −   (146) 

 
with the total beam intensity after the analyzer 
 

    ( )0 1 .
4

tot
PA PA PA P A P A

I
I I I T T P P+ −= + = +    (147) 

 
Therefore, the final polarization for non-spin flip scattering is 
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          .
1

PA PA P A
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P APA PA

I I P PP
P PI I

+ −

+ −

− +
= =

++
    (148) 

 
      If two π-flippers of efficiency f1 and f2 and spin-independent transmission factor Tf1 and Tf2 are placed 
between the polarizer and the analyzer, and remembering that the effect of a π-flipper of efficiency f is to 
multiply the incoming polarization by the factor (1-2f ) (see Sec. 2.4), we infer by analogy with Eqs. (145) 
and (146) that the + and - intensities downstream of the analyzer (i.e., at the detector) are 
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      only flipper 2 on,  (151) 

and 
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      both flippers 1 and 2 on. (152) 

 
As pointed out by Hayter [18], the ratio of the detector count rates, IPA

tot, measured with both π-flippers 
switched off to the count rates with the two flippers switched “on-off”, “off-on” and “on-on” provides three 
“flipping ratios”, R1, R2, and R12 respectively, which no longer have the spin-independent pre-factors 
common to each measurement. We thus have three equations for the three unknowns: f1, f2, and the product 
of the polarizer and analyzer efficiencies, PPPA, which can be solved to obtain 
 

    
( )( )
( )

12 1 2

1 2 12

1 1
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R R R
− −
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    (153) 
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( ) ( )1 1

.
2
i P A

i
i P A

R P P
f

R P P
− +

=      (154) 

 
The flipping ratios are determined for multi-angle instruments by using a diffuse, non-spin flip scattering 
sample such as quartz. 
      In an M-coil NRSE instrument with non-spin flipping samples (e.g. pure nuclear coherently-scattering 
samples), the polarization (NRSE signal) is reduced from the ideal value by the product of these 
instrumental inefficiencies. Therefore, the corrected signal, Pcorr, is related to the measured signal, Pmeas, by 
 

      
( )

1

.
1 2

meas
corr M

P A i
i

P
P

P P f
=

=
−∏

     (155) 

 
5.4.3  Imperfect Polarizers with Spin Flip Scattering 
 
      When there is a sample that modifies the spin state of the incoming neutrons, the spin transfer function 
of the sample has to be taken into account just like the function (1 - 2f) for the flipper. Table 6 shows 
relative spin-flip probabilities for various types of nuclear scattering for non-magnetic samples. 
 

              Table 2. Spin flip probabilities for non-magnetic samples. 
 

Scatter Coherent 
Incoherent 

Spin Isotope 

Non-spin flip 1 1/3 1 

Spin flip 0 2/3 0 

 
 
Consider a non-magnetic sample that flips a fraction q of the neutron spins so that, in exact analogy with 
the π-flipper (Sec. 2.4) and Eq. (55), the polarization after the sample, PS, is related to the polarization 
before the sample, Pi, by 
 
     ( )1 2 .S iP q P= −      (156) 
 
For the simple example of a single isotope, pure incoherent scatterer, 1/3 of the neutrons have their spins 
unchanged whilst 2/3 of the neutrons have their spins flipped by π. Thus the sample flipping efficiency is 
given by q = 2/3, consequently 
 

     
1
3

S

i

P
P

= −       non-magnetic, pure isotope incoherent scatterer.  (157) 

 
This means that the spin-echo signal amplitude is reduced to 1/3 and the minus sign means that the echo 
signal is inverted. For this case, Eq. (155) becomes 
 

       
( )

1

3
.

1 2

meas
corr M

P A i
i

P
P

P P f
=

= −
−∏

    (158) 

 
For a more general non-magnetic case where both spin-incoherent and coherent scattering are present, we 
might have 
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       ( )
( ) ( )( )
2

,
3

inc

coh inc

S Q
q

S Q S Q
≈

+
    (159) 

 
where we have assumed that the relative probabilities of coherent and spin-incoherent scattering are given 
by Scoh(Q) and Sinc(Q) respectively, therefore 
 

  ( ) ( )
( ) ( )( )

3
.

3
coh incS

i coh inc

S Q S QP
P S Q S Q

−
=

+
    (160) 

 
This represents an upper limit on the size of the spin-echo signal. For this case Eq. (155) becomes 
 

      
( ) ( )( )

( ) ( ) ( )
1

3
.

1 2 3

meas coh inc
corr M

P A i coh inc
i

P S Q S Q
P

P P f S Q S Q
=

+
=

− −  ∏
   (161) 

 
Other scattering cases including paramagnetic, ferromagnetic, and antiferromagnetic samples have been 
discussed by Mezei [3]. In order to determine the exact spin-flip/non-spin flip behavior of the sample, a 
conventional polarization analysis arrangement may be used with a polarizer and analyzer and only one 
flipper switched on or off. 
 
 
6.  Analysis of Contributions to the Elastic Instrumental Resolution Function: 
     Allowable Flight Path Differences and Static Magnetic Field Inhomogeneity 
 
      The spin-echo phase is given by Eq. (69), i.e., 
 

0 1 0 0 1 1
2

.n n
NRSE i f

Nm
B L B L

h
γ

ϕ ϕ ϕ λ λ = − = −   

 
At the echo point, 〈ϕNRSE〉 = 0, however, even for λi = λf (elastic scattering or no sample), ϕNRSE has a 
distribution of values about the mean, 〈ϕNRSE〉, of characteristic width ∆ϕNRSE. This is because the terms 
B0L0 and B1L1 have non-zero spread, ∆(B0L0) and ∆(B1L1) respectively2, arising from instrumental 
imperfections. Consequently, ∆ϕ0 and ∆ϕ1 are non-zero and the valued information, which is the 
depolarization due to the scattering energy transfer distribution, is modified by the instrumental 
depolarization. The instrumental uncertainty, ∆(BL), determines the elastic instrumental resolution 
function. In order to obtain a broad dynamic range, ∆ϕNRSE must be dominated by the distribution of λi – λf 
from sample energy exchanges (rather than the uncertainties in the BL terms) to the largest field 
magnitudes possible. 
      If we assume Gaussian uncertainties on the values of B and L and that B and L are independent 
variables, we expect ϕNRSE also to have a Gaussian distribution, g(ϕNRSE). At the echo point (〈B0L0〉 = 
〈B1L1〉), g(ϕNRSE) is symmetrically distributed about zero (polarization realigned along the original 
direction – the x axis in these examples). For the Gaussian distribution g(ϕNRSE), the elastic scattering 
polarization along x, Px

0, is 
 

                                                 
2 Note that we use the symbol “∆” to imply a statistical spread, not to be confused with the “δ ” used to imply a difference, when 
referring to the asymmetry B0L0 - B1L1. 
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or the inverse relation 
 

      0 0

1 14 ln 2 ln 11.1 ln .FWHM
NRSE

x xP P
ϕ

   
∆ = ≈   

   
   (163) 

 
We use this convenient form when estimating spectrometer tolerances in the following sections. One notes 
that if the distribution g(ϕNRSE) was uniform between the limits ± ∆ϕNRSE

max, rather than Gaussian, the 
analogue of Eq. (162) is a sinc function of ∆ϕNRSE

max: 
 

    ( )0 sin
.

max
max NRSE

x NRSE max
NRSE

P
ϕ

ϕ
ϕ
∆

∆ =
∆

    (164) 

 
      The elastic and quasi-elastic signal count rate cannot exceed a maximum proportional to Px

0 (for pure 
coherent scatterers) and sometimes considerably less for incoherent scatterers (see Sec. 5.4.3), therefore 
Px

0(τNRSE) must remain comfortably greater than zero. In order to avoid excessive counting times or poor 
signal-to-noise ratio we suggest a practical minimum Px

0 > 0.2 at the maximum required τNRSE in a 
quasielastic measurement. Purely coherent, elastic scatterers, such as Grafoil®, CarbopackTM, and carbon 
black are all used for measuring the resolution function in spin-echo spectrometers. 
      In order to estimate the depolarization produced by static field inhomogeneities, dimensional 
uncertainties, and beam divergence, we use the convenience of Eq. (163). We further assume similar 
distributions of ϕ0 and ϕ1, which imposes ∆ϕ0 = ∆ϕ1, and that the spectrometer is operated at the echo point 
(i.e., 〈ϕ0〉 = 〈ϕ1〉). If ϕ0 and ϕ1 are distributed normally, we can write 
 
    2 2

0 1 02 .NRSEϕ ϕ ϕ ϕ∆ = ∆ + ∆ ≈ ∆     (165) 
 
In order to isolate individual contributions, we analyze first the effect of static magnetic field 
inhomogeneities in the absence of flight path uncertainties, and secondly, the flight path uncertainties in the 
absence of field inhomogeneities. We also separate the flight path uncertainties due to spectrometer 
dimensional fluctuations from those due to beam divergence. For the beam divergence, we cannot assume 
Gaussian distributions, as explained in Sec. 6.4. 
 
6.1  Static Magnetic Field Inhomogeneities 
 
      We may consider the effect of static field inhomogeneity as creating a distribution of values of ω0 – ωrf. 
In order to simplify the argument we consider ωrf as being precisely fixed (a reasonable assumption for a 
high quality frequency generator). The effect of field inhomogeneity is isolated by attributing all the 
fluctuation in ω0 – ωrf to the distribution of ω0 caused by the field inhomogeneity, ∆B0, and comparing the 
polarization with the equivalent system in which ω0 =ωrf for all trajectories (∆B0 = 0). Further, we assume 
that the spectrometer is optimally tuned such that 〈ω0〉 = ωrf and that the field inhomogeneity gives rise to a 
normal distribution of ω0 with respect to 〈ω0〉. In this approximation, the effect of static field 
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inhomogeneity is analogous to the effect of dispersion discussed in Sec. 2.2. The effect of ω0 ≠ ωrf is 
conveniently visualized in the rotating coordinate system, as proposed by Rabi, Ramsey, and Schwinger in 
Ref. [15], whereby the rotating field magnitude transforms to an effective field of magnitude 
 

       
( )2 2

0
.

rf peff
rf

n

B
ω ω ω

γ

− +
=     (166) 

 
The effective field lies at an angle αeff to the x-y plane given by 
 

             0 01 1tan tan .rf rf
eff

pn rfB
ω ω ω ω

α
ωγ

− −− −
= =     (167) 

 
This is implicit in the quantum mechanical treatment of Ref. [13] discussed in Sec. 4.2. We now find an 
approximate relation between the static field inhomogeneity and the consequent depolarization that works 
well within certain limits. 
      The spin-flip probability for exact resonance (ω0 = ωrf) is given by Eq. (86) and in the general off-
resonance case by Eq. (83). If ∆ϕπ represents the difference in the x-y spin turn in the off-resonance case 
with respect to exact resonance case, then, in analogy with Sec. 2.2, we equate the ratio of the spin-flip 
probabilities with the quantity 〈cosε cos∆ϕπ〉, where ε here refers to the angle of the spin vector out of the 
x-y plane, i.e., 
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  (168) 

 
If λi is the median wavelength and that the flipper is optimally tuned for π flips at this wavelength, i.e., 

0p n B ih m lω π λ=  (see Eq. (13)) and setting 
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0 ,
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Eq. (168) simplifies to 
 

           
0

2
, 0 2

1 sin
2Bpπ
π ξ

ξ∆ ≠
 =  
 

    (170) 

 
for the median wavelength, which we assume is approximately true for the entire incident wavelength band. 
(Note that Eq. (170) is analogous to Eq. (49).) If we assume that ∆B0 is sufficiently small that cosε ≈ 1 and 
〈cos∆ϕπ〉 ≈ 1-〈∆ϕπ

2〉/2 = cos〈∆ϕπ (rms)〉, we have after one π coil due to the effect of ∆B0: 
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− −
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   (171) 
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For an M-coil unit spectrometer, we assume that ∆ϕπ is uncorrelated between coils and that the cumulative 
effect for M coils is obtained by summing in quadrature. Taking FWHM values, we have (by combining 
Eqs. (163) and (171)): 
 

          1 2
2 0

1 1cos sin 4 ln 2 ln
2

FWHM
NRSE

x

M
P

πϕ ξ
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−    ∆ ≈ =    
    

   (172) 

 
and hence 
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   (173) 

 
Specifically for a 4-N coil instrument we have: 
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   (174) 

 
In the range of operation of spectrometer configurations considered in this document, it can be shown that 
the value of ξ is typically no greater than about 1.3. In this range, it turns out that the awkward term 
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 may be replaced very successfully by ( )4 1ξ −  so that 

 

             ( )
0

0

0, 0
exp 1 ,    for    1.3,

4 ln 2B
x l

MP
θ

ξ ξ
∆ = ∆ =

 ≈ − − ≤ 
 

   (175) 

 
or specifically for a 4-N coil instrument: 
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It turns out, somewhat fortuitously, that Eqs. (175) and (176) produce a better approximation to Px

0 when 
∆B0 is too large to assume cosε ≈ 1 (implicit in Eqs. (173) and (174)) or when the accumulated dephasing 
in the x-y plane approaches 2π. The approximations in Eqs. (175) and (176) make the inverse problem 
significantly more tractable (i.e., what tolerance on ∆B0 is required to obtain a given value of Px

0 under a 
given set of conditions λ0, B0 etc.?). The inverse expression, which is more useful in instrument design than 
the forward expression (Eq. (173)), then finally reduces to 
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for M coils. Specifically for a 4-N coil instrument we have: 

http://dx.doi.org/10.6028/jres.119.005
http://dx.doi.org/10.6028/jres.119.005


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.005 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 109 http://dx.doi.org/10.6028/jres.119.005 

 

           
0

0 0, 0
2 ,

B

FWHM
rfl

B B
N Nθ

κ κ
∆ = ∆ =

 ∆ ≈ + 
 

    (178) 

 
where ( )0ln 2 ln 1 xPκ = . The success of Eq. (178) is demonstrated in Fig. 12 and Fig. 13 for N = 1 and N = 

2 respectively for a spectrometer setting with B0 = 0.0393 T, lB0 = 0.03 mm, L0 = 2 m, λ0 = 8 Å, which gives 
τNRSE = 15 ns and 30 ns for N = 1 and N = 2 respectively. 
 
6.2  Coil Flatness 
 
      In order to estimate tolerances on the flight path lengths, we return to the expanded equations 
representing ϕ0 (and ϕ1) which contain the individual contributions (the flatness model used is that 
described in Sec. 3.6), and now we assume ∆B0 = 0. 
(a) For a 4 (N = 1)-coil NRSE, we have from Eq. (72) for a given neutron trajectory, 
 

( ) ( ) ( ) ( )0 02rf
R L L R

n

L f B f B f A f A
v

ω
ϕ = + ∆ + ∆ − ∆ − ∆    

 
 

 
 
Fig. 12. Simulated and analytical predictions of the effect of ∆B0 on the elastic polarization Px

0 for τNRSE = 15 ns at 8 Å, N = 1, with 
other spectrometer parameters given in the plot title. The blue curve represents Eq. (174) which is only valid for moderate to small 
∆B0. The red curve represents the approximation obtained using 4(ξ-1) for the inverse cosine squared part of the exponential in Eq. 
(174) which just so happens to give a better approximation at larger ∆B0 (Eqs. (176) and (178)). 
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Fig. 13. Simulated and analytical predictions of the effect of ∆B0 on the elastic polarization Px

0 for τNRSE = 30 ns at 8 Å, N = 2, with 
other spectrometer parameters given in the plot title. The blue curve represents Eq. (174) which is only valid for moderate to small 
∆B0. The red curve represents the approximation obtained by 4(ξ-1) for the inverse cosine squared part of the exponential in Eq. (174) 
which just so happens to give a better approximation at larger ∆B0 (Eqs. (176) and (178)). 
 
 
where we have set ϕin = 0 (perfectly polarized incoming beam) and the terms ∆ fL and ∆ fR are the 
deviations of the coil surface from perfect flatness on the left and right hand sides of the coil respectively. 
Assuming, for similar coils, ∆ fL and ∆ fR have Gaussian distributions of equal FWHM =∆ f FWHM, we can 
write 
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whence 
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  (180) 

 
We can also write the FWHM fluctuation in the coil length, ∆lB0, in terms of ∆ fFWHM, where 
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  (181) 

 
(b) For N=2 bootstrap coils, for a given neutron trajectory, we have from Eq. (73): 
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where we have set ϕin = 0 (perfectly polarized incoming beam) and the terms ∆ fL and ∆ fR are the 
deviations of the coil surface from perfect flatness on the left and right hand sides of the coil respectively. 
Assuming, for similar coils, that ∆ fL and ∆ fR have Gaussian distributions of equal FWHM = ∆ f FWHM, we 
can write 
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whence 

          
[ ]

5
0 0

0 o
0 0

0

1 12ln 2 ln 2.54 10 ln
.

T A

FWHM
x xNRSE

FWHM
n n i

i

P Phf L
m N B N B

ϕ
ϕ γ λ λ

−   
×   

∆    ∆ = = ≈
 
  

  (183) 

 
We can also write the FWHM fluctuation in the coil length (length of the B0 field) in terms of ∆ f FWHM, 
where 
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Inverting Eq. (184) we also have 
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   (185) 

 
Equation (184) seems to be generally valid, the “√N” not being apparent in the N = 1 case (Eq. (181)). The 
success of Eq. (184) is demonstrated in Fig. 14 and Fig. 15 for N = 1 and N = 2 respectively. 
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Fig. 14. Simulated (black circles) and analytical predictions (Eq. (184) – red curve) of the effect of Gaussian fluctuations of the π-
flipper length resulting from independent Gaussian fluctuations of the flatness of the windings on the entrance and exit sides of the 
coil. In this example, N = 1, τNRSE = 15 ns and the other spectrometer parameters are given in the plot title. 
 
 

 
 
Fig. 15. Simulated (black circles) and analytical predictions (Eq. (184) – red curve) of the effect of Gaussian fluctuations of the π -
flipper length resulting from independent Gaussian fluctuations of the flatness of the windings on the entrance and exit sides of the 
coil. In this example N = 2, τNRSE = 30 ns and the other spectrometer parameters are given in the plot title. 

http://dx.doi.org/10.6028/jres.119.005
http://dx.doi.org/10.6028/jres.119.005


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.005 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 113 http://dx.doi.org/10.6028/jres.119.005 

 

6.3  Coil Parallelism 
 
      Related to the coil flatness is the question of parallelism, which may actually impose the major 
engineering limitation. The tolerances on the coil length are the same as indicated in Sec. 6.2, however, a 
lack of parallelism leads to a predictable and continuous change of field paths over the beam area. If we 
assume that Eq. (184) defines approximately the maximum tolerance in the static field length, we can 
approximate the coil parallelism tolerance by 
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 (186) 

 
where max

surfϑ  is the maximum tolerable angle between the entrance and exit surfaces of the static coil 
windings and a and laxial are the coil dimensions defined in Fig. 23. 
 
6.4  Beam Divergence (Simplified Model) 
 
      We use a simplified model in order to estimate analytically the effects of beam divergence on the elastic 
resolution (polarization). More realistic beam divergence models, which are treated numerically, are 
described in Sec. 8.5. The simplified model assumes that the spectrometer components (coil boundaries, 
samples, etc.) are described by thin planes perpendicular to a nominal beam direction. A divergent incident 
or scattered beam is represented by selecting random trajectory polar angles, ∆θi or ∆θf, up to specified 
maxima ∆θi,max and ∆θf,max respectively, where all ∆θ are defined with respect to any axis parallel to the 
nominal beam axis. ∆θi and ∆θf are assumed to affect all path lengths upstream and downstream of the 
sample plane respectively. This situation is illustrated in Fig. 16. Therefore, the effect of beam divergence 
is to increase all distances between planes normal to the nominal beam axis by the factor 1/cos(∆θi,f). 
 
 

 
 

Fig. 16. Essentials of the “simplified” divergence model. 
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      In order to isolate the influence of the beam divergence on the elastic resolution one can consider a 
symmetrical spectrometer at the echo point with no field inhomogeneities such that B1L1=B0L0, 〈ϕ0〉=〈ϕ1〉, 
etc. The elastic resolution is still given by Eq. (113), i.e., ( )0

0 1cos cosx NRSEP ϕ ϕ ϕ= = − . We also 

assume small divergence, which allows one to write 0 0
0

2 n n iNm B L
h

γ λ
ϕ =  etc. (see Sec. 5.1). With these 

assumptions the expression for Px
0 simplifies to 

 
      ( ) ( ) ( )0

0 1 0 0 1 1 0 1cos cos cos .xP ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= − = + ∆ −  + ∆  = ∆ − ∆    (187) 

 
For a trajectory in the incident arm of the spectrometer, we have 
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The distribution of ∆ϕ0 for random ∆θ is by no means Gaussian or uniform. Because we assume small 
divergence (i.e., ∆θi,max and ∆θf,max are small – certainly within the range of angles encountered in the 
NRSE), we write for all incident arm trajectories: 
 

    ( )
2

0 0 01 cos
2

i
i

θ
ϕ ϕ θ ϕ

∆
∆ ≈ − ∆ ≈    (189) 

 
and likewise at the echo point: 
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(Note ∆ϕ0 and ∆ϕ1 are not necessarily small numbers because 〈ϕ0〉 can be very large). Therefore, finally 
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           (191) 
 
The average in Eq. (191) can be expressed in terms of the double integral over the range of ∆θi and ∆θf 
which are both assumed to be uniform in probability in the range (0, ∆θi,max), (0, ∆θf,max), permitting the 
average to be written simply as 
 

   

, ,

0

0 2 2

0 00

0, 0
, ,

cos
2

.

f max i max

i f i f

x B l
i max f max

d d
P

π

θ θ ϕ
θ θ θ θ

θ θ

∆ ∆

∆ = ∆ =

 
 ∆ − ∆ ∆ ∆  

 ≈
∆ ∆

∫ ∫
   (192) 

 
It can be shown that Eq. (192) reduces to 
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(193) 
 
where C1 and S1 are the Fresnel cosine and sine integrals respectively, defined by 
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and 
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Certain approximations for evaluating C1 and S1 have been discussed by Mielenz [19] (note that the π/6 
term in Eq. 3b of this reference should be multiplied by x3) and Heald [20]. The integrals can also be 
evaluated numerically. For the particular case of |∆θi,max| = |∆θf,max| = |∆θmax|, Eq. (193) becomes: 
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or in terms of the instrument parameters: 
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          (case of |∆θi,max| = |∆θf,max| = |∆θmax|).       (197) 
 
The success of Eq. (193) in describing the relationship between ∆θmax and Px

0 is demonstrated in Fig. 17 
and Fig. 18 for realistic examples. The examples with τNRSE = 15 ns, N = 1, and τNRSE = 30ns, N = 2 have 
sufficiently large values of 〈ϕ0〉 that the arguments of C1 and S1 exceed unity in the plotted range (the values 
shown on the right hand side y-axes). They also have |∆θi,max| = |∆θf,max| = |∆θmax| (so that Eq. (196) is used). 
      In the present context it is useful to have Px

0 as the dependent variable and ask “what is the maximum 
permissible value of |∆θmax| to achieve a given value of Px

0?” Unfortunately, inversion of Eq. (196) is not 
trivial. The traditional approximations for C1 and S1 discussed in Refs. [19,20] and others do not lend 
themselves to neat closed forms either, even for small arguments, since the numerator of Eq. (196) involves 
large powers of the argument for sufficient accuracy. However, we note that the expansion of C1

2(x)+S1
2(x) 

involves terms in x4n+2, n = 0, 1, 2,…, ∞ with alternating signs for the first few terms. Another function that 
has the same powers and signs as these first terms would be x2 exp(-ax4): 
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Fig. 17. Monte Carlo simulated (black circles) and analytical predictions for the relationship between maximum divergence ∆θmax 
(∆θ uniformly distributed up to ∆θ max) and Px

0 for the case N = 1, τNRSE = 15 ns. The other spectrometer parameters are given in the 
plot title. The analytical approximation (as expressed by Eq. (193) [Eq. (196) for the particular case of |∆θi,max| = |∆θf,max| = |∆θmax|] 
describes the simulation very well and is represented by the red curve. The approximation (Eq. (202)) that should be valid for |∆θmax| 
<~ 8.4×10-3 rad to within 1 % is shown by the blue dashed curve. 
 

 
 
Fig. 18. Monte Carlo simulated (black circles) and analytical predictions for the relationship between maximum divergence ∆θ max 
(∆θ uniformly distributed up to ∆θ max) and Px

0 for the case N = 2, τNRSE = 30 ns. The other spectrometer parameters are given in the 
plot title. The analytical approximation (as expressed by Eq. (193) [Eq. (196) for the particular case of |∆θi,max| = |∆θf,max| = |∆θmax|]) 
describes the simulation very well and is represented by the red curve. The approximation (Eq. (202)) that should be valid for |∆θmax| 
<~ 6.0×10-3 rad to within 1 % is shown by the blue dashed curve. 
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The expansion of C1
2(x)+S1

2(x) for the first few terms is 
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therefore we try setting the parameter a in Eq. (198) to the magnitude of the second term coefficient in Eq. 
(199) = π 2/45 ≈ 0.21932 which makes the two leading terms in Eqs. (198) and (199) identical. This should 
certainly work well for x < 1 since the higher order terms decrease rapidly. With this substitution Eq. (198) 
becomes 
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for which the first few terms are quite similar to those of Eq. (199). It turns out that this approximation can 
be applied with about 1 % accuracy up to x ~ x1% ~ 1.15, where the fan-out of the spins due to the 
divergence (= ∆ϕ0 (see Eq. (189)) ≈ π x1%

2/2 ~ 0.7π) is still below 2π radians, i.e., 
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In fact the approximation is within 15 % for x up to about 1.8, at which point ∆ϕ0 ≈ 1.6π (as is seen from 

Fig. 17 and Fig. 18. Now identifying x with 0 02 n n i
max

Nm B L
h

γ λ
θ

π
∆ , Eq. (197) can be inverted using the 

approximation in Eq. (201) yielding: 
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 (202) 

 
The results of this latter approximation are plotted as the blue curves in Fig. 17 and Fig. 18. Although the 
suggested limits of applicability implied by Eq. (202) (for 1 % accuracy of Eq. (201)) are 8.4 mrad and 
6.0 mrad for the N = 1 and N = 2 cases respectively shown in the figures, the approximation works quite 
well also for larger angles. 
 
6.5  Approximation for Equal Contributions to Depolarization from ∆B0, ∆lB0, and ∆θmax 
 
      In the preceding sections, the contributions of ∆B0, ∆lB0, or ∆θ to the elastic polarization Px

0 were taken 
in isolation. Because all three parameters will have some uncertainty, their individual tolerances must be 
correspondingly tighter to compensate for the depolarization created by the other two. It is difficult to 
assess which parameter tolerance is easiest to achieve but some idea of the spectrometer requirements is 
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obtained by setting the ∆B0, ∆lB0, and ∆θ contributions to the depolarization approximately equal. For equal 
contributions, we assume that the tolerances will be approximately 1/√3 times the values given by Eqs. 
(178), (184), and (202) respectively (for a 4-N coil instrument), i.e., 
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where ( )0ln 2 ln 1 xPκ = , as before. Note that ∆B0 is defined by N, lB0, and λi only and is independent of B0 
or zero field region parameters. 
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Note that ∆lB0 is defined by N, B0 and λ only and is independent of lB0 or zero field region parameters. 
Finally, 
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Note that ∆θmax depends on λ and on both the flipper coil and zero-field parameters (N, B0, L0 (i.e., LAB, lB0, 
and lg)). Even though these parameters also appear in the expression for τNRSE, the λ3-dependence of the 
latter means that ∆θmax is not uniquely determined by the quantity τNRSE (i.e., the same value of τNRSE may 
require different values of ∆θmax depending on the values of N, B0, L0 and λ). 
 
6.6  Some Examples (Equal Contributions to Depolarization) 
 
      Consider requiring the elastic (resolution) polarization Px

0 to be greater than some specified minimum 
value at a reference point with equal contributions coming from ∆B0, ∆lB0, and ∆θmax. We consider the point 
τNRSE ≈ 30 ns at λ = 8 Å with N = 2, for M = 8 π coils (lB0=0.03 m), with B0 = 0.0393 T, L0 = 2 m. Using 
Eqs. (203-205), several results are shown in Table 7. 
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Table 7. Parameter tolerances required to achieve a specified minimum elastic (resolution) polarization Px
0 for τNRSE = 30 ns at λ = 8 Å 

with the above spectrometer dimensions (B0=0.0393 T) and approximately equal contributions to the depolarization coming from ∆B0, 
∆lB0, and ∆θmax. The final column normalizes ∆θmax to the critical angle of natural Ni at the same wavelength. 
 

For Px
0 > ∆B0 (FWHM)[µT] < ∆lB0 (FWHM)[µm] < ∆θmax [mrad] < ∆θmax /θc(8Å, nat. Ni) % 

0.1 244 71 5.4 39.0 

0.2 195 59 4.9 35.7 

0.3 164 51 4.6 33.2 

0.4 140 45 4.3 31.0 

0.5 120 39 4.0 28.9 

0.6 101 33 3.7 26.8 

0.7 84 28 3.4 24.5 

0.8 65 22 3.0 21.8 

0.9 45 15 2.5 18.0 

0.95 31 11 2.1 15.1 

0.99 14 5 1.4 10.0 

 
 
The results in Table 7 are summarized in Fig. 19. Note the particular sensitivity of the instrumental 
resolution on the beam divergence once a certain threshold angle is reached. 
 
 
7.  NIST NRSE Project Goals 
 
7.1  Desired Function 
 
      Desirable criteria for a NIST NRSE instrument are summarized as follows: 

1. Emphasis on quasi-elastic scattering – coil tilting is not necessary. 
2. Large solid angle coverage and multi-angle measurement capability. 
3. If possible, the spectrometer should be able to access Fourier times of τNRSE = 30 ns at λ = 8Å and 

be fabricated with sufficient precision to allow useful measurements to be performed at this 
measurement point. 

4. Offer usable incident wavelengths at least down to 3 Å for high-Q capability. 
5. Must have a short Fourier time measurement capability. 

 
7.2  Spectrometer Dimensions and Field Magnitudes Required to Access τNRSE = 30 ns at λ = 8 Å 
 
      From Eq. (120) we have 
 

  [ ] [ ] [ ]
3°

0 0ns 0.37271 T m A ,NRSE iN B Lτ λ  =   
 

 
where we assume that B0 = B1 so that L0 = L1 at the QENS echo point. In order to access τNRSE = 30 ns at λ = 
8 Å, we must satisfy the condition 
 

[ ] [ ]( )0 0T m 0.157
max

N B L ≥     criterion for accessing τNRSE = 30 ns at λ = 8 Å,  (206) 
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Fig. 19. Parameter tolerances (see legend for units) required to achieve a specified minimum elastic (resolution) polarization, Px

0, for 
τNRSE = 30 ns at λ = 8 Å with the above spectrometer dimensions (B0=0.0393 T) and approximately equal contributions to the 
depolarization coming from ∆B0, ∆lB0, and ∆θmax. 
 
 
where (B0L0)max implies the maximum attainable value of the product B0L0. If we chose N = 2 as the most 
likely bootstrap factor, noting the advantages and disadvantages outlined in Sec. 3.4, this condition 
amounts to fulfilling: 
 
       [ ] [ ]( )0 0 max

T m 0.079 TmB L ≥     criterion for accessing τNRSE = 30 ns at λ = 8Å with N = 2. (207) 
 
Obvious limitations on the maximum value of B0 are imposed by the maximum current × winding density 
of the static field coils. This depends on the length, cross-section, material, winding temperature, and the 
ability to remove heat. Increasing the zero-field drift path lengths increases proportionately the maximum 
achievable value of τNRSE, however disadvantages include the rapid reduction in solid angle (∝ 1/L2) and 
possibly limitations imposed by available space. Owing to these constraints and the linear dependence of 
τNRSE on B0, it seems reasonable to attempt to maximize the static magnetic field B0 as far as possible. 
Evaluating B0 and L0 for τNRSE =30 ns at λi = 〈λi〉 = 8Å, we have, for example, 
 

B0 ≈ 0.08 T, L0 = 1 m, N = 2 
 

B0 ≈ 0.04 T, L0 = 2 m, N = 2. 
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To date, the largest static fields produced in water-cooled NRSE coils using pure aluminum windings are 
about B0 ≈ 0.025 T. With this field we require L0 = 3.14 m for N = 2 (which is a little long for available 
floor space) or else L0 = 1.57 m for N=4. Apart from the increased restrictions on the maximum incoming 
bandwidth, ∆λ/λ, when using N = 4, doubling the number of π-flipper coils has the obvious disadvantage of 
increasing the complexity and setup of the spectrometer and increasing the amount of material in the beam. 
Thus an N = 4 option is unattractive for a multi-angle instrument. Restricting N to 2 with L0 ≤ 2 m and 
pursuing the goal of increasing B0 towards 0.04 T presents itself as one of the more attractive options. 
Some consequences are explored in the following sections. 
 
7.3  Bootstrap NRSE Coil Components and Specifications 
 
7.3.1  General Description 
 
      The N=2 bootstrap NRSE coil, a most recent example of which is shown in Fig. 20, is composed of 
back-to-back static field coils with equal but oppositely-opposed field directions. Each static field coil 
encloses an r.f. coil (whose coil axis is perpendicular to that of the static coil). The r.f. coil must be placed 
inside the static field coil in order to avoid significant r.f. attenuation that would otherwise occur in the 
metallic structures of the static field coil. µ-metal plates capping each end of the static field coils conduct 
magnetic flux lines between the two coils. An outer µ-metal shield enclosing the entire assembly, apart 
from the beam windows, helps reduce the stray field magnitude entering the zero field regions. For quasi-
elastic applications, both the static and the r.f. coil axes are perpendicular to the beam direction. To profit 
from the advantages of the NRSE technique over conventional NSE, the NRSE coils must be moderately 
compact in the beam direction. Because the neutron beam traverses both the static and the r.f. coil 
windings, there are particular restrictions on the winding materials that may be used in the beam passage 
(see Sec. 7.3.2). High resolution requirements also impose restrictions on the shape of the windings 
themselves. These and other factors are discussed in the following sections. 
 
 

 
 
Fig. 20. A N=2 bootstrap coil on the RESEDA spectrometer at FRM-II. The zero-field flight paths are magnetically shielded by a 
double-skinned µ-metal enclosure (removed). The µ-metal screen on the face of the coil, the r.f. coil air cooling connections (blue), 
and the static field coil water cooling connections (black) are visible (photo kindly allowed by T. Keller, FRM-II). 
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7.3.2  Aluminum Windings: Transmission and Small Angle Scattering 
 
      Because the beam must traverse both the static field coil and the r.f. coil windings with this design, the 
neutronic properties of copper exclude it as a winding material within the beam region. For non-
superconducting windings, the most obvious choice is aluminum. However, even pure aluminum has 
resistivity that is almost 60 % greater than pure copper at room temperature. For a 4-N = 2 coil NRSE 
instrument, the beam must traverse a total of 16N = 32 layers of static and r.f. coil windings. Assuming that 
each winding layer has the same thickness, t, we can estimate the anticipated maximum transmission of all 
the coils from the total cross-section of pure aluminum at room temperature. Some results for different 
winding thicknesses t are shown in Fig. 21. Note that the values in Fig. 21 are optimistic because (i) 
impurities (e.g. from anodization of the actual winding material) are not accounted for, and (ii) the 
transmission will be reduced by increased phonon scattering if the operational winding temperature exceeds 
300 K (which it is likely to do significantly). 
 
 

 
 
Fig. 21. Estimated neutron transmission of the combined 32 layers of windings for a 4-N = 2 coil NRSE assuming that the static field 
and r.f. coil windings each have equal thickness t. These curves are based on the total cross-section of pure aluminum at 300 K. 
 
 
      Very approximately, the macroscopic neutron cross-section of aluminum at all temperatures of interest 
is about 0.11 cm-1 for λ < 4.7Å. Therefore, we have 
 

    [ ]( )
o

exp 0.11 cm ,  4.7 A.AlT t λ− <    (208) 
 

http://dx.doi.org/10.6028/jres.119.005
http://dx.doi.org/10.6028/jres.119.005


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.005 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 123 http://dx.doi.org/10.6028/jres.119.005 

 

Estimating the equilibrium temperature and temperature gradients of the windings depends on the detailed 
coil design. In order to partially account for elevated winding temperatures at high-field operation of the 
coils, we approximate the macroscopic cross-section for λ > 4.7Å using the average of available data for 
pure aluminum [21] at T = 300 K and at T = 800 K. At 300 K data we have approximately 
 

           ( )
o o

-1 3300K cm 6.4 8.94 A 10 ,  4.7 AAl λ λ−   Σ ≈ + × ≥      
   (209) 

 
and for the 800 K data we have approximately 
 

           ( )
o o

-1 2800K cm 1.91 1.175 A 10 ,  4.7 A.Al λ λ−   Σ ≈ + × ≥      
  (210) 

 
Therefore, we use an effective aluminum macroscopic cross-section of 
 

                 
o o

-1 2cm 1.28 1.03 A 10 ,  4.7 Aeff
Al λ λ−   Σ ≈ + × ≥      

   (211) 

 
for the purposes of estimating the coil transmission. 
      We now assume that the static field coil windings (which usually have to carry higher maximum 
currents than the r.f. windings) have thickness t and the r.f. windings have thickness t/2, such that the total 
thickness of windings traversed by the beam in the spectrometer is 12Nt = 24t for N = 2. If we choose a 
transmission criterion such that TAl(λ = 8 Å) ≥ 80 %, then Eq. (211) requires that t must not exceed a 
maximum value, tmax, of about 1.0 mm (i.e., the static field coil windings have thickness of about 1 mm, the 
r.f. windings have thickness of about 0.5 mm). For the r.f. coils the skin effect at ~1 MHz frequencies likely 
restricts the r.f. winding thickness to a smaller value (see Sec. 7.3.4.7). 
      Coils constructed at the Institut Laue-Langevin (ILL), Grenoble, France, Laboratoire Léon Brillouin 
(LLB), Saclay, France, and the Forschungs-Reaktor München-II (FRM-II), Munich, Germany, have used 
0.4 mm-thick anodized aluminum band windings, with anodization depth of about 3µm for insulation. The 
anodization layer can contain incorporated water, which gives rise to strong, anisotropic, small angle 
scattering. This small angle scattering is greatly reduced by boiling the wire in D2O under pressure at about 
200 °C [11]. 
 
7.3.3  Static Field Coils 
 
      An early static field coil using circular section aluminum wire developed for the Zeta spectrometer at 
the ILL, Grenoble, is shown in Fig. 22. 
 
7.3.3.1  Current in the static field coil 
 
      Sufficient static field homogeneity within the beam passage may be achieved by passing the beam 
through a suitably restricted area close to the axial center of a long solenoid. The field at the center of a 
long solenoid is 
 
            0 ,B nIµ=      (212) 
 
where µ0 is the permeability of free space with µ0 =4π ×10-7 NA-2. In SI units we have 
 
        [ ] [ ] [ ]7 -1 6 -1

0 T 4 10 m A 1.26 10 m AB n I n Iπ − −   ≈ × ×         long solenoid approximation, (213) 
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Fig. 22. A static field coil developed for the Zeta spectrometer at the ILL, Grenoble using circular section Al wire. This type of coil is 
used for lower resolution applications. (Photos kindly allowed by R. Gähler, ILL). 
 
 
where B0 is the static field in Tesla, n is the winding density in m-1, and I is the current in Amps. 
Equivalently, the current in the coil at field B0 is 
 

      [ ] [ ] [ ]6
0 05

-1 -1

T T2.5 10A 8 10 .
m m

B B
I

n nπ
×

= ≈ ×
      

   

 (214) 
 
Thus the required current is inversely proportional to the winding density and is directly proportional to the 
required field B0. 
 
7.3.3.2  Resistance of the static field coil windings 
 
      The resistance of the static field coil winding is 
 

     
( )

,w

w

T l
R

A
ρ

=      (215) 
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where lw is the total length of the coil winding, Aw is the wire cross-sectional area, and ρ (T) is the resistivity 
of the winding at its operating temperature, T. The winding length per turn (see Fig. 23) for the rectangular 
cross-section coil form is approximately 2(a+ lB0), assuming the winding thickness is negligible compared 
with a and lB0. For the particular case of single-layer windings, the total number of turns, NB0, is 
 
   

0B axialN l n=     any single-layer winding,    (216) 
 
so that the total length of any single-layer winding around the rectangular coil form shown in Fig. 23 is 
 
    ( ) ( )0 0 0

2 2 .w B B axial Bl N a l l n a l≈ + = +    (217) 

 
The outer surface area of the rectangular coil form is 
 
              ( )0

2 ,surf axial BA l a l= +     (218) 

 
so Eq. (217) may be rewritten as 
 
           w surfl A n=     any thin single-layer winding around rectangular coil form.  (219) 
 
 

 
 

Fig. 23. Dimension parameters of the static field coil using tightly-wound rectangular cross-section windings. 
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7.3.3.3  Single-layer rectangular cross-section wire 
 
      The cross-sectional area, Aw, of rectangular cross-section wire (see Fig. 23) is 
 

wA th=     rectangular cross-section wire, width h, thickness t,   (220) 
 
so that, using Eqs. (219) and (220), and noting that for a single winding h ≤ 1/n, with the equality 
representing the tightly-wound limit, Eq. (215) becomes 
 

          
( ) surfT n A

R
th

ρ
=     any single-layer rectangular cross-section wire,  (221) 

 
with 
 

   
( ) 2

surfT n A
R

t
ρ

=     tightly-wound rectangular cross-section wire, thickness t  (222) 

 
representing the tightly-wound limit with h = 1/n. Therefore, for a given Asurf, the resistance of the tightly-
wound coil increases as the square of the winding density and is inversely proportional to the winding 
thickness, t. Logically, the resistance is minimized for a given n, Asurf, t, by ensuring that the windings are 
tightly-wound. 
      For a single-layer rectangular cross-section wire winding, the D.C. voltage required to maintain a static 
field B0 is, from Eqs. (214) and (221) 
 

( )[ ]
[ ] [ ] [ ]

26

0

Ωm m2.5 10 T
m m

surfT A
V IR B

t h

ρ

π

 ×  = =   any single-layer rectang cross-section wire winding  (223) 

 
with 
 

[ ]
( )[ ]

[ ] [ ]
-1 26

0

Ωm m m2.5 10V T
m

surfT n A
V B

t

ρ

π

   ×    =   tightly-wound, single-layer, rectang cross-section 

  wire windings    (224) 
 
representing the tightly-wound limit. Thus, for the tightly-wound case, the voltage required to maintain a 
field B0 is proportional to B0, proportional to the winding density, and inversely proportional to the winding 
thickness in the beam direction for a given coil surface area. For a given B0, the voltage is minimized by 
tightly-winding the coil within the available surface area. 
      The power dissipated in the coil with single-layer, rectangular cross-section wire is (from Eqs. (214) 
and (221) or (223)) 
 

[ ] [ ]( ) [ ]
( )[ ]

[ ] [ ]
[ ]( )

2

212
2

02 -1

W A Ω

Ωm m6.25 10 T
m m m

surf

P I R

T A
B

n t h

ρ

π

=

 ×  ≈
  

 any single-layer rectang cross-section wire winding. (225) 

 
Specifically, for the tightly-wound, rectangular cross-section wire winding it is (from Eqs. (214) and (222) 
or (224)) 
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[ ]
( )[ ]

[ ] [ ]( )
212

2
02

Ωm m6.25 10W T
m

surfT A
P B

t

ρ

π

 ×  ≈  tightly-wound rectang cross-section wire windings. 

(226) 
 
Thus, for a given Asurf, the power dissipated in the tightly-wound coil is inversely proportional to the 
winding thickness, t, and is independent of n or h (essentially a current sheet). We also note that the power 
increases as the square of the required field, B0. Like the voltage, the power dissipated is minimized for a 
given B0 by tightly-winding the coil within the available surface area, since h ≤ 1/n. 
 
7.3.3.4  Single-layer circular cross-section wire windings 
 
      The cross-sectional area of the circular cross-section wire, Aw, is 
 
   2

w wA rπ=    circular cross-section wire of radius rw.   (227) 
 
Using Eq. (219) and noting that for a single-layer circular winding we have the constraint n ≤ 1/2rw, with 
the equality representing the tightly-wound case, Eq. (215) becomes 
 

    
( )

2
surf

w

T n A
R

r
ρ

π
=    any circular cross-section wire winding,   (228) 

 
with 
 

  
( ) 34 surfT n A

R
ρ

π
=    tightly-wound circular cross-section wire,  (229) 

 
representing the tightly-wound limit. Thus, for a given Asurf, the tight-winding resistance increases as the 
cube of n (as opposed to n2 in the tightly-wound rectangular wire case with fixed t). 
      The D.C. voltage required to maintain a static field B0 in the circular cross-section wire case is (from 
Eqs. (214) and (228)) 
 

  [ ]
( )[ ]

[ ]( )
[ ]

2
6

02

Ωm m
V 2.5 10 T

m
surf

w

T A
V B

r

ρ

π
−

  = ×    any single circular cross-section wire winding. (230) 

 
Specifically, for the tightly-wound case it is (from Eqs. (214) and (229)) 
 

[ ] ( )[ ]( ) [ ]

( )[ ]
[ ]( )

[ ]

7 2-1 2
02

2
6

02

10V Ωm m m T

Ωm m
2.5 10 T

m

surf

surf

w

V T n A B

T A
B

r

ρ
π

ρ

π
−

   =    

  = ×
  tightly-wound, circular cross-section wire winding. 

(231) 
 
Thus, the voltage required to achieve a given B0 in the circular cross-section wire case is independent of the 
winding density, other than n cannot exceed a value of 1/(2rw) for a single layer. Qualitatively, this is 
because decreasing n decreases R at the same rate that I (Eq. (214)) must increase to maintain B0. 
      The power dissipated in the coil with single-layer, circular cross-section wire windings is (from Eqs. 
(214) and (228) or (230)) 
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   [ ]
( )[ ]

[ ]( )
[ ]( )

212
2

03 2-1

Ωm m6.25 10W T
m m

surf

w

T A
P B

n r

ρ

π

 ×  ≈
  

  any single circular cross-section wire winding, 

(232) 
 
where the tightly-wound case with n = 1/(2rw) is 
 

 [ ]
( )[ ]

[ ] [ ]( )
213

2
03

Ωm m1.25 10W T
m

surf

w

T A
P B

r

ρ

π

 ×  ≈   tightly-wound circular cross-section wire windings. 

(233) 
 
Therefore, the tightly-wound coil represents the minimum power condition for circular cross-section wire. 
Furthermore, the circular wire should be as thick as is tolerable to minimize the power. 
 
7.3.3.5  Summary and static field coil power concerns 
 
      The coil flatness requirements for high resolution operation (see Sec. 6.2) favor rectangular cross-
section wires for the static field coils. Two potential concerns are: (i) the magnitude of the currents supplied 
to the coils, (ii) excessive heat dissipation in the coils and the associated cooling difficulties. Item (i) is 
somewhat mitigated by choosing the largest value of n that is feasible. Item (ii) is mitigated by tightly-
winding the coil as indicated in Sec.7.3.3.3. Beyond these measures Eq. (226) identifies the remaining 
constraints: Firstly, if Asurf becomes small with respect to the beam area it is increasingly difficult to 
maintain adequate field homogeneity within this region at high τNRSE (see e.g. Sec. 6.1 and Sec. 6.6). 
Secondly, the winding thickness in the beam direction, t, must be limited so as to maintain high neutron 
transmission (see Sec. 7.3.2). Finally, there are very limited choices of winding material that have both 
good cold neutron transmission combined with low electrical resistivity. Although maximum fields of a 
few 10’s of mT do not appear dauntingly high, the heat production from the coil is potentially quite large. 
This is illustrated by the following examples: 
 
The coils produced for the neutron research laboratories Laboratoire Léon Brillouin (LLB), Institut Laue-
Langevin (ILL) (France), Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM-II), and Helmholtz-
Zentrum Berlin (HZB) (Germany) use tightly-wound 4 mm wide × 0.4 mm thick anodized aluminum band 
supplied by Wesselmann Umwelttechnik3, with n ≈ 250 m-1, laxial ≈ 0.2 m, a + lB0 ≈ 0.25 m for a beam size 
of about 2.5 cm × 2.5 cm, so that Asurf (see Eq. (218)) ≈ 0.1 m2. For these coils at maximum field (B0 ≈ 
0.025 T), we have (from Eq. (214)) I ≈ 80 A. For pure Al down to about liquid nitrogen temperature, we 
have 
 
   ( )[ ] ( )10 9Ωm 1.14 10 K 6.9 10 .Al T Tρ − −≈ × − ×    (234) 
 
Therefore, specifically for aluminum, we have (from Eq. (226)) 
 

[ ] [ ]( ) [ ] ( )( )
2

2 3
0

m
W T 72.2 K 4.37 10

m
surf

Al

A
P B T

t

  ≈ − ×  tightly-wound rectangular wire windings. (235) 

 

                                                 
3 Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does 
not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials 
or equipment identified are necessarily the best available for the purpose. 
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For T ≈ 300 K, PAl (0.025 T) ≈ 2.7 kW. For T ≈ 350 K, PAl (0.025 T) ≈ 3.3 kW. If similar coils are to 
achieve 0.04 Tesla, the current increases to I ≈ 128A with an increased power dissipation factor of 
approximately (0.042/0.0252). The room-temperature power dissipation then increases to approximately 
6.9 kW. If the coils are cooled to liquid nitrogen temperature ≈ 80 K, PAl is more than an order of 
magnitude smaller (≈ 220 W at B0 = 0.025 T, ≈ 560 W at B0 = 0.04 T). This is discussed by Gähler, Golub, 
and Keller in Ref. [8]. One technical challenge is avoiding liquid coolant (water or liquid N2) in the beam 
passage since both scatter thermal neutrons strongly. A separate issue is the evidently undesirable increased 
beam divergence from small angle scattering that occurs in Aluminum. A concept for a liquid N2-cooled 
static field coil with the above requirements has been proposed by Carl Goodzeit of M.J.B. Consulting, 
De Soto, TX, USA (Fig. 24). The basic shape of this coil is a racetrack-shaped toroid (Fig. 24 (a)). A 
section of one side of this hollow coil provides the beam passage (Fig. 24 (b)) requiring high purity 
aluminum (99.999 %) conductor. The specific example shown has 0.5 mm thick and 6.2 mm wide 
conductor which implies I ≈ 198 A at B0 = 0.04 T with a corresponding current density of about 
64 A mm-2. The winding would be supported by and cooled by four hollow tubes for the passage of liquid 
N2 (Fig. 24 (c)) running the full height of the coil. On the sides which do not transmit the beam, additional 
thermal contact and support is provided by heat-conducting side plates. Because the effective resistance of 
each turn is combined with the resistance of the turns in the remainder of the toroid, all turns, except at 
beam transit, can be of a lower resistivity material and are in thermal contact with the N2-filled coil form, 
thus they should remain close to 80 K. In general, the liquid N2 would be admitted at the bottom of the 
racetrack coil form and would vent from the top (these features and eventual feed-throughs for the r.f. coil 
are not shown). The coils would be contained in an environment that prevents condensation of water vapor 
on the windings. 
 
7.3.3.6  Required static field coil current stability 
 
      The values in Table 7 imply that ∆B0/B0 must be around 0.1 % in order to achieve Px

0(8 Å, 30 ns) ≥ 0.5 
for typical spectrometer dimensions. Even for perfect static field coil homogeneity (∆B0 = 0), this imposes a 
coil current stability of order of 0.1 % (∆I/I <~ 10-3). The current stability should certainly not become the 
limiting factor on ∆B0. Preferably it should be at least an order of magnitude better (∆I/I < 10-4). Long-term 
current drift (e.g. in response to temperature changes) should also be in this range. Current supplies offering 
stabilities in the 10-5 range are commercially-available, so this is not expected to impose any technical 
limitation. 
 
7.3.3.7  Effect of coil dimensions on field homogeneity and field magnitude 
 
      With respect to geometry, field homogeneity, field strength, and winding resistance, it is preferable that 
the static field coils be short in the beam direction, given that the coil width must be somewhat wider than 
the beam. Reducing the coil thickness in the beam direction tends to allow the perpendicular axial length of 
the coil to be reduced without loss in field homogeneity in the beam passage. This principle is illustrated by 
considering the axial field of a cylindrical open-ended solenoid (Fig. 25), where instead of the coil 
thickness in the beam direction we refer to the coil radius. The field at axial position x is 
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 (236) 

 
This can be re-expressed in terms of the dimensionless quantities 
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Fig. 24. A concept for a liquid N2-cooled static field coil. (a) The overall shape of the coil. (b) A section through one side of the coil 
with beam passage showing: 1. Hollow tubes for passage of N2 running the full height of the coil form. 2. The 0.5 × 6.2 mm high 
purity aluminum conductor that is wound around the coil form with a close spacing of approximately 6.3 mm per turn and the cooling 
tubes. 3. Hollow interior of the coil form for the N2 4. High purity aluminum side plates providing additional thermal contact and 
support for the conductor. (c) A cross-sectional view through of the beam passage shown in (b). (Concept and estimated parameters 
kindly provided by C. Goodzeit of M.J.B. Consulting, De Soto, TX, USA). 
 
 

 
 

Fig. 25. A short circular solenoid. 
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which is the axial distance from the solenoid center expressed as a fraction of the half-length of the 
solenoid and 
 

     
2 ,
axial

r
l

η =      (238) 

 
which is the ratio of the diameter, d, of the coil to its axial length, so that 
 

           
( )( ) ( )( )2 22 20

1 1 1 .
2 1 1

B
nI

µ µ
µ η µ η µ

 
 − + 

= + 
+ − + + 

 

   (239) 

 
      In the “long” solenoid limit (laxial ≫ r), the field at the coil center is maximized (=µ0nI), whereas at its 
ends it is half this value (=µ0nI /2 – limit of Eq. (239) with µ = 1 and η2 ≪ (1+µ)2). This alone implies that 
the axial length of the coil must be substantially greater than the height of the neutron beam. Figure 26 
shows the variation of the axial field normalized to the maximum attainable field (=µ0nI) for solenoids with 
various ratios η = d/laxial, calculated according to Eq. (236). Figure 26 reveals that as η increases: 

(i) The axial range over which the field can be held close to B(x = 0) decreases. 
(ii) The maximum achievable field (at the center) decreases. This reduction becomes quite significant 

once η increases above about 0.4. 
 
 

 
 

Fig. 26. Variation of axial magnetic field of idealized solenoids with various diameter/axial length ratios, η. 
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This latter consideration is particularly important in the present application where the goal of achieving the 
highest fields is already hampered by large currents. Usually, detailed field calculations are required to 
optimize the coil windings and dimensions. Using the example of the cylindrical solenoid, suppose the 
maximum axial length of the static field coil is 0.3 m, the beam height is 0.03 m, and the required ∆B0/B0 is 
about 0.1 %. With reference to Fig. 26, this requires B0(µ = 0.1) ≥ 0.999B0(µ = 0). This occurs for 
η <~ 0.045, i.e., for coil diameters of 0.0135 m or less. Although this example just considers the axial field 
variation for a cylindrical solenoid, it suggests that careful control of the coil dimensions perpendicular to 
the coil axis are required to achieve sufficient field homogeneity within the beam passage of the NRSE 
coils. 
 
7.3.3.8  Coil flatness issues 
 
      As demonstrated in Sec. 6 the dimensional tolerances for high resolution coils are demanding. The 
winding support must be accurately machined and the windings themselves must be very flat. The use of 
anodized pure aluminum band not only creates a geometrically well-defined field region but also eliminates 
curved field lines that are generated in the vicinity of circular cross-section wires (Dubbers et al. [22]). The 
existence of a magnetic pressure (see Sec. 7.3.3.10) is also of concern for maintaining the shape of the 
windings. For high fields this usually requires clamping of the windings outside of the beam passage. 
 
7.3.3.9  Winding methods 
 
      Commercial coil winding tools are available, however, good experience has been obtained using 
machinist’s lathes. These machines offer the desirable combination of precise translational and rotational 
speeds, and adjustable torque settings. 
 
7.3.3.10  Magnetic pressure on the coil windings and their mechanical constraint 
 
      Magnetic pressure in a coil refers to the radial force exerted on the coil windings due to the difference 
in magnetic flux density inside and outside the coil. The magnetic pressure, Pmag, exerted on the windings 
at the center of a long circular solenoid is 
 

     
2

02mag
BP
µ

=      (240) 

 
from which we have 
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For B = 0.04 T, Pmag ≈ 637 Nm-2 (≈ 0.0063 Atm). 
      For the approximately rectangular section coils used in NRSE, Ampere’s law predicts that the 
magnitude of the field inside the coil is similar to that of a cylindrical coil carrying the same current, 
assuming that the field outside the coil is negligible with respect to that inside. Therefore, we assume that 
the magnetic pressure is also given by Eq. (241) near the center of a long rectangular section coil. 
      For a coil wound on a rectangular former with slight pre-tension, we can approximate the action of the 
magnetic pressure on the band-like windings by the mechanical problem of an evenly-loaded beam whose 
ends are constrained. According to Ref. [23], the maximum winding deflection at the center is 
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where w is the load per unit length of the beam, lu is the unconstrained length of the beam, E is Young’s 
modulus for the winding material, and I is the moment of inertia. For the band-like (rectangular) windings 
of width h and (small) thickness t, the moment of inertia is 
 

           
3

.
12
htI =      (243) 

 
The load per unit length is 
 
         ,magw P h=      (224) 
 
so that Eq. (242) can be re-expressed as 
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For pure Al windings (E = 7.1×1010 Nm-2) with t = 0.4 mm (as used in existing coils), B = 0.04 T, and a 
typical lu for the coil face traversed by the beam of about 0.25 m, we have ymax ≈ 17 mm. This is clearly 
unacceptably large, therefore in order to maintain the coil dimensions within required tolerances, the 
windings must be clamped for high fields. Note that Eq. (245) contains the unconstrained length of the 
winding to the 4th power, therefore it is often feasible for the clamping plates to incorporate an open 
window allowing passage of the beam (see Fig. 20). For example, if this window is 0.03 m wide, then lu ≈ 
0.03 m and Eq. (245) yields ymax ≈ 3.5 µm, which is well within the acceptable range (Table 7). 
 
7.3.4  r.f. Coils 
 
7.3.4.1  Existing r.f. coil designs 
 
      The r.f. coils, two examples of which are shown in Fig. 27, are of similar overall design with the beam 
passing through the (gray) aluminum windings at the coil center. The fields are returned through the two 
arch-shaped coils which greatly reduce r.f. power loss from induced currents in (and consequent heating of) 
surrounding metallic structures, including the static field coils. This also prevents significant perturbations 
to the static field. The coils outside of the beam passage are wound with high-frequency (very thin 
stranded) copper wire to maximize electrical conductivity. The electrically-insulating return coil former 
material in the units shown is similar to the fiberglass/epoxy composite used in printed circuit boards. The 
method used at the ILL for maintaining tension on the aluminum windings is to stretch the windings over 
silicon-based rubber O-rings covered with Kapton tape (rubber containing carbon has been found to burn). 
 
7.3.4.2  r.f. circuit and impedance matching 
 
      The NRSE spectrometer operates at a single frequency for each scan point (or τNRSE). Typically, an 
NRSE scan might consist of 10 or 20 points and therefore 10 or 20 different r.f. frequencies. Thus, even 
though the drive circuit is “narrow” band for each measurement point, it must be tunable through more than 
a decade of r.f. frequencies. 
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Fig. 27. Two r.f. coils developed at the ILL. Top (smaller) uses anodized pure Al tape for the windings in the beam area. The larger 
model (bottom) uses circular section anodized pure Al wire. (Photos kindly allowed by R. Gähler, ILL, Grenoble). 
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      In this application at high frequencies, it is important to match the characteristic impedances of the 
transmission line with that of the load to prevent reflections of r.f. power from the load toward the source. 
Reactive elements in a circuit (inductance and capacitance) store and return energy to the source unless the 
circuit appears purely resistive (i.e., the voltage and the current are in phase). This is the condition for 
impedance matching. Equivalently-stated, the power factor (= cosθ), where θ is the phase angle between 
the current and the voltage must ideally equal 1or the net capacitative reactance of the circuit cancels the 
net inductive reactance. Impedance matching not only maximizes the efficiency of the circuit, but also 
prevents distortion of the r.f. signal caused by reflected, delayed signals. A lossless coaxial cable may be 
considered as an inductance in parallel with a capacitance as shown in Fig. 28. By “lossless”, we mean a 
perfectly insulating coaxial dielectric with negligible wire resistance. In this case, the characteristic 
impedance, Z0, of an impedance-matched cable at any frequency appears purely resistive with magnitude 
 

        0 ,cable

cable

L LZ
C C

′
= =

′
     (247) 

 
where L′ and C′ are the characteristic inductance and capacitance per unit length of (uniform) cable. 
Typically, for coaxial r.f. cables, Z0 is 50 Ω by design. The task is then to match the impedance of the rest 
of the circuit (including the r.f. coil) to emulate a resistive value of magnitude Z0. Consider the r.f. filter 
circuit shown in Fig. 28. The power supply acts like a current source and the choke protects the source by 
giving it high output impedance at high frequency. The r.f. coil may be considered as the combination of 
the inductance and the series resistance, R. The parallel tunable capacitance C2 allows maximization of the 
power factor by canceling the inductive reactance of the r.f. coil (which increases proportional to the 
frequency). In other words, the tunable capacitance C2 is necessary to maintain the imaginary part of the 
impedance of the circuit at zero, because the capacitance C1 must also change with frequency to maintain 
the real part of the circuit impedance at the value Z0; the impedance would otherwise decrease with 
increasing frequency causing signal reflection towards the source, and most of the voltage drop would 
occur across the cable. C1 also A.C.-couples the r.f. coil to the power supply so that the undistorted r.f. 
voltage truly oscillates about 0 V. The reciprocal load impedance of the combined C1, C2, L, R part of the 
circuit is 
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Fig. 28. r.f. filter with lossless cables. R includes the resistance (likely mainly from the r.f. coil). 
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where we have used XC = -j/ωC, XL = jωL, and the complex identity y = y y*/y*, etc. For exact impedance 
matching, we require Re(Zload) = Z0 with a zero voltage-current phase difference which means that Im(Zload) 
(and consequently Im(1/Zload)) is zero. From Eq. (248), therefore, we have 
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    (for exact impedance matching)   (249) 

 
and 
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    (for exact impedance matching).  (250) 

 
Note that we consider R, L, and Z0 as fixed (neglecting a possible high frequency dependence of R(ω) due 
to the reduction of the conducting cross-sectional area of the wire caused by the skin effect (Sec. 7.3.4.7)). 
From the impedance matching conditions Eqs. (249) and (250), we obtain: 
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   (for exact impedance matching). (252) 

 
For these particular values of C1 and C2, we construct a simplified table of voltages, currents, and 
impedances remembering that the cable acts like a pure resistance of Z0 (as does the C1, C2, L, R part of the 
circuit), and these two sub-circuits reduce to a 2:1 voltage divider (Table 8). 
 
 
Table 8. Circuit values at exact impedance matching (C1 and C2 are given by Eqs. (251) and (252)). 
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More realistically, the transmission line insulator has some conductance (represented by Gcable) and non-
zero resistance, represented by Rcable (as shown in Fig. 29). Distortionless cables are fabricated such that 
 

       ,G R
C L

′ ′
=

′ ′
     (253) 

 
where again the prime represents “per unit length”. Note that if such a circuit is used to drive M coils in 
parallel (for example the four coils of one arm of a 4 – N = 2 coil NRSE), the current through C1 will be M 
times greater than for the single coil. Therefore, the capacitors must be rated to handle these currents. 
 

 
 

Fig. 29. r.f. filter with losses in cables (cable resistance, represented by Rcable, and conductance of dielectric, represented by Gcable). 
 
 
7.3.4.3  r.f. coil frequency, currents, and voltages 
 
      The r.f. coil dimensions used in this and subsequent sections are shown in Fig. 30. From Table 8 at 
exact impedance matching we have (substituting the value of C2(ω) from Eq. (252)): 
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where Vin is the supply voltage, with 
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Fig. 30. r.f. coil dimensions assuming rectangular cross-section windings. 
 
with 
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so that 
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= −      (258) 

 
We see that VL is proportional to the frequency and L and that the current lags the voltage by 90°, as 
expected for a pure inductance. Because the r.f. frequency must match the Larmor precession frequency in 
the static field coils, reaching the maximum frequency of operation of the r.f. coil imposes the principal 
technical challenge. According to Eq. (10), we have νrf ≈ 1.17 MHz for B0 ≈ 0.04 T (729 KHz for B0 = 
0.025 T). Also, according to Eq. (15), the peak r.f. field is optimally-tuned according to the mean incident 
wavelength with 
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so that the largest r.f. field magnitude is defined by the minimum incident wavelength. Using the long 
solenoid approximation (Eq. (213)), we conclude that the peak current required in the r.f. coil is 
approximately 
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  (260) 

 
where nrf is the winding density of the r.f. coil, so that the root mean square (rms) current is approximately 
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   (261) 

 
Applying Faraday’s law to a coil of inductance L, 
 

       dIV L
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= −      (262) 

 
for which Eq. (258) is obviously a solution for sinusoidally-varying currents and voltages. For a 
sinusoidally-varying current ( ) sinpk

rf rf rfI t I tω=  the maximum rate of change of the current is 
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and for a long solenoid, we use the approximation 
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(Arf = arf × lrf – see Fig. 30), whence 
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Now Eq. (262) can be rewritten using Eqs. (260), (263), and (264), replacing Arf by arf × lrf, where arf is the 
r.f. coil dimension perpendicular to both the beam direction and to the r.f. field direction: 
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From Eq. (266) we see that the maximum voltage occurs at maximum B0 and minimum λ. We will assume 
that the minimum useful wavelength is 2 Å. From Eq. (14) for a typical r.f. coil thickness lrf (in the beam 
direction) of 2.5 cm, we have Brf

pk(lrf = 0.025 m, 〈λi〉 = 2 Å) ≈ 2.71 mT. The peak current in the r.f. coil 
with winding density nrf = 250 m-1 is approximately Irf

pk(nrf = 250 m-1, lrf = 0.025 m, 〈λi〉 = 2 Å) ≈ 8.64 A. 
This is approximately one order of magnitude less than the maximum currents required in the static field 
coils with similar winding densities. 
      Typical r.f. coils such as those shown in Fig. 27, have self-inductances of order (40 to 50) µH. For L = 
50 µH, Ipk ≈ 8.64 A, ω0 = 2πν0(max) ≈ 7.35×106 rad s-1, we have dI/dt ≈ 6.3×107 As-1 with a peak voltage 
across the r.f. coil of around Vrf

pk(nrf = 250 m-1, lrf = 0.025 m, 〈λi〉 = 2 Å) ≈ 3.2 kV. This high peak voltage 
poses various challenges for electrical insulation, switching, and other circuit issues covered in Sec. 7.3.4.2. 
Typically Teflon-insulated high voltage cables are limited to about 1.5 kV. The peak voltage in this 
example may impose a limitation on the minimum operational wavelength. 
      The voltage between adjacent windings in a tightly-wound coil, Vpk

ww, must also be maintained below 
breakdown. For a simple voltage divider, this is simply the total voltage difference across the coil 
multiplied by the fractional length of one turn with respect to the total winding length on the coil. For 
tightly-wound rectangular windings this fraction is hrf /laxial = 1/(nrf laxial) = 1/Nrf, where Nrf is the total 
number of turns on the r.f. coil, i.e., 
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7.3.4.4  r.f. power supply voltage at exact impedance matching 
 
      If Vrms

PS is the rms voltage of the power supply, we equate the magnitude of the rms current in the coil 
at exact impedance matching (from Table 8, with Vin replaced by Vrms

PS and with the required value of C2 
from Eq. (252)) with the required rms current magnitude from Eq. (261), whence 
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Therefore, if we assume Z0 is 50 Ω, we require a power supply voltage of 
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           (269) 
 
For R ≈ 1 Ω, nrf [m-1]lrf [m] ≈ 10, the supply voltage is approximately 100 V/λ[Å]. Note that this is typically 
much smaller than the high frequency voltages generated across the r.f. coil itself. 
 
7.3.4.5  Power dissipation in the r.f. circuit and in the r.f. coil 
 
      At exact impedance matching, Re(Zload) = Z0, Im(Zload) = 0 (see Sec. 7.3.4.2), and the resistance of the 
entire circuit is 2Z0, therefore the heat dissipated in the whole circuit is 
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where PS

rmsI  is the total current delivered to the circuit from the power supply. Using Eq. (269) for Vrms
PS 

with Z0 = 50 Ω, we have 
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   exact impedance matching, Z0 = 50 Ω. 

(271) 
 
Using the example from the previous section (i.e., R ≈ 1 Ω, nrf [m-1]lrf [m] ≈ 10) we have Prf circuit ≈ 
117 W/(λ[Å])2 ≈ 30 W for a minimum wavelength of 2 Å. 
      The power dissipated as heat in the r.f. coil is only due to the coil resistance (the reactance alternately 
stores and releases energy back towards the source). From Table 8, at exact impedance matching, the 
voltage across the coil (assuming all the resistance R is due to the coil) is 
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Therefore the power dissipated as heat in the coil at exact impedance matching is 
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where we have used the value of C2 from Eq. (252), i.e., one half of the total power dissipated in the circuit 
(c.f. Eq. (270)) is dissipated in the r.f. coil at exact impedance matching. 
 
7.3.4.6  r.f. coil cooling 
 
      Because the maximum currents required in the r.f. coils are not so large (of order 10 A), experience has 
shown that compressed air cooling is usually adequate to maintain them below 100 °C for frequencies of up 
to about 750 kHz. 
 
7.3.4.7  The skin effect and the resistance of the r.f. coil windings 
 
      An unfortunate consequence of induced eddy currents and Lenz’s law at high frequencies is the 
concentration of current towards the outer surface of the conductor, commonly referred to as the “skin 
effect”. The skin depth (or thickness within which the current falls to 1/e of its outer surface value for a 
thick conductor), δ, is inversely proportional to the square root of the frequency: 
 

     2 ,δ
µσω

=      (274) 

 
where σ is the conductivity and µ is the permeability of the wire. Two undesirables result. Firstly the 
resistance of the wire increases rapidly when δ is comparable to, or less than, the wire diameter. The skin 
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depth for copper at the highest frequencies required (~1 MHz) is about 66 µm (0.065 mm). Secondly, the 
increase in resistance with increasing frequency induces a frequency-dependence of the signal velocity 
causing dispersion even in a ‘distortionless’ cable. However, the latter effect is negligible for the NRSE due 
to the extremely narrow r.f. bandwidth for each spectrometer setting. 
      One solution for r.f. coils operating at about 1 MHz is to use multiple small diameter (preferably < δ ), 
individually-insulated copper wires in parallel rather than fewer thicker conductors. This is the case for the 
coils shown in Fig. 27. Unfortunately, this is only feasible for the return coils outside the beam passage. For 
aluminum, the skin depth at 1 MHz is about 83 µm (0.083 mm), i.e., for aluminum we assume that 
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     (275) 

 
For band-type windings, where h ≫ t, the ratio of the D.C. resistance, R0, to the winding resistance at 
frequency ν, R(ν), is given approximately by 
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    band-like windings with h ≫ t. (276) 

 
Note that in the low-frequency limit δ ≫ t, therefore 
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          δ ≫ t,   (277) 

 
as expected, and in the high-frequency limit t ≫ δ, therefore 
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i.e., the band winding of thickness t in the high frequency limit has approximately the D.C. resistance of a 
conductor of thickness 2δ with the central core volume behaving like a perfect insulator. Applying Eqs. 
(275) and (276) to the t = 0.4 mm-thick aluminum band example from Sec. 7.3.2, we see that the resistance 
at 1 MHz is about 5 times greater than the D.C. resistance with a current at the center of the conductor of 
less than 9 % of the value near the surface. In this particular example, the 1 MHz conductor resistance 
would drop by less than 10 % even if the conductor were made arbitrarily thick. Consequently, increasing 
the aluminum winding thickness beyond a few 1/10ths of a millimeter (for MHz frequencies) results in 
only modest power reduction with unnecessary losses of neutron transmission. 
 
7.3.4.8  Allowable ∆Brf/Brf and ∆lrf/lrf 
 
      In each π-flipper coil, the neutron spin ideally precesses through an angle π around Brf during neutron 
passage through the coil. The actual angle of precession of the spin about Brf is determined by the 
dispersion due to the spread of incident wavelengths, as discussed in Sec. 2.2. However, an additional loss 
of polarization/flipping efficiency by a similar mechanism results if there is a spread in the magnitude of Brf 
or of the length of the r.f. field, lrf. In order to maximize intensity, we wish to maximize the operational 
neutron wavelength bandwidth of the spectrometer. Therefore, it is reasonable to require that the effects of 
∆(Brf lrf) be small compared with the effects due to dispersion. In this way, acceptable operation of the 
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instrument is sustained for the largest possible ∆λ /λ. ∆(Brf lrf) is reduced by appropriate coil engineering. 
Because of the similarities with dispersion, we use Eq. (43) (for triangular distributions for both ∆(Brf lrf) 
and ∆λ), or Eq. (44) (for Gaussian distributions), with ΛFWHM (see Eq. (36)) replaced by an effective value 
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    (279) 

 
We choose a reasonable criterion whereby (∆(Brf lrf)/Brf lrf)2 is at most 10 % of (∆λFWHM /〈λi〉)2, i.e., 
 
          1.05 .eff

FWHM FWHMΛ ≤ Λ      (280) 
 
Estimated flipping efficiencies for triangular distributions (for M = 8 flipper coils) assuming (i) only 
dispersion and (ii) Eq. (280) for the combined effects of dispersion and ∆(Brf lrf) are compared in Table 9. 
The results demonstrate that the latter creates measurable but tolerably small reductions in the flipping 
efficiency with respect to the effect of dispersion alone. 
 
 
Table 9. Flipping efficiency for triangular distributions of (i) ∆λ (dispersion only) and (ii) ∆λ combined with effects of ∆(Brf lrf) using 
the criterion expressed in Eq. (280) for M = 8 π coils. 
 

ΛFWHM 
(= ∆λFWHM /〈λi〉) (%) 

Pdisp /Pideal (M = 8) 

ΛFWHM (only) with ΛFWHM
eff = 1.05ΛFWHM 

10 0.96831 0.96519 

20 0.88600 0.87604 

30 0.78127 0.76533 

40 0.67898 0.66009 

50 0.59115 0.57179 

 
 
If we assume typical spectrometer operation at ΛFWHM <~ 10 %, we require 
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Further assuming equal fractional error contributions due to ∆Brf and ∆lrf, we can write 
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Using Eq. (282) for lrf = 0.025 m, we have ∆lrf <~ 0.6 mm (which is not excessively demanding), with 
∆Brf /Brf = ∆Brf

pk/Brf
pk <~ 2 %

 
(which is more than an order of magnitude more relaxed than the required 

static field homogeneities (see Table 7)). Using Eq. (259) the above criterion may be re-expressed as 
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For the same lrf (= 0.025 m) and a wavelength range from 2 Å to 12 Å, (Brf
pk varies from about 2.7 mT to 

about 0.45 mT respectively), we require ∆Brf
pk <~ 60 µT at 2 Å and ∆Brf

pk <~ 10 µT at 12 Å. 
 
7.3.5  Stray Fields in the “Zero Field” Regions 
 
      There are inevitably stray fields within the “zero-field” gaps that give rise to unwanted Larmor 
precession around the local stray field direction. In the worst cases, these can severely reduce or even 
destroy the echo signal. Sources of stray fields are leakage fields from the coils themselves, the Earth’s 
magnetic field, and other externally-produced magnetic fields. Even-N bootstrap coils greatly reduce the 
coil contribution by providing compact, closed return paths due to the oppositely-opposed field directions. 
Furthermore, the leakage field has opposite sign each side of the bootstrap coil, resulting in a first order 
cancellation of the Larmor precession upstream and downstream of the coil. Tight conduction of field lines 
between the coil pairs (and away from the zero field regions) is greatly improved by using high 
permeability µ-metal caps linking the coil ends. Leakage fields into the zero-field flight paths are further 
reduced by encapsulating the coil in a µ-metal screen with the exception of the beam path. External sources 
of stray field (such as the Earth’s field) are practically eliminated by surrounding the sensitive flight paths 
with multi-skinned µ-metal shielding [24] (see also Sec. 7.7). For a mean net stray field of magnitude Bstray, 
integrated along the spectrometer arm of length L, the net additional precession angle is 
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Example: Unshielded Earth’s magnetic field (zip code 21737, Oct 8 2008) = 5.25 × 10-5 T, horizontal 
component = 2.06 × 10-5 T, vertical component = 4.83 × 10-5 T, L = 2 m, 〈λi〉 = 8 Å, 〈∆ϕstray〉 = 35.8 rads = 
2050.1° = 5.7 turns. 
      If the dominant stray field component is from coil leakage, the leakage field lines tend to align along 
the direction of the static fields. If we impose the constraint that the net precession angle in each arm of the 
spectrometer should not exceed about 10°, we require 
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    (285) 

 
If λ = 8Å this corresponds to a stray field integral of about 5 × 10-7 Tm (for L = 2 m and Bstray of about 
0.2 µT integrated over L). Gähler, Golub, and Keller [8] show measured stray fields obtained outside a 
typical µ-metal capped N=2 bootstrap coil. The stray field magnitude for such a coil with an internal field 
B0 of 1.67 mT is about 3 µT for about the first 0.05 m falling to less than 0.5 µT at about 0.2 m from the 
coil. The estimated stray field integral on one side of the coil from this measurement is about 8 × 10-7 Tm. 
At B0 = 0.04 T internal field, we might expect the stray field integral to be about (0.04 × 8 × 10-7/1.67 × 
10-3) ≈ 1.9 × 10-5 Tm (38 times greater than the value given for λ = 8 Å above). In his Ph.D. thesis, T. 
Keller [25] shows that the field integral of such coils could be reduced by an additional factor of about 30 
by adding the µ-metal screen around the N = 2 coil. In this case we anticipate a typical stray field integral 
magnitude on one side of the coil unit of about ∆1 ≈ 6.3 × 10-7 Tm at B0 = 0.04 T, with a similar stray field 
integral magnitude ∆2 on the other side (of opposite sign). If the 4-N = 2 coils are arranged as shown in Fig. 
6 and the typical residual net leakage field integral due to each N = 2 coil unit (=〈∆1 - ∆2〉) is added in 
quadrature for the two coil units of each arm, using Eq. (285) we have a stray field integral cancellation 
criterion given by 
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For the λ = 8Å example, this requires 〈∆1 - ∆2〉 <~ 3.4×10-7 Tm for 10° net stray field precession in each 
arm. For ∆1 ≈ 6.3 × 10-7 Tm, this means that the typical stray field cancellation need only be about 50 % in 
this case. This appears entirely achievable. 
 
7.3.6  Measurement of Small τNRSE 
 
7.3.6.1  The Bloch-Siegert shift 
 
      In the previous discussion, the resonant component of the r.f. field has been approximated as a pure 
rotating field and the influence of the counter-rotating component has been ignored. However, the applied 
r.f. field is an oscillating field, not a pure rotating field. Bloch and Siegert [5] treated the case that really 
exists in the resonance coil for a spin-1/2 particle traversing a static field with a superimposed, 
perpendicular oscillating field. This problem does not have an exact solution. However, they showed that 
for increasing B0/Brf, the solution increasingly approximates to that of a “static + circular” field with a 
similarly-shaped resonance curve, but with a resonance frequency that deviates from the classical Larmor 
frequency, ω0, by a fractional amount equal to 
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Typically for high-resolution operation of the NRSE flipper coils this fraction is small. For example, 
according to Eq. (15), for lB0 = 0.03 m and short wavelength operation (λ = 2 Å), Brf = 2.26 mT. For B0 = 
0.04 T, ∆ωBS/ω0 ≈ 2×10-4 corresponding to about 233 Hz. However, at low τNRSE, ∆ωBS can be a significant 
fraction of the Larmor frequency. 
 
7.3.6.2  Solution using NSE mode operation of coils 
 
      When B0 becomes comparable to Brf, the flippers do not perform well. Köppe et al. [11] provide some 
idea of when this is likely to occur. Their coils cease to operate satisfactorily for static fields B0 < 2.7 mT 
for λ ≤ 6 Å. Assuming that these r.f. coils are no greater than about 0.025 m thick in the beam direction, we 
infer from Eq. (15) that the peak r.f. field at which problems occur is for Brf

pk >~ 0.9 mT or Brf >~ 0.45 mT. 
Thus we assume that the π-flippers must be operated under the following condition: 
 

           
0

0.17rfB
B

≤    approximate condition for operating in NRSE mode.  (288) 

 
This condition clearly limits the dynamic range of the NRSE instrument with respect to low τ (low B0) 
measurements. One possibility for measuring short Fourier times, proposed by Gähler, consists of turning 
off the r.f. field to all the coils and running in classic NSE mode. In a 4-N = 1 coil configuration one or both 
of the static coils in each arm can be operated. The fields are oriented in the correct sense in this case so 
that no π-flipper is required between the two arms of the spectrometer as in a conventional (longitudinal 
field) NSE instrument; consequently Larmor precession occurs within the coil length in opposite directions 
on each side of the sample. This is illustrated in Fig. 31. Several points at low τ can be measured by 
adjusting the field magnitude in the active coils. 
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Fig. 31. Using a 4-N = 1 coil NRSE spectrometer in NSE mode for measuring small Fourier times. The r.f. field is turned off in the 
coils. (a) Using the static field of two coils for the precession fields; (b) using the static field of all four coils to access higher τ. 
 
 
      The situation is more complicated in a bootstrap coil configuration (for example N = 2). In this case, all 
r.f. fields are switched off (as in the N = 1 case), however the static field directions are inappropriate for 
operation in NSE mode. Several solutions to this problem are illustrated in Fig. 32. In case (a), all static 
fields remain on but a π flipper is placed between the two opposing coils of a bootstrap pair, essentially 
reversing the field direction of the second coil. Conceivably, the field direction in the second coil of the 
pair could be reversed by reversing the current direction in the coil, but the two coils are often constructed 
from a single winding rendering this option impractical. In case (b), if the coils can be switched out of the 
circuit independently, only the fields that have the correct direction are energized. (c) is like (b) but only 
one coil of the correct field direction is energized in each arm. Note that if the static fields are provided by 
permanent magnets (see Sec. 9.2), only option (a) is feasible unless magnets of the wrong field direction 
are physically removed from the beam. For permanent magnets the NSE scan must be performed by 
rotating the magnets to change the field integrals in a way that does not introduce unwanted Q-dependence 
(see Sec. 9.3). 
 
 

http://dx.doi.org/10.6028/jres.119.005
http://dx.doi.org/10.6028/jres.119.005


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.005 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 147 http://dx.doi.org/10.6028/jres.119.005 

 

 
 
Fig. 32. Using a 4-N = 2 coil NRSE spectrometer in NSE mode for measuring small Fourier times. The r.f. field is turned off in all 
coils: (a) all static fields on, using π flippers (b) (if feasible) switching off all wrong field directions (no π flipper) (c) switching off all 
but two of the fields. 
 
 
7.3.6.3  An example of a combined NSE-NRSE mode scan 
 
      For NRSE operation we have τNRSE given by Eq. (120), i.e., τNRSE[ns] = 0.37271 N B0[T] L0[m] (λi[Å])3, 
where (combining Eqs. (288) and (14)) for satisfactory NRSE mode operation we have 
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whence 
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If we choose N = 2, L0 = 2 m, λi = 8 Å, and lB0 ≈ 0.03 m for this scan we anticipate that it is possible to 
operate in NRSE mode for τNRSE >~ 1.3 ns. This corresponds to B0 >~ 1.7 mT in this case. For smaller 
values of τ, the spectrometer must be run in NSE mode. In NSE mode we have 
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where M is the total number of static field coils energized. If the maximum B0 is 0.04 T, with M = 8 (i.e., 
the configuration shown in Fig. 32 (a)), we can use NSE mode up to τNSE ~ 1.8 ns for λ = 8 Å, i.e., there is a 
possible overlap between the upper NSE mode and the lower NRSE mode if the scheme in Fig. 32 (a) is 
adopted. Some dummy data points are plotted in Fig. 33 showing the scan points that result from evenly-
spaced values of B0 in the range from about 1.7 mT (the minimum field for NRSE operation in this 
example) to 0.04 T for both NSE mode (red circles) and NRSE mode (blue squares). 
 
7.4  Defining the Major Instrument Parameters for the NRSE Instrument Using Coils 
 
      We now explore some of the major constraints on the instrument parameters imposed by the proposed 
instrumental performance goals, when combined with some technical constraints for an NRSE instrument 
using resonance coils. This is by no means an exhaustive list and additional compromises may be 
necessary. Probably the major factors are as follows: 

1. We wish to access τNRSE = 30 ns at λ = 8Å. This has implications for the minimum achievable 
magnitude of the product B0L0 expressed in Eq. (206). 

2. Once 30 ns at λ = 8 Å is accessible, we wish to achieve a resolution function signal (polarization) 
greater than or equal to a stated minimum value, Px

0. The static field homogeneity, coil flatness, 
and beam divergence required to achieve these conditions are given approximately by Eqs. (203-
205) respectively. 

3. The anticipated neutron transmission of the windings should be >~ 80 % at λ = 8 Å. This concerns 
the thickness of the windings in the beam direction, t. The transmission for aluminum windings 
may be estimated using the macroscopic cross-section given in Eq. (211). 

4. Maximum limitations on the static field coil current/minimum coil winding density (see Eq. 
(214)). 

5. Capacity to remove heat from the static field coils (see for example Eq. (235) for tightly-wound 
rectangular cross-section aluminum windings), given the estimated constraints on the coil surface 
area, the winding thickness, t, the maximum operating static field, B0

max, (as constrained by 
condition 1 above), and the means available for cooling outside of the neutron beam passage (see 
Sec. 7.3.3.5). 

6. Maximum limitations on the voltage across the r.f. coil at B0
max (see Eq. (266)). These are dictated 

by cabling and insulation breakdown issues with a practical maximum of about 1.5 kV. 
We assume, for the reasons given in Sec. 3.4, that the number of coils in the bootstrap is universally 
N = 2 and that the windings are made of aluminum. 
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Fig. 33. Fourier time (τNRSE) ranges resulting from evenly-spaced values of B0 in the range from about 1.7 mT (the minimum for NRSE 
operation in this example) to 0.04 T for both NSE mode (red circles) and NRSE mode (blue squares). This example is for λi = 8 Å, N = 
2, L0 = 2 m, and lB0 = 0.03 m. The curve happens to correspond to a 40 neV quasi-elastic scatterer in a highly-idealized spectrometer 
with quasi-perfect resolution (perfectly ideal construction, field uniformity etc.) and zero coil dispersion. Identical values of B0 were 
used for each mode. Note that the NSE mode is highly compressed with respect to τNRSE compared with the NRSE mode. 
 
 
Condition 1 for N = 2 imposes the constraint already given by Eq. (207), i.e., 
 
  ( )0 0 0.079TmmaxB L ≥    Condition 1: Criterion for accessing τNRSE = 30 ns at λ = 8 Å with N = 2. (292) 
 
Condition 2 imposes resolution requirements for N = 2, which may be stated as follows (assuming equal 
contributions from each term – see Eqs. (203-205)): 
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We also assume that these conditions must be satisfied at least for λ = 8 Å, thereby being automatically 
satisfied for λ < 8 Å, but not for λ > 8 Å. Choosing Px

0 at (30 ns, 8 Å) ≥ 0.5, the resolution conditions 2(a), 
(b), and (c) simplify to the approximate relations below, where in (c) we use the equality in condition 1 as 
representing the minimum product B0L0 required to achieve 30 ns at 8 Å (i.e., the reference point at which 
condition 2 must apply): 
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   Condition 2: To achieve Px
0 ≥ 0.5 at (30 ns, 8 Å). (293) 

 
Condition 3 amounts to having a total aluminum winding thickness traversed by the neutron beam of less 
than 24 mm. Using the 2:1 winding thickness ratio for the static: r.f. field coil windings used in the example 
in Sec. 7.3.2, we treat this condition as only influencing one of the critical parameters in the above list, 
namely the thickness t of the static field coil windings. The condition for the present purposes is therefore 
stated as t ≤ 1 mm on the understanding that the r.f. coil can work satisfactorily with winding thickness 
≤ 0.5 mm. 
 
Condition 4 can be stated as 
 

            [ ]05
-1

T
8 10

m max

B
I

n
× ≤

  
, 

 
where Imax is a stated upper limit. If we choose a static field coil upper current limitation of Imax = 100 A, 
condition 4 can be restated as: 
 

        [ ]0 4
-1

T
1.25 10

m
B

n
−≤ ×

  
   Condition 4: To limit Imax < 100 A in the static field coil windings. (294) 
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Condition 5 for aluminum windings amounts to determining the maximum operational power dissipated as 
heat in the static field coil (i.e., at the maximum operating static field B0

max) – see Eq. (235), P(B0
max), and 

assessing whether it is reasonable: 
 

( )[ ] [ ]( ) [ ] ( )( )
2

2 3
0 0

m
W T 72.2 K 4.37 10 .

m
surfmax max

Al

A
P B B T

t

  = − ×  

 
We will assume an equilibrium winding temperature of T ≈ 400 K. Minimizing P(B0

max) in condition 5 is 
aided by choosing the maximum allowable value of t (i.e., 1 mm from condition 3), so that condition 5 
becomes: 
 

   ( )[ ] [ ]( )27 2
0 0W 2.45 10 T m ,max max

Al surfP B B A  = ×    T = 400 K, t = tmax = 10-3 m. 
 
We substitute the value of Asurf for a rectangular form coil (Eq. (218)) so we have 
 

          ( )[ ] [ ]( ) [ ] [ ] [ ]( )0

27
0 0W 4.9 10 T m m m ,max max

Al axial BP B B l a l= × +  T = 400 K, t = tmax = 10-3 m. 

 
We assume from previously-developed coils that laxial and a must be at least about 7 times larger than the 
beam dimensions to achieve sufficient static field homogeneity within the beam passage. For a 3 cm × 3 cm 
beam, this equates to a ≈ laxial ≈ 0.2 m. Also lB0 ≈ 0.03 m, therefore, substituting these values for a typical 
situation we have: 
 

 ( )[ ] [ ]( )26
0 0W 2.25 10 Tmax max

Al typ
P B B≈ ×    Condition 5: Max power in typical static coil with T = 400 K, 

 t = tmax = 10-3 m (1 mm), a ≈ laxial = 0.2 m, lB0 = 0.03 m.     (295) 
 
Finally, condition 6 can be stated as (see Eq. (266)): 
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where for Vrf

max
 = 1500 V, we have: 
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    for Vrf
max ≤ 1500 V. 

 
This condition must be true for all operating conditions and consequently also for the minimum operating 
wavelength, which we choose as λ = 2 Å, where the voltage is maximized. Because the r.f. field 
homogeneity requirements are typically an order of magnitude more relaxed (see Sec. 7.3.4.8) than the 
required static field homogeneities (see Table 7) at high resolution, we assume that lrf

axial and arf need be 
only three times the beam size (i.e., we will make lrf

axial = arf = 0.09 m). Condition 6 then becomes: 
 
    [ ]-1

0m T 15max
rfn B  ≤     Condition 6: For Vrf

max ≤ 1500 V for lrf
axial = arf =0.09 m and λ = λmin = 2 Å. 

(296) 
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We make one further simplification to express condition 1 in terms of the maximum B0 (B0
max) only. The 

technical conditions 2(b), 4, 5, and 6 are all worst-case at maximum field (B0
max). We might reduce the 

maximum necessary field B0 by reasonably maximizing the inter-coil separation L0 in condition 1. A value 
of L0 = 2 m is about the longest practical value in terms of available floor space for the instrument. 
However the disadvantage of further increasing L0 is that the instrumental solid angle of acceptance reduces 
proportional to 1/L0

2. Fixing L0 = 2 m, therefore, condition 1 (Eq. (292)) becomes: 
 

      max
0 0.0395 TB =    Condition 1 for L0=2 m. 

 
Therefore conditions 2(b), 4, 5, and 6 become respectively: 
 
            [ ]

0

5m 3.8 10FWHM
Bl

−∆ ≤ ×    (i.e., about 38µm or less – see Eq. (293) (b)). 
 
      -1m 316n   ≥   (Minimum static field coil winding density for I < 100 A – see Eq. (294)). 
 
The minimum achievable power dissipated as heat at the maximum operating field, B0

max, is (from Eq. 
(295)): 
 

 ( )[ ]0 W 3510 Wmax
Al typ

P B ≥    T = 400 K, t = 10-3 m, laxial = 0.2 m, lB0 = 0.03 m,  (297) 

 
i.e., the minimum required cooling power to maintain the windings at 400 K. 
      From Eq. (296) we have: 
 

    -1m 380rfn   ≤     (limiting r.f. coil inductance). 
 
The parameter values 2(c), and 3 have already been determined in this example as ∆θmax ≤ 4 ×10-3 rad and 
t = 10-3 m respectively. 
      The remaining parameter range to be determined is 2(a). This is somewhat driven by what is achievable 
in the coil design, but we have seen (Sec. 7.3.3.7) that small values of lB0 aid in achieving the required static 
field homogeneity. Given that the static field coil must enclose both the r.f. coil and the necessary 
structures for heat removal, we anticipate lB0 ≈ 0.03 m as imposing an approximate practical lower limit on 
the static field coil length (as has been assumed in many of the examples given above). Using this value, 
condition 2(a) amounts to designing a coil that can achieve 
 

           [ ] 5
0 T 5 10 .FWHMB −∆ ≤ ×  

 
For B0

max = 0.0395 T, this corresponds to a static field homogeneity to about 0.305 % or better. 
 
7.5  Coupling Coils 
 
      The author is grateful to Roland Gähler of the ILL, Grenoble, for providing information about these 
coils: 
 
The µ-metal shield surrounding the coils cannot be closed because a polarized neutron beam cannot be 
passed through µ-metal without significant depolarization. Thus the µ-metal tube must be open-ended. The 
open-ended tube by itself has field lines penetrating partially into the openings, thus in order to maintain 
control of the polarization direction at the entrance and exit of the µ-metal shield, coupling coils (CCs) are 
used. Gähler et al. use a µ-metal tube of about 0.1 m diameter into which is introduced a (0.15 to 0.2) m 
long (in the beam direction), rectangular cross-section CC. An example of a CC penetration into a µ-metal 
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shield on the NRSE-TAS spectrometer at the FRM-II is shown in Fig. 34. The magnetic field axis of the 
CC is perpendicular to the beam. The residual field of the polarizer (and analyzer) at the entrance (exit) of 
these coils is usually a few hundred µT. The field magnitude in the CCs is also typically a few hundred µT. 
The windings on the polarizer side are bent outwards (this is visible in Fig. 34) in order to ensure an 
adiabatic transition from the polarizer field to the CC guide field, whilst eliminating CC windings from the 
neutron beam path. If the adiabatic condition is met, the neutron spins follow the direction of the CC guide 
field. On the inner side of the CCs, the neutrons pass abruptly through the windings and a non-adiabatic 
transition results, whereby the polarization direction immediately prior to passing through the windings is 
preserved. In order to ensure this, the CC return fields are conducted sharply into an additional µ-metal 
shield that surrounds the inner ends of the coil, thus avoiding a gradual stray field gradient downstream that 
could affect the polarization direction. Finally, the CCs (and hence the polarization direction) can be rotated 
through 90° without loss of polarization. For the ILL “Zeta” instrument, both the polarizer field and the 
initial polarization direction are vertical (parallel to z). The CCs are used to rotate the polarization to lie 
along x for normal instrument operation, or along z for individual tests of the flipper coils. 
 
 

 
 
Fig. 34. A coupling coil at the exit of a µ-metal housing on the NRSE-TAS spectrometer at the FRM-II, Garching, Germany (photo 
kindly allowed by T. Keller). The windings are bent outwards at the exit to avoid contact with the beam and to ensure an adiabatic 
transfer from the polarizer/analyzer field to the CC guide field. 
 
 
7.5.1  Conditions for Adiabatic and Non-Adiabatic Field Transitions 
 
      “Adiabatic” and “non-adiabatic” spin transitions in spatially and/or temporally-varying magnetic fields 
refer to two extremes: 

(i) Adiabatic: the spin direction follows the field direction at all times. 
(ii) Non-adiabatic: the neutron passage is sufficiently fast that the spin cannot follow the change of 

field direction and preserves its original direction. 
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For the CC it is convenient to consider a magnetic field, of constant magnitude Bguide, initially parallel to 
the spin direction, which rotates uniformly through an angle ψ over a flight path length d. In its rest frame, 
a neutron of constant velocity vn sees a magnetic field rotating at frequency Ω, where 
 

     .nv
d

Ω ψ=      (298) 

 
This situation has been represented by Ramsey [26] and other authors in terms of an effective field in a 
coordinate frame fixed to the rotating field (see Fig. 35). In the adiabatic case, Beff ≈ Bguide (i.e., θ → 0), 
therefore s remains approximately parallel to Bguide in the rotating frame and consequently the spin follows 
the change of direction of the guide field in the lab frame. In the non-adiabatic case, Beff ≈ Ω /γn 
(approximately independent of Bguide, θ → π/2), and the spins precess at a rate γBeff ≈ Ω. In the lab frame, 
therefore, where Bguide rotates with Ω, the spins stand still, i.e., they do not follow the change of direction of 
Bguide. We note that the angle θ is given by 
 

     1 1tan tan .n

n guide n guide
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γ γ

− −
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    (299) 

 
 

 
 
Fig. 35. The effective magnetic field in a coordinate frame fixed to the rotating field. Two situations are shown tending towards the 
extreme adiabatic and non-adiabatic cases. 
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An order of magnitude for the required guide fields is obtained by considering several examples of an 
increasing approach to pure adiabatic rotation of spins (decreasing θ) through an angle ψ = π/2. The angle 
ψ is brought about by a uniform rotation of a guide field (of constant magnitude |Bguide|) over a flight path 
of 0.5 m (a typical spacing between the polarizer and the coupling coil). The results are shown in Table 10. 
 
 
Table 10. Estimated minimum (fixed) guide field magnitudes, |Bguide|, required to produce a π/2 rotation of a neutron spin that follows 
a guide field rotation of π/2 radians over a distance of 0.5 m. The actual conditions for adiabatic rotation are usually determined 
experimentally. 
 

 |Bguide| for θ = 

vn(ms-1) λ (Å) Ω (ψ =π /2,d = 0.5m) = πvn π /18 (10°) π /180 (1°) π /1800 (0.1°) 

1000 ≈ 4 1000π ≈ 100 µT ≈ 1 mT ≈ 10 mT 

500 ≈ 8 500π ≈ 50 µT  ≈ 0.5 mT ≈ 5 mT 

 
 
7.6  Alignment of the B0 Fields Using Coupling Coils 
 
      The coupling coils (Sec. 7.5) provide a convenient means of aligning the static fields of the coils in the 
spectrometer. This is performed by rotating the field axis of the coupling coil such that the neutron spins 
are aligned along the required B0 field axis. The B0 field of each coil is switched on one at a time and the 
static field coil is adjusted until the maximum signal is measured in a detector placed downstream of the 
analyzer. 
 
7.7  Magnetic Shielding 
 
      It is essential to reduce net stray field integrals in the “zero-field” flight paths to the order of a few 
×10-7 Tm (see Sec. 7.3.5). At high static fields B0, this involves magnetic screening of the individual coils 
units outside of the beam area. Significant sources of external magnetic fields must also be excluded. For 
example, the action of the unshielded Earth’s magnetic field may give rise to a precession of several turns 
over a typical 2 m drift path, which additionally is variable depending on the orientation of the 
spectrometer arm. Uncompensated neighboring magnetic environments may cause worse complications, 
especially if the field magnitude changes. Therefore, the neutron drift paths between the coils must also be 
magnetically shielded. 
      One of the best magnetic shielding materials is so-called “µ-metal”. µ-metal is an alloy with typical 
composition 75 % Ni, 2 % Cr, 5 % Cu, 18 % Fe and density of about 8.75 gcm-3. It has the property of 
being very soft magnetically, having a very small coercive field, and an extremely high permeability at low 
field strengths. With a single-skinned, 1 mm thick µ-metal tube, Dubbers et al. [22] were able to obtain a 
shielding factor for the Earth’s magnetic field of about 20, from about 40µT to about 2µT. However, the 
resulting several µTm field integral over 2 m drift paths is insufficient by nearly an order of magnitude for 
achieving the goals discussed in Sec. 7.3.5. The magnetic shielding factor is significantly improved by 
using multiple-skinned shields with intervening air gaps [27]. The case of triple-skinned, concentric 
cylindrical and spherical shields was first treated in an elementary way by Wills [24]. Dubbers [28] further 
simplified the cylindrical geometry, multi-skinned µ-metal case in the thin-shell approximation that agrees 
with the rigorous calculations to about 1 percent in most cases. He reiterates that the shielding is most 
effective when the shell diameters, Di, grow in geometric progression, i.e., 
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where κ is a constant. Using this approximation, the total shielding factor, S, for n concentric shells with a 
constant diameter ratio κ is given approximately by 
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κ +
<   (301) 

 
where µ1 t1/D1 is the shielding factor of the innermost shell of diameter D1, thickness t1, and permeability 
µ1. Equation (301) demonstrates the value of using high permeability with n > 1, given that t1 cannot be 
large for practical purposes and D1 cannot be smaller than is allowed by the enclosed instrumentation. 
However, minimizing D not only increases shielding performance but also reduces the cost and weight of 
the shield. Magnetic shields should also be closed wherever possible since magnetic field lines can 
penetrate into openings by up to about five times the opening diameter. Closure maintains the reluctance 
path continuity, increasing shielding performance. Shield closures should also be rounded where possible 
because flux lines negotiate gentle radii better than sharp angles. One disadvantage with the high 
permeability of µ-metal is its low saturation field (the saturation field is inversely proportional to the 
permeability). If necessary, the magnetic shielding layer closest to the high field is fabricated from a lower 
permeability material to avoid saturation and successive shielding layers may be fabricated from 
increasingly high permeability material, as the field magnitude at each layer reduces. 
      After fabrication µ-metal shielding structures must be annealed in a dry hydrogen atmosphere at about 
1200 °C for several hours. The hydrogen atmosphere helps remove carbon and other trace impurities. The 
high temperature relieves stresses from fabrication and allows the nickel crystallite grain boundaries to 
expand. The annealing can increase the permeability of the alloy significantly – typically by a factor of 40. 
However, careful handling of the µ-metal after annealing is required. Mechanical shocks readily disrupt the 
nickel grain structure, negating the permeability gain. 
 
7.8  Beam Optics for High-Resolution Operation 
 
      In order to achieve the highest resolution goals of the instrument, the neutron flight path length 
distribution must be narrowed by corrective optics. Some evidence for this is presented in Sec. 8.5. A 
detailed study of the beam optics will be presented in a separately. 
 
 
8.  Monte Carlo Simulations of NRSE Instrument Performance 
 
      Some Monte Carlo simulations are presented that illustrate and validate some of the analytical models 
of the NRSE developed in the previous sections. Numerical techniques are invaluable for modeling 
complex cases where coupled variables are involved, whilst the analytical models are useful for making 
rapid predictions of the instrument parameters and performance. 
 
8.1  General Description of the Monte Carlo Simulation Method 
 
      The time-dependence of τNRSE is implicit in the simulations. The neutrons are treated as discrete 
particles, each having a particular spin vector and all spin coordinate transformations are performed exactly 
within the limitations of the following assumptions: 

1. The r.f. field is rotating in a plane perpendicular to the static field B0. 
2. The interaction of the r.f. field component that is rotating counter to the direction of Larmor 

precession in the static field can be ignored. 
3. r.f. frequencies of successive coils are phase locked. 
4. The magnitude of B0 is assumed large with respect to Brf. 
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The neutron beam is assumed to be directed along the y-axis of a right-handed coordinate system with the 
neutron spin initially polarized along the x-axis. The applied static fields of the coils are applied parallel or 
antiparallel to the z-axis and the applied r.f. field is in the x-y plane. The simulation is built around a single 
r.f. flipper coil module which transforms the entry momentum-spin state of the neutron into an exit 
momentum-spin state with a main module which handles the spectrometer geometry, source distribution, 
sample setup, and gathers statistics. The signs of static field directions (and hence the sense of the resonant 
field rotations) are handled by explicitly applying sgn(B0) to the frequencies and angles in each coil as 
described below. For successive coils of a 4-N coil NRSE we choose 
 

   ( ) [ ]
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11 1 1 1
sgn .

21 1 1 1 1 1 1 1
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B
N
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=  =− − − −

 

 
The program allows asymmetric scans to be performed in which the coil separations in the incident arm LAB 
are varied with respect to the second arm LCD in addition to variation of the static field, B0, for a specified 
range of discrete values. The coil separation ranges are specified symmetrically with respect to (LAB – LCD) 
= 0 in terms of the number of minimum periods 0

max
nN Bπ γ , where N is the bootstrap factor. The option to 

fix LAB = LCD for a “symmetric” scan is also available. 
      The incoming wavelength distribution may be selected from rectangular, triangular, or Gaussian 
distributions, or else a δ function (pure monochromatic) symmetrically with respect to a specified nominal 
(true mean) wavelength, λ0. Uncertainties in the coil lengths and the static field homogeneity are handled 
by randomly selecting values from Gaussian distributions which are centered on the nominal values for 
each coil. This means that for each Monte Carlo trajectory, the uncertainty is uncorrelated with the position 
in the coil; however, this allows for comparison with the simple “beam-average” formulations for the 
resolution contributions described in Sec.6. The beam divergence is considered to be uniform and 
symmetric up to specified limits of the incoming beam at the entrance to the first coil and may be specified 
independently for x and z for a beam traveling along y. Thereafter, the collimation is imposed by the 
dimensions of the coil windows or sample (if present) though which the beam is required to pass. An option 
to specify divergences according to the simplified model in Sec. 6.4 is also available. 
      The r.f. flipper module calculates the time spent in the each coil as tcoil = lcoil /(vn cosθ ), where 

2 2 2cos y x y zk k k kθ = + + , where kx,(y,z) are the components of the trajectory k-vector (or something 
proportional to it) and y is the nominal direction of the beam. To maintain generality, the r.f. phase on entry 
to the first coil is generated randomly between 0 and 2π, simulating a continuous neutron beam, even if it 
turns out that this phase cancels in the final result. The r.f. frequency, ωrf, is assumed to have negligible 
uncertainty with respect to the other frequencies in the problem (i.e., is fixed for a given spectrometer 
setting). The magnitude of ωrf is not necessarily constrained have the value of the nominal Larmor 
precession frequency in the static field, 0

nomω , i.e., ( )0 0sgn nom
rf B fω ω=  but f = 1 is the default. Also, as 

mentioned previously, ω0 varies depending on a randomly selected value of δB0/B0 from a Gaussian 
distribution, where ( ) ( )0 0 0 0 0sgn 1nom nomB B Bω ω δ= + . This value of ω0 affects the entire trajectory 

passage through a given coil. In order to limit the number of variables in the problem, |Brf | is set to the 
nominal value which produces exact π-flips for the chosen nominal wavelength, λ0, and nominal coil 
length. 
The coordinate transformations are handled as follows: 
1.  The initial polarization at the entrance to coil 1 is defined parallel to the x-axis, i.e., 
 

       
1
0
0

inP
 
 =  
  
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2.  The coordinate system is transformed around z so that x′ points along the direction of the applied 
resonant component of the r.f. field vector in the xy plane at the entrance to the coil, in

rfB , i.e., along the 

direction defined by the phase angle ( )0sgnin in
rf rfBψ ψ= . If this is the first coil it is simply the randomly 

generated value between 0 and 2π. The transformation matrix (with the convention that a positive rotation 
about the positive z-axis is “positive x axis moving towards positive y-axis”) is: 
 

        1

cos sin 0
sin cos 0 .

0 0 1

in in
rf rf

in in
rf rfT

ψ ψ
ψ ψ

 
 

= − 
 
 

 

 
If ωrf ≠ ω0 (which is the case in general if δB0 ≠ 0, even if f is set to 1), the effective Larmor precession 
frequency, eff

pω , around the effective field in the rotating coordinate system and the corresponding angular 

departure of the effective field from the xy plane, αeff, are calculated according to Ref. [15] as 
 

               ( )2 2
0 ,eff eff

p n rf rf pBω γ ω ω ω= = − +  

 
where p n rfBω γ= , as before, and 
 

             01tan .rf
eff

p

ω ω
α

ω
− −

=  

 
Note that 2eff

p Aω ω=  in Ref. [13]. 
      The coordinate system is then rotated by -αeff about y′ (where the –sign ensures that a positive value of 
αeff rotates the +x′ axis toward the +z′ axis) such that x′′ points along eff

rfB , according to 
 

    2

cos 0 sin
0 1 0 ,

sin 0 cos

eff eff

eff eff

T
α α

α α

 
 

=  
 − 

 

 
so that the compound transformation from the lab frame to the rotating Brf

eff frame is 
 

          2 1

cos cos cos sin sin
sin cos 0 .

sin cos sin sin cos

in in
eff rf eff rf eff

in in
rf rf

in in
eff rf eff rf eff

T T
α ψ α ψ α

ψ ψ
α ψ α ψ α

 
 

= − 
 − − 

 

 
Its inverse, ( ) 1

2 1T T − , is also calculated to transform from the rotating frame back to the lab frame. (Note that 
for exact resonance (ωrf = ω0), T2 is just the identity matrix and T2T1 ≡ T1). 
3.  The total Larmor precession by an angle eff eff

n rf coil p coilB t tγ ω=  is performed around eff
rfB  (i.e., the x′′ 

axis). Note that eff
pω  is always positive but because we are now rotating the object (the neutron magnetic 

moment) rather than the axes, the transformation is like an axis rotation by eff
p coiltω− ); the transformation 

matrix is 
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              3

1 0 0
0 cos sin ,
0 sin cos

eff eff
p coil p coil
eff eff
p coil p coil

T t t
t t

ω ω
ω ω

 
 

= − 
 
 

 

 
so that the compound transformation of the spin is 
 

3 2 1

cos cos cos sin sin

sin cos sin
cos sin

sin cos

sin sin sin

cos cos

sin cos cos

in in
eff rf eff rf eff

in eff
eff rf p coil eff

eff p coilin eff
rf p coil

in eff
eff rf p coil

in eff
rf p coil

in
eff rf

T T T

t
t

t

t

t

α ψ α ψ α

α ψ ω
α ω

ψ ω

α ψ ω

ψ ω

α ψ

=

−
−

  
     +   

− cos cos

.

cos sin

sin sin sin sin cos
eff

eff p coil

eff in eff
p coil rf p coil

in eff in eff
rf p coil eff rf p coil

t
t t

t t
α ω

ω ψ ω

ψ ω α ψ ω

 
 
 
 
 
 
 
 

    
        + −    

 

 
The coil dispersion is accounted for at this stage. 
4.  Returning to the lab frame the spin transformation thus far is ( ) 3 2 1

1
2 1 T T TT T − . 

5.  Finally, we add on the applied r.f. field rotation (around the z axis) to the position of the magnetic 
moment during passage of the neutron through the coil via 
 

    4

cos sin 0
sin cos 0 ,

0 0 1

rf coil rf coil

rf coil rf coil

t t
T t t

ω ω
ω ω

− 
 =  
 
 

 

 
where ( )0sgnrf rfBω ω=  which accounts for the sense of rotation of the resonant component in the 
particular coil. Note again that the object is rotated and the lab frame coordinate axes are left alone so that 
this matrix is equivalent to a coordinate rotation by –ωrf tcoil. 
The output of the flipper coil module is the output polarization vector: 
 
             ( ) 3 2 1

1
4 2 1out inT T TP T T T P−=  

 
and the magnitude of the r.f. field phase at the exit of the coil: 
 
             .out in

rf rf rf coiltψ ψ ω= +  
 
In the zero-field drift paths between the coils, no spin transformation is performed but the magnitude of the 
r.f. phase is advanced according to the time of flight in the drift path, tpath = L/(vn cosθ ), where L is 
measured along the y-axis, (i.e., f i

rf rf rf pathtψ ψ ω= + ). f
rfψ  then becomes the input r.f. phase magnitude 

for the next coil. The polarization represented by Eq. (140) is (in this case) the mean value of the 
component Px at the exit of the final coil averaged over many trajectories. Stray field effects between coils 
are not accounted for. For magnetically-shielded symmetric Bootstrap configurations, this is not a bad 
approximation; for other configurations it assumes adiabatic passage of the neutron through these regions. 
      For quasielastic neutron scattering simulations, the specific case of self-diffusion at low Q is treated. In 
this approximation the quasielastic half energy width at half maximum given by 

http://dx.doi.org/10.6028/jres.119.005
http://dx.doi.org/10.6028/jres.119.005


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.005 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 160 http://dx.doi.org/10.6028/jres.119.005 

 

     ( ) 2 ,Q DQΓ =       (302) 
 
where D is the (specified) diffusion coefficient in units of area per unit time (see Sec. 5.3). In order to 
simplify the Monte Carlo selection of a quasi-elastic energy transfer from a Lorentzian distribution, Q is 
calculated as the elastic Q value from the randomly selected incident wavelength and a specified fixed 
scattering angle, θs, according to 
 
             4 sin ,el s iQ Q π θ λ≈ =     (303) 
 
i.e., for the selection of Q only, the very small change in wavelength due to the scattering is ignored. For 
example, for an incident wavelength λi = 8 Å (Ei = 1.278 meV) with a typical NRSE energy transfer of 
0.025 µeV, ∆λ/λi ≈ ½ ∆E/Ei ≈ 10-5, i.e., the Q-value is accurate to about 10-3 % which is very much smaller 
than the incident wavelength bandwidth, which is of order several %. Also the distribution of θs in a real 
situation would broaden Q significantly more than 10-3 %. With the chosen value of Γ(Q), a Lorentzian-
distributed energy transfer is randomly selected according to 
 
    ( ) { }( )tan 0.5,0.5 ,Q ranω π = −Γ −     (304) 
 
subject to the maximum sample energy gain restriction ω ≤ Ei, where Ei is the incident neutron energy. 
Finally, the scattered neutron wavelength (velocity) is calculated from the incident wavelength and the 
randomly selected value of ω. The resulting value is used for propagation of the neutron downstream of 
the sample position. 
 
8.2  Numerical Verification of Analytical Approximations for Coil Dispersion 
 
      The approximations represented by Eqs. (42-44) (see Sec. 2.2.2) describe dispersion-induced 
depolarization after passage through M coils for rectangular, triangular, and Gaussian-shaped incident 
wavelength spectra respectively. In order to isolate dispersive effects in the Monte Carlo simulations, all 
other instrumental imperfections (coil dimension errors, field inhomogeneity, and beam divergence) are 
switched off, and the model has “perfect” polarizers and no sample. Results for rectangular wavelength 
spectra with ΛFW = ∆λi

FW/〈λi〉 between 0.1 and 0.5 are shown in Fig. 36. For ease of comparison, results for 
triangular and Gaussian wavelength spectra are plotted with values of ΛFWHM = ∆λi

FWHM/〈λi〉 which give 
equivalent rms wavelength deviations about the mean as the rectangular cases, i.e., the triangular spectra 
have ΛFWHM = ΛFW/√2, and the Gaussian spectra have ΛFWHM = √((2/3)ln2)ΛFW (see also Table 1). These are 
shown in Fig. 37 and Fig. 38 respectively. The results corresponding to ΛFW = 0.1 (black symbols and 
curves) show that the approximations made in Sec. 2.2.2 for extending the single coil case to the M-coil 
case agree with the simulations to within about 0.01 % for all spectral shapes. For the results corresponding 
to ΛFW = 0.2 (red symbols and curves), the agreement is at about the 0.1 % level, and for the ΛFW = 0.5 
family (magenta symbols and curves), the approximations agree to about 2.3 % for all spectral shapes. For 
the perfect spectrometer, the loss of echo signal due to dispersion appears to be independent of B0 (τNRSE) 
for all practical cases. 
 
8.3  Effects of Field Inhomogeneity, Coil Length Uncertainty, and Beam Divergence (Simplified 
       Divergence Model) in the Absence of Flipper Dispersion 
 
      For all calculations in Sec. 8.3 the simplified beam divergence model described in Sec. 6.4 is adopted 
and incident and scattered beams are assumed to have uniform divergence of the same magnitude. 
Furthermore, all effects of flipper dispersion are effectively switched off by choosing a purely 
monochromatic incident beam with no subsequent energy changes. This means that the simulated 
polarizations tend to unity as τNRSE → 0. The spectrometer configuration in each case is 4-N=2 bootstrap 
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Fig. 36. Simulated effects of flipper coil dispersion for rectangular incident wavelength spectra compared with analytical 
approximations using Eq. (42) (see Sec. 2.2.2) for various values of ΛFW = ∆λi

FW/〈λi〉, for a “perfect” instrument (∆B0 = 0, ∆lB0 = 0, 
∆θi,max = ∆θf,max = 0) and for elastic scattering (resolution function). 
 
 
coils, with L0 = L1 = 2 m, lB0 = 0.03 m, and an incident spectrum I(λ) = δ (8Å). Figure 39 to Fig. 43 show 
instrumental resolution functions. Figure 39 shows the effect of ∆B0 in isolation. The Gaussian FWHM 
∆B0/B0 values for the simulations are estimated from Eq. (178) to give values of Px

0 at B0 = 0.0393 T (τNRSE 
= 30 ns) of 0.7 (red curves), 0.5 (blue curves), and 0.3 (green curves), which fix the ∆B0/B0 values at 
0.368 %, 0.527 %, and 0.722 % respectively. The simulation results are represented by the circular symbols 
and the solid lines represent Eq. (176), with the chosen values of Px

0 at τNRSE = 30 ns. Note that Eq. (176) is 
the inverse representation of Eq. (178). Figure 40 shows the effect of ∆lB0 in isolation. In analogy with Fig. 
39, values of ∆lB0 were chosen that yield Px

0 = 0.7, 0.5, and 0.3 at B0 = 0.0393 T (τNRSE = 30 ns) according 
to Eq. (184). The simulations are represented by the circular symbols and the solid curves are Eq. (185), 
which is the inverse representation of Eq. (184). It is clear that Eq. (185) very accurately describes the 
simulation results to quite low polarizations. Figure 41 shows the effect of ∆θ in isolation. In this example, 
the incoming and outgoing divergences are independent but identical in magnitude and generated according 
to the simplified model. In analogy with the previous figures, values of ∆θmax were chosen such that Px

0 = 
0.7, 0.5, and 0.3 when B0 = 0.0393 T (τNRSE = 30 ns) according to Eq. (202). Note that Eq. (202) is an 
approximate inversion of Eq. (197), as described in Sec. 6.4. The simulations are represented by the 
circular symbols and the solid curves are Eq. (197), which very accurately describes the simulated points. 
In Fig. 42 the simulation combines resolution effects with approximately equal contributions from field 
inhomogeneity, coil length uncertainty, and beam divergence, calculated according to Eqs. (203-205), with 
Px

0 (B0 = 0.0393 T) = 0.7, 0.5, and 0.3, such that the simulated polarization is expected to reach these 
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Fig. 37. Simulated effects of flipper coil dispersion for triangular incident wavelength spectra compared with analytical 
approximations using Eq. (43) (see Sec. 2.2.2) for various values of ΛFWHM = ∆λi

FWHM/〈λi〉, for a “perfect” instrument (∆B0 = 0, ∆lB0 = 
0, ∆θi,max = ∆θf,max = 0) and for elastic scattering (resolution function). The values of ΛFWHM are chosen to give the same rms deviation 
with respect to 〈λi〉 as the rectangular spectrum cases shown in Fig. 36 and are numerically equal to ΛFW(rect)/√2. 
 
 
values at τNRSE = 30 ns. The specific values of ∆B0(FWHM)/B0, ∆lB0 (FWHM), and half-width divergence 
(∆θmax = ∆θi,max = ∆θf,max) so obtained are shown in the legend. The simulated data are very well described 
by the products of Eqs. (176), (185), and (197) with the chosen values of ∆B0, ∆lB0, and ∆θmax (solid 
curves). 
      Using the same ∆B0 and ∆lB0 that yields the Px

0 (8 Å, τNRSE = 30 ns) = 0.5 case in Fig. 42 
(∆B0(FWHM)/B0 = 0.305 %, ∆lB0(FWHM) = 38.9 µm), Fig. 43 shows the effect of changing wavelength. 
The half-width divergence (with ∆θmax,i = ∆θmax,f  [see Fig. 16]) is determined by the same “half divergence 
angle per unit wavelength” (=0.658 mrad Å-1), so that the green curve in Fig. 43 is equivalent to the blue 
curve in Fig. 42. Note that 0.658 mrad Å-1 is a little less than is characteristic of polished glass (similar to a 
neutron guide with no metallic coating). The curves are plotted for identical ranges of B0 from 0.001 T to 
0.0393 T, but because of the λ3 –dependence of τNRSE, the range of the abscissa is a sensitive function of 
wavelength. The echo signals corresponding to the cases shown in Fig. 43 at B0 = 0.0393T (maximum 
τNRSE) are shown in Fig. 44. Therefore, the polarizations at symmetry (L0 = L1) are those of the curves in 
Fig. 43 at maximum τNRSE. Note that there is no modulation of the peak magnitude when L0 ≠ L1 because a 
purely monochromatic incident beam is being simulated and that the periodicity is inversely proportional to 
the wavelength, as predicted by Eq. (126). Using the same reference spectrometer setup that reaches τNRSE = 
30 ns at λ = 8 Å, Fig. 45 demonstrates the significant suppression of the echo signal as the incident and 
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Fig. 38. Simulated effects of flipper coil dispersion for Gaussian incident wavelength spectra compared with analytical 
approximations using Eq. (44) (see Sec. 2.2.2) for various values of ΛFWHM = ∆λi

FWHM/〈λi〉, for a “perfect” instrument (∆B0 = 0, ∆lB0 = 
0, ∆θi,max = ∆θf,max = 0) and for elastic scattering (resolution function). The values of ΛFWHM are chosen to give the same rms deviation 
with respect to 〈λi〉 as the rectangular spectrum cases shown in Fig. 36 and are numerically equal to √((2/3)ln2)ΛFW(rect). 
 
 
scattered arm divergence approaches that of a natural Ni guide (≈ 1.73 mrad Å-1) at λ = 8Å. In this example 
∆θi,max = ∆θf,max = ∆θmax (simplified divergence model) in an otherwise perfect spectrometer (∆B0 = 
∆lB0 =0). The simulation is for a purely monochromatic incident beam, I(λ) = δ (8 Å). 
 
8.4  Simulations of Spectrometer Signal Revealing Flipper Coil Dispersion 
 
      All the simulations in this section adopt the same reference spectrometer configuration used previously, 
namely 4-N = 2 bootstrap coils, L0 = L1 = 2 m, lB0 = 0.03 m, lg=1 mm, and 〈λi〉 = 8 Å. Additionally, 
∆B0(FWHM)/B0 = 0.305 %, ∆lB0(FWHM) = 38.9 µm, and ∆θmax,i = ∆θmax,f = 5.26 mrad, which are the 
values from Eqs. (203-205) that yield Px

0 (8 Å , τNRSE = 30 ns) = 0.5 in the dispersionless case. However, 
this time flipper dispersion is included by having a non-zero incident wavelength bandwidth. 
      Figure 46 shows the elastic resolution function for ∆λi

FWHM/〈λi〉 = 10 % (triangular) with the above 
instrumental uncertainties (black symbols). The red symbols represent the simulated resolution function for 
dispersion in isolation when ∆λi

FWHM/〈λi〉 = 10 % (which is practically independent of τNRSE – see Fig. 37). 
The green symbols are the result of dividing the dispersive resolution function (black symbols) by the 
effect of the dispersion in isolation (red symbols), which essentially reproduces the dispersionless 
resolution function (verified by plotting the analytical approximation (product of Eqs. (176), (185), and 
(197) – green solid curve). If this product is further multiplied by the analytical approximation for the 
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Fig. 39. Simulations of the effect of ∆B0 in isolation for a 4-N=2 coil spectrometer with L0 = L1 = 2 m, lB0 = 0.03 m, and incident 
spectrum I(λ) = δ(8Å). The plot shows simulations (circular symbols) for three fixed values of ∆B0/B0 with Gaussian distributions. 
These were chosen such that the Px

0 predicted by Eq. (178) are 0.7 (red), 0.5 (blue), and 0.3 (green) when B0 =0.0393 T 
(corresponding to τNRSE = 30 ns for these instrument parameters). The implied values of ∆B0/B0(FWHM) are 0.368 %, 0.527 %, and 
0.722 % respectively. The solid curves are Eq. (176) which is the inverse representation of Eq. (178). 
 
 
effect of dispersion for a triangular spectral distribution (Eq. (43)), the simulation results are very well 
reproduced by the analytical approximation (solid black curve). Figure 47 is the exact analogue of Fig. 46 
except that ∆λi

FWHM/〈λi〉 is increased from 10 % to 30 %, which exaggerates the effect of coil dispersion. 
      Figure 48 and Fig. 49 extend the simulations shown in Fig. 46 and Fig. 47 respectively to include 
quasielastic scattering (with Γ (FWHM) = 0.025 µeV). The simulated raw quasielastic signals (black 
symbols) divided by the resolution function (red symbols [also the black symbols in Fig. 46 and Fig. 47]) 
produce the green symbols. This function may be compared with the theoretical intermediate quasielastic 
scattering functions (Eq. (137) – continuous green curve). The main discrepancies between the theoretical 
functions and the simulations arise from the approximations concerning the effects of dispersion (Eq. (43)) 
and of ∆B0 (Eq. (176)) when the cumulative out-of-xy plane excursions of the spin increase as the neutrons 
traverse multiple coils. However, even for very broad ∆λ (30 % ∆λi

FWHM/〈λi〉 example) there remains quite 
reasonable agreement between the resolution-corrected simulation (green symbols) and the analytical 
approximation. The simulated elastic (resolution) spin-echo signal and quasi-elastic spin-echo signal 
(asymmetric scans) at τNRSE = 30 ns (B0 = 0.0393 T for this model - corresponding to the end points of the 
red and black symbols respectively in Fig. 48 and Fig. 49) are shown in Fig. 50 and Fig. 51 respectively. 
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Fig. 40. Simulations of the effect of ∆lB0 in isolation for a 4-N=2 coil spectrometer with L0 = L1 = 2 m, lB0 = 0.03 m, and incident 
spectrum I(λ) = δ(8Å). The plot shows simulations (circular symbols) for three fixed values of ∆lB0 (FWHM) with Gaussian 
distributions. These were chosen such that the Px

0 predicted by Eq. (184) are 0.7 (red), 0.5 (blue), and 0.3 (green) when B0 =0.0393 T 
(τNRSE = 30 ns for these instrument parameters). The corresponding values of ∆lB0(FWHM) are 48.3 µm, 67.3 µm, and 88.7 µm 
respectively. The solid curves are Eq. (185), which is the inverse representation of Eq. (184). 
 
 
8.5  Simulations with an Improved Divergence Model and Sample/Beam Size Effects (No Corrective 
       Optics) 
 
      In the preceding calculations (Sec. 8.3 and Sec. 8.4), the simplified beam divergence model (Sec. 6.4) 
was used to verify the validity of the analytical approximations given in Sec. 6. This model is useful for 
predicting order-of-magnitude divergence effects, however, the incident beam is usually provided by a 
neutron guide that gives rise to approximately random x and z components of the trajectory angle up to 
maxima of θc

x(λi) and θc
z(λi) respectively. Furthermore, the scattered beam divergence, in the absence of 

special optics, is usually defined by the sample size and the collimation between the sample and the 
detector. This more realistic situation is sketched in Fig. 52 and is the basis of the model used in the 
following calculations. For the polar angle θi at the guide exit, we have 
 

    ( ) ( )2 2tan tan tan ,i x zθ θ θ= +     (305) 
 
or in the small angle approximation 
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Fig. 41. Simulations of the effect of ∆θmax in isolation for a 4-N=2 coil spectrometer with L0 = L1 = 2 m, lB0 = 0.03 m, and incident 
spectrum I(λ) = δ(8Å). In this case ∆θi,max = ∆θf,max = ∆θmax, such that Eq. (197) applies. The plot shows simulations (circular symbols) 
for three values of ∆θmax with uniform distributions of θ up to these values. The ∆θmax were chosen such that the Px

0 predicted by the 
approximate inverse equation (202) are 0.7 (red), 0.5 (blue), and 0.3 (green) when B0 =0.0393 T (τNRSE = 30 ns for these instrument 
parameters). The corresponding values of∆θmax are 5.86 mrad, 6.92 mrad, and 7.95 mrad respectively. The solid curves are Eq. (197), 
with Fresnel integrals evaluated numerically. 
 
 
                 2 2 .i x zθ θ θ= +      (306) 
 
If the spectrometer is designed to accept this angular range, the polar angle θi also characterizes the beam 
divergence in the incident arm of the spectrometer. In the small angle approximation (Eq. (306)), we can 
readily calculate the probability density distribution of the polar angle θ produced by an idealized guide. 
This situation is illustrated in Fig. 53 for a general case where θx ≠ θz. Equation (306) represents an arc of a 
circle of radius θ with origin (θx, θz) = (0, 0), confined within a box whose upper limits are θx = θc

x and θz = 
θc

z. Because the θx and θz distributions are assumed uniform, the probability density for a polar angle θ is 
just proportional to the length of the arc segment of radius θ. Therefore, we have 
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Fig. 42. Simulations of the combined resolution effects of field inhomogeneity, coil length uncertainty, and beam divergence for a 
4-N=2 coil spectrometer with L0 = L1 = 2 m, lB0 = 0.03 m, and incident spectrum I(λ) = δ(8Å). ∆B0(FWHM), ∆lB0 (FWHM), and ∆θmax 

(simplified divergence model with ∆θi,max = ∆θf,max) were chosen according to Eqs. (203), (204), and (205) to yield Px
0 values of 0.7 

(red), 0.5 (blue), and 0.3 (green) when B0 =0.0393 T (τNRSE = 30 ns for these instrument parameters). The corresponding fixed 
∆B0(FWHM)/B0, ∆lB0 (FWHM), and ∆θmax values are shown in the legend. The simulation results are represented by the circular 
symbols. The solid lines are analytical approximations obtained by substituting ∆B0(FWHM), ∆lB0 (FWHM), and ∆θmax into Eqs. 
(176), (185), and (197) respectively and taking their product. 
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where the denominator θc

xθc
z is the area of the rectangle, which normalizes P(θ) to unit area for uniform 

P(θx) and P(θz). 
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Fig. 43. Simulated wavelength-dependence of the spectrometer resolution function. In this example ∆B0 and ∆lB0 yield Px

0(τNRSE = 
30 ns) = 0.5 for λ = 8Å according to Eqs. (203) and (204). The divergence (equal in magnitude for the incident and scattered beams 
and proportional to wavelength) is calculated using a value of 0.658 mrad Å-1, which is the value inferred from Eq. (205) for λ = 8 Å 
when Px

0(τNRSE = 30 ns) = 0.5. Thus the curves for λ = 8Å (green) are equivalent to the blue curves in Fig. 42. The situation is roughly 
equivalent to that of a beam from an uncoated polished glass neutron guide, with no scattering at the sample. The simulation results 
are represented by circular symbols. The analytical approximations, represented by the solid curves, are obtained by substituting 
∆B0(FWHM), ∆lB0 (FWHM), and ∆θmax into Eqs. (176), (185), and (197) respectively and taking their product. The maximum τNRSE of 
each curve corresponds to B0 =0.0393 T. 
 
 
      The probability density distribution, P(θ), for the case illustrated on the left of Fig. 53 is shown on the 
right of the figure. It is immediately obvious that P(θ) is far from uniform, whence the principal weakness 
of the simplified divergence model (Sec. 6.4). For the simpler case of equal horizontal and vertical 
divergence θc

x = θc
z = θc and the above equations for P(θ) reduce to 
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Fig. 44. Simulated echo signals at maximum B0=0.0393 T (maximum τNRSE) for the curves shown in Fig. 43. The simulations are fitted 
very precisely by the cosine form of Eq. (125) with a period inversely proportional to λ (Eq. (126)), apart from a pre-factor that 
describes the polarization loss due to the imposed instrumental imperfections. 
 
 
The resulting function P(θ) is illustrated in Fig. 54. Therefore, clearly an improved model is necessary for 
more typical instrumental scenarios. 
      In the following all coils are assumed to have equally-sized beam-defining windows at their entrances 
and exits. The entrance of the first coil is assumed to be uniformly-illuminated with a beam that has 
uniform x-y and z-y plane angular distributions with |θ |up to θc

x(λi) = κxλi and θc
z(λi) = κzλi respectively, 

where κx and κz are independently-specified constants. The sample is assumed to be a thin cylindrical shell 
of radius r with its axis parallel to the z-axis. The neutron trajectories arriving at the sample are those that 
join random points on the first coil entrance window and random points on the sample without obstruction, 
subject to the maximum divergence constraints |θx| ≤ θc

x(λi) and |θz| ≤ θc
z(λi). The sample is assumed to 

scatter isotropically without self-shielding so that all unobstructed trajectories between the scattering point 
and the exit window of the final coil are equally probable and 100 % detected. Figure 55 shows example 
resolution functions using this model for λ = 8 Å with ∆λ/λ = 10 % (triangular) for three coil window sizes 
(wwin = hwin = 1 cm, 2 cm, and 3 cm) assuming that a natural Ni guide (i.e., with κx = κz = 1.73 × 
10-3 rad Å-1) is placed very close to the first coil entrance. The sample diameter, Dsam, and height, hsam, in 
each case are chosen so that the projected sample cross-sectional area is equal to the window size (i.e., 
Dsam = wwin, hsam = hwin). For ease of comparison with previous results, the spectrometer dimensions are 
identical to the reference (L0 = 2 m, lB0 = 0.03 m, N = 2) and ∆B0/B0 and ∆lB0 are those that yield Px

0(λ = 
8 Å, τNRSE = 30 ns) = 0.5 with the simplified divergence model (non-dispersive case). The differences with 
respect to the blue curves in Fig. 42 are then attributable to the different incoming and outgoing beam 
divergence conditions. Note that the curve in Fig. 55 that most resembles the blue curves in Fig. 42 is for 
the smallest window/sample size (1 cm × 1 cm), where wwin/L0 ≈ 5 mrad (close to the value used 
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Fig. 45. The isolated effect of incident and scattered beam divergence on the spin-echo signal for the reference spectrometer setup. 
The simulations (circular symbols) have ∆θi,max = ∆θf,max =∆θmax (simplified divergence model) with ∆θmax = 0.25 (black), 0.5 (red), 
0.75 (blue), and 1.0 (green) times the critical angle of natural Ni at λ = 8 Å (θc

Nat Ni (λ = 8 Å) = 13.84 mrad). No other spectrometer 
imperfections are included (i.e., I(λ) = δ(8 Å), ∆B0 = ∆lB0 = 0). The solid curves are the corresponding results of Eq. (197), which 
provide excellent descriptions of the simulated data at all values of ∆θmax. 
 
 
[5.26 mrad] in the simplified model for Px

0 = 0.5). For each of the three cases shown in Fig. 55, wwin/L0 < 
θc(8Å) for wwin (hwin) = 1 cm, 2 cm and wwin/L0 ≈ θc(8Å) for wwin (hwin) = 3 cm, so we expect that the coil 
windows/sample size more-or-less determine both the incoming and outgoing beam divergence in all three 
cases. The Monte-Carlo-generated P(θ) for the incoming (i) and scattered (f) trajectories of detected 
neutrons, corresponding to the cases in Fig. 55, are shown in Fig. 56. For comparison, Monte Carlo values 
of P(θ) for wwin (hwin) = 3 cm and λi = 1 Å are shown in Fig. 57. In this case, wwin/L0 ≈ 9θc(1 Å), therefore 
we expect that the incoming beam divergence is determined by the guide characteristics rather than the coil 
window size. Indeed, from Fig. 57 we see that P(θ) for the incident neutrons resembles that of the neutron 
guide (c.f. Fig. 54), whereas the scattered divergence is determined more by wwin (hwin) and resembles that 
of the maroon curve in Fig. 56, as expected. It is clear from Fig. 55 that, without corrective optics to narrow 
the flight path distribution, significant degradation of the resolution function is expected with typical 
neutron beam delivery systems and beam sizes, if high instrument resolution is required. Reducing 
wwin (hwin) and the incident beam divergence could significantly compromise data collection rates. 
However, corrective optics requirements will be considered elsewhere. 
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Fig. 46. Comparison of simulated and analytical resolution functions (S(ω) = δ(ω)) revealing dispersive effects resulting from a 
triangular incident wavelength distribution with ∆λi

FWHM/〈λi〉 = 10 % and 〈λi〉 = 8 Å. The simulations are performed for the reference 
spectrometer setup (4-N = 2 bootstrap coils, L0 = L1 = 2 m, lB0 = 0.03 m, lg=1 mm): The black symbols represent the simulated 
dispersive resolution with ∆B0/B0, ∆lB0, and ∆θi,max = ∆θf,max = ∆θmax, calculated according to Eqs. (203), (204), and (205) to give a 
combined (dispersionless) Px

0 (8 Å , τNRSE = 30 ns) of 0.5. The red symbols are the simulated effect of dispersion in isolation, obtained 
by setting ∆B0, ∆lB0, and ∆θmax to zero. The green symbols represent the simulated “dispersionless” resolution, estimated by dividing 
the black symbols by the red symbols. This function is very well reproduced analytically by substituting the specified spectrometer 
imperfections into the product of Eqs. (176), (185), and (197) (solid green curve), as is the total effect (solid black curve) – obtained 
by multiplying the green curve by Eq. (43). 
 
 
8.6  Resolution Effects for Asymmetrical Configurations of the Spectrometer 
 
      This section deals specifically with instrumental resolution effects in the general asymmetrical 
spectrometer case (δ (BL) ≠ 0). In NRSE spectrometers, it is customary to fix B0 and vary δL, hence results 
are plotted in terms of δL = L0 - L1. The resolution as a function of asymmetry relates to the range of 
frequencies in the scattering function that can usefully contribute to the signal, which ultimately limits the 
incident neutron wavelength bandwidth. 
 
8.6.1  Simulated Versus Theoretical Resolution Curves and Asymmetry-Dependence of Flipper Coil 
          Dispersion 
 
      In these simulations the effect of flipper coil dispersion is isolated from other forms of instrumental 
uncertainty by setting ∆B0 = ∆lB0 = ∆θmax = 0, i.e., flipper coil dispersion is the only instrumental 
imperfection. Again, the reference configuration (4-N=2, L1 = 2 m etc.) is used for ease of comparison with 
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Fig. 47. Comparison of simulated and analytical resolution functions (S(ω) = δ(ω)) revealing dispersive effects resulting from a 
triangular incident wavelength distribution with ∆λi

FWHM/〈λi〉 = 30 % and 〈λi〉 = 8 Å. The simulations are performed for the reference 
spectrometer setup (4-N = 2 bootstrap coils, L0 = L1 = 2 m, lB0 = 0.03 m, lg=1 mm): The black symbols represent the simulated 
dispersive resolution with ∆B0/B0, ∆lB0, and ∆θi,max = ∆θf,max = ∆θmax, calculated according to Eqs. (203), (204), and (205) to give a 
combined (dispersionless) Px

0 (8 Å , τNRSE = 30 ns) of 0.5. The red symbols are the simulated effect of dispersion in isolation, obtained 
by setting ∆B0, ∆lB0, and ∆θmax to zero. The green symbols represent the simulated “dispersionless” resolution, estimated by dividing 
the black symbols by the red symbols. This function is very well reproduced analytically by substituting the specified spectrometer 
imperfections into the product of Eqs. (176), (185), and (197) (solid green curve), as is the total effect (solid black curve) – obtained 
by multiplying the green curve by Eq. (43). 
 
 
other simulations and the examples fix B0 = 0.0393 T and λ0 = 8 Å (corresponding to τNRSE = 30 ns). In Fig. 
58 to Fig. 61, the simulated echo signals (black symbols) are compared with least-squares fits (red curves) 
of theoretical approximations to the resolution functions (Eq. (127) [rectangular] or Eq. (128) [triangular]) 
multiplied by a single, constant fit parameter. Figure 58 and Fig. 60 are for rectangular incident wavelength 
distributions with full width 10 % and 30 % ∆λi/〈λi〉 respectively, whilst Fig. 59 and Fig. 61 are for 
triangular incident wavelength distributions with FWHM = 10/√2 % and 30/√2 % ∆λi/〈λi〉, respectively 
(which give equivalent rms wavelength deviation with respect to the mean for both distributions). For the 
narrower band simulations, where Eq. (42) (rectangular) and Eq. (43) (triangular) describe well the effects 
of dispersion at δ (BL) = 0 (see Fig. 36 and Fig. 37), the fitted theoretical functions also describe well the 
simulated echo functions (as evidenced by the relatively small oscillations in the residuals). Therefore, the 
fitted constants are quite close to the values provided by these equations with M = 8 total coils (see also 
Table 1). The theoretical echo functions do not account specifically for the cumulative dispersive spin 
excursions out of the r.f. field plane as the neutron passes through multiple coils and the increased structure 
in the residuals at larger ∆λi/〈λi〉 is likely due to this shortcoming rather than a real asymmetry-dependence  

http://dx.doi.org/10.6028/jres.119.005
http://dx.doi.org/10.6028/jres.119.005


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.005 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 173 http://dx.doi.org/10.6028/jres.119.005 

 

 
 
Fig. 48. A simulated quasielastic experiment with Γ (HWHM) = 0.025 µeV for a triangular incident wavelength band with 
∆λi

FWHM/〈λi〉 = 10 %. The red symbols represent the simulated dispersive resolution function (equivalent to the black symbols of Fig. 
46); The red solid curve is the analytical approximation to the dispersive resolution function (product of Eqs. (176), (185), (197), and 
Eq. (43)); the black symbols represent the simulated raw signal; the black solid curve is the analytical approximation (product of red 
solid curve and the theoretical intermediate scattering function for Γ (HWHM) = 0.025 µeV [Eq. (137)]); the green symbols are the 
simulated resolution-corrected data (obtained by dividing the black symbols by the red symbols), which may be compared directly 
with Eq. (137) (solid green curve). 
 
 
of the dispersion. Nonetheless, the indications are that dispersion is only weakly dependent on the 
spectrometer asymmetry, if at all, under typical conditions. 
 
8.6.2  Asymmetry-Dependence of Static Field Inhomogeneity, Coil Length Uncertainty, and Beam 
          Divergence in Typical Circumstances 
 
      In the previous section it was shown that the depolarization due to flipper coil dispersion is roughly 
asymmetry-independent for moderate ∆λi/〈λi〉. The resolution function for the case of a rectangular incident 
spectrum with ∆λi/〈λi〉 = 10 % in an otherwise perfect spectrometer (one in which the only source of 
instrumental imperfection is flipper coil dispersion) has already been shown in Fig. 58 for the reference 
spectrometer configuration. Figure 62, Fig. 63, and Fig. 64 illustrate additionally the effects of applying, in 
turn, the effects of static field inhomogeneity, flipper coil length uncertainty, and beam divergence 
(simplified divergence model), respectively for the same basic spectrometer configuration. The magnitudes 
of ∆B0, ∆lB0, and ∆θi,max = ∆θf,max = ∆θmax are those obtained from Eqs. (176), (185), and (197) respectively 
that yield Px

0 = 0.5 (in the absence of flipper coil dispersion). Instead of fitting the echo signal function, the  
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Fig. 49. A simulated quasielastic experiment with Γ (HWHM) = 0.025 µeV for a very coarse incident wavelength band (triangular 
distribution with ∆λi

FWHM/〈λi〉 = 30 %). The red symbols represent the simulated dispersive resolution function (equivalent to the black 
symbols of Fig. 46); The red solid curve is the analytical approximation to the dispersive resolution function (product of Eqs. (176), 
(185), (197), and Eq. (43)); the black symbols represent the simulated raw signal; the black solid curve is the analytical approximation 
(product of red solid curve and the theoretical intermediate scattering function for Γ (HWHM) = 0.025 µeV [Eq. (137)]); the green 
symbols are the simulated resolution-corrected data (obtained by dividing the black symbols by the red symbols), which may be 
compared directly with Eq. (137) (solid green curve). 

 
 
simulations are compared directly (with no fit parameters) against the product of the theoretical “perfect 
(dispersionless) instrument” resolution function for the rectangular incident wavelength spectrum (Eq. 
(127)), the estimated dispersion depolarization (Eq. (42)), and the estimated effect of ∆B0 (Eq. (176)), ∆lB0 
(Eq. (185)), or ∆θmax (Eq. (197)). The figures below demonstrate that the simulated resolution functions is 
predicted analytically to a good degree of accuracy for moderate beam monochromatization and that there 
are no strong asymmetry-dependent effects of ∆B0, ∆lB0, or ∆θmax. 
 
 
  

http://dx.doi.org/10.6028/jres.119.005
http://dx.doi.org/10.6028/jres.119.005


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.005 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 175 http://dx.doi.org/10.6028/jres.119.005 

 

 
 
Fig. 50. Simulated elastic resolution (red) and quasielastic (black) spin-echo signals at τNRSE = 30ns – corresponding to the simulations 
shown in Fig. 48 with ∆λi

FWHM/〈λi〉 = 10 % (triangular). The peak polarization at zero asymmetry should match the values at τNRSE = 
30 ns for the resolution (red symbols) and quasielastic (black symbols) in Fig. 48 within statistics. For comparison, the theoretical 
resolution function (product of Eqs. (128) [perfect instrument resolution echo, triangular incident spectrum], Eq. (43) [depolarization 
due to coil dispersion, triangular spectrum], Eq. (176), Eq. (185), and Eq. (197) for the depolarizing effects due to ∆B0, ∆lB0, and ∆θmax 
respectively) is shown (red solid curve). The black solid curve is the theoretical resolution function (red solid curve) multiplied by the 
theoretical depolarization due to the QENS at δL=0 (Eq. (137)), which describes quite well the simulated quasielastic data for this 
moderate value of ∆λi

FWHM/〈λi〉. 
 

 
 
Fig. 51. Simulated elastic resolution (red) and quasielastic (black) spin-echo signals at τNRSE = 30ns – corresponding to the simulations 
shown in Fig. 49 with ∆λi

FWHM/〈λi〉 = 30 % (triangular). The peak polarization at zero asymmetry should match the values at τNRSE = 
30 ns for the resolution (red symbols) and quasielastic (black symbols) in Fig. 49, within statistics. For comparison, the theoretical 
resolution function (product of Eqs. (128) [perfect instrument resolution echo, triangular incident spectrum], Eq. (43) [depolarization 
due to coil dispersion, triangular spectrum], Eq. (176), Eq. (185), and Eq. (197) for the depolarizing effects due to ∆B0, ∆lB0, and ∆θmax 
respectively) is shown (red solid curve). The black solid curve is the theoretical resolution function (red solid curve) multiplied by the 
theoretical depolarization due to the QENS at δL=0 (Eq. (137)), which approximately describes the data at small asymmetries. 
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Fig. 52. A more realistic situation for defining path length differences in the NRSE spectrometer. 
 
 

 
 
Fig. 53. Calculation of the probability density for a polar angle θ from an idealized guide characterized by uniform horizontal and 
vertical divergence angles in the range 0 → θc

x and 0 → θc
z respectively. 
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Fig. 54. Probability density for a polar angle θ from an ideal neutron guide characterized by uniform and equal horizontal and vertical 
divergence angles in the range 0 → θc. 
 

 
 
Fig. 55. Resolution functions (λ = 8 Å) for the coil window and sample sizes given in the legend. For ease of comparison with 
previous results, the values of ∆B0/B0 and ∆lB0, L0 and lB0 are exactly those that give Px

0(λ = 8 Å, τNRSE = 30 ns) = 0.5 in the simplified 
model case. The difference here is in the incoming and scattered beam divergence. 
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Fig. 56. Simulated P(θ) of incident and scattered neutron trajectories that exit the final coil each side of the sample for the λ = 8 Å 
cases shown in Fig. 55. It is expected that the divergence is largely limited by the coil window sizes on both sides. 
 

 
 
Fig. 57. Simulated P(θ) of incident and scattered neutron trajectories that exit the final coil each side of the sample for λ = 1 Å with 
Wwin = Hwin = 3 cm. At this short wavelength it is expected that the divergence on the incident side is largely determined by the 
characteristic P(θ) of the neutron guide, whereas the scattered beam divergence is determined by the coil window size. The inset 
shows P(θi) on a scale that is more easily compared with Fig. 54. 
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Fig. 58. Resolution (S(ω)=δ(ω)) echo signal at B0 = 0.0393 T for the reference spectrometer configuration (4-N=2, L1= 2 m etc.) with 
a rectangular incident wavelength distribution of full width (FW) ∆λi/〈λi〉 = 10 % and 〈λi〉 = 8.0 Å. The simulation is performed with 
∆B0 = ∆lB0 = ∆θmax = 0, so that the only spectrometer imperfection is that due to flipper coil dispersion. The simulated signal is 
represented by the black circular symbols, the red curve is the least squares fit of a theoretical resolution function for a rectangular 
incident wavelength spectrum (Eq. (127)), multiplied by a single constant fit parameter to account for depolarization due to the 
combined effect of flipper coil dispersion through the eight coils. The fitted constant value (0.9854) is within 0.2 % of the value 
predicted by the approximate theory (Eq. (42)) of 0.9838 – see Table 1 and Fig. 36. The small residual fluctuations about zero 
(turquoise curve) imply that the effect of dispersion is approximately independent of the spectrometer asymmetry in this case. 
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Fig. 59. Resolution (S(ω)=δ(ω)) echo signal at B0 = 0.0393 T for the reference spectrometer configuration (4-N=2, L1= 2 m etc.) with 
a triangular incident wavelength distribution of FWHM given by ∆λi/〈λi〉 = 7.071 % and 〈λi〉 = 8.0 Å. As in Fig. 58, ∆B0 = ∆lB0 = ∆θmax 
= 0, to isolate effects due to flipper coil dispersion. The simulated signal is represented by the black circular symbols, the red curve is 
the least squares fit of a theoretical resolution function for a triangular incident wavelength spectrum (Eq. (128)), multiplied by a 
single constant fit parameter. The fitted constant (=0.990) is within 0.7 % of the value predicted by the approximate theory (Eq. (43)) 
of 0.984 – see Table 1 and Fig. 37. The small residual fluctuations about zero (turquoise curve) imply that the effect of dispersion is 
approximately independent of the spectrometer asymmetry in this case. 
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Fig. 60. The exact analogue of Fig. 58 but with the full width of the rectangular incident wavelength spectrum increased to 30 %. 
Again, the black circular symbols represent the simulation, the red curve is the least squares fit of Eq. (127), multiplied by a single 
constant fit parameter. The fitted constant value (0.8741) is within 0.6 % of the value predicted by the approximate theory (Eq. (42)) 
of 0.8692 – see Table 1 and Fig. 36. The increased structure of the residuals (turquoise curve) is probably due to cumulative out-of-
rotating plane excursions of the spin that is not accounted for in Eq. (127), nonetheless, there appears to be no strong asymmetry-
dependence of the dispersion, even at these large values of ∆λi/〈λi〉. 
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Fig. 61. The exact analogue of Fig. 59 but with the FWHM of the triangular incident wavelength spectrum increased three times to 
21.21 %. Again, the black circular symbols represent the simulation, the red curve is the least squares fit of Eq. (128)), multiplied by a 
single constant fit parameter. The fitted constant value (0.922) is within about 6 % of the value predicted by the approximate theory 
(Eq. (43)) of 0.874 – see Table 1 and Fig. 37, although clearly the data is much less well represented with only a constant fitting 
parameter. The increased structure of the residuals is probably due to cumulative out-of-rotating plane excursions of the spin that is 
not accounted for by Eq. (128), nonetheless, there appears to be no strong asymmetry-dependence of the dispersion, even at these 
large values of ∆λi/〈λi〉. 
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Fig. 62. Simulated resolution echo at B0 = 0.0393 T for the reference spectrometer configuration (4-N=2, L1= 2 m etc.) with a 
rectangular incident wavelength distribution of full width (FW) given by ∆λi/〈λi〉 = 10 % and 〈λi〉 = 8.0 Å. The simulation is performed 
with ∆lB0 = ∆θmax = 0, but with ∆B0 calculated according to Eq. (178) with Px

0 = 0.5, such that the peak signal should be about 0.5 
multiplied by the depolarization due to flipper coil dispersion. The red curve is the product of the theoretical “perfect instrument” 
resolution (Eq. (127)) multiplied by the estimated constant depolarization due to ∆B0, i.e., 0.5, (also obtained by substituting the 
chosen value of ∆B0(FWHM) back into Eq. (176)), multiplied by the estimated (constant) depolarization due to ∆λ (Eq. (42)) with no 
fit parameters. The success of this analytical description of the simulation results in this example is revealed by the small residuals 
(blue curve). There is apparently no strong asymmetry-dependence of the effects of ∆B0 in this case. 
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Fig. 63. Simulated resolution echo at B0 = 0.0393 T for the reference spectrometer configuration (4-N=2, L1= 2 m etc.) with a 
rectangular incident wavelength distribution of full width (FW) given by ∆λi/〈λi〉 = 10 % and 〈λi〉 = 8.0 Å. The simulation is performed 
with ∆B0 = ∆θmax = 0, but with ∆lB0 calculated according to Eq. (184) with Px

0 = 0.5, such that the peak signal should be about 0.5 
multiplied by the depolarization due to flipper coil dispersion. The red curve is the product of the theoretical “perfect instrument” 
resolution (Eq. (127)) multiplied by the estimated constant depolarization due to ∆lB0, i.e., 0.5, (note: also obtained by substituting the 
chosen value of ∆lB0 (FWHM) back into Eq. (185)), multiplied by the estimated (constant) depolarization due to ∆λ (Eq. (42)) with no 
fit parameters. The success of the analytical description of the simulation results in this example is revealed by the small residuals 
(blue curve). There is apparently no strong asymmetry-dependence of the effects of ∆lB0 in this case. 
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Fig. 64. Simulated resolution echo at B0 = 0.0393 T for the reference spectrometer configuration (4-N=2, L1= 2 m etc.) with a 
rectangular incident wavelength distribution of full width (FW) given by ∆λi/〈λi〉 = 10 % and 〈λi〉 = 8.0 Å. The simulation is performed 
with ∆B0 =∆lB0 = 0, but with ∆θi,max = ∆θf,max = ∆θmax (simple divergence model) calculated according to Eq. (202) with Px

0 = 0.5, such 
that the peak signal should be about 0.5 multiplied by the depolarization due to flipper coil dispersion. The red curve is the product of 
the theoretical “perfect instrument” resolution (Eq. (127)) multiplied by the estimated constant depolarization due to ∆θmax, i.e., 
approximately 0.5, (“approximately” since Eq. (202) is only an approximate inversion of Eq. (197)), multiplied by the estimated 
(constant) depolarization due to ∆λ (Eq. (42)) with no fit parameters. The success of the analytical description of the simulation results 
in this example is revealed by the relatively small residuals (blue curve). There is apparently no strong asymmetry-dependence of the 
effects of ∆θmax in this case. 
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9.  Towards the Definition of the NIST NRSE Instrument 
 
9.1  Possibilities Using MIEZE-II Configuration 
 
9.1.1  General Instrument Features 
 
      The general features of a so-called MIEZE-II spectrometer [29] are shown in Fig. 65. The configuration 
shown is equivalent to a multi-arm conventional arrangement of flipper coils, but with the fourth coil unit 
replaced by a “thin” detector at exactly the same location. The second and third bootstrap coils are created 
from the annular coil surrounding the sample area. In contrast to the similarly-named MIEZE spectrometer 
(see Ref. [16]), the r.f. frequency of all coil units is identical. The discussion in Sec. 4.2.1.3 illustrates the 
effect of eliminating the fourth coil: When the r.f. angular frequency is tuned to the Larmor frequency, ω0, 
the neutron spin-up and spin-down states retain their kinetic energy splitting after leaving the third coil unit, 
corresponding to a Larmor precession of angular frequency 2ω0 (for N = 1 coils), or 4ω0 (for N = 2 coils). 
Because the quasielastic echo point occurs at L0 = L1 for the 4 identical coil unit arrangement, the 
polarization at L1 = L0 (the detector plane in the MIEZE-II) is modulated at angular frequency 2ω0 (N = 1), 
or 4ω0 (N = 2), with maximum amplitude. 
 
9.1.2  Toroidal r.f. Solenoid 
 
      An annular π-flipper illustrated in Fig. 65 would be a new development for NRSE. The design of the 
r.f. coil depends on maintaining voltages within reasonable limits. 
 
 

 
 
Fig. 65. Schematic of a possible MIEZE-II NRSE instrument configuration (as proposed by Gähler). In the annular coil, the static field 
is perpendicular to the plane of the drawing and the r.f. field is in the plane of the drawing. 
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9.1.2.1  Self-inductance of the toroidal r.f. solenoid 
 
      The self-inductance of a toroidal r.f. solenoid, radius rtoroid, is approximately 
 

      
2 2

0 0 ,
2

rf rf rf rf
rf

toroidaxial

N A N A
L

rl
µ µ

π
= =     (312) 

 
where Nrf is the total number of turns, lrf

axial is the axial length of the solenoid (in this case the mean 
circumference - lrf

axial = 2π rtoroid), and Arf is the cross-sectional area of the r.f. solenoid (the area enclosed 
by a single r.f. winding – i.e., the equivalent of arf × lrf in Fig. 30). Substituting the winding density nrf (= 
Nrf /lrf

axial) into Eq. (312), we have 
 

          
[ ] ( ) [ ]

( ) [ ]

22 2 7 1 2
0

26 1 2

H 2 8 10 m m m

7.9 10 m m m .

toroid toroid rf rf rf toroid rf

rf toroid rf

L r n A n r A

n r A

π µ π − −

− −

   = = ×    

   = ×    

  (313) 

 
      We now consider the dimensions of the toroidal coil. The tolerable uncertainty on Brf × lrf is somewhat 
relaxed for the r.f. coils when compared with the static field coil requirements at the highest values of B0, 
because only a π rotation of the spin is required around Brf. The flipping efficiency is naturally limited by 
coil dispersion so that relaxing the tolerance on ∆(Brf lrf) is usually accompanied by a restriction of the 
bandwidth, ∆λ (see Sec. 7.3.4.8). Nonetheless, it is likely that the r.f. coil height does not have to greatly 
exceed the beam height. For a toroidal coil, we substitute 2πrtoroid for laxial in Eq. (266). If we impose a high 
voltage restriction, Vrf

pk ≤ 1500 V, we end up with 
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   (314) 

 
As an example, we assume that a coil height (side of the rectangle perpendicular to the beam direction) arf ≈ 
0.1 m provides sufficient r.f. field homogeneity within the beam area. The toroid radius, rtoroid, must be 
sufficiently large to accommodate typical scattering sample environments. A reasonable value is rtoroid ≈ 
0.3 m. The choice of rtoroid does not affect the instrumental resolution significantly, but it affects the usable 
solid angle. In order to estimate a worst case, we use the maximum value of B0 and the minimum value of 
〈λi〉 from the previous discussions (about 0.04 T and 2 Å, respectively). It follows, from Eq. (314), that 
satisfying nrf (B0 = 0.04 T, 〈λi〉 = 2 Å, rtoroid = 0.3 m, arf = 0.1 m) ≤ 16 m-1 (1 turn every 6.3 cm) maintains 
the r.f. voltage below 1.5 kV in this case. 
 
9.1.2.2  Resistance and inductive reactance of the toroidal r.f. solenoid 
 
      The resistance of the r.f. coil winding is 
 

               ( ) ,
rf
w

toroid rf
w

l
R T

A
ρ=      (315) 

 
where lw

rf is the total length of the winding and Aw
rf is the cross-sectional area of the r.f. wire, i.e., 

 
        ( )4rf
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and 
     ,rf

w rf rfA t h=      (317) 
 
so that Eq. (315) may be rewritten as 
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Using the above example with lrf  = 0.025 m and rtoroid = 0.3 m, the perimeter of one winding is 2(arf+lrf) = 
0.25 m and the total length of the winding, for nrf  = 16 m-1, is lw

rf (nrf = 16 m-1, arf = 0.1 m, lrf = 0.025 m) ≈ 
25rtoroid ≈ 7.5 m. Tightly-wound, rectangular cross-section wire has width perpendicular to the beam, hrf = 
hrf

max ≈ 1/nrf ≈ 0.063 m. Choosing the winding thickness parallel to the beam direction, trf  = tmax = 0.4 mm 
(as given in Sec. 7.3.2 for aluminum), the cross-sectional area is Aw

rf = 4 × 10-4/16 = 2.5 × 10-5 m2 (0.25 
cm2). The minimum resistance of the winding is therefore 
 
     [ ] ( )[ ]53 10 m .min

toroidR TρΩ ≈ × Ω     (319) 
 
Specifically for pure aluminum windings (using Eq. (234)), we have 
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and for this specific geometry 
 
           { }( )[ ] ( )5 3Al 3.44 10 K 2.08 10 .min

toroidR T T− −Ω ≈ × − ×    (321) 
 
Around room temperature, ρAl ≈ 2.73 × 10-8 Ωm and the resistance of the winding is approximately 
Rtoroid

min{Al}(T = 300 K, rtoroid = 0.3 m, trf = 4 × 10-4 m, nrf =16 m-1) ≈ 8 mΩ. 
      The inductive reactance of the r.f. coil is 
 
      [ ] [ ]-1s H .L rfX Lω  Ω =        (322) 
 
On resonance, with B0 = 0.04 T, we have ωrf ≈ 7.3×106 rad s-1 (νrf = 1.17 MHz) (Eq. (9)). For nrf = 16 m-1, 
rtoroid = 0.3 m, and choosing a typical Arf = 0.1 × 0.025 = 2.5 × 10-3 m2, we have (from Eq. (313)) L ≈ 
1.5 µH, from which we obtain XL ≈ 11 Ω. Therefore, XL ≫ Rtoroid at the highest frequencies (in this example, 
by more than three orders of magnitude). 
 
9.1.2.3  Current and power dissipated in r.f. coil 
 
      With a maximum required r.f. field magnitude of about 2.7 mT (see Sec. 7.3.4.3) and a winding density 
nrf = nrf (rtoroid = 0.3 m) = 16 m-1, Eq. (213) implies that a peak current Ipk ≈ 2.7 × 10-3/(1.26 × 10-6 × 16) = 
134 A is required. Therefore, having eliminated the high voltage problem we appear to run into problems 
with peak current. This is mitigated by increasing the minimum operational wavelength. Nonetheless, 
because the r.f. coil load is almost entirely inductive at high frequencies (see previous example), the high 
frequency current in the coil lags the voltage by approximately 90°. The heat dissipated in the r.f. coil is 
only that due to the resistance. In the example given in Sec. 9.1.2.2, for room temperature aluminum 
windings of enclosed area 0.25 cm2, Rtoroid ≈ 8 mΩ, therefore the maximum rms power dissipated in the coil 
is PRMS

rf{Al}(T = 300 K, rtoroid = 0.3 m, nrf = 16 m-1, Aw
rf = 2.5 × 10-5 m2) ≈ (134/√2)2 × 8 × 10-3 ≈ 72 W. 

This is not excessive. 
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9.1.3  Requirements for the MIEZE Detection System 
 
      As demonstrated in Sec. 6.6, accessing high-resolution requires flight path length uncertainties in the 
several tens of microns range, with frequencies in the 1 MHz range. Therefore, the active part of the 
detector must be flat and capture neutrons within tens of micron thicknesses with reasonable efficiency. 
The most suitable detector type appears to be a scintillator-photomultiplier combination. The charged 
particles for activation of the scintillation originate from a nuclear reaction produced by the absorption of 
thermal neutrons. The very small absorption depth probably requires a 6Li-containing compound such as 
6LiF, which produces negligible gamma radiation. Scintillator material such as ZnS:Ag, ZnS:Cu,Al,Au 
have the advantage of rapid decay times (no afterglow). The data acquisition response time should be 
preferably within the 1 ns to 10 ns range with signal handling up to about 4 MHz, if N = 2 bootstrap coils 
are used. (Note that the signal frequency is 4ω0 for N = 2 – see Sec. 9.1.1). 
 
9.2  Criteria for Permanent Magnet NRSE Options 
 
      An important limitation on the static field coil is the restriction on the winding thickness parallel to the 
beam, imposed by neutron absorption and scattering. In Sec. 7.3.3.1 we saw that this may lead to 
significant heat generation at high fields, unless the coils are cryogenically cooled. We now consider the 
feasibility of replacing the static field coils by a ferromagnetic or anti-ferromagnetic material that transmits 
neutrons. The static field magnitude is fixed in this scenario, therefore, a scan of τNRSE might involve a scan 
of the r.f. unit separation in each arm of the spectrometer, such that that δ (BL) is maintained at zero (the 
echo point). This contrasts with varying the static field magnitude at fixed L in the coil case. A quasi-elastic 
NRSE spectrometer using permanent magnets to provide the static field (N = 1) is shown in schematically 
in Fig. 66. 
 
 

 
 
Fig. 66. Schematic of a quasi-elastic NRSE instrument using electrically-insulating permanent magnets to provide the static field with 
a superimposed r.f. field. 
 
 
9.2.1  Comparison of Static Field Coil and Permanent Magnet NRSE 
 
(a) Coil 

• τNRSE scan usually fixes L0, L1 and varies B0. 
• Requires anodized aluminum windings. 
• High resolution applications typically require very flat and parallel windings. 
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• Production of (0.03 to 0.04) Tesla fields with thin (in the beam direction) Al windings is 
challenging. Heat dissipation is proportional to the coil surface area and can reach several kW with 
typical windings, unless cryogenically cooled. 

• Maintaining adequate coil cooling without interfering with the beam path is challenging. 
(b) Permanent magnet 

• τNRSE scan has fixed B0, B1, vary both L0 and L1. 
• High resolution applications require similar dimensional tolerances to the coils (but probably 

easier to achieve). 
• Field homogeneity is very good inside the magnet and field boundaries are abrupt. 
• Requires a neutron-transparent magnetic material. 
• Magnet must reside inside the r.f. coil – requires magnetic material to be electrically-insulating. 
• Magnet likely requires an externally-applied saturation field. 
• Fixed r.f. frequency – (no r.f. circuit tuning, fixed impedance). 
• Resonance width requires field magnitudes in each unit to be similar to within a few tens of µT. 
• Significantly reduced heat removal problem. 
• Compact, with no electrical coil circuitry. 

 
9.2.2  Definition of the Required Instrument Parameters Using Permanent Magnets 
 
      In the following, we develop a set of inequalities defining the major parameters required to achieve the 
desired spectrometer performance using permanent magnets. 
 
9.2.2.1  Coil unit geometry 
 
      The coil unit consists of a permanent magnetic material enclosed by an r.f. coil (with a perpendicular 
field axis) as shown in Fig. 67. Henceforth, we refer to the dimensions defined in Fig. 67. 
 
9.2.2.2  B0L0 magnitude criterion for accessing τNRSE = 30 ns at λ = 8 Å 
 
      The criterion for accessing τNRSE = 30 ns at λ = 8 Å is expressed by Eq. (206). Assuming that there is a 
practical upper limit on L0 imposed by spatial constraints (represented by L0

max), we define a minimum 
required value of B0 criterion according to: 
 

 [ ] [ ]0 max
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≥     minimum B0 magnitude to reach τNRSE = 30 ns at λ = 8 Å. (323) 

 
9.2.2.3  Minimum wavelength (λ = 2 Å) r.f. voltage criterion 
 
      An approximate expression for the peak r.f. voltage in terms of the r.f. coil parameters and the neutron 
wavelength is given by Eq. (266), where arf and lrf

axial are shown in Fig. 67: 
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We know that arf cannot be smaller than the beam height, say arf

min ≈ 0.03 m. For compatibility with typical 
high voltage cable ratings (see Sec. 7.3.4.3), we have 
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Fig. 67. Schematic of a flipper coil unit using a permanent magnetic material to provide the static field. 
 
 
which, combined with Eq. (324), equates to 
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as it was in Sec. 7.4. This is most demanding at the minimum operating wavelength, which we assume to 
be λ = 2 Å, therefore 
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We remember that B0 is also subject to the constraint expressed in Eq. (323), therefore we require 
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9.2.2.4  Required Resolution: Tolerance criteria for B0, lB0, and beam divergence 
 
      If the elastic signal magnitude must equal or exceed Px

0 at τNRSE(λ = 8 Å) = 30 ns, this imposes 
maximum tolerances on the values of B0, lB0, and the beam divergence, ∆θ  which are expressed in Eqs. 
(203-205) (for equal contributions). We assume that the field variation inside the permanent magnet, ∆Bmat, 
is a fixed property of the material and that the minimum dimensional uncertainty in the beam direction is 
∆lmat. If we choose Px

0(τNRSE = 30 ns, λ = 8 Å) ≥ 0.5, Eq. (203) can be rewritten in terms of a condition on 
the variable lB0, i.e., 
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∆
            originating from ∆B0 criterion,  (329) 

 
where we have set 〈λ〉 = 8 Å. Note that this condition is not especially demanding for any realistically 
attainable ∆Bmat. Likewise, for Px

0(τNRSE = 30 ns, λ = 8 Å) ≥ 0.5, Eq. (204) imposes a condition on the 
magnitude of B0, i.e., 
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subject to the minimum required B0 condition (Eq. (323)), from which we have: 
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Applying the Px

0(τNRSE = 30 ns, λ = 8 Å) ≥ 0.5 to Eq. (205), we have 
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subject to the condition (323), which leads to 
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 maximum divergence criterion for Px
0(τNRSE = 30 ns, λ = 8 Å), (333) 

 
(For reference, this is about 37.5 % of the critical angle of natural Ni at λ = 8Å). 
 
9.2.2.5  Tolerance criterion for Brf – r.f. penetration of the permanent magnet and absorbed r.f. 
             power 
 
      Variations of the magnitude of Brf within the static field region lead to reduced flipping efficiencies and, 
consequently, reduced signal magnitudes. One source of attenuation of Brf is absorption of the r.f. field by 
the magnetic material with the associated heating. In the medium-wave (MW) to short-wave (SW) band 
that is relevant to the NRSE (far from molecular vibrations that reside in the > 100 GHz microwave range), 
the average magnitude of the Poynting vector (which, for a plane wave, is the energy density × the phase 
velocity) in a material of conductivity, σ, permeability, µ, and permittivity, ε, may be expressed as 
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 (334) 

 
where δ is the attenuation length and ω is the angular frequency of the electromagnetic radiation. There are 
two obvious limiting cases: 

(i) Perfect insulator: σ → 0 and δ → ∞ (no electromagnetic radiation is absorbed). 
(ii) Good conductor: σ ≫ ωε and δ → (2/µσω)1/2 (otherwise called the skin depth [see Eq. (274)]). 

For the good conductor, 
 

    
1 2

2 exp 2 .
8av rf

yS H µω
σ δ

   = −     
    (335) 

 
For an applied r.f. H-field as shown in Fig. 68, with a slab thickness lB0 ≫ δ in the direction of Sav, and slab 
area ac, the Poynting vector is interpreted as follows: 
 

   . . ,av
energy energy dy powerS phase velocity

vol ac dy dt ac
= = =    (336) 

 
which is the power per unit slab area, ac. From Eq. (335) we note that almost 90 % of the r.f. energy is 
absorbed in the initial thickness δ, as indicated in Fig. 68. In fact, after a thickness lB0, the power absorbed 
per unit slab area is 
 
 

 
 
Fig. 68. With the r.f. H-field oriented as shown in a good conductor, most of the r.f. power is absorbed perpendicular to the plane 
containing E and H (in the direction of the Poynting vector, S) within the skin depth, δ, if lB0 > δ. 
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  0

0

1 2 1 2
2 21 exp 2 for .

8 8
B

av rf rf B

l
S H H lµω µω δ

σ δ σ
     ∆ = − − ≈           

   (337) 

 
The power absorbed per unit area increases as the square root of the frequency. 
      The required electromagnetic properties of the magnetic material are estimated by assuming that the r.f. 
field attenuation corresponds to a value ∆Brf which produces a precession angle π-β around Brf (see Sec. 
2.2), in which β must not exceed ± 2.5°. This ensures that ∆Brf does not significantly compromise the 
usable bandwidth ∆λ/λ, (± 2.5° corresponds to the equivalent effect produced by ∆λ/λ ≈ 3 % FWHM). 
Thus, by setting 
 

     0.03,rf

rf

B
B

∆
≤      (338) 

 
we require that the exponential in Eq. (334) is greater than (1-0.03) = 0.97 over the thickness of the crystal, 
lB0, i.e., 
 

           0exp 2 0.97,Bl
δ

 
− ≥ 

 
     (339) 

 
Which, in turn, implies 
 
                

0
65.7 65.7 65.7 ,B rfl l lπδ ≥ = ≈     (340) 

 
where 
 

         
( )

1 2

2 2 2

2 .
rf rf rf

δ
ω µ ω ε σ ω ε

 
 =  
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    (341) 

 
Combining Eqs. (340) and (341) with the resonance tuning condition for the r.f. frequency (Eq. (9)), we 
obtain: 
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 (342) 

 
subject to the minimum B0 criterion (Eq. (323)). If the criterion in Eq. (342) is satisfied, the r.f. power 
absorption is almost uniformly distributed over the slab thickness and the power absorbed in the slab 
volume is 
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20.03 .
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pkabs
rf

H
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  (343) 

 
The remaining issues are those of providing adequate cooling to the magnetic material. 
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9.2.2.6  Examples 
 
Some simplifications 
 
      The instrument parameter envelope is defined by the solution of Eqs. (323), (328), (329), (331), (333), 
and (342), whilst ensuring that the r.f. power absorption (Eq. (343)) and neutron absorption/scattering 
remain under control. In these examples, we make the following simplifications: 

• We fix N = 2 – the preferred bootstrap factor for the spectrometer (see Sec. 3.4.2). 
• Because there are two conditions involving L0

max, one concerning materials length tolerances (Eq. 
(331)) and the other involving parameters influencing the r.f. coil inductance (Eq. (328)), we 
impose limits on L0

max using Eq. (331), then examine the consequences for the r.f. coil parameters 
in Eq. (328) – specifically the coil winding density, given limitations on the r.f. coil dimensions. 

• The permanent magnet material is one that satisfies Eqs. (342) and (323) simultaneously, has low 
r.f. power absorption (Eq. (343)), and is transparent to neutrons. The conditions associated with 
Eqs. (342) and (343) amount to finding a sufficiently electrically-insulating material. Satisfying 
Eq. (323) requires the material to have a suitably large B field at saturation. 

• Satisfying Eq. (333) for high-resolution operation likely requires placement of neutron optical 
elements that reduce flight path length differences between coil units to a factor not grossly 
exceeding ∆θmax

2/2. 
The above simplifications lead to the following set of conditions that must be satisfied simultaneously: 
 

          [ ] [ ]0

61.56 10m
TB

mat

l
B

−×
≤

∆
                        (from Eq. (329)).   (344) 

 
          [ ] [ ]4

0 m 5.0 10 mmax
matL l≥ × ∆            (from Eq. (331)).   (345) 

 
Combining Eqs. (345) and (328), we have 
 
          [ ] [ ] [ ]-1 4m m m 7.7 10 m .rf

rf axial rf matn l a l  ≤ × ∆      (346) 
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     (from Eq. (333)).   (347) 
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(from Eq. (342)), 

           (348) 
 
 
subject to 
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http://dx.doi.org/10.6028/jres.119.005
http://dx.doi.org/10.6028/jres.119.005


 Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.005 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 196 http://dx.doi.org/10.6028/jres.119.005 

 

Example with N = 2, 0.01º slab parallelism, a = c = 0.1 m, and ∆Bmat = 50 µT 
 
      The slab parallelism of 0.01° is based on what is considered reasonably achievable. Over a slab 
dimension of 0.1 m, this corresponds to ∆lmat ≈ 20 µm. Using these values in Eqs. (344-349), we obtain: 
 

[ ] [ ]
61.56 10m 0.031 m.

Tmat

l l
Bπ π

−×
≤ ⇒ ≤

∆
 

 
[ ] [ ]4

0 0m 5.0 10 m 1 m.max max
matL l L≥ × ∆ ⇒ ≥  

 
For this range of L0

max we have, from Eq. (349): 
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and, from Eq. (346): 
 

[ ] [ ]-1m m m 1.54.rf
rf axial rfn l a  ≤   

 
Assuming arf ≈ c = 0.1 m and lrf

axial ≈ a = 0.1 m (see Fig. 67), this condition is expressed in terms of a 
maximum winding density of the r.f. coil by 
 

-1 -1m 154 m .max
rfn   ≤   

 
Using the above range of lB0 (lπ), Eq. (348) becomes: 
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m
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L

−×
≥  (Eq. (349)). 

 
      As an example, room temperature FeO has µ =(1 + χM)µ0 = 1.27 × 10-6 NA-2 and εr = 14.2 (ε = 1.26 × 
10-10 Fm-1). The conductivity of FeO [30] is σ ≈ 2000 m-1Ω-1. In this case, the left hand side of the 
inequality is approximately [ ] -2 -1 -1 4

0 T NA m Ω 10B µ σ −    ≈    , making it impossible to satisfy. However, 

at liquid nitrogen temperature the band conduction is such that σ drops below about 0.3 m-1Ω-1 (see also 
Ref. [30]). The left hand side in this case is about 1.5 × 10-8, which is much closer to the requirement. 
Alternatively, the ∆Brf /Brf condition must be relaxed. Nonetheless, the materials issues for a permanent 
magnet option appear to be the principal challenge, especially in view of the neutron transmission 
constraints. 
 
9.2.3  Potential Problems with the Multi-Angle Permanent Magnet Configuration 
 
      In a permanent magnet, multi-angle NRSE arrangement, a potential geometrical issue is either that of 
crowding of the fourth flipper coil units (or detectors in a MIEZE-II configuration) as τNRSE (and hence L0) 
is reduced, or that of mechanical interference of the coil units with the high-resolution optical elements 
(Fig. 69). Both problems reduce the Fourier time range. If corrective mirrors are installed, they are 
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Fig. 69. Possible mechanical interferences when using permanent magnets in a multi-angle NRSE arrangement. 
 
 
optimized for the highest resolution (i.e., for L0 = L0

max) and may not be required when measuring shorter 
Fourier times. An NSE mode of operation could also take over at short Fourier times. Because the magnetic 
field magnitude is fixed, one cannot adopt the method described in Sec. 7.3.6.2 for the NSE mode. A 
possible solution consists of rotating the magnets to change the field integral (see following section). 
 
9.3  An NSE Permanent Magnet Configuration? 
 
      One may compare the Fourier time ranges of a NRSE spectrometer with that of the NSE configuration 
using permanent magnets. As there is no oscillating field in the NSE, the precession field integral is varied 
by changing the magnet tilt, as opposed to the magnet separation. However, the spin-up and spin-down 
neutron k-vector components that are normal to the field boundaries are split in magnitude inside the field, 
whereas the parallel components are not. The result is that the locus of constant spin-echo phase is 
Q-dependent. Whilst this property is exploited for measuring widths of dispersive excitations [29], it is 
problematic for quasielastic scattering, where a given spin-echo phase is obtained for a range of energy 
transfer-Q magnitude combinations allowed by the broad incident wavelength band and the beam 
divergence. A possible mitigating solution uses opposing symmetric tilts (as opposed to tilts in the same 
sense), as shown schematically in Fig. 70. The upper Fourier time limits for the NSE and NRSE 
configurations are obtained by comparing the effective field integrals 2NB0

NRSEL0 for the NRSE with 
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Fig. 70. A possible NSE configuration for quasielastic scattering using permanent magnets. The total field integral in each arm = 
B0l/cosϕ . The symmetrically opposing tilt scheme allows the net locus of constant ϕNSE to remain parallel to the Q-axis in Q-ω space. 
 
 
B0

NSE l/cos ϕmax for the NSE, where ϕmax is the maximum tilt angle of the magnet. For an NRSE instrument 
capable of reaching τNRSE = 30 ns at λ = 8 Å, we have 
 
           0 02 0.32 Tm.NRSENB L ≈     (350) 
 
Ferromagnetic materials might have B0 in the range (1 to 2) T. Therefore, reaching a field integral of 
0.32 Tm with the NSE configuration requires 
 

      ( )0.32 to 0.16 m.
cos max

l
ϕ

≈     (351) 

 
For any ϕmax this is unacceptably thick for thermal neutron transmission, therefore a permanent magnet 
NSE configuration is feasible only for measuring the lower Fourier time range (as was the case with the 
coils – see e.g. Fig. 33). 
 
9.4  Neutron Guide Requirements 
 
      The static field homogeneity and corrective optics requirements demand a small area, low divergence, 
cold neutron beam. This may be provided by a curved or curved-straight polarizing neutron guide or a 
conventional neutron guide followed by a polarizer. If the beam monochromatization is provided by a 
velocity selector, the polarizing elements are placed downstream. A polarizing neutron guide at FRM-II is 
shown in Fig. 71. 
      A curved-straight neutron guide arrangement, designed according to the prescription for “Phase-Space 
Tailoring” (PST) [31,32], is particularly suitable for this application. Despite the curved section, a PST 
guide is capable of delivering a beam with optimal intensity and uniform spatial and angular distributions, 
for all wavelengths exceeding a threshold, λ′, determined by the guide geometry and reflective coatings. 
From the estimates given in Table 7, it is likely that the incident beam divergence tolerances are stringent 
for high-resolution operation. Even if beam divergence dominates the instrumental depolarization, the 
tolerances in Table 7 are relaxed by only a factor of √3. This requires a critical angle of reflection of about 
50 % of natural Ni – about that of polished glass – to obtain Px

0 = 0.5 at (τNRSE = 30 ns, λ = 8 Å) in this 
example. This degree of beam collimation is not required for lower resolution measurements, therefore a 
likely design would introduce additional collimation, as necessary, into a more divergent beam. 
      To illustrate the implications of the high-resolution limits for a PST guide design, we choose a beam 
size W × H = 3 cm × 3 cm with a total length of the curved-straight guide combination, Ltot = Lc + Lstr = 
50 m, where Lc is the length of the curved section and Lstr is the length of the straight section. The short 
neutron wavelength filtering ability of the curved section (assuming no direct line of sight) is expressed in 
terms of the “characteristic wavelength”, λc. In the small angle approximation, λc is given by 
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Fig. 71. A section of the polarizing neutron guide feeding the 3-axis NRSE at the FRM-II. The vertical bars are permanent magnets 
providing a guide-field. The neutron guide is contained inside a vacuum casing in this example (photo kindly allowed by T. Keller, 
FRM-II). 
 
 

          2 1 ,c
Ni out

W
m

λ
ρ γ

≈      (352) 

 
where W is the guide width, ρ is the radius of curvature, mout is the factor by which the critical angle of the 
reflective coating on the outer radius of the curved section exceeds that of natural Ni, and γNi is the critical 
angle per unit wavelength of natural Ni (γNi ≈ 1.73 × 10-3 rad Å-1). For an ideal (perfect reflectivity and 
circular curvature), long (no line-of-sight) curved guide, λc defines: 

(i) The wavelength below which the transmitted beam consists only of neutrons that have had no 
contact with the inner radius. 

(ii) The wavelength at which the 2-D transmission is 2/3 that of the ideal long straight guide with side 
coatings mout. 

(iii) The wavelength below which the transmitted 2-D phase space area decreases ∝ λ3 (c.f. ∝ λ for the 
2-D straight guide). 

A compromise between good epithermal neutron suppression and reasonable transmission at λmin = 2 Å is 
achieved by setting λc ≈ 4 Å. If the required conditions for PST operation are met (see Ref. [32]), λ′ is 
given by 
 

     
( )2 2

,out
c

out in

m

m m
λ λ′ =

−
     (353) 

 
where min characterizes the inner radius critical angle for the curved section. Note that λ′ exists within the 
range between λc (when mout ≫ min) and ∞ (when min ≥ mout). Consequently, ideal PST conditions are not 
obtainable for λ < λc, however, curved-straight configurations can significantly reduce spatial-angular 
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asymmetries introduced by the curved section [33]. A curved guide is considered “long” if it has no direct 
line-of-sight [LOS]. For this to be true, Lc must satisfy: 
 
         8 .c LOSL L W ρ≥ ≈      (354) 
 
Particularly favorable gamma-ray filtering occurs when Lc ≥ 2LLOS, since neither the direct nor the once-
scattered gamma rays from the source are viewable from the guide exit. Thus, in the following examples 
we set a desirable (but not necessary) constraint Lc = 2LLOS, i.e., Lc = 4√(2Wρ). 
      The lateral displacement of the curved-straight guide exit with respect to the projected axis at the guide 
entrance (a useful quantity when considering instrument placement) is given by 
 

   1 cos sin .c c
tot c str str

L L
d d d Lρ

ρ ρ
    

= + = − +    
    

   (355) 

 
Parameters for several guides that satisfy the PST guide conditions with the above constraints are 
summarized in Table 11. 
 
 
Table 11. Parameters for guides satisfying idealized PST guide conditions for λ > λ′ , given the constraints λc = 4 Å, Ltot = 50 m, W = 
3 cm, Lc = 2LLOS with min ≥ 0.5 and mstr ≥ 0.5, for several radii of curvature of the curved sections. 
 

ρ (m) LLOS (m) Lc (m) Lstr (m) 
Lstr(min) [minimum 

for ideal PST 
(λ >λ′ )] (m) 

mout  
(λc= 4Å) min mstr λ′ (Å) 

Displacement of 
guide exit dtot (m) 

100 4.90 9.80 40.20 8.58 3.54 0.5 0.5 4.04 4.41 

150 6.00 12.00 38.00 8.54 2.89 0.5 0.5 4.06 3.52 

200 6.93 13.86 36.14 8.50 2.50 0.5 0.5 4.08 2.98 

300 8.49 16.97 33.03 8.41 2.04 0.5 0.5 4.13 2.35 

500 10.95 21.91 28.09 8.23 1.58 1.0 0.5 4.22 1.71 

500 10.95 21.91 28.09 3.36 1.58 1.0 1.0 5.16 1.71 

 
 
      The guide systems described in Table 11 are illustrated schematically in Fig. 72. Their simulated 
performance (with no velocity selector or polarizer) at the NCNR Unit 2 liquid hydrogen cold source is 
shown in Fig. 73. The simulated intensity of the NG-5 guide (a 58Ni-coated optical filter) at the NSE 
instrument is also shown under the same conditions of no velocity selector and no polarizing cavity. Figure 
74 shows the horizontal angular distributions at λ = 8 Å (greater than λ′  for all models in Table 11). The 
horizontal angular distributions show the expected uniformity within the critical angle limits of the straight 
sections (indicated by the vertical lines). Figure 75 shows simulated integral fluxes that could be expected 
at the guide exits when using a typical Dornier-type velocity selector operating at 10 % ∆λ/λ (FWHM), 
with a polarizing cavity of wavelength-independent transmission 0.45. The predicted flux of the mstr = 1 
guide is comparable to that of the NG-5 under similar conditions, with a slightly reduced beam divergence 
(see Fig. 74). 
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Fig. 72. Modeled curved-straight guide geometries for simulation of the PST guide systems described in Table 11. 
 
 

 
 
Fig. 73. Simulated differential flux spectra (dϕ/dλ) at the exits of the PST guide systems described in Table 11 and for the NCNR 
guide NG-5 (a 58Ni-coated optical filter), all assuming no velocity selector and no polarizer. The source model is the NCNR Unit 2 
liquid hydrogen cold source. 
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Fig. 74. Horizontal angular distributions for the PST guide systems described in Table 11 and for the NCNR guide NG-5 (a 58Ni-
coated optical filter) at λ = 8 Å. Note that λ = 8 Å is greater than λ′  for the PST guides. The vertical solid lines show the idealized 
critical angles of natural Ni (solid lines) and for m=0.5 (dashed lines). 
 

 
 
Fig. 75. Simulated integral fluxes at the exits of the PST guide systems described in Table 11 and the NCNR guide NG-5 (a 58Ni-
coated optical filter), assuming a Dornier-type velocity selector with ∆λ/λ (FWHM) = 10 % and a polarizing cavity of wavelength-
independent transmission 0.45 are placed in the beam. 
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10.  Appendix A:  Summary of Useful NRSE Formulas 
 
(L0 = length between coil centers, l=total coil length, lΒ0 = length of one π-flipper coil assuming the static 
field region encloses the r.f. field region, lπ=length of combined r.f. and static field region (usually=lrf for π 
flipper coils), N=number of π flipper coils in Bootstrap, M=total number of π-coils traversed by the beam in 
the instrument). 
 
Larmor angular frequency (=ωrf at resonance) 
 

0 0n Bω γ=       Eq. (5)      with 8 -1 -12
 = 1.832472 10  rad s Tn

n

µ
γ = ×



      Eq. (6). 

 
Larmor frequency (=r.f. frequency at resonance) 
 

[ ] [ ] [ ]0
0 0MHz MHz 29.1647 T

2
reson n
rf

B
B

γ
ν ν

π
= = =       Eq. (8). 

 
Larmor period=r.f. period at resonance 
 

[ ] [ ] [ ]0
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= =       from Eq. (8). 

 
“Effective” 4-coil NRSE precession frequency with bootstrap factor N 
 

[ ] [ ] [ ]0 0MHz 2 MHz 58.3294 T .eff N NBν ν= =  
 
Actual number of precessions in one π flipper coil length lB0, static field B0 
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Approximate full width at half maximum of resonance curve (i.e., a 50 % drop in polarizing 
efficiency) for a general value of lπ is very well fitted by: 
 

[ ]
[ ]

3

o

3.16 10Hz
m A

FWHM

nlπ

ν
λ

×
∆ =

 
  

      Eq. (50). 

 
Frequency shift for 1 % drop in the polarizing efficiency is well fitted by  
 

[ ]
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λ
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      Eq. (51). 

 
Effects of Dispersion: Flipping efficiencies 
 
Flipping efficiency for a wavelength λi for single flipper tuned for resonance and for exact π flips for the 
mean neutron wavelength 〈λi〉. 
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      Eq. (30). 

 
Averaged over various incident wavelength distributions: 
 
(i)  Rectangular 
 

1

1 1 sin
2 2

disp
FW

ideal FWcoil

P
P

π
π

 = + Λ Λ  
      Eq. (34),    with FW FW iλ λΛ = ∆       Eq. (33). 

 
(ii)  Triangular 
 

( )2 2
1

1 1 1 cos
2

disp
FWHM

ideal FWHMcoil

P
P

π
π

= + − Λ  Λ
      Eq. (37),    with FWHM FWHM iλ λΛ = ∆       Eq. (36). 

 
(iii)  Gaussian 
 

2 2

1

1 1 exp
2 4 ln 2

disp FWHM

ideal coil

P
P

π  Λ  = + −       
      Eq. (40),    with FWHM FWHM iλ λΛ = ∆     Eq. (36). 

 
Approximate instrumental tolerances to achieve resolution goal Px

0 (equal contributions from ∆B0, 
∆lB0, and ∆θmax) – see Sec. 6 
 
(i)  Tolerance on B0 field in each π-flipper for a 4-N coil instrument (Gaussian -equal contributions)  
 

0 2
3

FWHM
rfB B

N N
κ κ ∆ ≈ + 

 
      Eq. (203)    with ( )0ln 2 ln 1 xPκ = . 

 
(ii)  Tolerance on coil flatness in each π-flipper for a 4-N coil instrument (Gaussian – equal contributions) 
 

[ ]
0

5
0 0

o
0

0

1 1ln 2 ln 2.08 10 ln
2 meters

3 T A

x xFWHM
B

n n i
i

P Phl
m N B N Bγ λ λ

−   
×   

   ∆ = ≈
 
  

      Eq. (204). 

 
(iii)  Tolerance on beam divergence in each arm of a 4-N coil instrument (uniform incident and scattered 
        polar angles up to ∆θmax – equal contributions) 
 

[ ] [ ]
[ ]

0 0
3

max o
0 0

0 0

1 145ln ln
4.91 10 rad

6 T m A

x x

n n i
i

P P
Nm B L NB L

h
θ

γ λ λ

−

   
   
   ∆ ≈ ≈ ×

 
  

      Eq. (205), for  
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[ ] [ ]
[ ]

3

o

0 0

6.7 10~ rad
T m A

max

iNB L
θ

λ

−×
∆ <

 
  

. 

 
Net phase change in 4 equal coils, midpoints of coils in first arm separated by L0, midpoints of coils in 
second arm separated by L1 
 

0 0 1 1
0 0 1 1

2
2 n n

NRSE n i f
i f

B L NmB LN B L B L
v v h

γ
ϕ γ λ λ

 
 = − = −   

  
      Eq. (69). 

 
When tuned for QENS with B0L0 = B1L1: 
 

[ ] [ ] [ ] [ ] [ ]
o o

0 0 1 1rads 92641.8 T m A T m ANRSE i fN B L B Lϕ λ λ    = −        
. 

 
NRSE Fourier time (vf  = vi + δv, δv « vi approximation) 
 

2 2
3 30 0

0 0 0 03

2
2n n n n

NRSE i i
n i

N B L m m
NB L N L

h hm v
γ γ

τ λ ν λ
π

   = = =   
   

       Eq. (119), 

 
where 
 

[ ] [ ] [ ]

[ ] [ ]

3°

0 0

3°
2

0 0

ns 0.37271 T m A

1.27794 10 MHz m A

NRSE i

i

N B L

N L

τ λ

ν λ−

  =     

  ≡ ×     

      Eq. (120). 

 
Resolution function approximations for no sample, isotope incoherent elastic scattering, or small ω, 
small divergence (apart from depolarizations resulting from instrumental imperfections and flipper 
coil dispersion)  
 

Defining 02 n nN m B
A L

h
γ

δ=       (Eq. (124)): 

 
      (i)  Purely monochromatic (“perfect instrument”) 
 
      ( ) ( ) ( )00 cosxP S Q Aω λ→ ≈       (Eq. (125)), 
 
with a periodicity given by 
 

      ( ) 0
2

0

1

n n n

vhBL
m N Nπ

ππδ
γ λ γ

= =       (Eq. (126)). 

 
      (ii)  Rectangular incident wavelength spectrum (“perfect instrument”) 
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      ( ) ( ) ( )2
0 sin cos

2
FW

x i
FW

S Q
P A A

A
λ

ω λ
λ

∆ → ≈  ∆  
      (Eq. (127)). 

 
      (iii)  Triangular incident wavelength spectrum (“perfect instrument”) 
 

      ( ) ( ) ( ) ( ){ }2 20 2cos 1 cosx i FWHM
FWHM

S Q
P A A

A
ω λ λ

λ
→ ≈ − ∆  ∆

      (Eq. (128)). 

 
Quasielastic signal approximations, symmetric S(Q,ω), Γ(Q) ≈ DQel

2, δL → 0, small divergence 
(apart from depolarizations resulting from instrumental imperfections and flipper coil dispersion) 
 

Defining 
2 2 2

2
0 0 3

16 sin16 sinn
n NRSE

i

m DK NB L D
h

π θπγ θ τ
λ

 = = 
 

      (Eq. (134)): 

 
      (i)  Purely monochromatic (“perfect instrument”) 
 
      ( ) ( )00 expxP L Kδ λ→ ≈ −       (Eq. (135)). 
 
      (ii)  Rectangular incident wavelength spectrum (“perfect instrument”) 
 

      ( ) ( )
( ) ( )sinh 2

0 exp
2

FW
x i

FW

K
P L K

K
λ

δ λ
λ
∆

→ ≈ −
∆

      (Eq. (136)). 

 
      (iii)  Triangular incident wavelength spectrum (“perfect instrument”) 
 

      ( )
( )( ) ( )2 2

2 cosh 1
0 expFWHM

x i
FWHM

K
P L K

K
λ

δ λ
λ
∆ −

→ ≈ −
∆

      (Eq. (137)). 

 
      (iv)  Gaussian incident wavelength spectrum (“perfect instrument”) 
 

      
( ) ( )

22 210 exp exp erf 1
2 2 2

8ln 2

i
x i

FWHM

KKP L K
λ σσδ λ

σ

λ
σ

  − 
→ ≈ − +          

∆
=

      (Eq. (138)). 

 
Approximate maximum achievable static field for n turns cm-1 (long solenoid approximation) 
 

[ ] [ ] [ ]7 -1 6 -1
0 T 4 10 m A 1.26 10 m AB n I n Iπ − −   ≈ × ×          Eq. (213). 

 
Required current in static field coil to produce a static field B0 
 

[ ] [ ] [ ]6
0 05

-1 -1

T T2.5 10A 8 10
m m

B B
I

n nπ
×

= ≈ ×
      

      Eq. (214). 
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Magnetic pressure acting outwards on B0 coil windings 
 

[ ]( ) [ ]( )
2

2-2 5
7

T
Nm 4 10 T

8 10mag

B
P B

π −
  = ≈ ×  ×

      Eq. (241). 

 
Approximate deflection of unconstrained rectangular wire (thickness t) winding, length lu due to 
magnetic pressure 
 

[ ] [ ]( ) [ ]
[ ]

2 4

4
3-2

T m
m 1.25 10

Nm m
u

max

B l
y

E t
≈ ×

  
      Eq. (246). 

 
Resistance of static field coil of external surface area Asurf with tightly-wound, rectangular cross-
section wire windings of thickness t 
 

( ) 2
surfT n A

R
t

ρ
=       Eq. (222). 

 
Required voltage across static field coil of external surface area Asurf with tightly-wound, rectangular 
cross-section wire windings of thickness t 
 

[ ] [ ] [ ]
( )[ ]

[ ] [ ]
-1 26

0

Ωm m m2.5 10V A Ω T
m

surfT n A
V I R B

t

ρ

π

   ×    = =       Eq. (224). 

 
Power dissipated in static field coil of external surface area Asurf with tightly-wound, rectangular 
cross-section wire windings of thickness t 
 

[ ] [ ] [ ] [ ]( ) [ ]
( )[ ]

[ ] [ ]( )

2

212
2

02

W A V A Ω

Ωm m6.25 10 T
m

surf

P I V I R

T A
B

t

ρ

π

= =

 ×  ≈
      Eq. (226). 

 
Specifically for Al windings down to T ~ 80 K 
 

[ ] [ ]( ) [ ] ( )( )
2

2 3
0

m
W T 72.2 K 4.37 10

m
surf

Al

A
P B T

t

  ≈ − ×       Eq. (235). 

 
Brf required for π flip (amplitude of r.f. field=2Brf) 
 

[ ]
[ ] [ ]

5 5

o o

6.782232 10 6.782232 10T
m A m A

rf

rf n n

B
l lπλ λ

− −× ×
=
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      

       Eq. (14). 
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Required peak amplitude of r.f. field 
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4 4

o o
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m A m A

pk
rf rf
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B B
l lπλ λ

− −× ×
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       Eq. (15). 

 
Approximate skin-depth in aluminum 
 

[ ]
[ ]
83mm

Hz
Alδ

ν
       Eq. (275). 

 
Approximate ratio of resistance at frequency ν to D.C. resistance for rectangular cross-section wire 
windings with h » t 
 

( )
0 2 1 exp

2

R t
R t
ν

δ
δ

≈
  − −    

      Eq. (276). 

 
Approximate required peak current in r.f. coil 
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      

 
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      Eq. (260). 

 
rms current in r.f. coil at exact impedance matching (Z0 usually 50Ω) 
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o
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      





      Eq. (261). 

 
Approximate maximum voltage in r.f. coil (long solenoid approx, length lrf

axial, thickness in beam 
direction lrf, width perpendicular to lrf

axial and lrf = arf) 
 

[ ]
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[ ]
-1

4
0o

m m m
V 2.5 10 T

A

rf
rf axial rfpk

rf

i

n l a
V B

λ

  ≈ ×
 
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      Eq. (266). 

 
using L ≈ µ0nrf

2laxialArf (Eq. (264)) which can be restated as: 
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Approximate self-inductance of long solenoid 
 

[ ] ( ) [ ]

( ) [ ]

27 1 2

26 1 2

H 4 10 m m m

1.26 10 m m m

rf
rf axial rf

rf
rf axial rf
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      Eq. (265). 

 
Required rms power supply voltage at exact impedance matching 
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       Eq. (269). 

 
Heat dissipated in the whole r.f. circuit at exact impedance matching 
 

( ) ( )2
2

0
0

2
2

PS
rmsPS

rf circuit rms

V
P I Z

Z
= =       Eq. (270). 

 
Power dissipated as heat in the r.f. coil at exact impedance matching 
 

( ) ( )
22

2

2
0 0

1
2 4 2

PSPS
rms rf circuitrmsrms

coil rf

V PV
P j C R I R

Z Z
ω

 
= + = = = 

 
      Eq. (273). 

 
Approximate maximum rate of change of current in r.f. coil 
 
( ) [ ] [ ] [ ]-1 -1 8

0max As A s 1.832 10 A Tpk pk
rf rf rfdI dt I I Bω   = ≈ ×          Eq. (263). 

 
Approximate tolerances on r.f. coil 
 

Using the criteria 
( ) 2 2
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λ λ
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≤ , 

 

with 
( ) 2 2

~ 0.03rf rf rf rf

rf rf rf rf

B l B l
B l B l
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= = <  

 

for equal contributions to resolution function (Eq. (282)), we have 
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o

2.9 10T
m A

pk
rf

rf i

B
l λ

−×
∆

 
  


      Eq. (283)      and ~ 0.02rf

rf

l
l

∆
< . 

 
Length of toroidal r.f. coil winding, toroid radius r, cross-section arf × brf 
 

( )4rf
w toroid rf rf rfl r n a lπ≈ +       Eq. (316). 
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Self-inductance of toroidal solenoid of mean radius r and cross-sectional area Arf  
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      Eq. (313). 

 
Resistance of toroidal solenoid of mean radius r 
 

( )
( )4 toroid rf rf rf

toroid
rf rf

r n a l
R T

t h
π

ρ
+

=       Eq. (318). 

 
Specifically for Al rectangular windings trf × hrf : 
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  + Ω = × − ×       Eq. (320). 

 
Stray field for total precession in arm of length L <10° 
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o
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      Eq. (285). 

 
Unshielded “zero field path” precession due to average stray field Bstray along path length L 
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m
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      Eq. (284). 
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