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When two six degrees of freedom (6DOF) datasets are registered, a transformation is sought that minimizes the misalignment between 
the two datasets. Commonly, the measure of misalignment is the sum of the positional and rotational components. This measure has a 
dimensional mismatch between the positional component (unbounded and having length units) and the rotational component (bounded 
and dimensionless). The mismatch can be formally corrected by dividing the positional component by some scale factor with units of 
length. However, the scale factor is set arbitrarily and, depending on its value, more or less importance is associated with the 
positional component relative to the rotational component. This may result in a poorer registration. In this paper, a new method is 
introduced that uses the same form of bounded, dimensionless measure of misalignment for both components. Numerical simulations 
with a wide range of variances of positional and rotational noise show that the transformation obtained by this method is very close to 
ground truth. Additionally, knowledge of the contribution of noise to the misalignment from individual components enables the 
formulation of a rational method to handle noise in 6DOF data. 
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1.  Introduction 
 
      The pose of a three dimensional rigid body is determined by six degrees of freedom: three coordinates 
of the position vector (defining, e.g., the location of the center of mass) and three angles (e.g., Euler angles 
or yaw, pitch, and roll) which uniquely parameterize a 3x3 rotation matrix. A pose measuring instrument 
outputs position and orientation data in a coordinate frame defined by the pose of the instrument in a global 
coordinate system. Any data acquired by the instrument from two different locations need to be 
transformed into one coordinate system through a process known as registration. A similar procedure is 
required when a robot’s vision system collects data in one coordinate frame while the robot’s arm operates 
in another coordinate frame (robot-world/hand-eye calibration problem). Due to noise present in acquired 
6DOF data (both in their positional and rotational parts) the alignment of two datasets is not perfect. 
Mathematically, both the registration and calibration problems can be formulated as the minimization of 
some kind of error measure Epose(H) where the homogeneous transformation H being sought consists of a 
rotation and a translation. 
      Various techniques have been developed to obtain H (see [1] for a comprehensive review). Some 
methods are based on iterative minimization [2,3], while others provide closed form solutions [4,5]. There 
are techniques that parameterize rotation with the help of quaternions [6,7]; others use an axis and angle 
representation [8]. Many approaches follow a separable solution strategy: first calculate the rotational part 
of H and then calculate the translation [9]. Fewer procedures simultaneously solve both the rotational and 
translational components of H [10,11]. Another class of techniques falls into a category of structure from 
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motion with improved L∞ norm optimization [12,13], which enables recovery of a correct location scale 
[14]. 
      Since 6DOF data contain both positional and rotational components, three different strategies of data 
handling are possible in the search for the best rotation: 1) use only the positional part of 6DOF data; 2) use 
only the rotational part; or 3) use both the positional and the rotational parts. The first method, 3DOF 
registration, is used in many applications where only 3D points are acquired [15-17]. Of course, whenever 
6DOF data are available, the natural choice is to use all the data without wasting any part of them. 
However, there is a scaling problem associated with existing registrations based on full 6DOF data. The 
problem is inherent in the definition of the corresponding error function 
 

pose rot locE E E= + ,     (1) 
 
where Erot is a dimensionless measure of error related to the rotational part of the data (three angles), while 
Eloc is the error caused by the positional part of data and is expressed in (length)2 units. This ill-defined 
expression is a consequence of using a homogenous matrix H and its Frobenius norm H  as a measure of 
an overall error 
 

3 3 3 1

1 3 1 10 1
x x

x x

δ δ 
=  
 

R v
H       and      ( )2 Ttr=H H H ,   (2) 

 
where δR is a 3x3 matrix related to the rotational part of 6DOF data, δv is a vector related to the positional 
part of data, tr() is a trace of a matrix and HT is the matrix transpose of H. Since Erot is bounded while Eloc 
is not, changing length units (say, from mm to µm or to meters) can cause either a contribution of Erot or 
Eloc to Epose to be ignored. Some attempts to fix this problem are based on a heuristic scale factor λ 
 

        pose rot locE E Eλ= +      (3) 
 
with λ having a dimensionality of (length)-2. While introducing λ makes the expression for Epose formally 
correct, this approach fails to resolve the main problem as it does not provide an objective method of 
setting a value of λ. 
      A self-adjusting weight approach was proposed for the first time in [18]. The error function was defined 
as 
 

 2 2
pose rot rot loc locE E Eσ σ= +     (4a) 

 
where 2

rotσ  and 2
locσ  are the variances of the rotational and positional noise, respectively. Since both 

variances are usually not known in laboratory measurements, a multistep minimization of the error function 
defined in (3) was proposed with 
 

2 2
rot locλ σ σ→ .     (4b) 

 
Initially, an arbitrary value was assigned to λ  and the first minimization of Epose was performed. The 
weight factor was then updated to rot locE Eλ = and substituted back into (3). Next, the new Epose was 
minimized again and the whole process was repeated. Figure 2 in [18] shows that regardless of the initial 
value of λ , after only three steps, λ  approaches a constant value, which is interpreted as the correct 
weight between the rotational and positional components of Epose. Unfortunately, this procedure removes 
only a mismatch in length units between Eloc and 2

locσ , so they both can be expressed in the same units, like 
mm or µm. The procedure does not provide a true measure of relative noise levels, because the limit in (4b) 
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is equally as ill defined as Epose in (1). Depending on the size of the bounding box containing positional 
data, the same positional noise locσ  can be declared as large or small, regardless of the actual value of rotσ . 
      In this paper the mismatch between Eloc and Erot in the registration procedure is removed in a different 
way. Instead of using the Euclidean norm to measure the distance between two sets of 3D points, Eloc is 
expressed as a sum of squared angular differences between matching vectors. Then, the same form of 
function can be used to calculate Erot. This formulation ensures that the ratio Eloc /Erot is truly a good 
measure of the relative amount of noise in the positional and rotational components of 6DOF data. 
Extensive numerical simulations reveal that it may be more advantageous to use only the positional or the 
rotational part of data in some experimental conditions. 
 
 
2.  Definition of Error Function 
 
      Two 6DOF datasets {pj, Aj} and {qj, Bj}, j=1,…,N, are acquired in two different coordinate systems 
where, for each j, pj and qj are two corresponding vectors and Aj and Bj are two corresponding 3x3 rotation 
matrices. The registration transformation consists of a rotation matrix R and a translation vector v. In this 
paper, all rotation matrices are used in an axis and angle representation. The axis can be represented as a 
unit column vector u 
 

                 ( ) [ ], cos cos ,cos sin ,sin Tϑ ϕ ϑ ϕ ϑ ϕ ϑ=u     (5) 
 
where ( ),ϑ ϕ  are elevation and azimuth angles, respectively. Then, the matrix of rotation R about axis u by 
angle ρ can be expressed by the Rodrigues formula 
 

               ( ) ( ) [ ] ( ), , , cos sin 1 cos
S

ρ ϑ ϕ ρ ρ ρ ρ= = + + − ⊗R u R I u u u    (6) 

 
where I is 3x3 identity matrix and 
 

    [ ] T

0
0 ,  .

0

z y

z xS

y x

u u
u u
u u

 −
 = − ⊗ = 
 − 

u u u u u     (7) 

 
Following separable procedures, the rotation R is found first and then the translation v is calculated as 
 

          ctr ctr= −v p Rq      (8) 
 
where pctr and qctr are centroids of N points {pj} and {qj}. So, the hard part of registration is to find a correct 
rotation R. When only 3DOF positional data are available, the typical approach is to move the origins of 
coordinate systems to the corresponding centroids 
 

ctr ctr,  ,j j j j= − = −p p p q q q     (9) 
 
and then find a rotation R which minimizes the following Euclidean norm 
 

        ( ) ( ) 2

loc
1

1, , , , .
N

j j
j

E
N

ϑ ϕ ρ ϑ ϕ ρ
=

= −∑ p R q    (10) 
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Such defined Eloc has dimensionality of (length)2 and causes problems when 6DOF data need to be 
registered. To avoid this problem, vectors jp  and jq  are normalized 
 

        ctr ctr

ctr ctr

 ,j j
j j

j j

− −
= =

− −
 

p p q q
p q

p p q q
    (11) 

 
and the error function is defined as 
 

( ) ( )( ) 2

loc
1

1, , 1 , ,
N

j j j
j

E w
N

ϑ ϕ ρ ϑ ϕ ρ
=

= − ⋅∑  p R q    (12) 

 
where 0 ≤ wj ≤ 1 is a weight factor for a given j-th term and ⋅  stands for the dot product of two vectors. The 
error function so defined gauges the angular misalignment between vectors jp  and jRq . This error 
function can now be minimized to find the best rotation R by using any (perhaps gradient based) 
optimization procedure. The gradient of Eloc can be calculated as 
 

( ) ( )( )loc
1

2, ,
N

j j j j j
j

E w
N γϑ ϕ ρ

γ =

∂
= − ⋅ ⋅

∂ ∑    p Rq p R q  for , ,γ ϑ ϕ ρ=   (13) 

 
where individual partial derivatives of rotation matrix γR are expressed as 
 

    ( )sin 1 cos
S

ϑ ρ ρ
ϑ ϑ ϑ
∂ ∂ ∂   = + − ⊗ + ⊗  ∂ ∂ ∂   

u u uR u u    (14a) 

 

    ( )sin 1 cos
S

ϕ ρ ρ
ϕ ϕ ϕ

   ∂ ∂ ∂
= + − ⊗ + ⊗  ∂ ∂ ∂   

u u uR u u    (14b) 

 
    [ ]sin cos sin

Sρ ρ ρ ρ= − + + ⊗R I u u u       (14c) 

 
and derivatives of vector u can be explicitly evaluated from (5). 
      Erot can be calculated using a similar form of error function as Eloc in (12). Since Aj is the rotation 
matrix, its three columns are unit vectors, i.e., the first column Aj(:,1) is a unit vector along the rotated x 
direction, the second column Aj(:,2) is a unit vector along the rotated y, and Aj(:,3) along the rotated z (and 
similarly for Bj). Thus, Erot can be defined as 
 

( ) ( ) ( ) ( ) ( )
23

rot
1 1

1, , 1 :, , , :,
3

N

j j j
j k

E s k k k
N

ϑ ϕ ρ ϑ ϕ ρ
= =

 = − ⋅ ∑∑ A R B   (15) 

 
where 0 ≤ sj (k) ≤ 1 is a weight factor for the corresponding (j,k) term. The gradient of Erot can be calculated 
similarly as for Eloc in (13) 
 

( ) ( ) ( ) ( ) ( ) ( )
3

rot
1 1

2, , :, :, :, :,
3

N

j j j j j
j k

E s k k k k k
N γϑ ϕ ρ

γ = =

∂    = − ⋅ ⋅   ∂ ∑∑ A R B A R B  for , ,γ ϑ ϕ ρ=   (16) 
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with γR  calculated in (14). Finally, the full error function Epose for registering 6DOF data using both the 
positional and rotational parts of data is defined as in (1), with Eloc defined by (12) and Erot by (15). The 
gradient of Epose can be calculated from gradients of Eloc and Erot as defined in (13) and (16), respectively. 
      In order to use the above procedure, the weight factors wj in (12) and sj (k) in (15) must be defined as 
well as a starting point for minimization ( )0 0 0, ,ϑ ϕ ρ . If there were no noise in the acquired rotational data 
Aj and Bj, then the following would hold for every j 
 

.j j=A RB      (17) 
 
In reality, a slightly different matrix Rj has to be calculated for each j 
 

        ( ) T,j j j j jρ =R u A B      (18) 
 
where uj and ρj are the axis and the angle of rotation and 1 T

j j
− =B B . Then, the normalized mean axis and 

the mean angle of rotation can be used as the starting point ( )0 0 0, ,ϑ ϕ ρ  in a minimization of Epose 
 

         ( ) 1
0 0 0

1

,

N

j
j

N

j
j

ϑ ϕ =

=

=
∑

∑

u
u

u
  and  0

1

1 N

j
jN

ρ ρ
=

= ∑     (19) 

 
where u0 depends on angles ( )0 0,ϑ ϕ  as in (5). If the experimental rotational data Aj and Bj are not heavily 

affected by noise, then the starting rotation ( )0 0 0 0, ,ϑ ϕ ρR  should be relatively close to the final best fit 

rotation ( )* * * *, ,ϑ ϕ ρR . If only 3DOF positional data are available then R0 can be easily constructed from 
two corresponding triplets of non-collinear data points. 
      Once the starting point for the minimization is determined, the weight factors wj in (12) and sj (k) in 
(15) can be calculated 
 

( )01 0.5 ,j j jw = − ⋅ − u p q        (20a) 

 

( ) ( ) ( )( )01 0.5 :, :,j j js k k k= − ⋅ −u A B ,  for  1, 2,3k =   and  1,...,j N= ,  (20b) 

 
where jp  and jq  are defined in (11) and ( ):,j kA  is the k-th column of data matrix Aj (and similarly for 
Bj). The rationale behind such defined weight factors is that the components of vectors jp  and jq  that are 

parallel to u0 should be close to each other, and similarly for ( ):,j kA  and ( ):,j kB . If they are not, then a 
given j-th term is classified as an outlier and a small value is assigned to wj in (12) or sj (k) in (15), 
respectively. 
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3.  Numerical Simulations 
 
      In order to test the performance of the introduced procedure, extensive numerical simulations were 
done. First, a primary 6DOF dataset was generated , , , , ,A A A A A A

j j j j j jx y z ϑ ϕ ρ    for j = 1,…, N. For every j, the 

unit axis vector ( ),A A
j j jϑ ϕu  was created as in (5) together with the corresponding rotation matrix

( ), A
j j jρA u  as in (6) and the position vector , ,A A A

j j j jx y z =  p . Then, a transformation was selected by 

setting the translation vector t0 and three angles ( )GT GT GT, ,ϑ ϕ ρ . The unit axis vector ( )GT GT,ϑ ϕu  was 

created as in (5) and the rotation matrix ( )GT,ρ−R u  was formed as in (6). Then, the secondary 6DOF 

dataset , , , , ,B B B B B B
j j j j j jx y z ϑ ϕ ρ    could be created as follows. The position vector is , ,B B B

j j j jx y z =  q , 

where ( )0 0,j j f= + +q R p t N . The positional noise is represented by ( )0, fN , a vector with three 
components that are pseudo-random numbers obtained from a generator with Gaussian distribution, zero 
mean and standard deviation equal to f. The rotation matrix Bj is calculated as 
 

( ), ,A A A
j j j j j j j jh h hϑ ζ ϕ ω ρ η= + + +B RC     (21) 

 
where the rotation matrix Cj was calculated as in (6), h is a standard deviation of angular noise, and 

, ,j j jζ ω η    are pseudo-random numbers obtained by the standard Gaussian generator (with zero mean and 
standard deviation equal to one). In order to make an easier comparison between the effects caused by 
angular noise (h in radians) and positional noise (f in mm), the standard deviation of positional noise was 
calculated as 
 

avgf g L=      (22) 
 
where g is expressed in radians and avgL  is the averaged length of vectors pj centered at pctr 
 

     avg ctr
1

1 .
N

j
j

L
N =

= −∑ p p      (23) 

 
Once a pair of primary and secondary data was generated, the best fit rotation ( )* * * *, ,ϑ ϕ ρR  was 
determined by three different methods. In method 1, only positional data were used and Eloc, defined in 
(12), was minimized. In method 2, only rotational data were used and Erot, as defined in (15), was 
minimized. In method 3, full 6DOF data were used and Epose was minimized. Each method yielded slightly 
different best fit rotations *

kR  for k = 1, 2, 3. For each rotation, a deviation dk from a ground truth rotation 

GTR  was calculated using the Frobenius norm (2) 
 

*
GT 2 2k kd = −R R   for  k = 1,2,3.   (24) 

 
The matrix GTR  is an inverse of the matrix ( )GT,ρ−R u  which was used to generate a secondary 6DOF 
data in (21), i.e., 
 

                        ( ) ( )( ) ( )1
GT GT GT GT GT GT GT GT, , , , ,ϑ ϕ ρ ϑ ϕ ρ ρ−= − = R R u R u .  (25) 
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For every pair of noise parameters (g, h), the above procedure was repeated many times. First, in order to 
check the stability of results obtained for different noise realizations, for a given transformation { }0 , t R  and 

primary data, Nnoise secondary datasets were generated 
( )

, , , , ,B B B B B B
j j j j j j n

x y z ϑ ϕ ρ   , where n = 1,…, Nnoise. 

Each n-th dataset was obtained by using different sequences of random numbers , ,j j jζ ω η    and ( )0, fN  
for rotational and positional noise, respectively. In addition to this test, Mdata primary datasets were 
generated 

( )
, , , , ,A A A A A A

j j j j j j m
x y z ϑ ϕ ρ   , where m = 1,…, Mdata . For each m-th primary dataset, Nnoise 

secondary datasets were generated as described previously 
( , )

, , , , ,B B B B B B
j j j j j j n m

x y z ϑ ϕ ρ   . Finally, Ktrans 

transformations were created { }0 ( )
,

k
t R where k = 1,…, Ktrans . For each k-th transformation, each m-th 

primary dataset and each n-th random sequence, a secondary dataset 
( , , )

, , , , ,B B B B B B
j j j j j j n m k

x y z ϑ ϕ ρ    was 

generated. Overall, for every pair of noise parameters (g, h), a total of Ntot = Nnoise x Mdata x Ktrans secondary 
datasets were generated. Each secondary dataset was registered to its corresponding primary data using 
each of the three different methods described earlier. 
      All numerical calculations were performed on a 32-bit PC in double precision. A standard quasi-
Newton minimization algorithm as implemented by Davidon-Fletcher-Powell (DFP) in [19] was used in all 
optimizations. Exit criteria from this iterative procedure were set to 10-6 for both the minimum change in 
step and the flatness of a gradient. Pseudo-random numbers were generated using the gasdev function 
provided in [19]. 
 
 
4.  Results 
 
      Figures 1-5 show the results of simulations obtained for 200 x 200 pairs of noise parameters (g, h). On 
average, 5-9 iterative steps were needed for the DFP minimization procedure to converge. The length of 
each dataset (primary or secondary) is N = 10, Nnoise = 16, Mdata = 10, Ktrans = 10, so there are Ntot = 1,600 
pairs of (primary, secondary) data requiring registration for each (g, h). Figure 1 shows the mean ratio α  
averaged over all Ntot cases and displayed in a logarithmic scale 
 

( )
( )

tot
( )

loc pose

( )
1tot rot pose

1 ,  ,
lN

l l l
l

E

N E
α α α

=

= =∑
v

v
    (26) 

 
where ( )

pose
lv  is the solution obtained by minimizing Epose for the l-th pair of data. Figure 2 shows which 

method most frequently delivered the smallest deviation from ground truth dk as defined in (24). Figure 3 
displays how often a given method delivered the best results. 
      Figure 4 shows the outcome of a prediction procedure defined as follows. For each pair of noise 
parameters (g, h) and each l-th pair of data, the ratio lα  was calculated as in (26). Then, if lowl Tα ≤ or 

highl Tα ≥ , where Tlow < Thigh are predefined parameters, the prediction was made. If highl Tα ≥ , then the best 
results were expected to be delivered either by method 2 (minimization of Erot, positional data ignored) or 
by method 3 (minimization of Epose, full 6DOF data used). Similarly, if lowl Tα ≤ , then the best results were 
expected from either method 1 (minimization of Eloc, rotational data ignored) or from method 3. This 
prediction was compared with the actual deviations from ground truth dk, k = 1,2,3. If the prediction was 
correct, the number of successful predictions for that pair (g, h) was increased by one. This process was 
repeated for every l-th pair of data (l = 1,…, Ntot). Displayed in Fig. 4 is the number of successful 
predictions divided by L, where L is the total number of cases for which lowl Tα ≤ (or highl Tα ≥ ) for a given 
(g, h). The central white part of the plot corresponds to an inconclusive region in (g, h) where no prediction 
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Fig. 1. Contour plot of the mean ratioα defined in (26) on a logarithmic scale as a function of a standard deviation of positional noise 
g and rotational noise h. For easier interpretation, both noise parameters are shown in milliradians. In simulations g was converted to 
millimeters using (22). 
 
 

 
 
Fig. 2. The diagram showing which of the three methods delivered most frequently the best registration. In method 1, Eloc was 
minimized using only the positional data; in method 2, Erot was minimized using only the rotational data; in method 3, Epose was 
minimized using full 6DOF data. For each pair of noise parameters (g, h), a total of Ntot = 1,600 registrations of different data pairs 
were performed. 
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Fig. 3. The frequency of winning by the best method shown in Fig. 2 vs. positional and rotational noise parameters (g, h). 

 
 

 
 
Fig. 4. The frequency of correct predictions vs. noise parameters (g, h). Based on a value of Eloc / Erot , the two best methods are 
predicted. The central white area corresponds to the inconclusive region where no prediction could be made because Eloc ≈ Erot. Note 
that the value of color on the color bar for the highest frequency 1.0 deviates intentionally from a linear scale for better visualization. 
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Fig. 5. The mean ratioκ defined in (27) vs. noise parameters (g, h). As in Fig. 4, the central white part of the plot corresponds to an 
inconclusive region on (g, h) plane. 
 
 
 
could be made, because low highlT Tα< < , i.e., L = 0. The results presented were obtained for Tlow = (1/3)2 
and Thigh = 32. Figure 5 shows the mean ratio κ  vs. noise parameters (g, h) 
 

( ) ( )
best tot

1

1 , ,
L

l l
l l

lL
κ κ κ

=

= = ∆ ∆∑     (27) 

 
where ( )

best
l∆ is the difference between the two smallest deviations dk1 and dk2 obtained with the predicted 

two best methods k1 and k2 applied to l-th data pair, and ( )
tot
l∆  is the difference between the largest and the 

smallest deviation for the same l-th pair. Similarly as in Fig. 4, the central white part of the plot 
corresponds to an inconclusive region in (g, h) where L = 0. 
 
 
5.  Discussion 
 
      The results presented in Fig. 1 indicate that, as expected, the ratio α  correlates well with the ratio of 
noise parameters g/h. This is important because the systems that are used for pose determination usually do 
not provide much information about the noise levels present in positional and rotational data. When the 
ratio α  becomes small, one may expect that discarding the rotational part of 6DOF data may, on average, 
lead to better registration. Similarly, for α large, discarding the positional part of the full data may on 
average yield a better result. For intermediate values of α  using full 6DOF data should lead to the best 
results. Figure 2 and 3 confirm that these intuitive expectations are indeed correct. 
      For small or large values of α ( lowTα ≤  or highTα ≥ ), the procedure introduced in this paper predicts 
very well which of the three registration methods provides the best results. The data shown in Fig. 4 
indicate that the highest ratio of false predictions does not exceed 0.08 (in a region of small lowTα ≤ , 
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around noise parameters (g, h) ≈ (15, 120)). For the majority of (g, h) where either lowTα ≤ or highTα ≥ , the 
prediction rate is exactly 1 or very close to 1. 
      Overall, the data shown in Figs. 2-5 confirm that minimization of Epose (the third method, full 6DOF 
data used) yields consistently good results in a whole range of investigated noise parameters (g, h). The 
third method most frequently delivers the best or second best result. In the latter case, for lowTα ≤ or 

highTα ≥ , the difference between the two best methods is in most cases two orders of magnitude smaller 
than the difference between the worst and the best method; see Fig. 5. This means there is a large difference 
between the worst method and the remaining two methods. At the same time, differences between the two 
best methods are small. Thus, using full 6DOF data and minimizing Epose seems to be the best or close to 
the best strategy across the whole range of noise parameters (g, h). For very small or very large values of 
the ratio ( ) ( )loc pose rot poseE Ev v , it may be worthwhile to discard the noisy part of the 6DOF data and to 
redo the minimization using Eloc or Erot with only positional or rotational data, respectively. A similar 
conclusion was formulated already in [3] without a systematic study of the mutual relation between 
positional and rotational noise. That observation was based on particular parameters used in the 
simulations: length of position vector j ∈p [500 mm, 1000 mm], length of translation 0t = 800 mm, 
positional noise 1 mm and rotational noise 2.5 mrad (using a uniform random number generator). However, 
during the simulations, 0t  and jp  were calculated in meters. Only positional data were also used in 
another hand-eye calibration procedure. The minimum variance method introduced in [20] delivered better 
results than two other methods [8,18]. Systematic studies presented in this paper explain why this 
apparently surprising conclusion can be correct. 
      One may wonder why for small or large values of α  the predictions are not perfect, as the data in Fig. 
4 indicate. However, it should be remembered that a residual value of the error function (like Erot or Eloc) 
provides only an indication of the noise level present in experimental data, not the actual deviation of best 
fit parameters from the unknown ground truth. 
 
 
6.  Conclusions 
 
      Performance of the iterative minimization procedure for registration of 6DOF noisy data was studied in 
computer simulations. The properly defined error function Epose removed the mismatch between the 
positional component of the error (unbounded, in length units) and the bounded, dimensionless rotational 
component. The error function Epose can be minimized and the resulting rotation matrix provides a good 
approximation to the true rotation across a large range of positional and rotational noise variances. Thus, 
both the developers and the users of pose determining systems could benefit from being able to properly 
gauge a relative amount of noise in the positional and the rotational parts of 6DOF data. 
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