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      Identifying sources of ground water pollution, and deblurring nanoscale imagery as well as astronomical galaxy images, are two 
important applications involving numerical computation of parabolic equations backward in time. Surprisingly, very little is known 
about backward continuation in nonlinear parabolic equations. In this paper, an iterative procedure originating in spectroscopy in the 
1930’s, is adapted into a useful tool for solving a wide class of 2D nonlinear backward parabolic equations. In addition, previously 
unsuspected difficulties are uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly 
from the linear, autonomous, self adjoint, canonical model. 
      This paper explores backward continuation in selected 2D nonlinear equations, by creating fictitious blurred images obtained by 
using several sharp images as initial data in these equations, and capturing the corresponding solutions at some positive time T. 
Successful backward continuation from t = T to t = 0, would recover the original sharp image. Visual recognition provides meaningful 
evaluation of the degree of success or failure in the reconstructed solutions. 
      Instructive examples are developed, illustrating the unexpected influence of certain types of nonlinearities. Visually and 
statistically indistinguishable blurred images are presented, with vastly different deblurring results. These examples indicate that how 
an image is nonlinearly blurred is critical, in addition to the amount of blur. The equations studied represent nonlinear generalizations 
of Brownian motion, and the blurred images may be interpreted as visually expressing the results of novel stochastic processes. 
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1.  Introduction 
 
      This paper presents an effective iterative procedure that can be used to solve a wide class of 2D 
nonlinear parabolic equations backward in time. However, previously unsuspected difficulties are also 
uncovered that may preclude useful backward continuation in parabolic equations deviating too strongly 
from the linear, autonomous, self adjoint, canonical model. Instructive 1D examples of ill-behaved 
continuations were previously reported in [6]. 
      Continuation backward in time in parabolic equations is a notoriously ill-posed problem with some 
intriguing applications. Of major current interest are hydrologic inversion and image deblurring. 
Hydrologic inversion seeks to identify sources of groundwater pollution by backtracking contaminant 
plumes, [2-5,15,18]. This involves solving the advection dispersion equation (ADE) backward in time, 
given the contaminant spatial distribution g(x,y) at the current time T. In image science, images blurred by 
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Gaussian point spread functions are a common occurrence. Deblurring Gaussian blur is mathematically 
equivalent to solving the heat conduction equation backward in time, [8,9,16]. More recently, in [7] and 
references therein, striking enhancements were obtained when time-reversed fractional and/or logarithmic 
diffusion equations were applied in blind deconvolution of Hubble space telescope galaxy images, as well 
as scanning electron microscope imagery of interest in nanotechnology. 
      With backward uniqueness assumed to hold, prescribed L2 bounds on the solution are often used, along 
with smoothness and non-negativity constraints when applicable, to stabilize backward reconstruction 
against amplification of input data noise. These and other regularization methods have been extensively 
studied in recent years. However, only limited computational experience has generally been accumulated 
on backward problems. This is especially true for nonlinear problems in more than one space dimension. 
As will be seen below, difficulties may remain, even if regularization has successfully prevented noise 
amplification, and produced a solution satisfying prescribed bounds and other constraints. 
      The Van Cittert method is an iterative procedure for solving linear integral equations of convolution 
type, where the kernel is known explicitly and has a positive Fourier transform. The method originated in 
spectroscopy in the 1930’s [19], and has been used in image restoration, [11,14]. In this paper, the Van 
Cittert iteration is adapted into a useful tool for exploring a large class of nonlinear backward parabolic 
equations, for which the solution operator is neither linear nor known explicitly. 
      A productive setting for studying 2D backward parabolic continuation lies in the field of image 
restoration. One can create fictitious blurred image data, by using a given sharp image as the initial value in 
the nonlinear parabolic equation to be studied, and selecting the corresponding solution at some positive 
time T. Successful backward continuation from t = T to t = 0, would recover the original sharp image. An 
important advantage is that visual recognition can provide useful evaluation of the degree of success or 
failure in the reconstructed solution. This can then be translated into the original engineering context, 
unrelated to imaging, where backward continuation in that particular equation is of interest. 
      There may be deeper analytical reasons for pursuing such a program of study. Brownian motion is 
pervasive in many branches of science, including image science, and Gaussian blurs and the heat equation 
appear quite naturally in image analysis. In [7], more sophisticated blurs were contemplated, associated 
with Brownian motion taking place in specific randomized time, and expressed in terms of parabolic 
pseudodifferential equations, [10,20]. Such subordinated stochastic processes are of great current interest. 
The successful application of these notions in blind deblurring of the valuable scientific imagery discussed 
in [7], was unanticipated and noteworthy. 
      In the present paper, the nonlinear partial differential equations used to form the blurred images in Sec. 
6, were chosen primarily for mathematical reasons, and may not simulate any currently known physical 
blur. Surprisingly, these images appear realistic, albeit with subtle differences from familiar blurred 
imagery. Such images may be viewed as expressing visually, the results of novel stochastic processes that 
are nonlinear generalizations of Brownian motion. A wide variety of nonlinearities may be explored. 
Sophisticated computational simulations, using high precision numerics on high resolution imagery, may 
yield fruitful insights into the behavior of this class of random processes. Finally, future imaging 
applications could well involve similar nonlinear parabolic blurs, and such exploration can help identify 
potential image processing roadblocks that would need to be circumvented. 
 
 
2.  Stability and Backward Uniqueness 
 
      Backward parabolic equations and other ill-posed problems are discussed in [1,12,13,17], and the 
references therein. In general, a backward solution may exist only for highly restricted data satisfying 
certain smoothness and other requirements that are not easily characterized. Typically, when a solution 
exists, it is unique. However, backward solutions depend discontinuously on the data for which they exist, 
and slight changes in these data can result in very large, if not explosive, changes in the corresponding 
solutions. In practice, at a given positive time, the precise data needed for the existence of a particular 
backward solution are seldom available, and one must use approximate values. Hence, backward stability 
estimates are of vital interest. 
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      Let Ω  be a bounded domain in Rn with smooth boundary ∂Ω . Let L be a linear or nonlinear elliptic 
operator in Ω , acting on smoothly differentiable functions satisfying homogeneous Dirichlet or Neumannn 
conditions on ∂Ω . Let L be such that the forward initial value problem = , > 0, (0) = ,tw Lw t w f  is well-
posed in 2 ( )L Ω . Let 1( , )w x t  and 2 ( , )w x t  be any two solutions, and let 1 2 2

2( ) = (., ) (., ) ,F t w t w t−   
0 t T≤ ≤ . 
      Using logarithmic convexity techniques, [1,12,17], the folowing inequality can be established for a wide 
class of parabolic equations =tw Lw , 
 
   1 ( ) ( )( ) { (0)} { ( )} , 0 .t tF t F F T t Tµ µ−≤ ≤ ≤     (1) 
 
Here, the Hölder exponent ( )tµ  satisfies 0 ( ) 1tµ≤ ≤ , with ( ) > 0, > 0, ( ) = 1, (0) = 0t t Tµ µ µ , and 

( ) 0tµ ↓  monotonically as 0t ↓ . If we restrict consideration to solutions ( , )w x t  satisfying a prescribed 
bound at = 0t , i.e., 2(.,0)w M≤  , then ( )F t  in Eq. (1) can be made small at a given > 0t , by making 

( )F T  sufficiently small. 
      This stabilized backward parabolic problem for L may be stated as follows. Given 2( ) ( )f x L∈ Ω  and 

, > 0M δ , with Mδ  , find all solutions of 
 
    = , 0 < ,tw Lw t T≤      (2) 
 
such that 
 
             2 2(., ) ,      (.,0) .w T f w Mδ− ≤ ≤        (3) 
 
It is assumed that ( ), ,f x δ  and M are compatible with the existence of solutions. Here, ( )f x  is presumed 
to be a sufficiently close L2 approximation to the exact values ( , )w x T  at =t T , of a solution ( , )w x t  of Eq. 
(2), believed to satisfy 2(.,0)w M≤  . If 1( , )w x t  and 2 ( , )w x t  are any two solutions of Eqs. (2) and (3), 
the following stability inequality follows from Eq. (1) 
 
            1 2 1 ( ) ( )

2(., ) (., ) 2 , 0 .t tw t w t M t Tµ µδ−− ≤ ≤ ≤     (4) 
 
2.1  Backward Uniqueness 
 
      The inequality Eq. (4) implies backward uniqueness. If = 0δ , then 1 2

2(., ) (., ) = 0w t w t−   for every 
0 < t T≤ , since ( ) > 0tµ  for > 0t . By continuity, 1 2

2(., ) (., ) = 0w t w t−   on 0 t T≤ ≤ . As shown in 
[13], backward uniqueness also holds true for the Navier-Stokes equations. This result was obtained by 
establishing an appropriate stability inequality, similar to Eq. (1), for these equations. 
 
 
3.  Backward Continuity and the Hölder Exponent ( )tµ  
 
      In many engineering or applied science contexts, only educated guesses would generally be available to 
estimate δ  and M, rather than exact values. Typically, the L2 relative error 
 
          { }2 2 2 2(., ) / (., ) / / ,w T f w T f fδ δ δ− ≤ − ≈           (5) 
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might be expected to be on the order of 1%  or thereabouts. Since the given data ( )f x  may simultaneously 
approximate several distinct solutions ( , )pw x t  of Eq. (2) at time T, there are, in general, infinitely many 
possible solutions of Eqs. (2) and (3). If δ  is small, it is generally assumed that any two such solutions 
would differ only slightly. The extent to which this expectation is justified depends on the decay behavior 
in the Hölder exponent ( )tµ  as illustrated in Fig. 1. In the best possible case, that of a linear self adjoint 
elliptic operator L with time-independent coefficients, we have ( ) = /t t Tµ , so that ( )tµ  decays linearly to 
zero as continuation progresses from =t T  to = 0t . At = /2t T , we have ( /2) = 1/2Tµ , and 

1 2
2(., /2) (., /2)  2  w T w T Mδ− ≤ 

. This indicates a loss of acccuracy from ( )O δ  to ( )O δ , while still 
only half way to = 0t . More typically, ( )tµ  is sublinear in t, possibly with rapid exponential decay. This 
can lead to much more severe loss of accuracy as reconstruction progresses to = 0t . Such rapid decay of 
µ  to zero can be brought about by various factors, including nonlinearity, non self adjointness, diffusion 
coefficients that grow rapidly with time, or adverse spectral properties in the elliptic operator L. In all 
cases, Eq. (4) does not guarantee any accuracy at = 0t , but only provides the redundant information 

1 2
2(.,0) (.,0) 2w w M− ≤  . 

 
3.1  Exponentially Decaying Hölder Exponent 
 
      The following is a simple example of a parabolic equation with exponentially decaying ( )tµ . With 
constant > 0c , consider the heat conduction problem 
 
  = exp( ) , 0 < < , > 0, (0, ) = ( , ) = 0, 0,t xx x xw ct w x t w t w t tπ π ≥    (6) 
 
 

 
Fig. 1. Behavior of Hölder exponent ( )tµ  in inequality (4) reflects rate at which the forward evolution equation  =  tw Lw  has 
forgotten the past, as t increases from t = 0 to t = T = 1. Deviations away from a linear, time-independent, self adjoint spatial 
differential operator L, can lead to exponential decay in ( ), 0t tµ ↓ , and affect backward reconstruction from t = T. 
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with initial values ( ,0) = cos , 0 .w x x x π≤ ≤  This has the unique solution 
 
      ( , ) = exp{(1 )/ }cos , 0.ctw x t e c x t− ≥     (7) 
 
With fixed > 0,T  let ( ) = {1 exp( )}/{1 exp( )}, 0t ct cT t Tµ − − ≤ ≤ . Then 
 
        1 ( ) ( )

2 2 2(., ) = (.,0) (., ) , 0 .t tw t w w T t Tµ µ− ≤ ≤         (8) 
 
In this linear self adjoint problem with growing time-dependent diffusion coefficient, ( )tµ  decays 
exponentially to zero as 0t ↓ , with faster decay the larger the value of > 0c  in Eq. (6). Here, even low 
frequency information may be unrecoverable backward in time, despite highly accurate data at time > 0T . 
Thus, if = 5c , the smooth and non-negative solution † ( , ) = 1.0 exp{(1 )/ }cos ,  0 < 1ctw x t e c x t+ − ≤ , cannot 
be recovered from given = 1T  continuation data ( ) 1.0f x ≡ , even though ( )f x  approximates † ( ,1)w x  to 
within 121.0 10−× , pointwise. 
 
3.2  Effective Backward Non-Uniqueness in Non Self Adjoint Problem 
 
      Reconstructing the correct backward solution from reasonably accurate data at some > 0T , can be a 
major challenge even with slowly varying diffusion coefficients. The following counterexample was 
discovered computationally, using the parabolic solver methodology described in [6]. It involves a linear 
non self adjoint equation with variable coefficients, non-negative initial values, and non-negative solution. 
With = = 0.05, = 0.025a α σ , consider 
 

    
{ } { }( )

3 2

= sin(4 ) ,  1 < < 1,  0 < 1.0,

( ,0) = (3 ),  1 1,  ( 1, ) = (1, ) = 0,  0.sin

x t
t x xx

x

w a e w x w x t

w x e x x w t w t t

σ α π

π

+ + − ≤

− ≤ ≤ − ≥
  (9) 

 
Let 0 ( )redw x , shown as the red trace in Fig. 2, denote the initial data in Eq. (9), and let ( , )redw x t  be the 
corresponding solution. An accurate approximation to ( ,1)redw x  can be obtained numerically by 
integrating up to time = 1t . That approximation, denoted by ( )f x , is shown as the black trace in Fig. 2. 
The green trace in Fig. 2, 0 ( )greenw x , represents entirely different initial values in Eq. (9). However, the 
corresponding solution at = 1, ( ,1)greent w x , can also be well-approximated by the black trace ( )f x . 
Indeed, ( ,1)greenw x  agrees with ( )f x  to within 31.4 10−×  pointwise, with an L2 relative error of 0.023% . 
Also, 0 2 = 3.3redw  , while 0 2 = 2.4greenw  . Therefore, both solutions ( , )redw x t  and ( , )greenw x t  satisfy 
 
  2 2 2(.,1) 0.00023 , (.,0) = 3.3.w f f w Mδ− ≤ ≤ ≤         (10) 
 
Evidently, quite distinct initial values at = 0t  can produce almost identical solutions at = 1t . This is a 
good example of effective backward non uniqueness. Indeed, if 0 ( )redw x  is the true solution in this 
example, the false solution 0 ( )greenw x  would seem to be the more likely initial value, given the black = 1t  
trace in Fig. 2. In ill-posed inverse problem computations, smoothness and non negativity of solutions are 
considered beneficial regularizing constraints. Here, both traces are smooth and non negative, satisfy the 
reasonable 2L  bounds in Eq. (10), and yet the ambiguity remains. 
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Fig. 2. Ill behavior in non self adjoint problem. Accurate data ( )f x  (black curve), approximates two distinct solutions 

( , ), ( , ),red greenw x t w x t  at time t = 1, with an L2 relative error of 0.023 %, and a pointwise accuracy of 31.4 10−× . These solutions 
originate from the vastly different initial values 0 ( )redw x , and 0 ( )greenw x . 
 
 
4.  2D Nonlinear Parabolic Equations and the Solution Operator TΛ  
 
      The computational experiments discussed below involve four images and two parabolic equations. 
Numerous other equations can be considered, and a large variety of unexpected phenomena are yet to be 
uncovered. Let Ω  be the unit square 0 < , < 1x y  in the ( , )x y  plane. With fixed > 0T , and homogeneous 
Neumann boundary conditions on ∂Ω , the following initial value problem will be studied, 
 

  

2= ( ) .{ ( , , ) } , ( ) , (0, ),cos

( , ,0) = ( , ).

t x yw r w q x y t w aww b w w w T

w x y g x y

γ ∇ ∇ + + Ω×
  (11) 

 
Here 4= 8.5 10 , , ,a bγ −× are non negative constants to be prescribed, and 
 

          
2

( ) = exp(0.025 ),

( , , ) = exp(10 )(1 5 sin ) 1, (0, ).y

r w w

q x y t t e x Tπ+ ≥ Ω×
   (12) 

 
An equation with different nonlinearities will also be considered. This is 

http://dx.doi.org/10.6028/jres.118.010
http://dx.doi.org/10.6028/jres.118.010


 Volume 118 (2013) http://dx.doi.org/10.6028/jres.118.010 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 205 http://dx.doi.org/10.6028/jres.118.010 

 

        

2= ( ) .{ ( , , ) } | | , ( ) , (0, ),cos

( , ,0) = ( , ),

t x yw s w q x y t w c w w d w w w T

w x y g x y

γ ∇ ∇ + + Ω×
  (13) 

 
with γ  and ( , , )q x y t  as in Eq. (11), , c d , non negative constants to be prescribed, and 
 
    2( ) = 1.0 0.00125 .s w w+      (14) 
 
Each of Eqs. (11), (13), is well posed in 2 ( )L Ω . Accordingly, given any initial value ( , ,0) =w x y   

2( , ) ( )g x y L∈ Ω , a unique solution ( , , )w x y T  exists at time T, and the solution operator TΛ , where 
 
    ( , ,0) = ( , , ),T w x y w x y TΛ      (15) 
 
is well-defined on 2 ( )L Ω . The nonlinear operator TΛ  is not known explicitly. Rather, ( , ,0)T w x yΛ  must 
be found by solving the appropriate initial value problem Eq. (11), or Eq. (13), and obtaining the 
corresponding solution at time T. Note that ( , , )w x y T  necessarily belongs to a very restricted class of 
smooth functions. 
      In the image deblurring experiments in Sec. 6, Eq. (11) will be used to blur the sharp MRI brain image 
(image A), and the sharp Marylin Monroe image (image D), by using these images as the initial data 

( , )g x y . The sharp USS Eisenhower image (image G), and the sharp Sydney Opera House image (image 
J), will be blurred using Eq. (13). 
 
 
5.  Continuation Backward in Time and the Van Cittert Iteration 
 
      In its original formulation, given the data ( )f x  and the explicitly known 1D linear convolution integral 
operator S  with Fourier transform ˆ( ) > 0S ω , the Van Cittert method solves =Sg f  for the unknown 

( )g x  by means of the iterative procedure 
 
              { }1( ) = ( ) ( ) [ ( )] , 1.m m mh x h x f x S h x mλ+ + − ≥    (16) 
 
Here, > 0λ  is a fixed relaxation parameter chosen so that 1ˆ1 ( ) > 0, ( ) = ( )S h x f xλ ω λ− , and the 
expectation is that mh g→ . In fact, in spectroscopy and image processing applications [11,14], the Van 
Cittert method generally produces useful results after finitely many iterations, even though it may not 
converge. 
      We consider using this in the present parabolic context to recover ( , ,0) = ( , )w x y g x y  in Eqs. (11) and 
(13), given approximate values ( , )f x y  for the true solution ( , , )w x y T  at time T. This requires solving 

( , ) = ( , )T g x y f x yΛ , using the iterative procedure 
 
     { }1( , ) = ( , ) ( , ) ( , ) , 1,m m T mh x y h x y f x y h x y mλ+ + −Λ ≥    (17) 
 
with some fixed λ  such that 0 < < 1λ , and 1( , ) = ( , )h x y f x yλ . Clearly, in the present parabolic context, 
the Van Cittert iteration is unlikely to converge. Indeed, if †mh h→  in 2 ( )L Ω  in Eq. (17), then 

† ( , ) = ( , )T h x y f x yΛ . However, † ( , )T h x yΛ  satisfies restrictive smoothness requirements, and these are not 
likely to be met by the approximate data ( , )f x y . In addition, the nonlinear operator TΛ  in Eq. (17) bears 
little resemblance to the linear convolution operator S in Eq. (16). Nevertheless, remarkably, the Van Cittert 
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iteration is found to be a valuable tool in a wide variety of 2D nonlinear backward parabolic equations. In 
many cases, this procedure generates iterates ( , )mh x y  such that the L∞  norm of the residual, 

T mf h ∞− Λ  , decays quasi-monotonically to a reasonably small value after a finite number N of 
iterations, and ( , )Nh x y  is found to be a useful approximation to ( , ,0)w x y . 
      As noted in Sec. 3, backward continuation in certain classes of parabolic equations can be especially 
challenging. Accordingly, interesting continuation problems may exist where the procedure in Eq. (17) 
cannot produce useful results. 
 
5.1  Explicit Finite Difference Scheme for Computing ( , ,0)T w x yΛ  
 
      A convenient and effective numerical procedure for solving the nonlinear initial value problems in Eqs. 
(11) and (13), is based on finite differences, using explicit time diffencing and centered space differencing. 
This leads to modest ( )2 2( ) ( )O t x y∆ + ∆ + ∆  accuracy. However, the necessary stability condition on t∆  
for explicit schemes, improves that accuracy to ( )2 2( ) ( )O x y∆ + ∆ . Higher precision numerics, together 
with higher resolution imagery, will be considered in subsequent reports. This paper deals with 8 bit gray 
scale 256 256×  pixel images, with pixel values ranging between 0 and 255. With = = 1/256,x y∆ ∆  

7= 3.0 10t −∆ × , the following difference approximation is used to march the discrete mesh function 
( , , )nW W j x k y n t≡ ∆ ∆ ∆  in Eq. (11), 400  time steps t∆  forward in time, up to time 4= 1.2 10T −× , 

 
                1 = ( ) .{ }n n n n n n n

xW W t R W Q W aW Wγ+ + ∆ ∇ ∇ +  
 
       2( ) , = 0,399,cosn n n

yb W W W n+  
 
              0 = ( , ).W g x y       (18) 
 
Homogeneous Neumann conditions are applied on the boundary of the unit square. The same mesh 
parameters and finite differencing are used for blurring with Eq. (13). In this notation, 0W  denotes the 
original sharp image ( , )g x y , while 400W  is the nonlinearly blurred image ( , )f x y , using either Eq. (11) or 
Eq. (13). Define the discrete nonlinear parabolic blurring operator T

dΛ  by 
 
            0 400= .T

dW WΛ      (19) 
 
This nonlinear operator is defined on any 8  bit gray scale 256 256×  pixel image ( , )g x y . Applying T

dΛ  to 
that image simply means applying the above explicit scheme for 400  time steps to 0W , and acquiring the 
resulting array 400( , ) =f x y W . We stress that the blurred image ( , )f x y  so obtained is only an 
approximation to the true solution ( , , )w x y T  in Eq. (11) or Eq. (13). 
      Image diagnostic statistical information will use the discrete 1 2,L L , and total variation norms, defined 
by 
 

         
1/

256
2

, =1
= (256) | ( , ) | , = 1,2,

p
p

p j k
j k

f f x y p− 
 
 

∑     (20) 

and  
 

  ( )
255 1/22 2 2

1
, =1

= (256) { ( , )} { ( , )} ,x y
TV j k j k

j k
f f f x y f x y−≡ ∇ +∑       (21) 
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where 
 
   ( )1

1( , ) = (256) ( , ) ( , ) ,x
j k j k j kf x y f x y f x y−

+ −  
 
   ( )1

1( , ) = (256) ( , ) ( , ) .y
j k j k j kf x y f x y f x y−

+ −    (22) 
 
      In addition, the peak signal to noise ratio ( )PSNR , will be used as an image quality metric. If ( , )g x y  
is the original sharp image, and ( , )f x y  is any degraded version of ( , )g x y , this is defined by 
 
         210= 20 { /255}.logPSNR f g− −      (23) 
 
 
6.  Nonlinear Blurring and Deblurring Experiments 
 
      Very little seems to be currently known regarding backward in time continuation in multidimensional 
nonlinear parabolic equations, and the experiments described below, involving relatively simple 
nonlinearities, already represent uncharted waters. An important advantage of the Van Cittert method is the 
‘self regularizing’ property of the iterative process, whereby low frequency information is reconstructed in 
the first few iterations, while many more iterations are needed to acquire high frequency information. 
Several other iterative restoration methods have this property. As a consequence, useful information can 
often be retrieved by stopping the iterative process before amplification of high frequency noise 
overwhelms the reconstruction. 
      The results developed in Sec. 3, concerning backward stability and the Hölder exponent ( )tµ , will 
inform the subsequent discussion. While backward uniqueness is characteristic of a large class of linear and 
nonlinear parabolic equations, the major practical difficulty lies in recovering the correct solution from the 
limited precision available in the given continuation data. Deblurring nonlinearly blurred imagery involves 
the recovery of fairly complex initial data at time = 0t , by nonlinear backward continuation of imprecise 
data at some > 0T . In fact, as is typically the case in applications, the accuracy in the blurred image data 

400( , ) =f x y W  in Eq. (18), as an approximation to the elusive true solution ( , , )w x y T  in Eq. (11) or Eq. 
(13), is actually unknown. 
      In addition, Eqs. (11) and (13) are strongly nonlinear through the functions ( )r w  and ( )s w , with 

( , , )w x y t  ranging between 0 and 255. Moreover, there is the space and time dependent function ( , , )q x y t , 
and the terms in xww  and yww . Such equations deviate strongly from the autonomous, linear, self adjoint 
case, for which substantial computational experience exists. While a stability inequality such as Eq. (4) can 
be derived for each of Eqs. (11) and (13), the resulting functional form for the Hölder exponent ( )tµ  is 
unlikely to be precise. In summary, neither δ  nor ( )tµ  are likely to be known in the stability estimate 

1 2 1 ( ) ( )
2(., ) (., ) 2 , 0 ,t tw t w t M t Tµ µδ−− ≤ ≤ ≤   for either of Eqs. (11) or (13). 

      The results in Figs. 1 and 2, together with the examples in [6], indicate that only a modest degree of 
success can be expected in backward continuation in Eqs. (11) and (13). In the present paper, knowledge of 
the original sharp image can be used to gauge the usefulness of the deblurred image produced by backward 
continuation. However, in applications unrelated to imaging, using field data of unknown precision, the 
degree of success or failure in nonlinear backward continuation may not be as easily ascertained. As shown 
in [6], there is the possibility of producing a smooth, physically plausible, yet false reconstruction. 
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6.1  MRI Brain Image 
 
      In Fig. 3, the original sharp MRI brain image (A) is blurred to form image (B), by applying the finite 
difference scheme in Eq. (18) to the parabolic equation Eq. (11), with coefficients = = 0a b . A different 
blurred image is then obtained, image (C), by repeating this process with coefficients = 1.25, = 0.6a b . 
Images (B) and (C) appear very similar in quality, and, from Table 1, both these images have almost the 
same values for 1 2, ,f f     and 1f∇  . In particular, 1f∇   has been reduced by almost a factor of two 
from its original value in image (A), reflecting substantial blurring. The PSNR  value in image (C) is 
noticeably smaller than in image (B), indicating greater degradation in image (C). However, since the 
PSNR metric requires knowledge of the original sharp image, in practice, such increased degradation in 
image (C) would not be known to a user. In fact, both images (B) and (C) appear to have been blurred, 
more or less equally, by convolution with a type of Gaussian-like point spread function. 
      Figure 4 displays the results of backward in time continuation in Eq. (11), using the Van Cittert 
iteration in Eq. (17), with T

dΛ  as in Eq. (19), and = 0.5λ . Remarkably, despite the strongly nonlinear 
blurring in image (B) through the function ( )r w  in Eq. (12), useful deblurring of that image is obtained 
after 100 iterations. From Table 2, we see that the values of 1f   and 2f   in the deblurred image (B), 
are very close to their original values in image (A), while 1f∇   has recovered almost 90 % of its original 
value. Also, deblurring in image (B) has increased the PSNR from 25 to 34. 
 
 
 

 
 
Fig. 3. Nonlinear parabolic blurring of sharp MRI brain image g(x,y), by using it as initial values in Eq. (11) with two different sets of 
values for the constants a,b. 
 
 
       Table 1. Behavior using Eq. (11) in nonlinear blurring in Fig. 3. 
 

Image f (x, y) Parameters a, b 1 f   2 f   1 f∇   PSNR 
Sharp image A Not blurred 59 86 3360 ∞  

Blurred image B a = 0, b = 0 55 78 1740 25 
Blurred image C a = 1.25, b = 0.6 55 78 1770 20 

 
  
   
 

http://dx.doi.org/10.6028/jres.118.010
http://dx.doi.org/10.6028/jres.118.010


 Volume 118 (2013) http://dx.doi.org/10.6028/jres.118.010 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 209 http://dx.doi.org/10.6028/jres.118.010 

 

 
 
Fig. 4. Nonlinearly blurred image (B) was successfully deblurred after 100 iterations. Visually similar image (C), blurred with 
additional nonlinearities, could not be deblurred. 
 
 
       Table 2. Behavior using Eq. (11) in nonlinear deblurring in Fig. 4. 
 

Image f (x, y) Parameters a, b 1 f   2 f   1 f∇   PSNR 

Deblurred image B a = 0, b = 0 59 85 2980 34 
Deblurred image C a = 1.25, b = 0.6 63 96 4680 17 
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      The results of deblurring image (C), shown in in Fig. 4, are sharply different, and unexpected. After 10 
Van Cittert iterations, using = 1.25, = 0.6a b , in Eq. (18), most useful information has been lost in the 
deblurred image, and this without explosive noise amplification. Indeed, in Table 2, the values for 1f   
and 2f   after 10 iterations are about 12 % larger than their true values in the original image (A), well 
within the range of what might have been prescribed to stabilize continuation. One possible explanation is 
that the inclusion of the terms in xww  and yww  in Eq. (11) renders backward stability more precarious, 
(see Fig. 1), and the accuracy in the continuation data represented by image (C) is no longer sufficient to 
recover the sharp image. 
 
6.2  Marilyn Monroe Image 
 
      In view of the unexpected failure in deblurring image (C), the experiments in Figs. 5 and 6 aim at 
elucidating the influence of the nonlinear terms involving xww  and yww , on backward continuation in Eq. 
(11). Since the yww  term is modulated by the factor 2cos w  in Eq. (11), it may not be as destabilizing as the 

xww  term. Accordingly, the sharp Marilyn Monroe image (D) is first blurred using Eq.(18) with 
= 0, = 0.6a b , to form the blurred image (E). The process is then repeated with = 0.83, = 0.6,a b  to form 

image (F). In Fig. 5, image (F) differs noticeably from image (E) qualitatively, yet, as shown in Table 3, 
both these images have almost the same values for 1 2, ,f f     and 1f∇  . However, image (F) has a 
smaller PSNR value. Evidently, the xww  term in Eq. (11) is responsible for the increased degradation in 
image (F). 
 
 

 
 
Fig. 5. Nonlinear parabolic blurring of sharp Marilyn Monroe image g(x, y), by using it as initial values in Eq. (11) with two different 
sets of values for the constants a, b. 
 
 
       Table 3. Behavior using Eq. (11) in nonlinear blurring in Fig. 5. 
 

Image f (x, y) Parameters a, b 1 f   2 f   1 f∇   PSNR 
Sharp image D Not blurred 107 130 3100 ∞  

Blurred image E a = 0, b = 0.6 101 122 1580 24 
Blurred image F a = 0.83, b = 0.6 101 122 1550 20 
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Fig. 6. Nonlinearly blurred image (E) was succesfully deblurred after 100 iterations. Visually similar image (F), blurred with 
additional nonlinearities, could not be usefully deblurred. 
 
 
       Table 4. Behavior using Eq. (11) in nonlinear deblurring in Fig. 6. 
 

Image f (x, y) Parameters a, b 1 f   2 f   1 f∇   PSNR 
Deblurred image E a = 0, b = 0.6 106 129 2580 29 
Deblurred image F a = 0.83, b = 0.6 112 139 5800 18 
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      Figure 6 displays the results of deblurring these two images. Again, remarkably, despite the strongly 
nonlinear blurring in image (E) through the function ( )r w , and the inclusion of the yww  term in Eq. (11), 
very good results are obtained for that image, after 100 Van Cittert iterations. As shown in Table 4, the 
values of 1f   and 2f   in the deblurred image (E), are very close to their original values, while 1f∇   
has recovered 83 % of its value in image (D). Also, deblurring in image (E) has increased the PSNR from 
24 to 29. These improvements are more modest than were achieved in deblurring the MRI brain image (B). 
However, both the xww  and yww  terms in Eq. (11) were excluded in forming the blurred image (B). 
As was the case in image (C), deblurring image (F) was unsuccessful. After 20 Van Cittert iterations, using 

= 0.83, = 0.6a b , in Eq. (18), some sharpening has clearly occurred, but the image is marred by artifacts. 
Again, there is no high frequency noise amplification in the deblurred image (F), and the values for 1f   
and 2f   after 20 iterations, are about 7 % larger than their true values. Thus, the deblurred image (F) 
satisfies such a-priori bounds as might have been placed to stabilize ill-posed continuation. Clearly, the 
term in xww  in Eq. (11) emerges as the prime suspect in misbehaved backward continuation. 
 
6.3  USS Eisenhower Image 
 
      Computational experiments on the next two images study the results of blurring using Eq. (13), where 
the milder term | | xw w  replaces the troublesome term xww  in Eq. (11). The sharp USS Eisenhower image 
(G) is first blurred using Eq. (13) with = 2.5, = 0.3c d , to form the blurred image (H). The process is then 
repeated with = 2.5, = 1.5,c d  to form image (I). In Fig. 7, image (H) is visually indistinguishable from 
image (I). Interestingly, as shown in Table 5, and unlike the previous examples in Figs. 3 and 5, images (H) 
and (I) have the same PSNR value, as well as almost the same values for 1 2, ,f f     and 1f∇  . In the 
present case, there is no metric available that can be used to predict success or failure in deblurring images 
(H) and (I). 
 
 

 
 
Fig. 7. Nonlinear parabolic blurring of sharp USS Eisenhower image g(x, y), by using it as initial values in Eq. (13) with two different 
sets of values for the constants c, d. 
 
 
       Table 5. Behavior using Eq. (13) in nonlinear blurring in Fig. 7. 
 

Image f (x, y) Parameters c, d 1 f   2 f   1 f∇   PSNR 
Sharp image G Not blurred 139 153 4760 ∞  

Blurred image H c = 2.5, d = 0.3 134 147 1720 20 
Blurred image I c = 2.5, d = 1.5 134 148 1770 20 
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        Figure 8 displays the results of deblurring these two images. Despite the strongly nonlinear blurring in 
image (H), through the function ( )s w  and the inclusion of both the | | xw w  and yww  terms in Eq. (13), 
reasonably good results are obtained after 100 Van Cittert iterations. The carrier’s command ‘island’ has 
been recovered, along with the two rows of planes on deck. As shown in Table 6, the values of 1f   and 

2f   in the deblurred image (H), are very close to their original values, while 1f∇   has recovered 78 % 
of its value in image (G). Also, deblurring in image (H) has increased the PSNR from 20 to 23. It is 
noteworthy that the 2.5 | | xw w  term in Eq. (13) did not preclude useful reconstruction in image (H). 
Surprisingly, deblurring in image (I) was not successful. There is no high frequency noise amplification in 
the deblurred image (I), even after 100  iterations, and the values of 1f   and 2f   are only about 3 % 
higher than their true values in image (G), as shown in Table 6. As was the case in the deblurred Marilyn 
Monroe image (F), substantial sharpening has occurred in the deblurred image (I), but the sharpened image 
is seriously marred by artifacts. Because of the moderating effect of the factor 2cos w , it was not anticipated 
that the term 21.5 ( )cos yw w w  in Eq. (13) might be detrimental in image (I), since the term 2.5 | | xw w  was 
well-tolerated in image (H), and, previously, the term 20.6 ( )cos yw w w  did not prevent successful deblurring 
of the Marilyn Monroe image (E). The capricious behavior in image (I) would appear to justify the term 
hazardous continuation used in the title of this paper. 
 

 
 
Fig. 8. Nonlinearly blurred image (H) was successfully deblurred after 100 iterations. Visually indistinguishable image (I), blurred 
with stronger nonlinearities, could not be usefully deblurred. 
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       Table 6. Behavior using Eq. (13) in nonlinear deblurring in Fig. 8. 
 

Image f (x, y) Parameters c, d 1 f   2 f   1 f∇   PSNR 

Deblurred image H c = 2.5, d = 0.3 137 152 3700 23 
Deblurred image I c = 2.5, d = 1.5 141 157 7700 18 

 
6.4  Sydney Opera House Image 
 
      The results in this experiment confirm the unpredictability found in the previous example using Eq. 
(13), and justify the title even more strongly. Here, the coefficient d multiplying the 2( )cos yw w w  term was 
substantially reduced. Again, in Fig. 9, images (K) and (L) are visually and statistically indistinguishable, 
with the same PSNR value, and almost the same values for 1 2, ,f f     and 1f∇  . In Fig. 10, image (K) 
with = 2.5, = 0.1,c d  is successfully deblurred, and the PSNR value has increased from 19 to 23. In image 
(L), where = 0.6d , there is visible sharpening, with the PSNR increasing from 19 to 21. However, the 
sharpened image is again marred by artifacts. There is no high frequency noise amplification, even after 
100 iterations, and the values of 1f   and 2f   in the deblurred image (L), are little changed from their 
true values in image (J). Again, inexplicably, while the term 2.5 | | xw w  in Eq. (13) was tolerated in image 
(L), and the term 20.6 ( )cos yw w w  was acceptable in image (E), this same term 20.6 ( )cos yw w w  was found 
troublesome in image (L). 
 

 

 
 
Fig. 9. Nonlinear parabolic blurring of sharp Sydney Opera House image g(x, y), by using it as initial values in Eq. (13) with two 
different sets of values for the constants c, d. 
 
 
       Table 7. Behavior using Eq. (13) in nonlinear blurring in Fig. 9. 
 

Image f (x, y) Parameters c, d 1 f   2 f   1 f∇   PSNR 
Sharp image J Not blurred 173 183 4090 ∞  

Blurred image K c = 2.5, d = 0.1 166 176 1840 19 
Blurred image L c = 2.5, d = 0.6 167 176 1880 19 
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Fig. 10. Nonlinearly blurred image (K) was successfully deblurred after 100 iterations. Visually indistinguishable image (L), blurred 
with stronger nonlinearities, could not be usefully deblurred. 
 
 
       Table 8. Behavior using Eq. (13) in nonlinear deblurring in Fig. 10. 
 

Image f (x, y) Parameters c, d 1 f   2 f   1 f∇   PSNR 
Deblurred image K c = 2.5, d = 0.1 171 182 3500 23 
Deblurred image L c = 2.5, d = 0.6 172 183 4920 21 
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7.  Concluding Remarks 
 
      The successful deblurring of images (B), (E), (H), and (K), indicate the Van Cittert iterative procedure 
to be a useful tool for backward in time continuation in an important class of 2D nonlinear parabolic 
equations. A wide variety of nonlinear problems remains to be explored. Surprisingly, the simple 
nonlinearities in Eqs. (11) and (13) involving the terms in wwx and wwy, were found to be potentially 
destabilizing, and capable of preventing useful continuation. The practical difficulty of reconstructing the 
correct backward solution, using data of limited and unknown precision, was stressed. Other limitations 
include the fact that the fundamental stability inequality governing a particular continuation, Eq. (4), can 
seldom be obtained with sufficient precision. In particular, the rate at which the Hölder exponent ( )tµ  
tends to zero as 0t ↓ , which is of vital interest, is typically unknown. The unsuccessful deblurring in 
images (C), (F), (I), and (L), is of major interest. Visually, the amount of blurring in each of these images is 
no greater than in the successfully deblurred companion image, and the corresponding values of 1f∇   are 
almost equal in every case. Evidently, how the image was blurred is critical, not just the amount of blur. 
These failed continuations suggest that the presence of wwx and wwy terms in Eqs. (11) and (13), with 
relatively large coefficients, unexpectedly leads to faster decaying Hölder exponents ( )tµ , such as is 
shown in Fig. 1, and the accuracy in the blurred image data becomes insufficient for useful continuation. 
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