
 Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.010
 Journal of Research of the National Institute of Standards and Technology

 176

Instrument Control (iC) – An Open-Source
Software to Automate Test Equipment

K. P. Pernstich

Physical Measurement Laboratory,
National Institute of Standards and Technology,
Gaithersburg, MD 20899

and

Institute for Research in Electronics and Applied Physics,
University of Maryland
College Park, MD 20742

pernstich@alumni.ethz.ch

It has become common practice to automate data acquisition from programmable instrumentation, and a range of different software
solutions fulfill this task. Many routine measurements require sequential processing of certain tasks, for instance to adjust the
temperature of a sample stage, take a measurement, and repeat that cycle for other temperatures. This paper introduces an open-source
Java program that processes a series of text-based commands that define the measurement sequence. These commands are in an
intuitive format which provides great flexibility and allows quick and easy adaptation to various measurement needs. For each of these
commands, the iC-framework calls a corresponding Java method that addresses the specified instrument to perform the desired task.
The functionality of iC can be extended with minimal programming effort in Java or Python, and new measurement equipment can be
addressed by defining new commands in a text file without any programming.

Key words: Automation; data acquisition; GPIB; Java; open-source; test equipment.

Accepted: April 3, 2012

Published: May 2, 2012

http://dx.doi.org/10.6028/jres.117.010

1. Introduction

 A spectrum of automation software for scientific test equipment is available, ranging from full-fledged
solutions that provide data acquisition and management (e.g. LabView, Agilent VEE, and EPICS)1 to data
visualization and calculus software with the capability to communicate with instruments (e.g. IgorPro,
Origin, Matlab, Mathematica, and SciLab), and some measurement instruments even include a text-based
script processor in their operating system (e.g. Instrument BASIC [1] or Test Script Processor [2]). This
article introduces Instrument Control (iC)2 [3], an open-source Java program that provides a framework to
automate data acquisition by processing a list of commands stored in a conventional text file. Defining the
test sequence with clear text commands is one of the main features of iC as it enables quick and easy

1 Certain commercial equipment, instruments, software, or materials are identified in this paper to foster understanding. Such
identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily the best available for the purpose.

2 The Instrument Control software is an experimental system. Neither NIST, nor the Swiss National Science Foundation nor the author
assume any responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its quality,
reliability, or any other characteristic.

http://dx.doi.org/10.6028/jres.117.010
mailto:pernstich@alumni.ethz.ch
http://dx.doi.org/10.6028/jres.117.010

 Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.010
 Journal of Research of the National Institute of Standards and Technology

 177 http://dx.doi.org/10.6028/jres.117.010

adaptation to different measurement needs encountered in day-to-day laboratory situations, and to store the
employed measurement sequence together with the measured data for documentation purposes. A
distinguishing feature of iC is that new commands for an instrument can simply be defined in a text file
which then serves as the “driver” for that instrument. Instrument Control works with General Purpose
Interface Bus (GPIB) controllers [4] from major vendors (National Instruments, Agilent, Prologix), it
supports the RS232 serial port [5], and support for other communication protocols such as Ethernet, USB,
or other proprietary protocols can easily be added. Instrument Control uses Java Native Access [6] to
access the platform-specific drivers supplied by the vendors of the communication controller (*.dll, *.dylib,
*.so files), and it has been tested on Windows and Macintosh operating systems. Instrument Control is
comfortable to use, easily extendable, and it is ideal for somebody already familiar with Java or a similar
programming language, or when budgetary considerations or the availability of the source-code are of
concern.
 The source code including documentation, tutorial videos, and a precompiled version is available free
of charge from [3]. The documentation also includes an up-to-date list of supported instruments. The most
recent source code can be downloaded from the subversion server into the development environment (e.g.
Netbeans) with a single mouse click, and the necessary configuration steps are described in [7]. At the time
of writing, the source code comprises 11000 lines of code, and the size of the precompiled version is 12
MBytes. In the following, a brief introduction is presented of how iC is used, as well as an overview how
the iC-framework works internally. Section 3 shows that the functionality of iC can be extended with little
programming effort in Java and explains how new commands that can be executed from the script can be
defined in a generic way; i.e., in a simple text file containing the GPIB string to be sent to the instrument
and a description of the input parameters for the user.

2. Using Instrument Control

 Central to iC is a script (Listing 1) which contains a list of script-commands. Scripts are stored as
conventional text files, and a graphical user interface (GUI, Fig. 1) implemented in iC offers a convenient
way to write such scripts, although any other text editor is also sufficient. Using text files is in general
advantageous because text files are universal, cross-platform compatible, unproblematic in terms of long-
term readability, and can be read by essentially all programs.
 The right side of iC’s user interface displays the script (Fig. 1a), and it contains a line to type in new
script-commands and buttons for the user to start, stop, and pause processing of the script as well as to start
an interactive Python-Interpreter (Fig. 1b). All measurement data are saved in a project directory and a base
file name as specified in GUI (Fig. 1c). Script commands can add an extension to this base file name, e.g.,
the actual sample temperature when the measurement commenced. The GUI allows the user to add
commands to the script that define new instruments (script-command MAKE) and to include sub-scripts or
Python-scripts (script-command INCLUDE, Fig. 1d). Label e in Fig. 1 marks a part of the GUI that lists all
instruments defined in the script as well as the commands each instrument supports. This part of the GUI is
dynamically generated from annotations in the source code or the text file defining new script-commands in
a generic way as shown below. When the user selects a command of a particular instrument, the
command’s parameters are shown in a table as illustrated in Fig. 1e for the command setTemp of the
instrument with the name Tsample. This way, the user can add new script-commands with the appropriate
parameters. The ‘Send’ button allows the user to send script-commands to the selected instrument while a
script is being processed. This is helpful because many instruments cannot be operated from the front-panel
while they are accessed remotely. The text-field at the bottom left of the GUI (Fig. 1f) shows status
messages for the user.

http://dx.doi.org/10.6028/jres.117.010
http://dx.doi.org/10.6028/jres.117.010

 Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.010
 Journal of Research of the National Institute of Standards and Technology

 178 http://dx.doi.org/10.6028/jres.117.010

Fig. 1. Graphical user interface of Instrument Control (iC).

 After the user starts processing the script, all script-commands are parsed to detect errors, for instance
typographical errors or parameters that are out of range. This syntax-check is performed in the same way
the script-commands are executed but without communicating with the instruments, which minimizes the
programming effort when extending iC as demonstrated below. After the successful syntax-check, the
script-commands are sequentially processed. Each script-command corresponds to a Java method which is
invoked by the iC-framework with the proper arguments, or a Python-command that is executed by the
integrated Python-Interpreter.

2.1 An Example Script

 Listing 1 shows an example of an iC-script to measure the current-voltage characteristics of a diode at
different temperatures. Lines 1 and 2 define two new instruments: a Lakeshore 340 temperature controller
connected via GPIB at address 4, and an Agilent 4155 semiconductor parameter analyzer with GPIB
address 2. To refer to these instruments later in the script, the names Tsample and PA were assigned.
Whenever a new instrument is defined, communication with the instrument is automatically established by
the iC-framework to minimize the programming effort when the functionality of iC is extended. Line 3 in
Listing 1 includes a sub-script, which, as an example, contains script-commands that initialize the
parameter analyzer to perform the desired measurements, i.e., assign the source-monitor units, set the range
of voltages measured, etc. The next script-command in Line 5 invokes a method setTemp(float) in a
class which implements all supported script-commands of an instrument (driver-class), in this case, the
class Lakeshore340 for the temperature controller. Line 6 calls the method
Agilent4155.Measure(int, String, String, String) which starts the measurement and
stores the measured parameters I and V in a text file. The name of this file comprises the base file name
specified in the GUI (Fig. 1c) and the extension provided in the script-command (Line 6), i.e., ‘Diode
1_300K.txt’. The last argument is optional and allows the user to pass an additional script-command to the
Measure() method. This additional script-command (Line 9 in Listing 1) is processed from within
Measure() and it’s result is used to attach the current temperature to the file name, e.g. ‘Diode
1_250.15K.txt’.

http://dx.doi.org/10.6028/jres.117.010
http://dx.doi.org/10.6028/jres.117.010

 Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.010
 Journal of Research of the National Institute of Standards and Technology

 179 http://dx.doi.org/10.6028/jres.117.010

 1: MAKE Tsample; Lakeshore 340; GPIB 4 // temperature controller

 2: MAKE PA; Agilent 4155; GPIB 2 // semiconductor parameter

analyzer

 3: INCLUDE setup PA.iC // sub-script to initialize PA

 5: Tsample setTemp 300 // bring sample to 300 K

 6: PA Measure 0; I,V; _300K.txt; "" // measure and store the I-V

characteristics

 8: Tsample SetTemp 250

 9: PA Measure 0; I,V; ; "Tsample getTemp A"

10: // append current sample temperature to file

 name

12: // Python commands in an iC-script

13: |for T in range(200, 80, -10):

14: | # set Temperature

15: | dispatch_command('Tsample', 'setTemp', T)

16: |

17: | # measure the diode

18: | dispatch_command('PA', 'Measure', '0', 'I,V', '_'+str(T), '')

19: |

20: |print 'Done.'

Listing 1. An exemplary script to measure and store current-voltage characteristics of a diode at different temperatures. A line starting
with a vertical bar (|) marks Python commands which are executed by the integrated Python-Interpreter.

2.2 Python Scripts

 To extend the scripting capabilities of iC with variables, loops, conditional statements, and other
capabilities of a high-level programming language, support for Python [8] was integrated in iC using the
Jython package [9]. Every line in a script starting with a vertical bar (|) is executed by the Python-
Interpreter. Lines 13-20 in Listing 1 show Python commands in an iC-script. Line 13 defines a for-loop
where the variable T is decreased from 200 to 80 in steps of 10. The following, indented lines are part of
the for-loop and executed for each value of T. The Python command
dispatch_command(’Tsample’, ’setTemp’, T) in Line 15 of Listing 1 executes the
setTemp command of the instrument Tsample with the temperature T. This command has the same
effect as the one in Line 5 of Listing 1 but offers to use a variable instead of a hard-coded temperature. Line
18 measures and saves the diode characteristic and is equivalent to Line 6, again with the use of a variable
instead of a hard-coded temperature. After all temperatures are processed, the message ’Done.’ is displayed

http://dx.doi.org/10.6028/jres.117.010
http://dx.doi.org/10.6028/jres.117.010

 Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.010
 Journal of Research of the National Institute of Standards and Technology

 180 http://dx.doi.org/10.6028/jres.117.010

in a separate window that shows all Python output. This window is also displayed upon pressing the ’Py’
button in the GUI (Fig. 1b), and from this window, Python commands can be executed interactively.
 Instrument Control exports a variable _device to the Python environment which is an instance of
class Device and provides access to the iC-framework. A Python script Startup.py located in the
<user home>/iC/ directory is executed each time the Python-Interpreter is started and defines the
methods dispatch_command(), is_syntax_check_mode(), is_stop_scripting, and
others. Python commands can also access return values of iC-commands, and more information on the
Python integration in Instrument Control is given in the documentation [7].

3. Extending Instrument Control (iC)

 Instrument Control facilitates three ways of extending its functionality. The programmatic way in
which new Java methods are implemented is discussed next, and the generic way of defining new
instrument-commands in a text file is discussed subsequently. iC can also be extended using Python as
already discussed above.

3.1 Extending iC the Programmatic Way

 Listing 2 shows a possible implementation of the Lakeshore340.setTemp() Java method used to
change the temperature set point of a Lakeshore 340 temperature controller and wait until the temperature
is within 0.1 K of this set point (a more elaborate version is implemented in iC). The main purpose of this
method is to generate the GPIB strings that are sent to the instrument to perform the desired tasks, and to
interpret the string which is read back from the instrument that contains the measurement data. Line 5 in
Listing 2 creates the GPIB string to set the temperature set point of control loop ‘1’, and Line 8 sends this
string to the instrument via GPIB. The method SendViaGPIB(String) is defined by the iC-framework
and handles all communication with the instruments via GPIB. The method throws an IOException
when a communication error occurs, and this Exception is – just as all other Exceptions –
automatically handled by the iC-framework. Therefore, new code does, in general, not require special
Exception handling. The documentation [7] elaborates in greater detail how Exceptions are used to
handle possible errors. In Line 14 of Listing 2, the method String QueryViaGPIB(String) is used
to query the current temperature of input channel ‘A’. When the difference between set point and current
temperature is within 0.1 K or the user has pressed the ‘Stop’ button in the GUI, setTemp() returns and
the next script-command is processed.
 The documentation [7] contains step-by-step instructions to implement new and extend existing driver-
classes, and a reference implementation of a Java method included in the source code is recommended to
serve as a template for new code. To minimize programming effort when implementing new script-
commands, Java’s Reflection mechanism is used to access class information at run-time. Any public
method that is added to a driver-class is automatically recognized by the iC-framework and, hence,
accessible as script-command without further programming. Java methods are allowed to start new
Threads to enable parallel processing of certain tasks, such as to display various temperatures on a graph
while a script is being processed.
 Data received from instruments is in general handled by the Java method querying the instrument,
although a return value from a Java method can also be used in the successive script-command including
Python commands. Most methods that receive measurement data store the data in a text file for further
processing in visualization or calculus software. Java also provides ways to save data as xml files, in a
binary format, or in a compressed archive which can be advantageous for large data sets. The open-source
software package JFreeChart [10] is integrated in iC to display data in high quality graphs. iC also
integrates Apache’s Common Math package [11] for advanced data manipulations such as Spline
interpolation of data points, statistical analysis, numerical integration, and much more.

http://dx.doi.org/10.6028/jres.117.010
http://dx.doi.org/10.6028/jres.117.010

 Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.010
 Journal of Research of the National Institute of Standards and Technology

 181 http://dx.doi.org/10.6028/jres.117.010

 1: public void setTemp(float SetPoint)

 2: throws IOException {

 4: // build the GPIB command string

 5: String str = "SETP 1," + SetPoint;

 7: // send to the Instrument

 8: SendViaGPIB(str);

10: // wait until set point is reached

11: float T;

12: do {

13: // get current temperature

14: str = QueryViaGPIB("KRDG? A");

16: // convert to a float value

17: T = Float.parseFloat(str);

18: } while (Math.abs(T-SetPoint) < 0.1 &&

19: m_StopScripting == false);

20: }

Listing 2. A possible implementation of a Java method to change the temperature set point of a Lakeshore 340 temperature controller
and wait until the temperature is reached.

 Listing 3 illustrates the mechanism used to dynamically generate the part of the GUI shown in Fig. 1e
and also how the syntax-check mechanism is implemented. The Java language allows to define annotations
in the source code which can be evaluated at run-time. Instrument Control uses this technique to
automatically build a GUI at run-time by defining an annotation @AutoGUIAnnotation() (lines 1-5 in
Listing 3) with fields that provide a detailed description of the method’s purpose (tool-tip in Fig. 1e), the
names of its input parameters, the default values shown in the table, and the tool-tip texts for each
individual parameter.
 Instrument Control uses a second annotation @iC_Annotation() (line 6 in Listing 3) which defines
if a method performs a syntax-check. If a syntax-check is implemented, the method should throw a
DataFormatException if a parameter is not allowed (lines 11-12 in Listing 3), and the method must
return without any communication when the program is in syntax-check mode (lines 15-16 in Listing 3).

3.2 Extending iC the Generic Way

 The programmatic way of implementing new script-commands in Java offers great versatility but
requires re-compilation of the source code and some programming skills. Defining new script-commands in
a generic way using text files requires neither of these and is, therefore, ideally suited for quick testing or
implementing simple functions. An example of a generic instrument definition for a SRS Lock-In amplifier

http://dx.doi.org/10.6028/jres.117.010
http://dx.doi.org/10.6028/jres.117.010

 Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.010
 Journal of Research of the National Institute of Standards and Technology

 182 http://dx.doi.org/10.6028/jres.117.010

 1: @AutoGUIAnnotation(

 2: DescriptionForUser = "Adjusts the temperature",

 3: ParameterNames = {"Temperature [K]"},

 4: DefaultValues= {"295"},

 5: ToolTips = {"Define tool-tips here"})

 6: @iC_Annotation(MethodChecksSyntax = true)

 7: public void setTemp(float SetPoint)

 8: throws IOException, DataFormatException {

10: // perform Syntax-check

11: if (SetPoint < 0 || SetPoint > 500)

12: throw new DataFormatException("Set point out of range.");

14: // exit if in Syntax-check mode

15: if (inSyntaxCheckMode())

16: return;

18: // continue as in Listing 2

Listing 3. Annotations used by iC to define part of the GUI (Fig. 1e) in the source code, and to declare if a method implements a
syntax-check.

is given in Listing 4. The file name (without extension) is taken as the name used in the MAKE commands
(e.g. MAKE lia; SRS SR810; GPIB 8). Every line contains a definition of a new script-command
and comprises the following tokens: (1) the name of the script-command; (2) the GPIB string where %d,
%f, %s (and other format specifiers [7]) are placeholders for integer, double and string values which will be
replaced by the values specified in the script; and (3) and (4) specify the parameter names shown in the
table of the GUI (Fig. 1e). As illustrated in line 3 of Listing 4, the tokens can also include tool tip texts
(enclosed in curly braces) as well as a minimum and maximum numerical value (enclosed in square braces)
and a default value for the table (enclosed in round braces). If a method name (token (1) in Listing 4) starts
with ‘get’ or ‘save’, the instrument is addressed to talk and the result of this query is made available to the
next script-command. If the method name starts with ‘save’ the result is additionally stored in a text file and
the last parameter in the generic definition is interpreted as a file extension (token (5) in Listing 4). The text
files defining generic instruments need to reside in a particular directory (<user home>/iC/Generic
Instruments/), the file name must contain ‘.GPIBinstrument’ to be recognized by iC, and it can
optionally end with ’.txt’. If the file name matches the name of an existing instrument (e.g. Agilent
4155.GPIBinstrument.txt), the generically defined commands are added to the existing commands of that
instrument. All generic instrument definitions are read when iC starts, which makes it very easy to write
new “instrument drivers” or extend existing ones without any Java programming.

http://dx.doi.org/10.6028/jres.117.010
http://dx.doi.org/10.6028/jres.117.010

 Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.010
 Journal of Research of the National Institute of Standards and Technology

 183 http://dx.doi.org/10.6028/jres.117.010

1: // (1) (2) (3) (4)

2: setAUX | AUXV %d,%f | AUX channel | Voltage

3: getAUX | AUXV? %d | AUX channel {can be 1..4} [1,4] (1)

4: saveIDN | *IDN? | File Extension

5: // (5)

Listing 4. Example for a generic definition of script-commands for a SRS SR810 Lock-In amplifier. These definitions are stored in a
text file named ‘SRS SR810.GPIBinstrument.txt’ and automatically recognized by iC at start-up.

4. Summary

 Instrument Control (iC) is an easy to use open-source software to automate test equipment. iC uses
intuitive script-commands stored in a conventional text file to define the measurement sequence which
enables quick adaptions to various measurement needs. It is very easy to extend the functionality of iC by
either implementing new Java methods in a driver-class, by using the built-in Python-Interpreter, or by
defining generic instrument definitions in a text file. Instrument Control works with GPIB controllers of
major vendors on various operating systems, and support for other communication protocols can easily be
added. Instrument Control is currently used to develop a thermo-magneto-electric measurement platform at
NIST, and it is made available as open source to follow a call to publish computer code [12] and in the
hope that it will serve the scientific community.

Acknowledgments

 The author is grateful for the all-time support of D. J. Gundlach and C. A. Richter. Special thanks to J.
Campbell for his idea for generic instruments and to L. Richter for suggesting to include Python. The
author acknowledges financial support from the Swiss National Science Foundation, from NIST, and from
the National Institute for Standards and Technology American Recovery and Reinvestment Act
Measurement Science and Engineering Fellowship Program Award 70NANB10H026 through the
University of Maryland.

5. References

[1] Agilent Technologies, Agilent 4155C/4156C Semiconductor Paramater Analyzer - User’s Guide (2005).
[2] Keithley, Series 2600A System SourceMeter - Reference Manual (2011).
[3] K. P. Pernstich, Instrument Control (iC), URL http://java.net/projects/icontrol.
[4] IEC 60488-2 First edition 2004-05; IEEE 488.2 pp. 1–256 (2004), URL

http://ieeexplore.ieee.org/servlet/opac?punumber=9359.
[5] RxTx, URL http://rxtx.qbang.org.
[6] Java Native Access (JNA), URL http://jna.java.net.
[7] K. P. Pernstich, Instrument Control (iC) – javadoc, URL http://icontrol.java.net.
[8] Python Programming Language, URL http://python.org/.
[9] The Jython Project, URL http://www.jython.org/.
[10] JFreeChart, URL http://www.jfree.org/jfreechart.
[11] Apache Commons Math, URL http://commons.apache.org/math.
[12] N. Barnes, Publish your computer code: it is good enough, Nature 467, 753 (2010). http://dx.doi.org/10.1038/467753a

http://dx.doi.org/10.6028/jres.117.010
http://dx.doi.org/10.6028/jres.117.010
http://java.net/projects/icontrol
http://ieeexplore.ieee.org/servlet/opac?punumber=9359
http://rxtx.qbang.org/
http://jna.java.net/
http://icontrol.java.net/
http://python.org/
http://www.jython.org/
http://www.jfree.org/jfreechart
http://commons.apache.org/math
http://dx.doi.org/10.1038/467753a

 Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.010
 Journal of Research of the National Institute of Standards and Technology

 184 http://dx.doi.org/10.6028/jres.117.010

About the author: Kurt P. Pernstich is a Visiting Senior Research Scientist in the Semiconductor and
Dimensional Metrology Division of the Physical Measurement Laboratory at the National Institute of
Standards and Technology. He has a Masters degree in electrical engineering and a Ph.D. in physics, and
his work focuses on developing a platform to measure thermo-magneto-electric properties of
thermoelectric materials and carbon-based semiconductors. The National Institute of Standards and
Technology is an agency of the U.S. Department of Commerce.

http://dx.doi.org/10.6028/jres.117.010
http://dx.doi.org/10.6028/jres.117.010

