
 Volume 117 (2012) http://dx.doi.org/10.6028/jres.117.004 
Journal of Research of the National Institute of Standards and Technology 

 
 

 96 
 

Standardization of Broadband UV 
Measurements for 365 nm LED Sources 

 
 
George P. Eppeldauer 
 
National Institute of Standards and Technology,  
Gaithersburg, MD 20899, USA 
 
george.eppeldauer@nist.gov 
 
 
Broadband UV measurements are evaluated when UV-A irradiance meters measure optical radiation from 365 nm UV sources. The 
CIE standardized rectangular-shape UV-A function can be realized only with large spectral mismatch errors. The spectral power-
distribution of the 365 nm excitation source is not standardized. Accordingly, the readings made with different types of UV meters, 
even if they measure the same UV source, can be very different. Available UV detectors and UV meters were measured and evaluated 
for spectral responsivity. The spectral product of the source-distribution and the meter’s spectral-responsivity were calculated for 
different combinations to estimate broad-band signal-measurement errors. Standardization of both the UV source-distribution and the 
meter spectral-responsivity is recommended here to perform uniform broad-band measurements with low uncertainty. It is shown 
what spectral responsivity function(s) is needed for new and existing UV irradiance meters to perform low-uncertainty broadband 365 
nm measurements. 
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1.  Introduction 
 

UV irradiance meters measure optical radiation from broad-band UV sources that peak at 365 nm for 
performing non-destructive testing of metal parts. Available UV-A irradiance meters read different 
irradiance values when they measure the same 365 nm source. The differences in the readings can increase 
to higher than 20 % when different UV radiometer models are involved in the irradiance measurements. 
The reason for the large measurement errors is lack of a proper standard spectral-responsivity function for 
the UV meters. The CIE standardized UV-A function has a square shape between 320 nm and 400 nm. 
Since filter combinations are to be used to realize this square-shape band-pass function, the spectral 
mismatch errors are large. The function-realizations of two commercial UV-A meters are illustrated in Fig. 
1 [1]. 

The full dots show a typical realization and the open-squares represent a better realization. It is 
shown clearly that both realizations have large spectral mismatch errors relative to the CIE (square shape) 
standard function. Table 1 shows the measurement errors obtained with the better realization when four 
types of (commonly used) calibration sources are reused as test sources [1]. When the test source is 
different than the calibration source, the measurement error can increase to 60 % or higher. The 
measurement errors, using the typical meter, can increase to 300 %. 

A reasonable calibration (correction) factor for broadband UV measurements cannot be assigned 
based on the CIE UV-A standard responsivity function. Also, the spectral power distribution of the 
excitation 365-nm sources has not been standardized which is a must if the realized spectral responsivity 
function of the UV meter is different from the standard function. The wavelength range of the presently 
used CIE standard function is too broad for the required tests where 365 nm excitation sources are used. At 
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Fig. 1. The CIE standardized UV-A (square-shape) and two realized spectral responsivity functions. 
 
 
Table 1. Errors in broad-band UV measurements with a commercial UV meter having a better-than-average response function. 
 

Calibration Source                                                       Test Source 
                                              FEL                  Mercury              Deuterium                Xenon 
FEL                                      0.0 %                50.8 %                 -6.7 %                       2.7 %            
Mercury                             -33.7 %                  0.0 %               -38.2 %                    -31.9 % 
Deuterium                            7.2 %                 61.7 %                  0.0 %                      10.1 % 
Xenon                                 -2.7 %                 46.8 %                 -9.2 %                       0.0 % 

 
 
present, the 365 nm Hg line is used for non-destructive material tests. The neighboring Hg-lines (such as 
the 334 nm line) are attenuated using glass filters. As shown in Fig. 2, the blocking is usually not perfect 
and the UV irradiance meters with their different spectral responsivity functions can measure the radiation 
produced by the remaining neighboring line(s). Also, the continuum of the source spectral distribution can 
produce different output signal components in the different broadband UV irradiance meters. 

In this example, the test detector measured 14 % higher than the standard detector. The reason of this 
large error is that the spectral responsivities of the UV meters are different. At present, manufacturers are 
unable to improve their UV meters because of the lack of standardization of broad-band UV measurements. 
The UV sources have not been standardized either. 

In order to phase out mercury from future tests (primarily because of safety reasons) and to eliminate 
out-of-band radiation from the calibration source, LED sources with similar irradiance distribution to the 
filtered Hg-lamps are introduced here. 

The goal of this work is to make the broadband UV measurements uniform and to lower the broad-
band UV (with a typical emissivity peak of 365 nm) irradiance measurement uncertainties. To achieve this 
goal, the realization issues of the meter’s spectral responsivity and the 365-nm source distributions have 
been studied and a new definition for standardized measurements is developed to decrease the large errors 
in existing broadband UV measurements. 
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Fig. 2. Relative spectral distribution of a filtered 365 nm Hg source and the responses of two different UV meters normalized at 366 
nm. 
 
 
2.  UV Detectors 

 
The spectral power responsivities of several commercially available UV detectors have been 

measured. The obtained responsivity functions are shown in Fig. 3. The GaP detector, that has a reasonably 
high responsivity at 365 nm, cuts down at wavelengths longer than 500 nm. However, it is not resistant to 
UV damage. The PtSi detector cuts down for wavelengths longer than 400 nm. The CsTe photodiode also 
cuts down above 400 nm but its peak responsivity is almost a decade lower. The broadband detectors (not 
labeled) are mostly UV damage-resistant silicon photodiodes. Care should be taken when using these Si 
detectors because they measure optical radiation to about 1200 nm. 

 
 

3.  UV Irradiance Meters 
 
Six available UV irradiance meters have been measured for spectral irradiance responsivity. Figure 4 

shows how different the spectral responsivities are. Both the peak responses and the spectral bandwidths 
(wavelength coverage) are different. 

Seven normalized spectral responses are shown in Fig. 5. The graph also shows the spectral 
distribution of the filtered Hg source. In order to determine the measurement errors of the different meters, 
the signal reading of each meter was divided by the signal reading of the commercial reference meter A 
(UDT268UVA)1 when they all measured the same 365 nm source in the figure. The percent errors are 
shown in the legend of the graph. The meter A was arbitrarily selected here as a reference meter to compare 

                                                 
1 Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does 
not imply recommendation or endorsement by the NIST, nor does imply that the equipment are necessarily the best available for the 
purpose. 
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Fig. 3. Spectral power responsivities of UV detectors. The broadband detectors (without labels) are different Si photodiodes. 
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Fig. 4. Spectral irradiance responsivities of different UV meters. 
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Fig. 5. Normalized quantity versus wavelength includes the spectral responses of UV meters from A to G and the spectral power 
distribution of a filtered UV 365 nm Hg lamp. 
 
 
the measurement results obtained with the different UV meters. The errors show how uniform the seven 
broadband UV measurements are. Some of the shown measurement uniformity errors are small but others 
(where the shapes of the spectral responsivity functions were not adequate) increased to 42.3 %. In this 
worst case, the responsivity peak was 360 nm instead of 365 nm where the source peak was. Two meters 
(with narrow spectral bandwidths) did not measure the 334 nm (filter-attenuated) neighbouring Hg line and 
also part of the source continuum but the others with the broad spectral coverage measured both the 334 nm 
line and the continuum of the Hg source. 
 
 
4.  Spectral Modeling 

 
A spectral responsivity function that can be easily realized and used as a standard function has been 

designed using three filters and a UV-damage resistant silicon photodiode. The filter transmittance 
functions and the resultant responsivity function with its center at 365 nm are shown in Fig. 6. This design 
was made for LED sources with 365 nm +/- 5 nm peaks. 

The modeled and normalized response function is also shown in Fig. 7 together with the normalized 
spectral response of a commercial UV meter and the spectral distributions of a UV LED-based projector 
built with seven LEDs and dyes (phosphors) in an array. The meter responses in Fig. 7 were normalized to 
unity at the peaks to compare the two functions for 365 nm LED measurements. 

It can be seen that the spectral power distributions of the two LED sources (shown for 1 A and 2 A 
feeding currents) are well within the spectral responsivity functions for both UV meters. Also, there is no 
leaking responsivity for wavelengths outside of the source spectral distribution function that could be 
measured by the two different meters. The requirement for standardization is to receive the same spectral 
product for the source distribution and the meter responsivity even if different meters or different 365 nm 
sources are used. 
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Fig. 6. Modeled 365 nm response function using 3 filters and a UVG-100 silicon photodiode. 
    

 
 
Fig. 7. Comparison of the modeled 365 nm response to the commercial meter A. The distribution of the UV LED projector is shown at 
1 A and 2 A currents. 
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5.  LED Sources 
 

Because of environmental safety reasons, 365 nm LED sources have been selected to substitute Hg 
lamps. The spectral distribution of these LED sources is similar to that of Hg lamps. However, LED 
sources do not have neighboring emission lines and they do not have a continuum-radiation like Hg lamps. 
The first step in the modeling and in the following standardization is to establish the spectral band-limits 
and peak tolerances for the 365 nm LEDs. The suggestion here is to use LEDs with 365 nm +/- 5 nm peaks 
and a maximum spectrum halfwidth (FWHM) of less than 15 nm to keep the spectral mismatch errors and 
the uncertainties of the spectral products (signals) at a reasonably low level even if different meters and/or 
sources are used. 

Figure 8 shows the design of a high-power UV-LED source that can produce a uniform irradiance, 
larger than 1 mW/cm2 [2] within a diameter of 7.5 cm at a distance of 40 cm (measured from the source). 
The spatial distribution of the radiance of the LED is not uniform. Therefore, a hexagonal quartz rod is 
used to homogenize the LED output radiation. The radiation incident into the rod, above an angle limit, is 
totally reflected inside of the rod-walls. The mixed reflected beams at the output of the rod will produce a 
uniform radiance distribution. The output beam of the homogenizer is focused by an objective lens onto the 
target surface. A 365 nm irradiance source like this can satisfy the requirements for standardization. 

 
 

 
 

Fig. 8. Input optics of a UV LED irradiance source. 
 
 
6.  Definition of Uniform Broadband 365 nm Measurements 

 
First, satisfy the requirements for source distribution: Use LEDs with 365 nm +/- 5 nm peaks and a 

maximum spectrum-half-width (FWHM) of less than 15 nm. In the next step, match the spectral response 
of the UV meters to the 365 nm source distribution function such that the spectral product of the source-
distribution and the meter responsivity will produce an error less than the required measurement 
uncertainty when different UV meters (models) and/or different 365 nm sources are used. 

The standardization of the broad-band UV measurements is needed only if more than one UV meter 
and/or more than one 365-nm source are used. 
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7.  Conclusions 
 
UV irradiance measurements verified that the presently applied CIE-A standard responsivity 

function is not suitable for accurate realization. Large 365 nm irradiance measurement uncertainties were 
obtained using the present CIE standard UV-A function. Up until now, Hg lamps were used for 365 nm 
excitation. The lamps were filtered but the spectral distribution of the excitation UV sources has not been 
standardized. Commercially available UV detectors and meters have been evaluated and compared in this 
paper. Also, different UV LED sources have been studied, evaluated, and suggested for standardization. A 
broadband UV measurement-model is described to develop an easily realizable spectral responsivity 
function based on the spectral power distribution of 365 nm LED sources. The 365 nm LED sources do not 
have environmental safety issues like mercury lamps and have continuum-free spectral distributions. Based 
on the model, a standard procedure is suggested that can result in uniform broadband 365 nm irradiance 
measurements with low uncertainty. The definition for the standard procedure is described. The first step in 
the procedure is to select the source according to the requirement described in the definition. In the second 
step, the responsivity function of the meter is selected with a spectral match to the standardized source-
distribution function according to the definition. Invariant spectral products can be obtained when using the 
described 365-nm LED distributions and the meter responsivity functions even if different sources (with 
different peak wavelengths and spectral widths) are used in the measurements. Based on the definition 
described here, UV meter models (that satisfy the described standardization requirements) can be selected 
for uniform broadband 365 nm measurements. Other UV meters, where the described spectral-response 
requirements are not achieved, are non-ideal for uniform broadband UV measurements. 
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