
1. Introduction

Paxson and Floyd [1] describe many difficult prob-
lems that impede simulation of large data communica-
tion networks, and recommend two main coping
strategies: search for invariants and carefully explore
the parameter space. Unfortunately, Paxson and Floyd
fail to address a key, related question: What model
responses should be examined? This question is key
because typical network simulation models (e.g.,
Fall and Varadhan [2], SSFNet [3], Tyan et al. [4], Riley
et al. [5], Yaun et al. [6], Zeng et al. [7]) can measure
system response through tens to hundreds of outputs,
which might represent aspects of fewer significant
underlying model behaviors. Usually, experimenters
select a subset of model outputs to analyze because

considering all available responses proves too time
consuming, too costly or computationally infeasible.
When choosing a subset of simulation outputs, experi-
menters using ad hoc selection techniques may omit
responses that characterize important model behaviors.
Further, experimenters may select outputs in a fashion
that overemphasizes particular behaviors. These mis-
takes become particularly salient during careful explo-
ration of a model’s parameter space, where experi-
menters seek to understand the response of a model to
changes in input parameters.

Overweighting or underweighting significant model
behaviors can yield invalid conclusions, thus some
method is required to identify precisely the model
outputs that correspond to each significant behavior.
Fodor [8] describes this mathematically as a dimension
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reduction problem: “given the p-dimensional random
variable x = (x1, …, xp)T, find a lower dimensional
representation, s = (s1, …, sk )T with k ≤ p, that captures
the content in the original data, according to some
criterion.” Fodor goes on to survey numerous linear and
non-linear techniques that may be applied to reduce the
dimension of high-dimensional data sets. Adopting any
of these techniques would provide a principled approach
that experimenters could use to identify significant
model behaviors from a large collection of model output
data. Of course, one wonders whether some techniques
are superior to others. Fodor identifies principal compo-
nents analysis (PCA) as the best (in terms of mean-
square error) linear dimension reduction technique 

In this paper, we combine correlation analysis and
clustering (CAC) to identify significant behaviors in
MesoNet [9], a network simulation model implemented
in SLX1 [10]. We also use PCA as a basis to identify an
alternative view of significant behaviors. In applying
each method, we identify issues that an analyst must
decide and we compare the behaviors identified by
the methods. The paper makes three contributions:
(1) describes and applies two methods to identify
significant behaviors in network simulators, (2) identi-
fies specific judgments that must be made by an analyst
when applying each method and (3) compares the
dimension reductions achieved by the two methods. The
ideas contained in this paper facilitate effective reduction
in response dimension for large simulations and should
improve the ability of researchers and practitioners to
analyze results from simulation experiments.

The paper is organized in six main sections. In
Sec. 2 we explain the general idea underlying dimen-
sion reduction for multivariate responses, as applied to
simulation outputs. In Sec. 3 we identify and summa-
rize candidate MesoNet responses, showing how those
responses form a multivariate dataset. MesoNet is
described more fully elsewhere [9]. Section 4 applies
correlation analysis and clustering (CAC) to identify
significant MesoNet behaviors, while also identifying
decisions an analyst must make. Section 5 applies
principal components analysis (PCA), along with key
analyst decisions, to produce two alternate views of
significant MesoNet responses. In Sec. 6 we compare
and contrast the significant behaviors found by CAC
and PCA, we discuss pros and cons of the two methods,

and we give our reasons for preferring the reduction
proposed by CAC. We conclude in Sec. 7.

2. Dimension Reduction for Multivariate
Responses

As illustrated in Eq. (1), a simulation model can be
viewed as a function transforming a set of n input
parameters, x1 to xn , into a set of m responses, y1 to ym .
Each input parameter can take on a range of values,
e.g., 1 to k, defining a parameter space of size k n, which
can be very large. Elsewhere [11] we explain methods
to provide significant information while simulating
only a reduced number (2 n–r) of parameter combina-
tions. Here, we focus on methods to reduce the number
of responses that must be analyzed, while still reflect-
ing the most significant model behaviors.

(1)

In this paper, we apply two methods that can reduce
dimensionality of a model response space: correlation
analysis combined with clustering (CAC) and principal
components analysis (PCA). First, CAC suggests a
reduction in the number of responses from m to z1 . We
use domain expertise to select z1 specific responses
from among the responses shown in Table 1. Second, 
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1 Certain commercial equipment, instruments, or software are
identified in this paper to foster understanding. Such identification
does not imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the
software or equipment identified are necessarily the best available
for the purpose.
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Table 1. Candidate MesoNet Responses

Response Definition

y1 Active Sources–sources attempting to transfer data
y2 Proportion of total sources that are active: y1/All Sources
y3 Data packets entering the network/second
y4 Data packets leaving the network/second
y5 Packet Loss Rate: y4/(y3 + y4)
y6 Flows Completed per second
y7 Flow Completion Rate: y6/(y6 + y1)
y8 Connection Failures per second
y9 Connection Failure Rate: y8/(y8 + y1)

y10 Retransmission Rate (ratio)
y11 Average Per Flow Congestion Window (packets)
y12 Average Number of Increases in Congestion Window/

flow/second
y13 Average Number of Negative Acknowledgments/

flow/second
y14 Average Number of Timeouts/flow/second
y15 Average Round-trip Time (ms)
y16 Relative Queuing Delay (y15/average propagation delay)
y17 Average Throughput (packets/second) for DD Flows
y18 Average Throughput (packets/second) for DF Flows
y19 Average Throughput (packets/second) for DN Flows
y20 Average Throughput (packets/second) for FF Flows
y21 Average Throughput (packets/second) for FN Flows
y22 Average Throughput (packets/second) for NN Flows



PCA suggests a reduction from m to z2 . We use
heuristics to select z2 specific responses from Table 1.
Subsequently, we compare the specific responses
selected by each method.

3. Overview of Candidate MesoNet
Responses

For purposes of our case study, we selected 22 can-
didate responses from among those generated by
MesoNet, a data communications network simulator.
The first sixteen responses (y1 – y16), in Table 1 char-
acterize various aspects of network-wide behavior. The
flow of data traffic in the network is regulated with the
transmission control protocol (TCP), which requires a
source and receiver to exchange connection packets,
after which the source sends a flow of data packets
to a receiver, who responds with acknowledgments.
Inability to exchange connection packets prior to a
deadline causes a connection attempt to fail. For suc-
cessful connections, the rate of transmission on a flow
is controlled by a congestion window (cwnd) that
defines the number of packets a source may transmit
before receiving an acknowledgment. The time
between sending a data packet and receiving an
acknowledgment is known as the round-trip time,

which is composed of propagation delays on network
links plus queuing delays incurred when waiting in
routers for transmission. In general, TCP flows begin
with a low cwnd and then increase the cwnd as
acknowledgments arrive. Failure to receive acknowl-
edgments leads to a timeout, which causes a source to
retransmit unacknowledged data packets. Similarly,
receipt of a negative acknowledgment, indicating a spe-
cific packet loss, will also stimulate retransmission by
a source. Responses y5 – y16 measure most aspects of
these processes involved in transmitting data between
sources and receivers. Responses y1 – y4 measure
macroscopic load on the network: the number (and pro-
portion) of sources transmitting data packets and the
rate at which data packets enter and exit the network.

The remaining six responses (y17 – y22) measure
the average throughput achieved on flows transiting
specific types of paths in a network topology, such as
illustrated in Fig. 1. MesoNet topologies consist of
three router tiers–backbone, point of presence (PoP)
and access–providing transit paths for sources and re-
ceivers connected in a fourth tier (not visible in Fig. 1).
The speed of various router classes can be computed
relative to a network speed, s, which is one of the input
parameters of MesoNet. Backbone routers operate
at a speed of 2s and POP routers operate at 0.25s.
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Fig. 1. Example Three-Tier MesoNet Topology.



Access routers, which constrain transmission capacity
available to sources and receivers, can be one of three
types: (1) D-class, connecting directly to the network
backbone and operating as fast as POP routers,
(2) F-class, operating at a speed of 0.05s and sharing a
POP router with three other access routers, and
(3) N-class, sharing a POP router with six other access
routers and operating at the slowest speed (0.025s)
among all access routers. Flows enter and exit the
topology at access routers, thus access routers may be
used to classify flows into DD, DF, DN, FF, FN and
NN flows, where the flow class denotes the potential
throughput (e.g., DD flows can achieve higher through-
put than DF flows and so on).

We generated a 64 × 22 multivariate dataset (Fig. 2)
by running 64 simulations, where each simulation con-
sisted of different combinations of values for 11 of the
20 MesoNet parameters. Values for the remaining nine
parameters were fixed in all runs. For each simulation
we measured the 22 responses given in Table 1. We
used a 211–5 orthogonal fractional factorial design [12]
to ensure that we simulated a balanced arrangement of
parameter combinations. Next we apply two different
methods to reduce the dimension of the data in Fig. 2.

4. Dimension Reduction via Correlation
Analysis and Clustering

As a preliminary step, we computed the correlation
coefficients (r) for each pair of the 22 responses, and
summarized the results in a matrix (Fig. 3), which gives 

231 pair-wise scatter plots in cells above and to the
right of the diagonal and corresponding correlation coef-
ficients (scaled × 100) below and to the left of the diag-
onal. We color the scaled correlations: above 80 red,
below 30 green and intermediate values blue. We order
the matrix by decreasing value of mean correlation for
each response. In Fig. 3, response y7 (gray cell labeled 7
in the upper left hand corner) has largest mean correla-
tion and response y6 (gray cell labeled 6 in lower right
hand corner) has smallest mean correlation. Cells on the
diagonal identify the response related to cells in the cor-
responding row and column. For example, consider the
gray cell labeled 13 (response y13) in the middle of
Fig. 3. The column of cells moving upward gives scat-
ter plots for y13 and each of the 11 responses (y9 – y7)
higher on the diagonal; the row moving leftward gives
the corresponding correlation coefficients. The row of
cells moving rightward from 13 gives scatter plots for
y13 and each of the 10 responses (y11– y6) lower on the
diagonal; the column moving downward gives the corre-
sponding correlation coefficients. Given pair-wise corre-
lations, an analyst must decide which pairs to include in
further analysis and which pairs to discard. To help with
this decision, we plot a frequency distribution (Fig. 4) of
the absolute values, |r|, of correlation coefficients for all
response pairs. We use the frequency plot to select a
threshold for correlations to consider further. Here, we
chose |r| > 0.65 because the histogram shows a notable
change in pattern above that value, appearing as a
separate (sub)distribution of 42 pair-wise correlations
centered on a different mode.
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Fig. 2. Sample (Partial) Multivariate Dataset Reflecting 22 Responses for each of 64 MesoNet Simulations.



Next, we construct an index-index plot, where both
the x and y axes indicate the index of corresponding
responses (1-22). We plot a blue dot for each of the
42 yi,j pairs where |r| > 0.65. We identify the response that
is correlated with the most other responses and create a
self-contained subset from those responses. We then
repeat the process for those responses remaining outside
the subset, forming a second self-contained subset. We
continue repeating the process until all responses have
been allocated to a subset. Subsequently, we reorder the
axes of the index plot so that response identifiers are
arrayed in increasing order of the cardinality of the sub-
set of which they are a member. Response identifiers
within each subset are ordered arbitrarily. Figure 5,
which shows the resulting sorted index-index plot gener-
ated from the 42 correlation pairs selected from Fig. 3,

reveals five subsets (or clusters) of mutually correlated
responses, and two responses that were not correlated
with any others. The largest cluster (25 correlation pairs)
includes responses that reflect network congestion. The
second largest group (14 correlation pairs) includes
responses reflecting packet losses. Three pair-wise corre-
lations reflect: (1) throughput on flows constrained by
F-class access routers, (2) network delay and (3) packets
entering and leaving the network. One uncorrelated
response (y17) measures average throughput on DD
flows, while the other (y6) measures flows completed
per second. We summarize these response groupings
under the CAC half of Table 2, which identifies seven
significant behaviors, a reduction of 15 dimensions. For
each behavior that includes multiple responses, an ana-
lyst must select one response to represent the behavior.
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Fig. 3. Pair-wise Correlation Matrix: scatter plots above diagonal, correlation coefficient (|r| × 100) below diagonal.



We used domain-specific reasoning to select the
responses highlighted in bold under the CAC half
of Table 2. Regarding congestion, response y22 meas-
ured throughput on the most numerous flows in the
simulation, which transited the most congested paths,
so all aspects of network congestion were likely to
influence this response. Regarding losses, response y10
measured the retransmission rate on all data packets,
which would be caused by losses of data, acknowledg-
ments and negative acknowledgments, and so would be
approximately twice the loss rate (y5) on data packets.
Negative acknowledgements (y13) would be stimulat-
ed by lost data packets but could also be lost, as could
acknowledgements. Timeouts (y14) would occur only
for severely disrupted packet flows. Connection
failures (y8 and y9) would measure only the influence
of lost connection-establishment packets. For these

reasons, we decided that response y10 should give the
most comprehensive reflection of packet losses.
Regarding delay, the smoothed round-trip time (y15)
would be influenced by both propagation and queuing
delay, while response y16 reflects only queuing delay,
so we selected y15 as a more comprehensive measure
of delay. Regarding F-class throughput, we selected
response y20 (throughput on FF flows) because the
related flows do not transit any N-class or D-class
access routers, which should allow FF flows to give the
best representation of F-class throughput. Regarding
packet throughput, we reasoned that packets could not
leave the network (y4) unless they were injected (y3),
so we decided that y4 could represent both the rate of
packets injected and influence of other factors on the
rate of packets leaving the network. Responses y17 and
y6 each represent an additional dimension.
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Fig. 4. Frequency Distribution of |r| for pair-wise correlations; |r| > 0.65 highlighted in red.
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Fig. 5. Index-Index plot sorted by increasing count of correlation pairs to identify clusters of mutual correlations.

Table 2. Response  Groupings by Correlation Analysis and Clustering (CAC) and by Principal Components Analysis (PCA)–as explained in the
text, responses highlighted in bold (seven for CAC and four for PCA) were chosen to represent each grouping

CAC PCA
Dimension Responses Dimension (PC) Responses

Congestion y1, y2, y7, y11, y12, y19, y21, y22

Losses y5, y8, y9, y10, y13, y14

Delay y15, y16

F-class
Throughput

y18, y20

D-class
Throughput

y17

Packet
Throughput

y3, y4

Flows Per
Second

y6

Congestion y1, y2, y5, y7, y8, y9, y10, y11, 
y12, y13, y14, y19, y21, y22

Delay y15, y16

D-class 
&

F-class
y3, y4, y17, y18, y20

Throughput

Flows Per
y3, y4, y6Second



The PCA half of Table 2 indicates the responses
grouped by PCA into the first four principal compo-
nents, as explained below in Sec. 5. As we will show,
selecting a response to represent each PC relies on a
choice among heuristics that have no specific domain
interpretation. For this reason, we will compare PC
response selections made by two different heuristics. In
Sec. 6, we compare the responses we selected from the
CAC half of Table 2 against responses representing
PCs, as identified by the two heuristics we used. We
used one of those heuristics to identify the responses
highlight in bold in the PCA half of Table 2.

5. Dimension Reduction Based on
Principal Components Analysis

Principal Components Analysis (PCA) [8,13-14] is a
statistical technique which transforms a set of possibly
correlated variables (such as the 22 variables identified
in Table 1 and analyzed above in Sec. 4) into an equal
number of orthogonal (and hence uncorrelated)
variables called principal components (PCs). Each
principle component is a weighted linear combination
(LC) of the original variables. The first principle
component (PC1) is that weighted LC with maximum
spread (variance) when the data is projected onto that
LC. The second principle component (PC2) is that LC
which has the largest projected-data variance of all LCs
that are orthogonal to the first PC. The third principle
component is that LC which has the largest projected-
data variance of all LCs that are orthogonal to the first
2 PCs, and so forth. The last principle component
(PC22) is that LC which has the largest projected-data
variance of all LCs that are orthogonal to all prior PCs.
The 22 PCs thus provide an alternative orthogonal axis
system that spans the entire 22-dimensional data space
in an ordered fashion–from most explanatory variation
down to least explanatory variation.

There are several variations of PCA-depending on
(1) the nature of the input data (i.e., raw or untrans-
formed data versus transformed data), and on (2) the
nature of the computationally intermediate variation
matrix (i.e., covariance matrix versus correlation
matrix). The PCA analysis selected in our study used
the raw data (normalized to mean 0 and standard

deviation 1, in order to enhance comparisons) and the
correlation matrix of such data. The computational result
of the PCA process is a square matrix–22 × 22 in our
case–where the first column contains the weight vector
for PC1, the second column contains the weight vector
for PC2 and so on. The process also yields a
vector containing the progressively-decreasing standard
deviations accounted for by each PC. Table 3 shows
(a) the standard deviation vector and (b) part of the
matrix of weight vectors computed for our case study.

Given the matrix of weights and the vector of standard
deviations, an analyst must choose how many PCs to
use. An analyst might also decide which variables should
be retained in each PC, because PC expressions may be
simplified by ignoring the (low weight) contributions of
certain of the variables. If the retained set of variables for
the chosen PCs includes all or most of the variables, then
an analysis might seek to further reduce the set of vari-
ables to include only a handful of the most important. To
choose the number of PCs to use, one credible source
[14] suggests including the first n PCs that account for
between 70 % and 90 % of the total variance in the data.
Examining the cumulative % column of Table 3(a) sug-
gests that the first four PCs should be used (as we did in
Table 2) and that PC5 might be used. In Sec. 6, when
comparing the responses we selected using CAC against
the responses recommended by PCA, we will consider
PC1 through PC7, because the CAC suggested seven
dimensions were required to represent system behavior,
even though the PCA inclusion heuristic suggests that
only the first four or five PCs capture sufficient variation
in the response data.

We tried several different statistical heuristics to
prune variables from PCs. While some provided clear-
er results than others, all the heuristics generally point-
ed toward the same outcome. We obtained the most
clear cut results using the following heuristic: (1) nor-
malize the weights to zero mean and unit standard devi-
ation, (2) take the absolute value of the normalized
weights, (3) scale the results to the range 0 to 1, (4) plot
the results, (5) visually identify a separating threshold
and (6) use responses plotted above the threshold.
Figure 6 shows the application of this heuristic to the
first four PCs, yielding the four groupings shown in the
PCA half of Table 2. What remains is to select specific
responses to represent the PCs of interest.
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Table 3. (a) Standard deviation vector resulting from PCA in our case study, along with a cumulative distribution of % variance and (b) elided
matrix of vectors (one per PC), where each vector gives the weight (rounded) assigned to each of the 22 responses

(a) Distribution of Variance (b) Weight Vector Matrix

PC Std. Dev. Cumulative % Response PC1 PC2 PC3 PC4 … PC22

PC1 9.7091 0.441325 y1 0.26 0.14 –0.17 0.11 … –0.02
PC2 4.0161 0.62388 y2 0.26 0.18 –0.14 0.11 … –0.00
PC3 3.2322 0.77079 y3 0.09 0.02 –0.41 –0.39 … 0.70
PC4 2.0630 0.86457 y4 0.04 0.06 –0.43 –0.40 … –0.69
PC5 0.9716 0.90873 y5 0.28 –0.23 0.04 0.06 … –0.06
PC6 0.7585 0.94321 y6 –0.04 0.09 –0.12 –0.56 … 0.01
PC7 0.4537 0.96383 y7 –0.28 –0.14 0.10 –0.08 … –0.01
PC8 0.2569 0.97551 y8 0.23 –0.25 0.04 0.06 … –0.05
PC9 0.1835 0.98385 y9 0.24 –0.28 0.06 0.02 … 0.01
PC10 0.1254 0.98955 y10 0.27 –0.24 0.03 0.07 … 0.04
PC11 0.0588 0.99222 y11 –0.25 –0.08 –0.11 0.08 … 0.00
PC12 0.0504 0.99451 y12 –0.28 –0.17 –0.00 0.04 … –0.01
PC13 0.0360 0.99615 y13 0.22 –0.27 –0.02 –0.12 … –0.00
PC14 0.0286 0.99745 y14 0.24 –0.30 0.02 –0.08 … –0.02
PC15 0.0225 0.99847 y15 0.04 0.44 –0.04 0.19 … 0.01
PC16 0.0113 0.99899 y16 0.05 0.32 –0.23 0.31 … 0.02
PC17 0.0099 0.99944 y17 0.07 –0.20 –0.37 0.21 … –0.03
PC18 0.0060 0.99971 y18 –0.06 –0.16 –0.43 0.25 … 0.05
PC19 0.0032 0.99985 y19 –0.29 –0.17 –0.08 0.02 … 0.04
PC20 0.0019 0.99994 y20 –0.08 –0.15 –0.40 0.24 … –0.06
PC21 0.0011 0.99999 y21 –0.29 –0.17 –0.10 0.04 … 0.07
PC22 0.0002 1.00000 y22 0.26 –0.17 –0.03 0.03 … –0.07

Fig. 6. Plots of normalized and scaled weight vectors (y axis) against response variable identifiers (x axis) for the first four PCs.
Each plot includes the visually selected threshold (black horizontal line) used to identify responses to include (above the line)
and exclude (on or below the line) for each PC. For each plot, responses with normalized and scaled weights above the select-
ed threshold were included for the corresponding PC in the PCA half of Table 2.



While one could choose to base subsequent data
analyses on the first four PCs, interpretation of such
analyses can be difficult because PCs do not necessarily
represent any distinguishable domain concepts (though
we attempt to supply a mapping to domain concepts in
Table 2). As an alternative to using the first four PCs, we
can instead select a subset of the variables. Jolliffe [14]
suggests that the number of variables to select should
equal the number of PCs used, or perhaps a few more.
Since the PCA analysis identified that we should use four
or five PCs, we decided to select seven variables, which
matches the number of variables we selected using CAC.

Selecting specific variables requires an additional
heuristic. We tried two particular approaches in order to
compare the outcomes. One heuristic, which we denote
as MKB, described by Mardia, Kent and Bibby [15],
iterates over the weight vectors from the least significant
(PC22 here) to the most significant (PC1). When exam-
ining each weight vector, the response corresponding to
the weight with the largest magnitude is discarded from
further consideration. This process continues until

the remaining number of responses corresponds to the
number (seven here) of variables sought. This seeming-
ly counterintuitive algorithm appears to be based on the
assumption that responses that contribute large weights
to insignificant PCs must not be particularly salient with
respect to the dataset.

The second heuristic we used, which we denote here
as inverted MKB, was derived by inverting the MKB
algorithm. The inverted MKB algorithm iterates over the
weight vectors from the most significant to the least sig-
nificant. When examining each weight vector, the vari-
able corresponding to the weight with the largest magni-
tude is withdrawn from further consideration. This
process continues until the cardinality of the set of with-
drawn responses equals the number of variables sought.
The set of withdrawn responses constitutes the respons-
es to be used in subsequent analyses. Table 4 shows the
results of applying these two heuristics. The table also
shows the seven responses we selected based on CAC.
We compare and contrast these results in the next
section.
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Table 4. Columns two and three give the ordering of response significance identified from PCA weight vectors using two heuristics. The first
four responses correspond to the number suggested by analysis of the cumulative distribution of the proportion of PC variance. The fifth response
corresponds to a fifth PC, which was on the borderline for inclusion. The sixth and seventh responses correspond to two additional dimensions
(PC6 and PC7). The fourth column repeats, for comparison, the specific responses identified by a domain analysis to represent each of the seven
clusters of correlated responses using CAC

PC Inverted MKB Heuristic MKB Heuristic CAC Domain Analysis

PC1 Y22 (NN flow TP) Y4 (packets output) Y22 (NN flow TP)
PC2 Y15 (SRTT) Y19 (DN flow TP) Y15 (SRTT)
PC3 Y18 (DF flow TP) Y18 (DF flow TP) Y4 (packets output)
PC4 Y6 (flows completed TP) Y6 (flows completed TP) Y6 (flows completed TP)
PC5 Y11 (CWND) Y9 (connection failure rate) Y10 (retransmission rate)
PC6 Y17 (DD flow TP) Y17 (DD flow TP) Y20 (FF flow TP)
PC7 Y16 (queuing delay) Y16 (queuing delay) Y17 (DD flow TP)
PC8 Y13 (NAKs) Y13 (NAKs)
PC9 Y1 (active sources) Y11 (CWND)
PC10 Y14 (timeouts) Y15 (SRTT)
PC11 Y2 (% sources active) Y7 (flow-completion rate)
PC12 Y9 (connection failure rate) Y2 (% sources active)
PC13 Y10 (retransmission rate) Y10 (retransmission rate)
PC14 Y8 (connection failures) Y8 (connection failures)
PC15 Y7 (flow-completion rate) Y14 (timeouts)
PC16 Y12 (CWND increases) Y12 (CWND increases)
PC17 Y21 (FN flow TP) Y1 (active sources)
PC18 Y20 (FF flow TP) Y21 (FN flow TP)
PC19 Y19 (DN flow TP) Y20 (FF flow TP)
PC20 Y4 (packets output) Y22 (NN flow TP)
PC21 Y5 (loss rate) Y5 (loss rate)
PC22 Y3 (packets input) Y3 (packets input)



6. Comparing Dimension Reduction
Methods

In Sec. 5, applying a heuristic threshold to the cumu-
lative distribution of the proportion of variance led us
to conclude that the first four PCs accounted for most
of the significant variance in our dataset. As shown in
Table 2, we were able to develop a domain interpreta-
tion of PC1 through PC4,2 and we could relate that
interpretation to the seven dimensions identified using
CAC. The results show relatively good alignment:
PCA merged congestion and losses into a single dimen-
sion and merged throughput on flows constrained by
either D-class or F-class routers. On the other hand,
PCA spread packet throughput among two PCs, rather
than retaining it as a unique dimension. In related work
[16], guided by analysis of the responses grouped into
PC1-PC4, we were able to analyze and interpret the
PCs themselves in one situation. In a second situation,
we were unable to construct a domain interpretation of
even the top four PCs. In situations where PCs cannot
be interpreted successfully, one can resort to substitut-
ing a set of responses for the PCs. Here, guided by
Table 4, we compare the responses identified by the
MKB and inverted MKB heuristics against each other
and against the responses selected based on a domain
analysis of the CAC results. We consider up to seven
responses because CAC identified the need for seven
dimensions to cover the response dataset.

The top four responses selected by the inverted MKB
heuristic can be interpreted to represent congestion
(y22), delay (y15), D- and F-class throughput (y18) and
flows completed per second (y6). Under such an inter-
pretation, the inverted MKB heuristic maps nicely to
the first four PCs of Table 2. Indeed, three of the first
four responses selected by the inverted MKB heuristic
matched responses selected by domain analysis of the
CAC results. Three of the top four responses selected by
the MKB heuristic can be interpreted to represent con-
gestion (y19), D- and F-class throughput (y18) and flows
completed per second (y6). Interpreting the remaining
response (y4) is more problematic because y4 appears
in two PCs in Table 2, and both PCs have already been
covered by other responses. Considering only the top
four responses, the inverted MKB heuristic gave results
that were better aligned with the CAC results.

Expanding our comparison with the CAC results, we
consider additional responses (five through seven) pro-
duced by each heuristic. The MKB heuristic identifies
connection failure rate (y9), which can be interpreted as
representing losses, DD-flow throughput (y17), which
can be interpreted as representing D-class throughput,
and y16, which can be interpreted as representing
delay. In addition, as its first response, the MKB heuris-
tic identifies y4, which corresponds to packet through-
put. Under this interpretation, the top seven responses
identified by the MKB heuristic correspond with the
seven dimensions identified by CAC. The inverted
MKB heuristic also identifies y17 (D-class throughput)
and y16 (delay) in its top seven responses. However,
the inverted MKB heuristic had already included a
response (y15) representing delay, so y16 appears
redundant. In addition, the inverted MKB heuristic
includes response y11 (congestion window size), which
can be interpreted to provide a duplicate response rep-
resenting congestion. Given the two duplicates, the
inverted MKB heuristic does not include responses
representing losses or packet throughput. Of course, the
PCA grouped losses together with congestion and
spread packets output across two PCs, so the results of
the inverted MKB heuristic are consistent with the PCA
response groupings, but not consistent with the seven
CAC dimensions. The MKB heuristic appears more
consistent with the seven CAC dimensions. On the
other hand, considering only the top four responses, the
inverted MKB heuristic provides a better correspon-
dence with the CAC analysis.

The PCA-based method provided greater dimension
reduction (22 → 4) than CAC (22 → 7). On the other
hand, because PCs are uncorrelated variables created
from a set of possibly correlated variables, PCA guar-
antees no obvious domain interpretation of even the top
2 or 3 PCs,3 though in the case discussed in this paper
we were able to arrive at a reasonable interpretation. In
other cases (not described here) we were unable to infer
any convincing domain interpretation. Even when a
reasonable domain interpretation is possible, PCs may
take on both positive and negative values for which
domain analysts cannot determine any obvious inter-
pretation, even after establishing a meaning for a PC
itself. For example, based on the specific responses that
showed significant weights for PC1, we inferred that
the PC represented congestion (including its influence 
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2 We were unable to devise a domain interpretation for PC5 – PC7,
which provides additional evidence that only the first four PCs
should be used in this case study.

3 Note, however, that PC1 will almost always represent some kind
of “global average”.



on packet losses). Determining whether positive or
negative values for the PC represented higher or lower
congestion proved quite challenging [16]. To make
such a determination we had to compare the parameter
settings causing positive and negative PC values with
the parameter settings for individual responses that
were heavily weighted in the PC. Since we could easi-
ly interpret the domain meaning of the concrete values
produced for the responses, we were usually able to
infer seemingly plausible mappings to positive and
negative PC values. While in some situations such
chains of inference may be possible, we remain uneasy
about the validity of the resulting interpretations. To
overcome these limitations with respect to PCs, we
adopted two different heuristics to identify responses to
substitute for the most significant four PCs. One heuris-
tic (inverted MKB) identified four responses that were
within the set of seven responses identified using CAC,
and identified a fifth response that could be mapped to
a response identified using CAC The other heuristic
(MKB) identified four responses that were within the
set of seven responses identified using CAC, and iden-
tified seven responses that could be mapped to respons-
es identified using CAC. We have no rigorous criteria
for judging which of the two heuristics produced results
better aligned with the CAC results. Further, the gener-
al success of such heuristics is not guaranteed. In
fact, we suspect that such heuristics might prove less
successful when no convincing domain interpretation
can be established for the PCs.

The CAC method provided effective dimension
reduction through correlations that could be vetted eas-
ily by domain experts. Further, examining pair-wise
response correlations helped to validate that MesoNet
provides reasonable behavior as a simulation model for
data communications networks. The CAC method
allowed us to uncover the nuanced difference between
network-wide throughput in terms of packets per sec-
ond versus flows completed per second, a difference
that might otherwise have been overlooked. In addition,
the CAC method allowed us to discern significant dif-
ferences in factors influencing the throughput of DD
flows, as compared to other D- and F-class flows.
These differences were masked by the coarseness of the
PCs identified using PCA. On the other hand, when
CAC was applied to analyze data from a second simu-
lation experiment (see Appendix C in Ref. [16]) using
the same parameters set to different values, the method
identified some differences in response correlation,
when compared with those shown in this case study.
While these differences could be justified by domain
analysis, the existence of such differences indicates that

separate correlation analyses must be generated and
examined for each set of simulation experiments
conducted. We found this also true for PCA.

In the end, the CAC method proved more useful to
domain analysts seeking to understand output from the
MesoNet simulation. The CAC method identified and
clustered correlated variables, whereas the PCA
method constructed artificial uncorrelated variables
that did not necessarily have a domain interpretation.
The clusters identified by CAC uncovered some
nuanced differences in network behavior, differences
concealed within the coarser PCs produced by PCA.
Further, the clustered correlated variables identified by
CAC could be used in validating that MesoNet pro-
duced behavior reasonably aligned with a real network.
The PCs produced by PCA could not be used for model
validation. In addition, in applying CAC, an analyst
need only make one heuristic decision: the threshold
for correlation values to include in the clustering step.
Domain analysis is used to select which response to
adopt as a surrogate for each cluster containing multi-
ple responses. In applying PCA, an analyst needs
heuristics to decide: (1) which PCs to include, (2)
which responses should be included within each PC,
(3) whether PCs should be analyzed directly or whether
surrogate responses should be selected, and (4) if surro-
gate responses are needed, how to identify which
responses to use. The necessity to make four heuristic
decisions (vs. one heuristic decision for CAC) leads to
greater burden for an analyst, provides increased room
for error and necessarily affects the repeatability of the
PCA method.

7. Conclusions

We investigated CAC and PCA as two techniques to
reduce the dimension of multivariate response data pro-
duced from simulation models. We applied each
method to reduce a 22-dimensional response space gen-
erated by MesoNet, a simulator for data communica-
tions networks. While the PCA method usually sug-
gests a smaller number of dimensions, we found that
the CAC method distinguishes dimensions that better
correspond with a domain analyst’s understanding of
the domain. Further, the results from CAC are much
easier for a domain analyst to interpret, which aids in
model validation. On the other hand, PCA and CAC
appear to be reasonably complementary methods that,
applied together, can provide alternate views of a mul-
tivariate data set. Comparing dimensions identified by
both methods (as we did, for example, in Table 2)
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should provide a better understanding of responses
from simulation experiments. Where only one method
is used, we suggest that CAC provides response group-
ings that are straightforward for a domain analyst to
interpret. Using only PCA leads to response groupings
that are coarse, abstract and often difficult for a domain
analyst to understand. No matter which method is
applied, each new data set generated by different exper-
iments with a given simulation model must be subject-
ed to a separate analysis and interpretation because
correlations and PCs may change with changes in
parameter values.
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