
1. Introduction

3D imaging systems are line-of-sight instruments
that provide range images of objects in a given region
of interest, I (ϑ,ϕ), where I denotes the distance from an
instrument to a point on a surface of the object and ϑ
and ϕ are the elevation and the azimuth angles to that
point. Usually a point cloud in a Cartesian coordinate
system associated with the instrument is derived from
the range image. Current 3D imaging systems may
collect point clouds containing hundreds of thousands
of points within a few seconds [1]. Frequently, these
data points are used to model the objects by geo-
metrical primitives that are characterized by attributes
such as location, pose, width, height, etc. Numerical
values of these attributes may be obtained by fitting a
model to the segmented dataset. Here, we discuss the
Nonlinear Least Squares (NLS) fitting procedure
applied to range data obtained by scanning a plane.
Specifically, we address the following problem: how
do the uncertainties of range measurements by an
instrument propagate to uncertainties of the fitted plane
parameters [2]?

Usually, variances of fitted parameters (which are
useful for uncertainty analysis) are derived from the
Jacobian matrix of a model function used in a given
fitting problem. This common approach is based on a
linearization of the nonlinear error function near its
minimum [3-7]. In this paper we do not follow this path
but estimate the variances directly from the sensitivities
for which we provide analytical formulas.

2. Variances of Fitted Plane Parameters

A plane in a three-dimensional Cartesian coordinate
system is defined as a set of points P (x, y, z) satisfying
the following equation

(1)

where w (ϑ,ϕ) is a unit vector perpendicular to a plane,
parameterized by two angles: the elevation ϑ (a zero
elevation being horizontal) and the azimuth ϕ, and
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where • stands for the dot product of two vectors. The
Cartesian coordinates of w (ϑ,ϕ)  may be written as

(2)

The absolute value of parameter D is the distance
from the plane to the origin of the coordinate system,
and D may be expressed as

(3)

where P0 is any point on a plane. A plane can be fit to
the experimental dataset P{N} = {Pj , j = 1,…, N}, where
N denotes the number of points; the goal being to cal-
culate the numerical values of the three parameters
defining the plane: ϑ, ϕ and D. Within the framework
of the Least Squares method, the fit parameters are
obtained by minimizing the error function

(4)

where Ej is the distance between the experimental point
Pj and its corresponding “theoretical point.” Different 

definitions of the theoretical point yield different error
functions. In this paper we study two error functions:
the orthogonal error function EO and the directional
error function ED, as explained in Fig. 1 and in the next
two sections.

It is not surprising that due to nonlinear dependence
of the normal vector w on both angles ϑ and ϕ, plane
fitting requires nonlinear minimization. However, as is
shown in the next two sections, for both error functions
EO and ED the distance Ej depends linearly on the third
parameter D . Therefore, D may be explicitly expressed
as a function of both angles (ϑ , ϕ) and P{N} from the
condition

(5)

For any error function E defined by Eq. (4) with Ej

depending linearly on D, the linear parameter can be
expressed as a function of the remaining non-linear
parameters and dataset P{N}

(6)
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Fig. 1. Due to instrument error in measurement of range r, experimental points P do not lie exactly on a plane (thick line).
Points O are perpendicular projections of experimental points on a plane. Points D are intersections with the plane of rays
originating from the instrument and passing through the experimental points. Distances PO are used in the orthogonal error
function EO while PD are used in the directional error function ED. The difference between both functions depends on the
Angle of Incidence (AOI).
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When the error function E reaches its minimum
at [ϑ*, ϕ*, D*], a gradient of the function has to be zero.
This implies that the original 3D search space may be
reduced to a 2D space and the error function may be
re-written as

(7)

the minimum of E being located at

(8)

The variances of the fitted plane parameters var(ϑ*)
and var(ϕ*) may be calculated following the same
general approach developed for fitting a sphere to range
data [8], [9]. In the current study, the same assumption
is made as in the previous studies: for the 3D imaging
systems relevant to this study, the uncertainty in the
range measurement is typically much larger than the
uncertainty in the angular measurements. Thus, an
acquired point Pj can be expressed as

(9a)

where rj is a range measured at bearings (ϑj, ϕj) and
||Pj || = rj . In this approximation the bearings are treated
as noise-free control variables and a unit vector pj is
defined as

(9b)

Note that for other types of instruments, for example
Coordinate Measuring Machines (CMM), the above
assumption may not be valid and the formulas for
variances of fitted plane parameters developed in this
paper may not be applicable. In addition, it is assumed
that the correlation in the measured ranges rj and rk is
negligible for any j ≠ k . When both assumptions are
valid, the variances of the fitted plane parameters may
be estimated by applying to Eq. (8) the uncertainty
propagation formula [2]

(10a)

(10b)

and the covariance may be estimated as

(10c)

The variance of the third parameter D* may be
calculated from the uncertainty propagation formula
[2] applied to a general function D (ϑ,ϕ,P{N} ) defined
in Eq. (6),

(11)

where the derivatives of D are calculated at
(ϑ*, ϕ*, P{N} ).

The individual sensitivities

and (11) may be calculated as in [8] by solving for each
j the following 2 × 2 system of linear equations

(12)

where the vectors Sj and Vj are defined as

(13a)

(13b)
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The matrix H is the Hessian of the error function
E(ϑ, ϕ, P{N} )

(14)

These general formulas are now applied to two
specific error functions: the orthogonal error function
EO and the directional error function ED.

3. Orthogonal Fitting

For the orthogonal plane fitting (see Fig. 1) the
theoretical point Oj corresponding to the experimental
point Pj is defined as the orthogonal projection of Pj on
a plane. Thus, Eq. (4) takes the form

(15)

Applying condition (5), Equation (6) can be expressed
as

(16)

where P0 here is the centroid of all experimental points
P{N} . This condition states that the plane fitted with the
orthogonal error function has to contain the centroid,
P0. Defining a scalar product dj of two vectors w and pj

given by Eqs. (2) and (9b)

(17)

then Eq. (16) for the parameter D when using Eqs. (17)
and (9a) can be rewritten as

(18)

where rj is a measured range. In this notation, Eq. (7)
describing the error function in the reduced 2D search
space of angles (ϑ, ϕ) can be written as

(19a)

where

(19b)

Then, the elements of the gradient of the error func-
tion ∇EO defined in Eq. (19a) can be calculated as

(20a)

(20b)

while the elements of the Hessian matrix H defined in
Eq. (14) are

(21a)

(21b)

(21c)
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Finally, the elements of vector Vj defined in
Eq. (13b) can be obtained by differentiating with
respect to rj the elements of the gradient ∇EO given by
Eqs. (20a) and (20b). Taking into account the definition
of vector Uj given by Eq. (19b) and the definition of
centroid P0 of all points Pj as well the dependence of
Pj on rj given by Eq. (9a), the elements of vector Vj can
be evaluated as

(22a)

(22b)

where

(22c)

δj, k is the Kronecker delta, and pk is the unit vector
defined in Eq. (9b). First and second order derivates of
the vector w (ϑ,ϕ), defined in Eq. (2), are provided in
Appendix A, Eqs. (A1-A5). Once the matrix H and
vectors Vj are known, the sensitivity vectors Sj can be
calculated for every j by solving the 2 × 2 system of
linear Eq. (12). The variances of the fitted angles
var(ϑ*) and var(ϕ *) and the covariance cov(ϑ*,ϕ *) can
then be determined from Eqs. (10a, b, c). The variance
of the third parameter D*, defined in Eqs. (16-18), can
be now evaluated from Eq. (11) using the following
equations:

(23a)

(23b)

(23c)

where the derivatives of D are calculated at
[ϑ*,ϕ *, P{N} ].

4. Directional Fitting

For the directional plane fitting (see Fig. 1) the
theoretical point Dj corresponding to the experimental
point Pj is defined as an intersection of a ray originat-
ing from the instrument through Pj with the plane

(24a)

where a parameter tj has its value close to 1, and the
theoretical points satisfy Eq. (1) of the plane

(24b)

The distance Ej in Eq. (4) is the Euclidian norm and
the directional error function ED can thus be written as

(25)

where the parameter tj can be calculated from Eq. (24)
using the dj defined in Eq. (17)

(26)

if dj is different from zero, i.e., if the vector pj is not
orthogonal to w. Two vectors pj and w are orthogonal
only if the corresponding AOI = ± 90º, which causes
the theoretical point Dj to be undefined. For all other
AOIs, tj can be calculated and substituted into
Eq. (24a). Then, using Eq. (9a) and the fact that
rj = || Pj ||, Eq. (25) yields the following expression for
the directional error function

(27)

Applying condition (5) to Eq. (27), Eq. (6) can be
expressed as

(28)
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In this notation, Eq. (7) describing the error function
in the reduced 2D search space of angles (ϑ,ϕ) can be
written as

(29)

Using the following auxiliary functions

(30a)

(30b)

it is possible to calculate the elements of the gradient of
the error function ∇ED

(31a)

(31b)

and the elements of the Hessian matrix H defined in
Eq. (14)

(32a)

(32b)

(32c)

(33a)

(33b)

the Kronecker delta. Once the matrix H and vectors Vj

are known, the sensitivity vectors Sj can be calculated
for every j by solving a 2 × 2 system of linear equa-
tions (12). The variances of fitted angles var(ϑ*) and
var(ϕ *) and the covariance cov(ϑ*,ϕ * ) can then be
determined from Eqs. (10a, b, c). The variance of
the third parameter D *, defined in Eq. (28), can now 
be evaluated by substituting in Eq. (11) the Eqs. (B17,

Volume 115, Number 6, November-December 2010
Journal of Research of the National Institute of Standards and Technology

466

2

{ }
{ }

1

( , , )1( , , ) .
( , )

N
N

D N j
j j

D
E r

N d
ϑ ϕ

ϑ ϕ
ϑ ϕ=

⎛ ⎞
= −⎜ ⎟⎜ ⎟⎝ ⎠

∑
P

P The derivatives and in Eqs. (30a,b) are calcu-D D
ϑ ϕ

∂ ∂
∂ ∂

lated in the Appendix B, Eqs. (B17, B18), andj jd d
ϑ ϕ

∂ ∂
∂ ∂

, , ,in (A6, A7), , and in (C1-C3).j j jA A Aϑ ϕ ϑ

ϑ ϕ ϕ
∂ ∂ ∂
∂ ∂ ∂

Finally, the elements of vector defined in Eq. ( 13b)jV

( ), { }

2

, ,

,

j N

j
j j j

j

A

dD Dr d D d
d

ϑ ϑ ϕ

ϑ ϑ ϑ
−

=

⎛ ⎞ ∂⎛ ⎞∂ ∂− = −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

P

( ), { }

2

, ,

,

j N

j
j j j

j

A

dD Dr d D d
d

ϕ ϑ ϕ

ϕ ϕ ϕ
−

=

⎛ ⎞ ∂⎛ ⎞∂ ∂− = −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

P

( ){ } ,
1

2, , ,
N

D
N j j

j j

E D r A
N d ϑϑ ϕ

ϑ =

⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂ ⎝ ⎠

∑P

( ){ } ,
1

2, , ,
N

D
N j j

j j

E D r A
N d ϕϑ ϕ

ϕ =

⎛ ⎞∂
= −⎜ ⎟⎜ ⎟∂ ⎝ ⎠

∑P

( )
2

,2
{ } ,2

1

2, , ,
N

jD
N j j

j j

AE DA r
N d

ϑ
ϑϑ ϕ

ϑϑ =

⎡ ⎤⎛ ⎞ ∂∂
= + −⎢ ⎥⎜ ⎟⎜ ⎟ ∂∂ ⎢ ⎥⎝ ⎠⎣ ⎦

∑P

( )
2

,2
{ } ,2

1

2, , ,
N

jD
N j j

j j

AE DA r
N d

ϕ
ϕϑ ϕ

ϕϕ =

⎡ ⎤⎛ ⎞ ∂∂
= + −⎢ ⎥⎜ ⎟⎜ ⎟ ∂∂ ⎢ ⎥⎝ ⎠⎣ ⎦

∑P

( )
2

{ }

,1
, ,

1

, ,

2 ,

D
N

j

N
k

k j k k k
k j k j

E
r

AD Dd A r
N r d r

ϑ
ϑ

ϑ ϕ
ϑ

δ−

=

∂
=

∂ ∂

⎡ ⎤⎛ ⎞ ∂⎛ ⎞∂ − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑

P

( )
2

{ }

,1
, ,

1

, ,

2 ,

D
N

j

N
k

k j k k k
k j k j

E
r

AD Dd A r
N r d r

ϕ
ϕ

ϑ ϕ
ϕ

δ−

=

∂
=

∂ ∂

⎡ ⎤⎛ ⎞ ∂⎛ ⎞∂ − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑

P

where the derivative is calculated in Appendix B,
j

D
r

∂
∂

, ,
,Eq. (B22), and in Eqs. (C4, C5), and isk k

j k
j j

A A
r r
ϑ ϕ δ

∂ ∂
∂ ∂

B18, B22), for the derivatives , and
j

D D D
rϑ ϕ

∂ ∂ ∂
∂ ∂ ∂

{ }calculated at [ , , ] .Nϑ ϕ∗ ∗ P

can be expressed as

( )
2

,
{ } , ,

1

2, , .
N

jD
N j j j

j j

AE DA A r
N d

ϑ
ϑ ϕϑ ϕ

ϕ ϑ ϕ=

⎡ ⎤⎛ ⎞ ∂∂
= + −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑P



5. Discussion

Figure 1 shows that the orthogonal plane fitting
behaves differently from the directional fitting. The
difference between orthogonal and directional fitting
depends on the Angle of Incidence (AOI) of the laser
beam. For AOI approaching 90º, the optimal value of
the orthogonal error function EO (ϑ *, ϕ *, P{N} ) is
decreasing, even when the uncertainty of the measured
ranges rj is large. The optimal value of the error func-
tion is usually interpreted as a gauge of noise level in
experimental data (assuming that a right model is fitted
to the data). For 3D imaging systems, due to a diver-
gence of a laser beam, range measurements collected
for large AOI have large uncertainty. Thus, the behav-
ior of EO is in a sharp contrast with the common exper-
imental observation. The directional fitting is free of
this flaw and a residual value of the directional error
function ED(ϑ*,ϕ *, P{N} ) correctly estimates a level of
noise in the acquired experimental dataset P{N} for any
AOI. When EO is minimized, the sensitivities of the

large AOI. The flawed sensitivities entered in the
Eqs. (10) and (11) will cause an underestimation of the
variances of the plane parameters fitted with the
orthogonal function for large AOI. For small AOI, the
difference between EO and ED is diminishing and
both error functions are expected to provide correct
estimates for the variances of fitted parameters.

Individual sensitivities Sj of fitted angles are calcu-
lated from Eq. (12). The vector Vj on the right hand side
of this equation behaves differently for the orthogonal
and the directional error function, see Eqs. (D1, 2) and
(D7, 8) in the Appendix D. This may cause a much
larger variability of Sj calculated for the orthogonal
fitting and a poorer estimate of variances of fitted
parameters than for the directional fitting.

As was already pointed out, a plane fitted by mini-
mizing the orthogonal error function has to contain the
centroid P0 of the acquired points P{N}, see Eq. (16).
Directional fitting does not have this constraint. Thus, a
minimization of two error functions discussed in this
paper may lead to different results. 

6. Conclusions

In this paper we derived formulas for the variances
(which are useful for uncertainty analysis) of plane
parameters fitted to a dataset acquired with 3D imaging

systems. Two error functions were investigated: the
orthogonal and the directional error function.
Comparison of corresponding formulas suggests the
two functions may yield different results when applied
to the same range data. However, in order to quantify
the anticipated difference, laboratory experiments and
computer simulations are needed.

7. Appendix A

From the definition of w (ϑ ,ϕ ) in Eq. (2), the follow-
ing derivates can be calculated

(A1)

(A2)

(A3)

(A4)

(A5)

Then, the corresponding derivatives of dj (ϑ ,ϕ )
defined in Eq. (17) can be expressed as

(A6)

(A7)

(A8)

(A9)

(A10)
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8. Appendix B

Auxiliary functions defined for calculation of deriva-
tives of D (ϑ ,ϕ , P{N} ) defined in Eq. (28) for the direc-
tional fitting are given by:

(B1)

(B2)

(B3)

(B4)

(B5)

(B6)

Their respective derivatives are:

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)

(B13)

(B14)

(B15)

(B16)

where the derivatives of dj are defined in (A6-A10).
Using the above functions, the derivatives of
D (ϑ ,ϕ , P{N} ) can be expressed as

(B17)

(B18)

(B19)

(B20)

(B21)

For the calculation of variances of fitted plane para-
meters, the following derivatives of D (ϑ ,ϕ , P{N} ) are
also needed

(B22)

(B23)

(B24)
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9. Appendix C

The derivatives of the functions Aϑ , j and Aϕ , j defined
in Eqs. (30a,b) and used in the gradient and Hessian
calculations can be expressed as

(C1)

(C2)

where the derivatives of D (ϑ ,ϕ , P{N} ) and dj are calcu-
lated in Appendices A and B. For the evaluation of
sensitivities of fitted plane parameters, the following
derivatives are also required

(C4)

(C5)

where the derivatives of D are given by Eqs. (B22-
B24).

10. Appendix D

Using Eq. (22c), Eqs. (22a) and (22b) can be rewrit-
ten in the following form

(D1)

(D2)
where

(D3)

(D4)

(D5)

(D6)

Equations (D1) and (D2) show that the components
of the vector Vj in Eq. (13b) applied to EO depend
explicitly on the measured range rj.

Equations (33a) and (33b) can be rewritten in the
following form

(D7)

(D8)
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From the Eqs. (C4), (C5), and (B22) it follows that

on rj . In fact, a measured range rj enters the right hand
side of Eqs. (D7) and (D8) only indirectly in the formu-
la for D and its angle derivatives; see Eqs. (28), (30a,b),
(B17) and (B18). Thus, the influence of a particular
j-th range measurement on the components of the
vector Vj in Eq. (13b) applied to ED is negligible for
typical datasets with large N.
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