
1. Introduction

The work of linking the results of International
Committee for Weights and Measures (CIPM) and
Regional Metrology Organization (RMO) key compar-
isons (KCs) is an important part of implementing the
CIPM Mutual Recognition Arrangement (CIPM MRA)
of the CIPM.  Recently, several methodologies have
been proposed to deal with the linkage problem.
Delahaye and Witt [1] proposed a practical method,
which used an additive correction to link a CIPM KC
of 10 pF capacitance standards to results obtained by a
corresponding EUROMET comparison. A similar
method was used to link key comparisons CCEM-K8
and EUROMET.EM.K8 by Marullo Reedtz and
Cerri [2]. Elster, Link, and Wöger [3] suggested a
method based on a ratio correction, which can be
applied when the results of the CIPM and the RMO
comparisons are of different magnitude or different
physical dimension. Nielsen [4] and Sutton [5] suggest-
ed combining the measurements from CIPM and RMO
key comparisons by applying weighted least squares or
generalized least-squares estimation. As pointed out in 
[3], however, this approach will generate a completely 

new analysis, which obviously will influence the
existing results. Kharitonov and Chunovkina [6] and
Decker et al. [7] have also discussed linking of CIPM
and RMO key comparisons.

Zhang et al. [8] proposed a statistical approach to
KCs with linear trends. Later, Zhang et al. [9] extended
the results to the case of multiple artifacts. Discussions
of key comparisons with trends can also be found in
[10] and [11]. In this paper we propose a method to link
the existing results from CIPM and RMO KCs both of
which have linear trends.

Section 2 provides the statistical models and major
results for key comparisons with linear trends based on
the general case discussed in [12]. In Sec. 3, the differ-
ence between the degrees of equivalence of the two
comparisons is defined and used to establish the rela-
tionship between these two comparisons. An estimator
of this quantity is proposed, and is used to estimate the
degree of equivalence of a laboratory that participated
only in the RMO KC, with respect to the key compari-
son reference value (KCRV) of the corresponding
CIPM KC. In Sec. 4, degrees of equivalence with their
corresponding uncertainties, are established between
pairs of National Metrology Institutes (NMIs) that only
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participated in one of the two comparisons. In this
study we assume that the artifacts in the two KCs have
the same nominal values or values of the same magni-
tude. When two comparisons have different nominal
values, linking would be a challenge unless there is
strong correlation between the two and the correspon-
ding uncertainty is estimable. As an example, in Sec. 5
the methodology is applied to link the CCEM-K2 and
SIM.EM-K2 key comparisons for instance at the
1 G Ω level.

2. Statistical Models for Interlaboratory
Comparisons With Linear Trends

In some key comparisons, the measurand has a trend
or a drift and thus, the measurements of the transport
artifacts made by the participating NMIs will show
trends. References [8] and [9] proposed statistical
approaches to KCs with linear trends for a single and
multiple artifacts, respectively. A recent paper, Zhang et
al. [12] provided a generalized method, which can deal
with the case when multiple NMIs measure the travel-
ing artifacts more than one time and when the uncer-
tainty structure is more general. Since [8] and [9] can
be treated as special cases of [12], we will adopt the
statistical model and notations in [12] for the compar-
isons.

We assume that N laboratories participated in the
first key comparison, for example, a CIPM KC. We
assume also that there were P artifacts traveling
together and for each artifact, the nth laboratory
(n = 1, …, Ν ) makes Jn measurements with Jn ≥ 1. For
the pth artifact (p = 1, …, P ), the jth measurement (or
the jth average of the measurements) made at the nth
laboratory, Xnj ( p) is measured at the time tnj (p)
(j = 1, …, Jn). As in [12], we assume a simple linear
regression holds for all the measurements, i.e.,

(1)

for j = 1, …, Jn , n = 1, …, Ν , and p = 1, …, P, where
for a fixed artifact the slopes of the trends for all N
laboratories are the same, while we allow different
intercepts for different laboratories. We further assume
that for each laboratory, the random error in the meas-
urement Xnj (p) can be expressed as

(2)

where the indicator In (p) = 1 when the errors enj,B (p)
are the same for all the measurements made by the nth
laboratory, and In (p) = 0 otherwise. The random com-
ponents enj,A (p) and (en,B (p), enj,B (p)) are statistically
independent of each other with standard uncertainties
of σnj,A (p) and (σn,B (p), σnj,B (p)), which are the Type A
and Type B evaluations of standard uncertainty, respec-
tively. This indicates that the measurements of different
artifacts (whether by the same or by different laborato-
ries) are statistically independent, while the measure-
ments for the same artifact, made at the same laborato-
ry can be independent or not, depending on the indica-
tor In (p). Regarding the case for different artifacts
measured by the same laboratory we understand that:
(a) the errors quantified by the Type A uncertainty, i.e.,
enj,A (p), are statistically independent; (b) the errors
quantified by the Type B uncertainty, i.e., enj,B (p) or
en,B ( p) definitely have some correlation; (c) since
not all artifacts are created equal and even when the
metrologists make every effort to measure artifacts in
as “correlated” a way as possible, there is still a random
component. Thus, we think it is reasonable to assume
that measurements of different artifacts (whether by the
same or by different laboratories) are statistically
independent. From (2), when In (p) = 1, the Type B
uncertainties are the same for all the measurements
made on the pth artifact by the nth laboratory. On the
contrary when In (p) = 0, the Type B uncertainties may
be not the same for all the measurements made by the
nth laboratory. Without loss of generality, we assume
that the pilot laboratory is the first one among all P
laboratories with J1 > 1.

From Eqs. (10) and (11) in [12], the generalized
least-squares estimators of an (p) and β (p), which are
the best linear unbiased estimators of these parameters,
are given by

(3)

(4)

where

(5)
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are weighted means of {tnj (p)} and {Xnj (p)} with

(6)

respectively. From (5) and (6), the corresponding
uncertainty for Xn (p), un (p), for the pth artifact in the
nth laboratory is given by

(7)

As discussed in [8], [9], and [12], in cases with
trends, the KCRV is time-dependent. As in [12], for a
fixed set of weights v = {v p}, and at an optimal time

(8)

with

(9)

the corresponding optimal KCRV is given by

(10)

uncertainty is given by

(11)

In practice, a choice of vp can be formed by the “mean-
square residuals” for the pth regression line for the pilot
libratory, i.e.,

(12)

where

(13)

In [8], the degree of equivalence of one laboratory
with respect to the KCRV at some time t is defined as
the difference between the predicted value of that
laboratory based on the corresponding regression and
the KCRV at t. From [9] and [12], for the first compar-
ison, the degree of equivalence of the nth laboratory
with respect to the KCRV t→ = t→* in (10) is the differ-
ence between a weighted mean of the predicted values
of that laboratory for all artifacts and the corresponding
regressions and the KCRV at t→ = t→*. It is given by,

(14)

for n = 1, …, N. For simplicity, we drop the t→* in the
notation of D n, KCRV . The uncertainty of D n, KCRV is
provided by Eq. (33) in [12].

For the second comparison, for example, an RMO
key comparison, we assume that there were M labora-
tories participating and Q artifacts traveling together.
We also adopt the same statistical assumptions and
models for the second comparison as used in the first
comparison. Where necessary, a′ will be used to distin-
guish quantities in the second comparison from the
analogous quantities in the first comparison. Under
these assumptions, the corresponding weighted means
of time and measurements as in (5), are t′

m (q) and Ym(q)
for m = 1, …, M and q = 1, …, Q. Similarly, corre-
sponding key comparison reference value KCRV′

i ′* is
obtained using the methods previously outlined for the
first comparison. Similar to the first comparison, the
degree of equivalence of the  laboratory with respect to
KCRV′

i ′* at the optimal t→ = t→′* is then given by

(15)
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for m = 1, …, M . We also assume that the artifacts
used in the first comparison are different from those
used in the first comparison.

3. The Difference Between the Degrees of
Equivalence of the Two Comparisons
With Respect to Their KCRVs

In order to be able to link two comparisons, we must
assume that K laboratories, called linking laboratories,
participated in both comparisons. In the case of no
trend, [7] proposed to use a weighted mean of the
differences between the measurements in the two com-
parisons for each linking laboratory. On the other hand,
[1] and [2] used a weighted mean of the differences
between the degrees of equivalences of the national
measurement standards with respect to the KCRVs of
the two comparisons for each linking laboratory. It is
clear that the difference between the degrees of equiv-
alences of the national measurement standards with
respect to the KCRVs of the two comparisons for a
linking laboratory contains information not only about
the difference of the measurements in the two compar-
isons for the same laboratory but also about the differ-
ences of the measurements of other laboratories
through the two KCRVs. We think that the combined
difference in the second approach used in [1] and [2]
represents the difference between the two comparisons
better and thus adopt it.

Without loss of generality, we assume that the first
K laboratories in both comparisons are the linking
laboratories. Namely, for the pth artifact (p = 1, …, P ),
X1 (p), X2 (p), … XK (p), from (5) are the representative
measurements from the linking laboratories in the first
comparison while Y1 (q), Y2 (q), … YK (q), q = 1, …, Q,
are from the linking laboratories for the qth artifact in
the second comparison. Note that K < min(M,N). For
the kth linking laboratory, as considered in [1] and [2]
the difference between the two degrees of equivalence
given in (14) and (15) is given by

(16)

for k = 1, …, K . Since the KCRV of a comparison in
our case is time-dependent, for the chosen optimal
time, Dk,KCRV is a relative quantity with respect to that
KCRV. We treat Dk as a realization of the difference
between the degrees of equivalence of the two compar-
isons for the kth linking laboratory. We assume that Dk

is random as in the statistical model given by

where D is the true value of the difference between the
degrees of equivalence of the two comparisons and the
random error ηk , k = 1, …, K , corresponds to the kth
linking laboratory with zero mean. We use a weighted
mean of Dk (k = 1, …, K ) to estimate D. Namely,

(17)

We use the weights given by

(18)

The quantity D^ will be used to estimate the differ-
ences between the degrees of equivalence of two labo-
ratories of which one only participated in the CIPM KC
and the second one only participated in the RMO KC
or vice versa. Note that {Dk} are correlated because
Dk ,KCRV and Dj ,KCRV as well as D′

k ,KCRV′ and D′
j ,KCRV′

for any k ≠ j and k , j = 1, …, K , are correlated. Thus,
the variance of D^ with ψ k given in (18) is not equal to

statistically independent from each other, and is calcu-
lated as follows:

(19)

where

(20)

and
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Equation 20 holds because Cov[Dk,KCRV
, D′

k ,KCRV′] = 0
due to the assumption that the measurements of differ-
ent artifacts made by the same laboratory are statistical-
ly independent as discussed in Sec. 2. Equation
(21) holds since Cov[Dk,KCRV

, D′
l ,KCRV′] = 0 and

Cov[D′
k ,KCRV′

,Dl,KCRV] = 0 for any k ≠ l. From (19), (20),
and (21), it follows that

(22)

In (23), Var[Dk,KCRV] and Var[D′
k ,KCRV′] are obtained

from the two comparisons based on Eq. (33) in [12].
The covariance Cov[Dk,KCRV

, Dl ,KCRV] for k ≠ l, which
may not be provided as part of the reports on the
comparisons, is given by

(23)

The derivation of (23) is in Appendix. Similar to (23),
for Cov[D′

k ,KCRV′
, D′

l ,KCRV′] for k ≠ l is given by

(24)

where Jm is the number of measurements for each arti-
fact made at the mth laboratory. From (22), (23), and
(24), Var[D^ ] or equivalently, the uncertainty of the
difference between the degrees of equivalence of the
two comparisons can be calculated.

We now consider the case of one laboratory only
participated in the second comparison, e.g., a RMO key
comparison. We need to find the degree of equivalence
of this laboratory with respect to the KCRV of the first
comparison. Because the mth laboratory only partici-
pated in the second comparison, m > K. Thus, we use
the estimator below (denoted by D #

m,KCRV) to estimate
the degree of equivalence of the mth laboratory with
respect to the KCRV for the first comparison had this
laboratory participated in the first comparison,

(25)

From (25),

(26)

From (17) when m > K ,

(27)

Thus, from (26) and (27) for m > K ,

(28)

where Var [D′
m ,KCRV′] and Cov[D′

m ,KCRV′
, D′

k ,KCRV′] are
estimated from the data for the second comparison. The
square root of Var [D#

m ,KCRV] is the standard uncertainty
of D#

m ,KCRV.

4. Pair-Wise Comparisons—Degrees of
Equivalence of Pairs of National
Measurement Standards

These degrees of equivalence are for any pair
of two different laboratories in the two key com-
parisons.

(1) For any two laboratories participating in the first
comparison, e.g., the CIPM KC (regardless
of whether they participated in the RMO KC or
not), their degrees of equivalence and the corre-
sponding uncertainties are based on the results
from the first comparison.

(2) If two laboratories participated only in the second
comparison or one laboratory participated in both
comparisons and the second one only participated
in the second comparison, then their degree of
equivalence is the corresponding one in the
second comparison with its uncertainty.
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(3) In the case that one laboratory only participated in 
the first comparison and the second laboratory
only participated in the second comparison, the
degree of equivalence between the nth laboratory  
(n > K), which participated only in the first
comparison and the mth laboratory (m > K),
which participated only in the second comparison, 
is estimated from (25) and given by

(29)

and m = K + 1,…,Μ is given by

(30)

In the first equality, Cov[Dn ,KCRV
,D′

m ,KCRV′] = 0
because Dn ,KCRV′ and D′

m ,KCRV′ are for two separate
comparisons using different artifacts and thus they are
statistically independent from each other as discussed
in Sec. 2.  The first two terms in the second equality in
(30) are obtained from the two comparisons, respec-
tively. The variance of D^ is given by (22) to (24). The
term Cov[D′

m ,KCRV′, D
^ ] is given by (27). Similar to (27)

for n > K

(31)

is obtained from (30) and (31).

This linking methodology is based on the model and
the approach proposed in [12] for the case of trend.
Although the mathematical derivations for the linking
as well as the results from [12] seem complicate, the
calculations are straightforward. We used MATLAB1

[14] to implement the method for SIM.EM-K1,
SIM.EM-K2, and SIM.EM-S6 comparisons [15] as
well for the example in Sec. 5.

5. Linking the CCEM-K2 and
SIM.EM-K2 Comparisons

To illustrate this linking approach, we applied it to
the CCEM-K2 key comparison for resistance at the
level of 1 G Ω and the SIM.EM-K2 key comparison for
resistance at the same level. From 2006 to 2007, the
Working Group for Electricity and Magnetism of the
Inter-American Metrology System (SIM) conducted
the key and supplementary comparisons SIM.EM-K1-
K2-S6 to provide the first internationally recognized
comparisons of precision resistance measurements for
nations of the western hemisphere. Six NMIs partici-
pated in the comparisons. The National Institute of
Standards and Technology (NIST) provided the com-
parison standards and acted as the pilot laboratory. Two
NIST film-type resistors were used as traveling
standards. Over the course of the comparison, the two
traveling standards were measured at the pilot laborato-
ry, NIST, during five time periods. For each period, an
average value of the dates when the measurements
were made was calculated and called the mean date of
measurement. In the SIM.EM-K2 comparison, each of
the five non-pilot laboratories made measurements
during two separate time periods except one which only
measured at one time period. An uncertainty budget
that includes the Type A and Type B evaluations of
uncertainties for each NMI’s measurement process
was also reported.

Table 1 lists the information describing the CCEM-
K2 results taken from Table 5 of [16]. In the table, the
listed resistance measurements are relative deviations
from the norminal value. Namely, in the table the
entries for the three artifacts, S/N HR 9101, S/N HR
9102, and S/N HR 9106 are expressed as (measurement
value— 1 G Ω)× 106/1 G Ω. NIST was the pilot labo-
ratory and the only laboratory to make multiple meas-
urements in seven time periods. Figures 1 to 3 show the
three regression lines corresponding to the measure-
ments of the three traveling standards made by
NIST, the pilot laboratory. The figures also show the
measurements made by all participating laboratories.
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Table 1. Results of the comparison CCEM-K2 at 1 G Ω, expressed as relative difference from the nominal value (106 × Relative difference
from nominal value)

Laboratory Mean Date of S/N HR9101 S/N HR9102 S/N HR9106 106 × Type A 106 × Type B
Measurements Standard Uncertainy Standard Uncertainy

NIST 1996-08-24 8.7 –109.4 734.4 2.0 4.6
NRC 1996-10-11 15 –102 743 3.8 9.2
NIST 1996-12-08 20.3 –102.0 744.8 2.0 4.6
BNM-LCIE 1997-02-18 17 –101 745 2.9 8.4
NPL 1997-05-08 10 –97 737 1.5 4.8
PTB 1997-07-12 27 –89 748 2.5 5.8
NIST 1997-08-12 27.6 –88.8 752.3 2.0 4.6
CSIRO-NML 1997-10-25 25 –89 752 2.0 33
MSL 1998-01-11 30 –84 755 0.9 2.2
CSIR-NML 1998-02-15 –40 –130 700 50 289
NIST 1998-04-29 31.9 –81.0 758.2 2.0 4.6
SP 1998-06-27 25.5 –86.9 754.0 0.5 4.4
OFMET 1998-08-15 32.4 –81.0 758.2 4.2 10.8
IEN 1998-10-17 31.2 –79.9 760.4 3.5 9.1
NMi-VSL 1999-01-03 1 –111 724 8.0 17
NIST 1999-02-22 31.0 –77.4 759.9 2.0 4.6
KRISS 1999-05-23 32 –76 759 0.7 5.6
NIST 1999-08-07 31.4 –77.5 762.4 2.0 4.6
NIM 1999-11-14 35.0 –74.5 766.9 1.0 3.1
VNIIM 2000-01-23 38 –72 768 1.0 2.3
NIST 2000-03-13 38.1 –72.3 765.6 2.0 4.6

Fig. 1. Measurements of 1 G Ω standard S/N 9101 by all participants in CCEM-K2 and the regression line based on NIST measurements.
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Fig. 2. Measurements of 1 G Ω standard S/N 9102 by all participants in CCEM-K2 and
the regression line based on NIST measurements.

Fig. 3. Measurements of 1 G Ω standard S/N 9106 by all participants in CCEM-K2 and
the regression line based on NIST measurements.



Tables 2 and 3 list the information for the two travel-
ing standards used in the SIM.EM-K2 comparison [15].
Figures 4 and 5 show the five regression lines
corresponding to the five laboratories each with two
or more measurements. These two figures were
published in [12]. Table 4 lists the degrees of equivalence
of national measurement standards with respect to
the KCRV (× 106) (KCRV = 301.0 at t* = 1998.8) 

and the associated uncertianties from CCEM-K2.
The results were calculated based on the statistical
analysis from [12]. Table 5 lists the degrees of
equivalence of national measurement standards with
respect to the KCRV and the associated uncertianties
from SIM.EM-K2 comparison based on [12]. The other
results can be found in [12].
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Laboratory Mean Date of Reported Resistance 106 × Type A 106 × Type B
Measurements Standard Uncertainy Standard Uncertainy

Table 2. Results at 1 G Ω , expressed as relative difference from the nominal value (106 × Relative difference from nominal value) for Standard
HR9104 in SIM.EM.K2

NIST 26-Dec-2005 16.53 0.86 2.69
INTI 19-Jan-2006 –4.42 8.00 7.32
INMETRO 18-Feb-2006 13.10 7.00 6.09
UTE 12-Apr-2006 13.20 2.32 22.12
NIST 1-Jun-2006 21.34 0.88 2.69
NRC 12-Aug-2006 15.60 1.33 12.50
CENAM 20-Sep-2006 23.80 1.00 17.58
NIST 26-Oct-2006 20.89 1.35 2.69
INTI 3-Dec-2006 20.83 0.60 7.35
INMETRO 21-Jan-2007 15.00 3.31 6.12
UTE Laboratory did not participate in this round of the comparison
NIST 23-Mar-2007 24.08 1.12 2.69
NRC 11-May-2007 13.90 0.43 10.58
CENAM 13-Jul-2007 27.00 0.78 10.09
NIST 15-Aug-2007 22.72 0.92 2.69

Table 3. Results at 1 G Ω , expressed as relative difference from the nominal value  (106 × Relative difference from nominal value) for Standard
HR9105 in SIM.EM.K2

Laboratory Mean Date of Reported Resistance 106 × Type A 106 × Type B
Measurements Standard Uncertainy Standard Uncertainy

NIST 26-Dec-2005 –22.53 1.39 2.69
INTI 19-Jan-2006 –45.35 8.00 9.41
INMETRO 18-Feb-2006 –13.80 6.80 6.98
UTE 12-Apr-2006 –22.00 1.47 22.12
NIST 1-Jun-2006 –17.69 1.65 2.69
NRC 12-Aug-2006 –23.60 1.58 12.58
CENAM 20-Sep-2006 –9.00 2.00 23.00
NIST 26-Oct-2006 –12.48 2.11 2.69
INTI 3-Dec-2006 –16.88 0.80 9.39
INMETRO 21-Jan-2007 –19.80 3.89 6.51
UTE Laboratory did not participate in this round of the comparison
NIST 23-Mar-2007 –13.86 2.11 2.69
NRC 11-May-2007 –19.60 0.75 10.58
CENAM 13-Jul-2007 –11.00 1.40 10.17
NIST 15-Aug-2007 –14.73 1.31 2.69
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Fig. 4. Measurements of 1 G Ω standard S/N 9104 by all participants in SIM.EM-K2 and
the regression lines.

Fig. 5. Measurements of 1 G Ω standard S/N 9105 by all participants in SIM.EM-K2 and
the regression lines.



There were two linking laboratories: NIST and
the National Research Council (NRC) of Canada.
Figure 6 shows the degrees of equivalence with respect
to the KCRVs for the two comparisons as listed in
Tables 4 and 5. From (16) and (20), the Dk for k = 1,2
and their associate standard uncertainties cor-
responding to NIST and NRC were calculated. From
(17) to (24), D^ , the weighted mean of the Dk with
weights based on (18) and its standard uncertainty
(× 106) were calculated to the values D^ = –1.87 and
uD = 2.86. Note that the covariances of {Dn,KCRV} and
{D′

m,KCRV′ } were not provided by the reports for
CCEM-K2 and SIM.EM-K2. Instead, these terms,
which are necessary for calculating the uncertainties
of D^ and other terms, were calculated using (23) and 
(24). For the four remaining NMIs in the SIM.EM-K2
comparison, which did not participate in CCEM-K2,
the degrees of equivalence of their national standards
with respect to the KCRV of CCEM-K2 comparison
were calculated using (25). Their corresponding
standard uncertainties were calculated from (28) and
are listed in Table 6.

Thirteen NMIs participated in the CCEM-K2
comparison but did not participate in the SIM.EM
comparison. Similarly, four NMIs participated in
the SIM.EM-K2 comparison but did not participate
in the CCEM-K2 comparison. Figure 6 shows the
degrees of equivalenceof the national measurement
standards with respect to the KCRVs for the two
comparisons. In Fig. 6, the solid squares represent
the degrees of equivalence of the CIPM national
measurement standards with respect to the CIPM KCRV,
i.e., Dn,KCRV (n = 1,…, 15) for CCEM-K2 while the open
circles represent the degrees of equivalence of RMO
national measurement standards with respect to the
RMO KCRV, i.e., D′

m ,KCRV′ (m = 1, …, 6) for SIM.EM-
K2. For the four non-linking laboratories in the RMO
comparison, the degrees of equivalence of the RMO
national measurement standards with respect to the
CIPM KCRV were calculated by (25) and represented
by solid triangles. Pair-wise comparisons between
the NMIs of these two groups, i.e., their degrees of
equivalence and their associate standard uncertainties
were calculated using (29) to (31) and are listed in
Table 7.
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Table 4. The degrees of equivalence (× 106) of national measurement standards with respect to KCRV and their standard uncertainties (× 106) in
CCEM-K2 for 1 G Ω

NIST NRC BNM- NPL PTB CSIRO- MSL CSIR-
LCIE NML .NML

Di, KCRV – 0.68 – 0.80 – 1.84 – 7.73 – 2.69 1.51 4.03 –53.47
uDi, KCRV

2.67 6.03 5.35 3.10 3.79 19.39 1.36 172.00

SP OFMET IEN NMi- KRISS NIM VNIM
VSL

Di, KCRV – 2.15 2.31 1.88 –32.90 – 2.03 – 1.20 – 0.63
uDi, KCRV

2.51 6.76 5.67 11.00 3.26 1.97 1.63

Table 5. The degrees of equivalence (× 106) of national measurement standards with respect to KCRV and their standard uncertainties (× 106) in
SIM.EM-K2 for 1 G Ω

NIST INTI INMETRO UTE NRC CENAM

D′i, KCRV′ 1.94 –6.11 –2.92 – 3.14 – 4.72 5.28
uD′i, KCRV′

1.36 4.65 4.11 17.53 6.19 6.80



Volume 115, Number 3, May-June 2010
Journal of Research of the National Institute of Standards and Technology

190

Table 6. The degrees of equivalence (× 106) of four SIM national measurement standards with respect to KCRV from CCEM-K2 and their
standard uncertainties (× 106)  for 1 G Ω

INTI INMETRO UTE CENAM

D#
m, KCRV –7.97 –4.78 – 5.00 3.42

uD#
m, KCRV

4.92 4.41 17.60 6.98

Fig. 6. The degrees of equivalence of national measurement standards with respect to the KCRVs (× 106) for
the two comparisons. The linking laboratories are NIST and NRC. The solid squares represent the degrees of
equivalence of the CIPM national measurement standards with respect to the CIPM KCRV for CCEM-K2 while
the open circles represent the degrees of equivalence of the RMO national measurement standards with
respect to the RMO KCRV for SIM.EM-K2. The solid triangles represent the degrees of equivalence of the RMO
national measurement standards with respect to the CIPM KCRV for the four non-linking laboratories in the
RMO comparison.

Table 7. The degrees of equivalence (×106) of pairs of national measurement standards D#
nm and their standard uncertainties

#
6( 10 ) (in parentheses below the degrees of equivalence)

nmD
u ×

BNM- NPL PTB CSIRO- MSL CSIR-
LCIE NML NML

INTI 6.13 0.24 10.66 9.48 12.00 – 45.50
(7.23) (5.79) (6.20) (20.01) (5.14) (172.08)

INMETRO 2.93 –2.95 7.47 6.29 8.81 – 48.70
(6.90) (5.37) (5.80) (19.89) (4.65) (172.06)

UTE 3.16 –2.73 7.69 6.51 9.03 – 48.47
(18.38) (17.86) (18.00) (26.19) (17.66) (172.91)

CENAM –5.26 –11.15 –0.73 –1.91 0.61 – 56.89
(8.77) (7.62) (7.94) (20.62) (7.14) (172.15)

(Table 7 continued)



6. Conclusions

Statistical approaches have been developed recently
to deal with interlaboratory comparisons with linear
trends. In this paper, a statistical analysis is proposed to
link two interlaboratory key comparisons, where
both have the same nominal value or values of a same
magnitude and both show linear trends. The degrees

of equivalence, either with respect to the KCRV
of the CIPM KC for those laboratories that did not
participate in the CIPM KC or between any two
laboratories that participated in only one of the two
comparisons are obtained with their associated
uncertainties.
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INTI 5.82 10.28 9.85 –24.93 5.94 6.78 7.34
(5.59) (8.41) (7.57) (12.10) (6.03) (5.48) (5.38)

INMETRO 2.63 7.09 6.65 –28.13 2.75 3.58 4.15
(5.14) (8.12) (7.25) (11.90) (5.62) (5.02) (4.92)

UTE 2.86 7.31 6.88 –27.90 2.97 3.81 4.38
(17.80) (18.88) (18.52) (20.78) (17.94) (17.76) (17.74)

CENAM –5.56 –1.11 –1.54 –36.32 –5.45 –4.61 –4.04
(7.47) (9.76) (9.05) (13.07) (7.81) (7.39) (7.32)

SP OFMET IEN NMi- KRISS NIM VNIIM
VSL

7. Appendix

The derivation of Cov[Dk,KCRV, Dl,KCRV] when k ≠ l .

From (14)

The third equality holds because the measurements from any two different artifacts are statistically independent from
each other.
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When k ≠ l,
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The second equality is from Eqs. (14), (17), and (18) in [12].
For the third term of the last equality in (A.1),
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The first equality is from (10). We show that when k ≠ n,
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The third equality holds because Cov [Xk (p), Xn(p)] = 0 and from Eq. (16) in [12],

ˆCov[ ( ), ( )] 0 .np X pβ = (A.5)

From (A.3) and (A.4)
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ˆˆFrom (3), ( ) ( ) ( ) ( ). Thus,k k kp X p p t pα β= −
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Similar to (A.4),

From (A.6), and (A.7),

Since Var [Xk (p)] = u2
k(p), from (9) and (11), the last equality holds. Similarly, for the fourth term in the last

equality in (A.1),

as given by (23).
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From (A.1), (A.2), (A.8), and (A.9), when k ≠ l ,
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