
1. Introduction

As scientific markup languages proliferate, it is very
desirable to have a single scheme for handling scientif-
ic units of measure to facilitate moving information

between different domains. Since units are independent
of the software used, it is reasonable to separate units
from the technical data. An incorrect description of a
measurement unit can falsify an entire experiment.
Therefore, it is important that the handling of units be

Volume 115, Number 1, January-February 2010
Journal of Research of the National Institute of Standards and Technology

15

[J. Res. Natl. Inst. Stand. Technol. 115, 15-22 (2010)]

Improving Interoperability by Incorporating
UnitsML Into Markup Languages

Volume 115 Number 1 January-February 2010

Ismet Celebi

Physics Laboratory,
National Institute of Standards
and Technology,
Gaithersburg, MD, 20899

and

Wiesbaden Computer
Integrated Laboratory (WICIL),
RheinMain University of Applied
Sciences,
Wiesbaden, Germany

Robert A. Dragoset and
Karen J. Olsen

Physics Laboratory,
National Institute of Standards
and Technology,
Gaithersburg, MD, 20899

Reinhold Schaefer

Wiesbaden Computer
Integrated Laboratory (WICIL),
RheinMain University of Applied
Sciences,
Wiesbaden, Germany

and

Gary W. Kramer

Biochemical Science Division,
National Institute of Standards
and Technology,
Gaithersburg, MD, 20899

ismet06@gmail.com
dragoset@nist.gov
olsen@nist.gov
reinhold.schaefer@hs-rm.de
gary.kramer@nist.gov

Maintaining the integrity of analytical data
over time is a challenge. Years ago, data
were recorded on paper that was pasted
directly into a laboratory notebook. The
digital age has made maintaining the
integrity of data harder. Nowadays,
digitized analytical data are often separated
from information about how the sample
was collected and prepared for analysis and
how the data were acquired. The data are
stored on digital media, while the related
information about the data may be written
in a paper notebook or stored separately
in other digital files. Sometimes the
connection between this “scientific
meta-data” and the analytical data is lost,
rendering the spectrum or chromatogram
useless. We have been working with
ASTM Subcommittee E13.15 on
Analytical Data to create the Analytical
Information Markup Language or
AnIML—a new way to interchange and

store spectroscopy and chromatography
data based on XML (Extensible Markup
Language). XML is a language for
describing what data are by enclosing
them in computer-useable tags.
Recording the units associated with the
analytical data and metadata is an essential
issue for any data representation scheme
that must be addressed by all domain-
specific markup languages. As scientific
markup languages proliferate, it is very
desirable to have a single scheme for
handling units to facilitate moving
information between different data
domains.

At NIST, we have been developing a
general markup language just for units that
we call UnitsML. This presentation will
describe how UnitsML is used and how it
is being incorporated into AnIML.

Key words: analytical experiments;
AnIML; data storage; device integration;
interoperability; Markup Language;
Scientific Units of Measure; UnitsML;
Web services; XML.

Accepted: December 3, 2009

Available online: http://www.nist.gov/jres

appropriately developed to allow for the unambiguous
storage, exchange, and processing of numeric data.
Units of measure are not only needed by laboratory
automation systems, but nearly all other application
domains. Examples include: physics, chemistry,
materials, and mathematics. The field of aeronautical
and space engineering had the infamous Mars Climate
Orbiter problem. The loss of NASA’s Climate Orbiter
on September 23, 1999 was traced to a measurement
unit problem. The 125 million dollar space orbiter was
lost as it entered the orbit of Mars. Mission managers
have concluded that the cause of the mishap was con-
fusion over the type of units used to measure the
strength of thruster firings. The problem was due to an
error in communication between the Mars Climate
Orbiter spacecraft team in Colorado and the mission
navigation team in California. The peer review pre-
liminary findings indicate that one team used English
units (e.g., inches, feet, pounds) while the other used
metric units for a key spacecraft operation [1, 2].

Developers have requested a single language for
encoding units properties in XML. At the National
Institute of Standards and Technology (NIST), we are
developing a schema for encoding scientific units,
quantities, and dimensions in XML, named UnitsML
(Units Markup Language). The development and
deployment of a markup language for units will allow
for the unambiguous storage, exchange, and processing
of numeric data, thus facilitating the collaboration and
sharing of information. The usage of UnitsML in other
markup languages will prevent duplication of effort and
improve interoperability. Today there are many markup
languages based on XML that could incorporate
UnitsML including MathML (Mathematics Markup
Language), AnIML (Analytical Information Markup
Language), and AMDML (Atomic and Molecular Data
Markup Language), etc.

2. Extensible Markup Language

XML (Extensible Markup Language) is a standard
for the production of human and machine readable
documents. XML is a W3C (World Wide Web
Consortium)-recommended general-purpose markup
language for creating special-purpose markup lan-
guages. A markup language is a mechanism to describe
both markup and content in the same document. XML
defines the rules for the syntax and structure of such
documents. For a concrete XML application, the details
of the respective documents must be specified. This
requires the definition of structural components and

their arrangement within a document tree. XML is
therefore a standard for the definition of arbitrary
markup languages. A markup language like XML,
which is used for the definition of other languages, is
called a meta language. One of the main purposes of
XML is to facilitate the sharing of data across different
systems or software modules or the sharing different
types of data to be exported for interoperability or
archival purposes [3-5].

3. Analytical Information Markup
Language

Analytical Information Markup Language (AnIML),
is a markup language for analytical chemistry data that
is currently under development by ASTM subcom-
mittee E13.15. It is a combination of a highly flexible
core schema, a technique schema, and a set of analyti-
cal technique instance documents (ATID files). The
core schema defines containers for result data in a
generic manner. The ATID files are XML files, which
apply tight constraints to the flexible core. Each
ATID file refers to a specific analytical technique.
The organisation of ATID files is specified by the
technique schema. Extensions of ATID files are possi-
ble for vendor-specific, institutional-specific, and
user-specific parameters. The goal of AnIML is to
interchange and store analytical results and their meta
data [6].

More information about AnIML can be found on the
AnIML web site, http://www.animl.org/.

4. Units Markup Language

Units Markup Language (UnitsML) is a general
XML-based markup language for encoding scientific
units. It has a single schema for handling units, which
is desirable to facilitate moving information between
different data domains. The UnitsML schema is
designed for incorporating scientific units into other
XML documents or into any XML-based software.
Various tools are under development to assist in the use
of UnitsML.

“The value of a quantity is its magnitude expressed
as the product of a number and a unit” [7]. The value of
a quantity Q can be written as Q = N U, where N is the
numerical value of Q when the value of Q is expressed
in the unit U (Example: length = 5 m) [7]. UnitsML
does not describe the numerical value; it only describes
the unit.

Volume 115, Number 1, January-February 2010
Journal of Research of the National Institute of Standards and Technology

16

The main requirement for use of UnitsML is the
availability of its schema. It can be problematic for
each user to collect information on units and the
associated quantities and to define conversions to
other units. Alternatively, users can refer to unit defini-
tions from a third party database. Such a database
containing information on units, prefixes, quantities,
and dimensions encoded in the UnitsML schema is
under development at NIST. This database, called
UnitsDB, contains detailed units and dimensionality
information for SI units and an extensive collection of
common, non-SI units. The database includes informa-
tion on units, quantities, symbols, language-specific
unit names, and representations in terms of other units,
including conversion factors to reference units. In the
representations table, the units database describes all
units in terms of the seven SI (International System of
Units) base units [7]. In addition some units are
described in terms of related, appropriate units. Table 1
shows the expression of farad in the database. Recall
that a farad is a unit of capacitance equal to one
coulomb per volt. Reducing the definition of farad to SI
base units gives F = C · V–1 = m–2 · kg–1 · s4 · A2.

Figure 1 presents a few tables from UnitsDB and
shows how SI-derived units are stored in the database.

More information about UnitsML can be found on
the UnitsML website, http://unitsml.nist.gov/. More

information about SI units can be found at
http://www.bipm.org/ and http://physics.nist.gov/SP811/.

5. Ways to Incorporate UnitsML Into
Other Markup Languages

UnitsML has been designed to be a component
for inclusion into other markup languages. There are
several different ways to incorporate UnitsML into
other markup languages. These are referencing to the
schema, including the schema, importing the schema,
and redefining the schema elements.

5.1 Refer to the UnitsML Schema

UnitsML may be included in schema-based markup
languages by referencing the UnitsML schema in an
instance document. The W3C’s finalization of the XML
Schema specification allows greater flexibility and
specificity in defining constraints than are available
with DTDs (Document Type Definitions). One impor-
tant part of using schemas is being able to reference
them within other XML documents. Making a refer-
ence from within an XML document requires a declara-
tion of the XML schema instance namespace, a prefix
mapping (xsi), and associated URI (Uniform Resource
Identifier) to give access to the attributes needed for
referencing the XML schemas. If needed, there can be
defined a default namespace to provide a home for all
non-prefixed elements in the document. Once the XML
schema instance namespace is available, one can
provide the schemaLocation attribute within it.
The schemaLocation attribute consists of two values.
The first value, or argument, is the namespace,

Volume 115, Number 1, January-February 2010
Journal of Research of the National Institute of Standards and Technology

17

Table 1. Storage of the unit farad in UnitsDB

Base Unit Prefix Power Numerator

meter none –2
kilogram none –1
second none 4
ampere none 2

Fig. 1. Storage of SI derived units in UnitsDB.

which must be unique (URI), and the second is the
actual resolvable schema location (URL—Uniform
Resource Locator). In this case, the first referenced
schema location is the host schema and the second the
UnitsML schema. In the same way we could reference
a third, fourth, or additional schemas. There are many
more options for referencing schemas, using them with
and without namespaces. These options are document-
ed in the W3C XML Schema specification.

One way of incorporating UnitsML into AnIML
documents by referencing is to create compound docu-
ments that reference the AnIML core schema and
UnitsML schema. An example is shown in Listing 1.

Features of UnitsML can be incorporated into XML
instance documents by using the actual UnitsML
schema within the host schema. The problem with this
is the availability of the UnitsML schema. The follow-
ing methods are dependent on having the UnitsML
schema file (.xsd). The user could download the
UnitsML schema to make it available offline. In this
case, the user is responsible for updating the UnitsML
schema, when schema updates are available on the

UnitsML server. The UnitsML tool, which is described
below in “Tools under development,” should be able to
warn the user of this update and to update the offline
schema. To do this some changes must be made in the
host schemas. There are three ways that this can be
carried out:

5.2 <include> the UnitsML Schema

This directive results in the UnitsML schema being
brought into the host schema within the host schema
namespace. The element <include> brings in defini-
tions and declarations from the UnitsML schema into
the host schema. It requires the UnitsML schema to be
in the same target namespace as the host schema name-
space [8].

<xs:include schemaLocation = “unitsml.xsd”/>

Listing 2 shows an example of the include method on
an AnIML instance document. Compared with the
import example shown in Listing 3, we see the differ-
ence in namespaces.

Volume 115, Number 1, January-February 2010
Journal of Research of the National Institute of Standards and Technology

18

Listing 2. AnIML Core with UnitsML included in the schema.

Listing 1. AnIML Core with UnitsML Schema-Referencing.

5.3 <import> the UnitsML Schema

The import function behaves similarly to the include
directive with the difference that it is possible to import
elements from other namespaces. In the example
below, only the units element is imported from the
UnitsML schema [8].

<xs:import namespace="http://unitsml.nist.gov/2009"
schemaLocation="unitsml.xsd"/>
<xs:element ref="unitsml:units"/>

Using the import option, an AnIML data file would
look like the example shown in Listing 3. It shows
that the AnIML core namespace (xmlns:animlcore) is
different than the UnitsML namespace (xmlns:unitsml)
and that the units part of the document is described
completely in UnitsML. The following element of the
<UnitSet> element <Unit> is defined globally in the
UnitsML schema. Therefore since this example doesn’t
need information on prefixes, quantities, or dimen-
sions, it is possible to use the <Unit> element directly
without using the root element <UnitsML>.

5.4 <redefine> the Elements of UnitsML

The redefine directive can be used in place of the
include function. This directive, however, allows

elements from the UnitsML schema to be redefined to
meet current needs in the combined schema [8].

<xs:redefine schemaLocation="unitsml.xsd">

The redefined elements from the UnitsML schema
are placed here.

</xs:redefine>

The instance documents using redefined schema
elements look the same as those using the include
method. An example is given in Listing 2.

AnIML is a little different than other markup
languages because AnIML works with two schemas. It
has a core and a technique schema. In this case there
are actually three schemas, including the UnitsML
schema. Figure 2 shows one possible method of
incorporating UnitsML into AnIML. This example
requires that the AnIML client have real-time access to
the internet to get the information from the UnitsDB
database.

Table 2 summarizes the four options for incorporat-
ing UnitsML into a host markup language.

Volume 115, Number 1, January-February 2010
Journal of Research of the National Institute of Standards and Technology

19

Listing 3. AnIML Core with UnitsML imported in the schema.

Volume 115, Number 1, January-February 2010
Journal of Research of the National Institute of Standards and Technology

20

Fig. 2. Structural overview of incorporating UnitsML into a compound data file. The
event sequence is: 1. request; 2. response; 3. generating instance document.

Table 2. Overview of the ways to incorporate UnitsML into host markup language

Incorporation Method Reference Include Import Redefine

Different Namespace option Yes No Yes No
Redefine of elements option No No No Yes
Changes in host schema required No Yes Yes Yes

6. Tools Under Development

We are currently working on web services to process
queries that will return UnitsML code containing
information from the UnitsDB. A web service provides
integration over existing internet protocols, which makes
the service compatible with most operating
systems and programming languages. To use the web
service, clients are required to support the XML-based
Web Service Description Language (WDSL) and the
XML-based exchange protocol SOAP (formerly Simple
Object Access Protocol). Most recently developed web
services packages support these standards. Figure 3
shows how the UnitsML web services will work. The
service information could be published using the XML-
based UDDI (Universal Description, Discovery, and
Integration) protocol. Applications can look up web
services information to determine options to use. The
public interface to the web service is described by the
WSDL, an XML-based service description on how to
communicate using the web service. After the client
receives the information describing the services, the
communication between client and server uses the
SOAP protocol. The services in the UnitsML Server will
be written in Java and will use the JDBC (Java Database
Connectivity) driver to communicate with the database.
The internal processing of the XML file in the UnitsML
Server will be done using XML tools such as, a data
binding framework, SAX (Simple API for XML), and
DOM (Document Object Model) [3-5].

We are also working on a solution to manage offline-
stored units information in UnitsML for clients lacking a
real-time internet connection. With this tool, users will
be able to manage their own copies of UnitsML data and
will not be constantly dependent on access to UnitsDB.
The ability to edit and view available unit information
without specific XML knowledge will make the use of
UnitsML easier. The ability of the tool to connect to the
UnitsML web services and update the offline available
unit information is intended.

Development of the UnitsML schema has initially
taken place at NIST, but completion of the development
process should also include input from the international
scientific and engineering community. To this end, an
OASIS Technical Committee has been created to address
any needed changes in the schema and to publish a final
recommendation for UnitsML. The release data for
UnitsDB and the Web Services tool will be sometime
after the recommendation for the UnitsML schema has
been published.

Disclaimer

Certain commercial software products are identified
in this document. Such identification does not imply
recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply
that the products identified are necessarily the best
available for the purpose.

Volume 115, Number 1, January-February 2010
Journal of Research of the National Institute of Standards and Technology

21

Fig. 3. UnitsML Web Service.

Acknowledgments

The authors would like to thank Alexander Roth,
Ronny Jopp, Jens Bakoczy, Burkhard Schaefer and the
NIST UnitsML working group. This project is funded
by NIST’s Systems Integration for Manufacturing
Applications (SIMA) Program. SIMA supports NIST
projects, applying information technologies and
standards-based approaches to manufacturing software
integration problems.

7. References

[1] Mars Climate Orbiter Failure Board Releases Report.
h t t p : / / m a r s . j p l . n a s a . g o v / m s p 9 8 /
news/mco990930.html (accessed January 2010).

[2] R. Lloyd, Metric mishap caused loss of NASA orbiter;
CNN News: http://www.cnn.com/TECH/space/991110/mars.
metric.02/ (accessed January 2010).

[3] R. Monson-Haefel, J2EE Web Services; Addison Wesley:
Boston, MA, 2005, Vol. 4, pp 6-32.

[4] XML, from Wikipedia the free encyclopedia.
http://en.wikipedia.org/wiki/Xml/ (accessed January 2010).

[5] E. R. Harold, Processing XML with Java; Addison Wesley:
Vol. 3, pp 57-119, Boston, MA (2005).

[6] B. A. Schaefer, D. Poetz, G. W. Kramer, Documenting labora-
tory workflows using the Analytical Information Markup
Language. JALA 2004, 9 (6), p 375.

[7] E. A. Thompson and B. N. Taylor, Guide for the Use of the
International System of Units (SI); NIST Special Publication
811; National Institute of Standards and Technology,
Gaithersburg, MD, 2008.

[8] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn,
XML Schema Part 1—Structures Second Edition.
http://www.w3.org/TR/xmlschema-1/ (accessed January 2010).

About the authors: Ismet Celebi, a former NIST
Associate for the Office of Electronic Commerce in
Scientific and Engineering Data (ECSED) within the
Physics Laboratory at the National Institute of
Standards and Technology, was supported by the NIST
Systems Integration for Manufactuing Applications
Program and the Wiesbaden Computer Integrated
Laboratory (WICIL), RheinMain University of Applied
Sciences at the time the first draft of this paper was
written. Reinhold Schaefer is a retired professor from
Wiesbaden Computer Integrated Laboratory (WICIL),
RheinMain University of Applied Sciences and a
former President of the Association for Laboratory
Automation. Robert Dragost is the chair of the OASIS
Units Markup Language (UnitsML) Technical
Committee and is the manager of ECSED within
the Physics Laboratory at NIST. Karen Olsen is a

computer scientist of ECSED within the Physics
Laboratory at NIST. Gary Kramer is a Research
Chemist in the Bioassay Methods Group of the
Biochemical Science Division at NIST and chairs
ASTM Subcommittee E13.15 on Analytical Data. NIST
is an agency of the U.S. Department of Commerce.

Volume 115, Number 1, January-February 2010
Journal of Research of the National Institute of Standards and Technology

22

