
1. Introduction

In recent years, much progress has been made in the
study of quantum computation [1,2]. The first algo-
rithm arguing for computational speed-up due to quan-
tum mechanics was discovered in 1985 [3]. Deutsch
considered a mapping with two inputs and two outputs.
An oracle, which one might think of as a classical
black-box, evaluates functions of a bit by inputting
b ∈ {0, 1} and outputting f(b) ∈ {0, 1}. Two calls to
such an oracle are required to learn whether f is one-to-
one. The calls compute f(0) and f(1), and then the one-
to-one property holds when the values are distinct.
Since quantum mechanics is linear, a quantum function
evaluator (quantum oracle) must act on superpositions
of states.

(1)

A single call to this quantum oracle allows one to deter-
mine whether f(0) and f(1) are distinct [2, pg.36].
Several years later, Deutsch and Jozsa generalized the
algorithm to allow for multiple inputs and two outputs
[4]. Specifically, they describe a multi-argument func-
tion as balanced if its image holds two elements and the
preimage of each is the same size. Deutsch and Jozsa’s
algorithm then distinguishes between a constant and
balanced function using a single quantum oracle call.
Further generalizations [5] distinguish between func-
tions which are constant or else map onto an evenly
spaced subset of the unit circle {|z| = 1}.

We present a variant of such algorithms. Specifically,
suppose that we have a function f : {0, 1, 2, ..., N – 1}
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→ {0, 1, ..., N – 1}, where N = 2n for n some (integer)
number of qubits, so that the n-qubit state space is
N dimensional [2]. Let ω = e2π/N be the (2n)th root of
unity, and choose ψ0 ∈ [0, 2π). We say such an f(x) is
θ – concentrated about ψ0 if and only if

(2)

We say f(x) is θ-concentrated if and only if there exists
a ψ0 so that (2) holds. Using N – 1 bits and N evalua-
tions of the function (classical oracle calls), we may
determine with certainty whether f(x) is one-to-one.
Suppose instead one has a quantum oracle Uf encoding
an f(x) which is known to be either constant or concen-
trated. We here present an algorithm which uses O(1)
calls to Uf to distinguish between these cases, with arbi-
trarily high probability.

To describe Uf , we briefly review quantum data
spaces [2,6]. The state of a string of quantum bits is
encoded as a vector in a complex Hilbert space, say
|ψ〉 ∈ H. For qubit-states, the usual convention is that
the one-qubit state space is H1 = spanC{|0〉, |1〉}, where
this basis is Hermitian orthonormal. The n-qubit state
space is then the N = 2n tensor (Kronecker) product

(3)

The abbreviation |b1b2...bn〉 for |b1〉 ⊗ |b2〉 ⊗···⊗ |bn〉 is
typical, and the Hermitian inner product is that induced
by the tensor structure. At times, we further abbreviate
the bit-string b1b2...bn within the ket by the associated
integer, i.e., the binary expansion. Explicit description
of the oracle also makes it simpler to take 2n to be our
number of quantum bits. We then refer to a first regis-
ter and a second register, according to the tensor
decomposition H2n = Hn ⊗ Hn .

Given this, the conventions for the quantum oracle
box are as following. The oracle Uf effects a unitary
transformation of H2n which linearly extends

(4)

where y ⊕ f(x) denotes y + f(x) mod N and the tensor
symbols have been suppressed. Our quantum algorithm
then requires O(1) calls to Uf and O(n2) two-qubit gates
otherwise to distinguish with probability arbitrarily
close to one between the cases
• f(x) is one-to-one
• f(x) is θ-concentrated

Hence the quantum algorithm in this sense outperforms
a classical device using O(N) classical oracle calls to
determine whether f(x) is one-to-one with certainty.
However, consider instead a probabilistic classical
computer, capable of evaluating f(x) on a given random
x, 0 ≤ x ≤ N – 1. With a single oracle call, such a classi-
cal probabilistic computer is likely to detect f(x) is not
θ-concentrated with probability 1 – . Hence f(x) is
one-to-one, by hypothesis. Making use of a single
quantum oracle call, our quantum algorithm identifies
any one-to-one function with certainty, and it correctly
identifies a θ-concentrated f(x) with probability cos2θ.
Taking f(x) one-to-one or θ-concentrated, each with
probability  , further demonstrates that the quantum
algorithm outperforms the classical probabilistic algo-
rithm on average for 0 < θ < 0.3301 rad, with maximal
quantum outperformance at θ = sin–1    ≈ 0.1620 rad.

2. A Solution with No Quantum Oracle

This section applies to any f : {0, 1, ···, N – 1} → {0,
1, ···, N – 1} whether N = 2n or not. In the sequel,
choosing N = 2n makes possible small quantum Fourier
transform circuits, i.e., efficient quantum implementa-
tions of the Fourier transform of Z/NZ.

To determine whether f(x) is one-to-one, proceed as
follows. We suppose a classical oracle capable of eval-
uating f(x) and a memory block of size N bits.

Initialize each memory bit to 0
for (j=0; j<= N-1; ++j)
{ Use oracle to compute f(j)

if[ (bit # f(j)) = 1]
{ report not 1-1

return }
Assign 1 to bit f(j) }

report 1-1

Moreover, note that there can not exist any oracle-
based algorithm which determines whether f(x) is one-
to-one while only using N – 1 or fewer calls to the clas-
sical oracle which evaluates f(x).

Since the quantum algorithm will only decide
between the one-to-one and θ-concentrated cases with
probability very close to one, we also consider compet-
itive probabilistic classical algorithms. For simplicity,
suppose now f(x) is either one-to-one or θ-concentrated
about 0, i.e., ψ0 = 0 in (2). Given a random number gen-
erator, the following algorithm is immediate:
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Choose a random 0 ≤ x ≤ N – 1
Evaluate f(x)
if [ωf(x) ∉ exp(i[–θ, θ])]

report f(x) is 1-1
else

report f(x) is likely concentrated

The probabilistic algorithm fails if and only if f(x) is
one-to-one and yet ω f(x) ∈ exp(i[–θ, θ]), roughly with
probability 1 – for n large.

3. A Quantum Variant of Deutsch-Jozsa

The following algorithm exploits a quantum oracle
Uf per Eq. (4). It requires two quantum registers, each n
bits long.

To distinguish a concentrated from a one-to-one f(x): 

1. Prepare the first register as |0〉⊗n and the second as
|1〉⊗n. Thus the original data state is |Φ〉 = |Φ1〉 ⊗ |Φ2〉 =
|0〉⊗n|1〉⊗n.

2. Let ω = e2πi/N, for N = 2n. As is well-known [2], there
is a quantum circuit, polynomial in size in n, which
implements the quantum Fourier transform map:
F : Hn → Hn linearly extending |y〉 ω yz|z〉.
Apply F to the second register, for |Φ〉2 = F|N – 1〉 =

ω–z|z〉.

3. Recall the one-qubit Hadamard gate given by H =
(–1) jk| j〉 〈k|. Then apply H⊗n to the first register,

with the result that

(5)

Thus the first register now holds an equal superposition
of all states. As preparation for the next step, we also
note the full data state:

(6)

4. We next apply the quantum oracle Uf . The result is

(7)

Note that a single call to Uf implicitly uses every value
of f(x) for a state in full superposition, such as |Φ1〉.

5. We reindex a sum in the last equation as follows. For
fixed x = x0, label z = y – f(x0). Then ω–y|y ⊕ f(x0)〉 =

ω z+f (x0)|z〉. As this is true for all x0, we have

(8)

The next step is to disregard the known data |Φ2〉 in the
second register.

6. Apply a Fourier transform to the retained register
for

(9)

7. Measure the probability that |Φ1〉 is |00 ... 0〉. Recall
that the probability of this classical outcome is its
square of the amplitude (i.e., coefficient) of |00 ... 0〉 in
the coherent superposition |Φ1〉. (9),

(10)

8. Should the classical bits 00 ... 0 be observed, assert
that f is concentrated. Else assert that f is one-to-one.

We briefly comment on the quantum computational
resources consumed. Besides the 2n-qubits, O(n) local
computations and two n-qubit Fourier transforms are
required. The latter require O(n2) gates [1].

How likely are the assertions of the last step to be
correct? Observing |Φ1〉 = |00 ··· 0〉 has probability of
zero if f(x) is one-to-one, since ω j = 0; we prove
below that this observation has probability at least
cos2θ if f(x) is θ-concentrated. Hence, to distinguish
any one-to-one f(x) from a θ-concentrated f(x) using Uf

with probability 1 – ε, run at least T independent trials
of the above for ε > sin2Tθ. In terms of ε, as log sin θ <
0 we demand T > .
Proposition: Let f : {0, 1, ..., N – 1} → {0, 1, ..., N –
1}, N = 2n be θ-concentrated, and continue to denote
ω = e2πi/N. Then
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(11)

Hence, the |0〉 coefficient of the output |Φ1〉 is 0 if f(x) is
one-to-one. On the other hand,

(12)

Proof: First, recall that as an Nth root of unity, ω = e2πi/N

solves zN – 1 = 0. Then
• zN – 1 = (z – 1)
• ω ≠ 1
• For f(x) one-to-one, 

Thus Eq. (11) follows.
Suppose on the other hand that f(x) is concentrated.

Then ω f(j)–iψ 0 = aj + ibj for ψ0 per Eq. (2), and moreover
cosθ ≤ aj ≤ 1.

(13)

This concludes the proof of Eq. (12).

4. Comparison of Quantum to Classical

We finally compare the probabilistic classical algo-
rithm with the quantum algorithm above, allowing each
a single oracle call. For simplicity we suppose ψ0 = 0 in
(2); this hypothesis favors the classical algorithm. Also
for simplicity, we suppose f(x) is equally likely to be
either concentrated or one-to-one.

Thus f(x) is either one-to-one (event O) or θ-concen-
trated (event C) with probability . Suppose the classi-
cal probabilistic algorithm makes one oracle call and
then guesses f(x) is concentrated if ω f (x) lies within the
sector exp(i[–θ, θ]) and one-to-one else. If f(x) is θ-
concentrated, then the classical algorithm makes a cor-
rect guess (event GC). In the one-to-one case, the prob-
ability of a correct guess is approximately 1 – . So

Prob(Gc) = Prob(GC|O)Prob(O) + Prob(GC|C)Prob(C)

(14)

If multiple oracle calls are allowed, it will help to recall
x from previous trials and force the oracle to evaluate
new values. However, as N = 2n is expected to be large,

this is a minor consideration, and 1 – is approxi-
mately the probability of making a correct guess after
l-trials.

In contrast, consider the quantum algorithm. It
guesses f(x) is concentrated if |00 ··· 0〉 is observed and
guesses one-to-one else. Thus, in contrast to the classi-
cal algorithm, the quantum algorithm never fails if f(x)
is one-to-one. If f(x) is concentrated, then the quantum
guess is correct with probability of at least cos2θ. Thus

Prob(GQ) = Prob(GQ|O)Prob(O) + Prob(GQ|C)Prob(C)

(15)

Thus the appropriate comparison of the probabilistic
and quantum algorithms might be quantified by the dif-
ference Prob(GQ)–Prob(GC), i.e., the quantum approach
is preferable for those θ with cos2θ ≥ 1 – , i.e., sin2θ ≥

. The maximum difference occurs at θ =
0.1620 rad, while applying Newton’s method to sin2θ –

shows that the quantum approach is preferable given
0 < θ < 0.3301 rad. The right boundary of the interval
is approximate.
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