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1. Introduction

For a long time, an indentation test, usually referred to
as a hardness test, has been the most convenient method
for assuring the quality of the mechanical properties of
engineering materials. Among the various hardness test
methods, the Rockwell hardness (HR) test is the most
widely used method for testing metals and other materi-
als due to its simplicity and quickness of execution. In
spite of its broad application, Rockwell hardness is not
sufficiently standardized at the international level. There
are differences in the HR scales of different countries.
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This could result in technical barriers to global manu-
facturing and international trade. Since 1997, NIST and
other national metrology institutes have been working
on the establishment of worldwide-unified Rockwell
hardness scales [1]. Among the different Rockwell
hardness scales, the Rockwell C hardness (HRC) scale
is the most widely used. It employs a diamond indenter,
a 98 N (10 kg) preliminary test force and a 1471 N
(150 kg) total test force. The HRC value is calculated
from the net increase in the penetration depth, as the
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force on the diamond indenter is increased from the
preliminary force to the total force and then returned to
the preliminary force. The shape of a Rockwell diamond
indenter is conical with a 120° included angle blending
tangentially with a spherical tip of 200 wm radius.

There have been many studies that deal with indenta-
tion tests using different indenter geometries, such as
a spherical indenter (Brinell test), a conical indenter
(Cone hardness, HC, O’Neill [2]) and a diamond
pyramid indenter (Vickers test, or HV). However,
limited studies are found on Rockwell indentation using
a spheroconical-shaped diamond indenter. There is an
obvious need to increase the understanding of Rockwell
hardness tests by correlating results and interpretation
with a sound mechanical analysis.

The Rockwell indentation process is conventionally
classified into purely elastic, elastoplastic transition and
fully plastic regimes. This process is affected by the
material’s strain hardening, strain-rate dependency
and relaxation. Historically, the development of the
indentation field, or contact mechanics, stems from the
pioneering research of Heinrich Hertz (1882), which
yielded the solution for the frictionless contact of two
elastic bodies of ellipsoidal profile. Hertz’s analysis still
forms the basis of the design procedures used in many
industrial situations involving elastic contact. The Hertz
theory is restricted to frictionless surfaces and perfectly
elastic solids. Since 1882, the subject of contact
mechanics has seen considerable development. Many of
the essential results have been summarized [3]. More
recent advances contain not only linear elastic contact
theories but also include inelastic behavior [4]. Analyti-
cal solutions to plastic contact problems are essentially
confined to slip line theories of rigid-perfectly plastic
solids with simple geometries. Driven by the need to
further understand this complicated field of mechanics,
a finite element analysis (FEA) method was applied to
analyze indentation processes. FEA was first applied to
analyze the indentation of elastic-plastic solids under
plane and axisymmetric conditions by Hardy et al. [5]
and Lee et al. [6], respectively. Since then, FEA has
been used by many researchers [7-13] as a general
method for contact indentation studies.

The difficulties associated with analyzing indentation
problems come from the presence of an unknown
and moving contact boundary, nonlinearity and time-
dependency. To avoid these difficulties, or at least
replace them with more tractable ones, self-similarity
was used in the analysis of an intermediate fixed
boundary in place of the changing boundary. Linear
elastic similarity has been used for a long time.
From the late 1980s, self-similarity was applied to non-
linear material properties. Hill et al. [14] utilized self-
similarity, in particular, for Brinell indentation of a
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power-law solid, aided by a specially designed finite
element procedure. His investigation was based on a
material model with no inherent history dependence,
i.e., nonlinear elasticity. The procedure was to use an
intermediate flat die field followed by cumulative
superposition to analyze indentation of nonlinear solids
by curved dies. Using the self-similarity method,
indentation of a power law creeping solid was studied by
Hill [15], Bower et al. [16] and Stordkers and Larsson
[17]. Ogbonna et al. [18] extended it to ball indentation
of a transient creep solid. This technique proved to be
efficient and was beneficially employed to obtain highly
accurate solutions for Brinell indentation and also for
strain-hardening plastic solids by Biwa and Storakers
[19]. They later extended the analysis to other shapes.
Although the idea is an old one in terms of linear elastic-
ity, apparently the self-similarity approach had never
been tried for nonlinear solids where ordinary super-
position principles fail to apply.

While complete analysis of fully inelastic behavior is
still difficult to achieve by analytical methods, use of a
computational method is a powerful tool for obtaining
the indentation field when boundary conditions and
natural time must be considered simultaneously. After
applying FEA to obtain more detailed results, Bower et
al. [16], Storakers et al. [17] and Ogbonna et al. [18]
transformed the procedure by Hill [15] to an inter-
mediate rate problem and used the commercial FEA
software ABAQUS employing natural time as an
essential variable. Biwa and Stordkers [19] and
Storakers et al. [20] also applied ABAQUS to an
elastic-plastic procedure.

Although many studies have been made on general
geometric indenters, having axisymmetric and non-
axisymmetric ball and cone shapes, little research can
be found on spheroconical-shaped indenters. Generally,
when a cone shape is analyzed, the tip radius is consid-
ered zero or so small that it can be ignored. However,
experiments have shown that the tip radius of a
Rockwell diamond indenter significantly affects the
HRC value and cannot be neglected. Ciavarella et al.
[21, 22] proposed the solution for a shallow conical
indenter with a rounded apex in their study. The indenter
was composed of two parts that included the conical
and spherical tip that avoided the singularity of the
conical tip. His method was still limited to elastic
materials. However, for an HRC hardness test, the
indentation process includes plastic deformation. To
solve this combined spherical and conical plastic
indentation problem, the self-similarity method was
used here for the Rockwell indenter geometry. The aim
is to apply the self-similarity method to the specified
Rockwell indenter geometry and offer an efficient
solution for describing strain hardening and strain
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rate-dependent materials. We choose an analytical
model for the indenter geometry, which is an approxi-
mation to the spheroconical Rockwell indenter but
which allows us to use the principle of self-similarity
and derive analytical results that closely approximate
Rockwell indentation results. This enables us to predict
trends and check the results of more detailed finite
element analyses.

In Sec. 2, we discuss the profile shape function for a
Rockwell diamond indenter. The governing equations
and boundary conditions in the indentation process
are discussed in Sec. 3. In Sec. 4, the self-similarity
simplification approach is analyzed in detail as it is used
to obtain displacement, stress and strain distribution
information for a Rockwell indentation from flat die
indentation results. The analytical results, including the
effects that material strain hardening, strain rate depen-
dency, and indenter geometry have on the indentation
depth, are discussed in Sec. 5.

2. Profile Shape Function for the
Rockwell Diamond Indenter

At the beginning of the analysis, it is necessary to
know the governing equations and boundary conditions
in a strain hardening half-space indentation process (see
Fig. 1). In Fig. 1, x;, x, (perpendicular to the drawing
surface) and x; define a spatial coordinate system, L is
the applied force, / is the indentation depth, and a is the
maximum contact radius. One key problem in analyzing
Rockwell indentation contact is its changing boundary
condition. Since the Rockwell indenter is made of
diamond and is much harder than the specimen, for
simplification, it can be considered as a rigid body.

Fig. 1. Indenter shape and its indentation of a half-space.

Referencing Fig. 1, Bower et al. [16] expressed the
general curved indenter profile with the following
equation,
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f(ry=r"/D"", n>0, D>0 1)

where r [r = (x] + x3)'"?] is the radius of each horizontal
cross-section of the indenter, f(r) is the indenter profile
function, and D and n are indenter geometric constants
related to the indenter’s cone angle and curvature. The

f(r) function can be used to model several indenter

geometries of practical interest. Its functional form
allows us to apply the principle of self-similarity later.
Up to now, only ball- and cone-shaped indenters have
been discussed. For the cone-shaped indenter, n = 1 and
D" =tanB, where B is the cone angle. Alternatively,
for the ball-shaped indenter, n = 2, and D is the diameter
of the ball, D>>r. Hence, Eq. (1) can be used to
approximately express the Rockwell indenter profile.
To find the suitable values for the constants n and D, let
us first look at the profile of the Rockwell indenter. It
can be described by the following two distinct functions:

" {200—\/2002—;’2, 7 =100 pm
g(r)=

200 — V2002 - 100% + ( — 100) tan 30°, > 100 pm )

It is obvious that Eq. (2) can only be approximated by
Eq. (1). To obtain a suitable approximation, we let the
difference between the Rockwell indenter ideal profile
(Eq. 2) and estimated profile (Eq. 1) be minimized, then
the equation can be written as

1 (" .
dq:E dr =min .
0

3

g(r)—f(r)

where R is the maximum contact radius on the indenter
profile when testing soft material. For the Rockwell
indenter, n only can be chosen between 1 and 2. From
our previous HRC experiments, it was found that R is
400 wm. Integrating r from O to R in Eq. (3), we obtain
n=1.4and D = 1982 pm. For these values of n and D,
the difference dg between the estimated and the ideal
indenter profile is less than 4 %. It was also found that
the value of n primarily changes the slope of the inden-
ter profile as shown in Fig. 2, affecting both the tip
radius and cone angle, while D is mainly related to the
cone angle.
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Fig. 2. Comparison of estimated profiles and ideal Rockwell indenter profile.

3. Governing Equations in the
Indentation Process

For the indentation analysis, it is necessary to know
the governing equations and boundary conditions in the
indentation process by a Rockwell indenter as illus-
trated in Fig. 1. It is assumed that the indenter is rigid
and pressed normally into the test surface. By imposing
indentation depth &, the surface boundary u; can be
described as

uy=h-f(r),r<a.

“

The analysis is constrained to a small indentation depth
such that the displacements and strains under the inden-
ter can be considered to have a linear relationship. Thus,
the small strain tensor € is related to the displacement
u; as

Lo o)
81j_2<axj+axi)» (l?.]_l? 2’ 3) (5)
The corresponding strain rate can be expressed as
- L (2, o)
£j=5 <ax_, + ax, (6)

where u;(x;)is the velocity. The dot denotes differentia-
tion with respect to some monotonically increasing
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time-like parameter ¢, though not necessarily relying
on natural time. Equations (5) and (6) are called
compatibility equations.

Generally, a simple uniaxial test is used to determine
the material behavior. The equivalent stress o.q is
regarded as a unique function of the equivalent strain &4
and the equivalent strain rate €., The material exhibits
stain hardening with strain rate-dependent yield
strength. The constitutive equation can be expressed in
the uniaxial form as

O-eq = 0'08;;/5"% (7)
It can be expressed in the more general form as
J€
=g 2«
o= 0. (®)
7 q asij
or
. 90
Ejj = E¢q (9)
J 80',-/-

where o is a function of the stress deviator Sj; that can
be written as

ke,

y (10)

1
3 Okk 6ij = O¢q

Sij=0y -3

where the repeated indices of oy are summed.
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In the case of both incompressibility and isotropy,
the equivalent stress and strain rate are calculated as
follows,

3 . 2 ..
O =\5 SySii s Eea = \3 &€y >
Eq= féeq dt

These are of the familiar von Mises type.

The parameters N and M can be identified as expo-
nents representing strain-hardening and strain rate-
sensitivity, respectively. When N — 0, the equation
represents nonlinear viscous flow or stationary creep,
while when M — 0, the equation represents strain-
hardening plastic flow.

The stress field o, is related to the strain by the above
constitutive Egs. (8) and (9). In the absence of body
forces, the stresses must satisfy an equilibrium equation:

Y

and

(12)

60’,-]-

(9.Xj O’

13)

for each i, where a sum over j is assumed. Since
a Rockwell indenter is made of diamond, it can be
modeled as a rigid body, and the normal displacement
imposed by the indenter can be obtained by substituting
Eq. (1) into Eq. (4),

n

r

us=h—-—-, r=a. (14)

The boundary conditions between the indenter and the
half-space in the frictionless case are

z=h, o3=053=0, r=a

o3=0p3=01=0, r>a. (15)

In addition, we assume that the stresses approach to zero
at infinity.

The above equilibrium equation [Eq. (13)], compati-
bility Egs. (5) and (6), constitutive Eqgs (7), (8) and (9)
and boundary condition Eqgs. (14) and (15) provide
the basis for the solution of the half-space indentation
problem.
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4. Self-Similarity Simplification
Approach

The concept of self-similarity was first applied
to linear materials for axially symmetric cases by
Mossakovski [23] and Spence [24]. The spatial self-
similarity of contact for isotropic linear elastic materials
was established by Galanov [25, 26] and Borodich [27].
For non-linear power-law materials, it was discovered
by Galanov [25] and Borodich [28] in isotropic and
anisotropic cases respectively. Later it was applied to
creeping materials by Bower et al. [16] and Storékers et
al. [17]. Making use of the concept of self-similarity
provided strikingly simple solutions to general problems
involving the indentation of a deformable half-space
by a rigid body for materials exhibiting power law
hardening and strain rate dependent behavior. For
Rockwell indentation, the contact area increases with
the load. This changing boundary condition combined
with nonlinear material behavior, large strain, and time
dependence makes the indentation analysis problem
complicated for both analytical and computational
approaches. However, recent works have shown that
indentation of a power-law material by a punch is
self-similar, even in the presence of friction [20, 29], so
that the complete loading process in such cases can be
described by solving a simple flat die problem with
fixed boundary conditions. By using the self-similarity
method, a transformation of field variables is introduced
to convert the changing boundary condition problem to
a stationary one that does not depend explicitly on the
maximum indentation contact radius, a. Hence the
Rockwell indentation problem is simplified by solving
the problem of a flat die indentation on a strain-rate-
dependent material. Therefore, the displacement, strain
and stress in the test material can be cumulatively
superposed to an intermediate flat die solution. While
the cone part of the indenter will introduce large
rotations and limit the rigorous applicability of small
strain theory and self-similarity, others [16] have
used this approach with success and good agreement
with experiments. Since the spheroconical indenter is
between a cone and a sphere, the rotations will be less
and the applicability of the self-similar approach will be
even more valid.

The self-similarity principle basically says that for an
indenter with a simple shape, like a cone or a flat, the
shape of the stress field for a deep indentation is geo-
metrically similar to that for a small indentation. For the
transformation, it is assumed the scaled velocities and
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strain rates are independent of the contact radius a. To
realize this, Hill et al. [14], Bower et al. [16], Stordkers
et al. [17, 20], Biwa and Storékers [19] considered pure
kinematic scaling as

r=ar (16)

Xi= Cl},’ (17)

i (x,a) = (%) (18)
ey = (Lo, (19)
ey =(24) 2, 0)
awo=all) (L) ma e

where the scaled variables (~) and () are independent of
the maximum indentation radius a. By substituting Egs.
(17), (18), and (20) into Eq. (6), it can be seen that %
and & still satisfy the compatibility condition,

sl=t =
2 E)xj E)x,-
Then the velocity boundary condition for r = a,

Eq. (15) is normalized by substituting Eq. (18) into
Eq. (15) as

E,‘j = (22)

1

Uy =1, =1 (23)
where 72 =%} + X3. This formally corresponds to
indentation by a rigid flat indenter with a unit radius.

Similarly by using the above variable substitutions,

the field equations can be simplified to:

o . 90y
Equilibrium equation: —=0 24)
9%
o ] 1 /ou; on
Compatibility equation: g =-|l—+—=] (25
2 a)Cj axi
Constitutive law:
~ ~ 00, "~ 08 . VM
8zj = & a-a_l] > Oy Oe 35,-,- , O =& & (26)
Boundary conditions:
u;=1, o3=053=0, ¥r=1
Oop=0n=o5=0, 7>1 27
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Once the intermediate flat die indentation results are
determined, we can superpose the intermediate results
to obtain the Rockwell indentation results. Now let us
look at how to accomplish the superposition.

By integrating Eq. (18) to equal Eq. (14), we obtain

rn

D (28)

1
f i (%) hdt=h—
0

By transforming variable ¢ to variable & and substituting
X3=r/a , then

r<a. 29)

h n
Lﬁ3 (r/a)dh:h—l%,

This transformation makes % relative to the maximum
contact radius a and to r, and eliminates time ¢. We then
rearrange Eq. (29) to

rn

D n-1 * (30)

"dh -
h(r)—f0 auz (r/s)ds=h-—

This is a particular Volterra integral Eq. [30]. Its
solution for h(a) is

n

a
h(a) = =5 (€29
where the eigenvalue ¢" is defined as
= Us(T) -
c'= l—nf —dr. (32)
1 r

By combining Eq. (31) and Eq (14), the vertical
displacement under the indenter is

(33)

From Eq. (33), it can be seen that the vertical
displacements at various contact points vary with the
indentation depth /. At the maximum contact radius a,
c" determines the magnitude of the displacement. In
particular when ¢” < 1, material is pushed below the
surface plane at the contact area, which is called
“sinking in.” While when ¢” > 1, material is piled up at
the side of the contact area, which is called “piling-up.”

Next, let us consider the general displacements based
on the integral of Eq. (18), which serves to superpose
the unit flat die indentations,

a

Ui (xk,a)=f d
0

s u; (xi/a)ds .

(34)
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By a series of mathematical operations of derivation,
substitution and variable transformation, and by refer-
ring to Eq. (31), Eq. (34) can be written as:

" i (G)dh

u; (-xk’a) :nh(r/a)"f 'r‘:)Hl d7 (35)

r

The equation for obtaining strain is derived in the
same way as that for obtaining displacement,

h r n-1 905ij(-szk)
e (o) = o) ) T

To obtain €, it can be seen that it is necessary to
integrate a generic point from x;/a to infinity.

In the Rockwell indentation test, the main concern is
the dependence of the resulting indentation depth on the
applied force. The total applied force L can be obtained
by multiplying o3; in Eq. (21) by differential the scaled
contact area A and integrating as

L= aza'()(g)N(%)M j (—T33)dA .

where the scaled contact area A is related to the real
contact area A as:

dr. (36)

(37

A=a’A . (38)

Substituting Eq. (31) into Eq. (37), we now express the
applied force L in terms of the indentation depth £ as:

N M
o J(=Din i B _
L=c’h?" D" (TO<D(H—])/HC) <ch l/rzD(n—])/n) (—o33)dA. (39)

This equation is crucial for determining the effects of
the applied force and indenter geometries on the inden-
tation depth. So we have described in detail how a com-
plicated Rockwell indentation problem, involving both a
moving boundary condition and time dependence, can
be transformed to a stationary flat die problem.

5. Analytical Results and Discussion

To obtain the Rockwell indentation analytical results,
the first step is to obtain the analytical results for an
intermediate Rockwell indentation problem based on the
equations derived above, which correspond to a unit flat
die indentation solution. Bower et al. [16] give the
solution for M =1, which is the linear viscous solid
material, using the analytical method. For other cases,
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the solution to the simplified flat die indentation prob-
lem has to be calculated using a finite element method.
FEA models for the flat die indentation problem have
been analyzed in detail by Bower et al. [16] for a power
law creep material, by Ogbonna et al. [18] for a rate-
independent and rate-dependent material, by Biwa and
Storakers [19] for a plastic flow, by Stordkers and
Larrson [17] for stationary creep, and by Storékers et al.
[20] for rate independent strain-hardening materials and
power law viscous materials. All of them have utilized
the flat die indentation approach to solve the ball inden-
tation problem. The flat die indentation solution involves
a singularity at the contact boundary similar to an
elasto-plastic crack tip field. Nevertheless, the self-sim-
ilarity approach has been shown to be applicable to
different indenter geometries to determine most of the
deformation parameters, such as the contact boundary,
indentation depth and indentation load [15-20].

Based on the flat die indentation FEA results, we can
derive the Rockwell indentation analytical results. Un-
like the Brinell hardness test, which is mainly concerned
with the average pressure under the indenter and maxi-
mum contact radius a, Rockwell hardness is determined
by the indentation load, relative depth, and indenter ge-
ometry. From Eq. (39), the indentation depth relation
can be calculated as follows,

2+nN—(M+N)

n —

L
2-N-M ) (i-D)@-M-N)/ |, M].

(40)

goc

where L corresponds to the dimensionless force applied
to the flat die indenter and is defined by the equation,

E = f(—agg)dz N (41)

and L can be obtained from the FEA results of a flat die
indentation. The constant ¢ for different material and
indenter geometries can be obtained from Eq. (32). It
denotes the transform factor from the flat die indenter to
the Rockwell indenter. The force factor L is only related
to the material parameters M and N. Since ¢ and L for
the intermediate flat die indentation are constants for
individual material, we shall use ¢ and [ from the FEA
result of Bower et al. [16] for the following parameter
relationship analysis and discussion. The constant ¢ for
n =14 is obtained from a linear interpolation of ¢ be-
tween n=1 and n=2. Based on plastic flow theory,
c(M) is very close to c(N) as compared to the creep
results [19,20], so ¢ (M) is set equal to ¢ (N) for the same
M and N value in our following analysis.
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5.1 Indentation Force and Depth Relation for
Different Materials

In Rockwell hardness indentation, the indentation
depth in reaction to certain indentation forces is of pri-
mary importance. By substituting the constants ¢ and L
into Eq. (40), the relationships for strain rate indepen-
dent and strain rate dependent materials are found as
follows.

5.1.1 Strain Rate Independent Material

When the strain rate dependence exponent M is O, the
material is strain rate independent, and the constitutive
Eq. (7) is reduced to

Oeq = 00 €Ny O0O<N<]1) (42)
which gives the power law response of a strain harden-
ing plastic solid. By using Eq. (40), the load-depth rela-
tionship for a strain hardening material of N from 0.01
to 1 is derived and shown in Fig. 3.

It can be seen that the indentation depth increases
with the increasing indentation force for the each strain
hardening material. As the strain hardening factor N
increases, i.e., the testing block material hardens less
strongly with strain, the indentation depth also increases
under the same applied force.

5.1.2 Strain Rate Dependent Material

When the strain rate dependence exponent M is dif-
ferent than 0, the material is strain rate dependent. When
considering both strain hardening and strain rate effects,
for the same value of M and N, ¢(M) and c(N) are
almost identical [19, 20]. We let ¢(M) = c(N) for the
same M and N values, as the sum of M and N increases
from 0.01 to 1.0. When substituting c¢(M) and ¢ (N) into
Eq. (40), the resulting applied force-depth relation for
strain rate dependent material with strain hardening is
shown in Fig. 4. It can be seen that indentation depth
increases with increasing indentation force for each
strain rate dependent material. When both the strain rate
dependent exponent M and the strain hardening factor N
increase, the material hardens less quickly with strain
and strain rate, and under the same applied force, the
indentation depth increases.

5.2 Effect of Rockwell Indenter Geometry
Parameter D on Indentation Depth

In a Rockwell hardness test, the indenter’s cone angle
affects the HRC value. From the indenter geometry
equation Eq. (1), the Rockwell indenter profile can be
plotted with changes in parameter D (Fig. 5). From Fig.
5, it can be seen that D mainly affects the indenter cone
angle, since all of the curves exhibit obvious differences

30
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—..—-N=06
N=0.5 /,/’
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Fig. 3. Indentation depth for different strain hardening material.
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only beyond the 100 wm range of the spherical tip of the
indenter. The Rockwell indenter cone angle increases as
parameter D increases. Substituting different values of
the parameter D into Eq. (40), we can predict the trend
of cone angle effect under the same applied force, same
material, and the same indentation speed (see Fig. 6). In
Fig. 6, the indenter geometry parameter n was chosen at
the reference value of 1.4, and D was varied around the
reference value of 1982 wm. From Fig. 6, it can be seen
that when D, or the cone angle increases, the indentation
depth decreases. This trend agrees with Barbato’s
experimental results [31, 32].

1.04 -
£ 1.03 -
o
)
s _ 1024
c N
_% § 1.01 4
€2 100
S <
0O 099 -
o £
2 0.98 -
b
S
[] 4
e 0.97
0.96 . .

5.3 Effect of Rockwell Indenter Geometry
Parameter n on Indentation Depth

To check the effect of the parameter n, we plotted the
Rockwell indenter profile with the changes in n (see
Fig. 7). From Fig. 7, it can be seen that both tip radius
and cone angle increase when the parameter n increases.
From Eq. (40), when applying the same force to the
same material under the same indentation speed, the
indentation depth decreases with n (see Fig. 8). In
Fig. 8, the indenter geometry parameter D is kept as the
reference value of 1982 wm, only 7 is changed. It can be

1800 1850 1900

T T T 1

1950 2000 2050 2100 2150

Indenter geometry parameter D (um)
Fig. 6. The effect of the indenter cone angle parameter D on the indentation depth from analytical

results.
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Fig. 7. The effect of n on Rockwell indenter geometry.
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Fig. 8. The effect of the indentation geometry parameter n on the indentation depth from analytical

results.

seen that when n, or both the cone angle and tip radius
increase, the indentation depth decreases. This trend is
also in agreement with Barbato’s experimental results
[31, 32].

6. Conclusion

The Rockwell indentation process has been analyzed
and modeled for both strain hardening and strain
rate dependent materials. To simplify the Rockwell
indenter’s spheroconical shape, it was fit to a general
function with a self-similarity property, which simpli-
fied the problems of complicated changing boundary
conditions and nonlinear material properties. It was
demonstrated that by principles of similarity and
cumulative superposition, the complicated moving
boundary problem could be simplified to an inter-
mediate stationary one for a flat indenter. The effects of
material strain hardening, strain rate parameters, and
indenter geometry parameters on the indentation depth
were analyzed. From the analytical results, it can be
seen that indentation depth decreases as the indenter
geometry parameters D or n (which correspond to
the cone angle or both the tip radius and cone angle,
respectively) increase.
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