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In theory, physical crystals can be repre-
sented by idealized mathematical lattices.
Under appropriate conditions, these repre-
sentations can be used for a variety of
purposes such as identifying, classifying,
and understanding the physical properties
of materials. Critical to these applications
is the ability to construct a unique repre-
sentation of the lattice. The vital link that
enabled this theory to be realized in
practice was provided by the 1970 paper on
the determination of reduced cells. This
seminal paper led to a mathematical ap-
proach to lattice analysis initially based
on systematic reduction procedures and the
use of standard cells. Subsequently, the
process evolved to a matrix approach based
on group theory and linear algebra that
offered a more abstract and powerful way
to look at lattices and their properties.
Application of the reduced cell to both
database work and laboratory research at

NIST was immediately successful. Cur-
rently, this cell and/or procedures based
on reduction are widely and routinely used
by the general scientific community: (i)
for calculating standard cells for the report-
ing of crystalline materials, (ii) for clas-
sifying materials, (iii) in crystallographic
database work (iv) in routine x-ray and
neutron diffractometry, and (v) in general
crystallographic research. Especially im-
portant is its use in symmetry determina-
tion and in identification. The focus
herein is on the role of the reduced cell in
lattice symmetry determination.
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1. Introduction

In theory, physical crystals can be represented by
idealized mathematical lattices. Under appropriate con-
ditions, these representations can be used for a variety of
purposes such as identifying, classifying, and under-
standing the physical properties of materials. Critical to
these applications is the ability to construct a unique [1]
representation of the lattice. The vital link that enabled
this theory to be realized in practice was provided by a
1970 paper on the determination of reduced cells by
Santoro and Mighell [2]. This seminal paper led to a
mathematical approach to lattice analysis initially based
on a systematic reduction procedure and the use of stan-
dard cells. Subsequently, the process evolved to a matrix

approach by Karen and Mighell [3,4] based on group
theory and linear algebra that offered a more abstract
and powerful way look at lattices and their properties.

Conceptually, the reduced cell is a unique primitive
cell based on the shortest three lattice translations. As it
can be determined from any cell of any lattice and
because it has an exact mathematical definition, it can
be used as a standard cell. As such in one way or
another it has been widely accepted and is routinely
used in virtually every crystallographic laboratory
worldwide. Application of this cell to both our database
work and our laboratory research at NIST was immedi-
ately successful. Currently, this cell and/or procedures
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based on reduction are extensively used: (i) in calculat-
ing standard cells for the reporting of crystalline materi-
als, (ii) in classifying materials, (iii) in crystallographic
database work (iv) in routine x-ray and neutron diffrac-
tometry, and (v) in general crystallographic research.
Especially important is its use in identification and in
symmetry determination.

1.1 Identification

At NIST, a new and highly selective analytical method
for the identification of crystalline compounds was cre-
ated [5-7]. In practice, this procedure—based on cell/el-
ement type matching of the unknown against a file of
known materials represented by their respective reduced
cells—has proved an extremely practical and reliable
technique to identify unknown materials. The unique-
ness of the procedure was first demonstrated using the
NBS TODARS System (Terminal Oriented Data and
Analysis and Retrieval System) at the Clemson ACA
Meeting in 1976.

Today the scientific community routinely uses this
identification strategy, as it has been integrated into
commercial x-ray diffractometers [8]. In addition, the
identification procedure—integrated into database dis-
tribution software—is routinely used in identifying un-
knowns against the various crystallographic databases.
Finally, because of its high selectivity, the method plays
a critical role in the linking of data on a given material
that appears in different scientific databases. This abil-
ity paves the way to the efficient use of multiple data-
bases in the knowledge-based design and characteriza-
tion of new materials.

1.2 Symmetry Determination

Because the reduced cell is a unique standard cell, it
can be used to determine the metric symmetry of a
material as described by Mighell, Santoro, and Donnay
in the International Tables for X-Ray Crystallography
[9]. The focus of this paper will be on the role of the
reduced cell and form in symmetry determination of an
original lattice and of the associated derivative lattices.
In addition, the impact of specialized reduced forms on
lattice properties such as lattice metric singularities will
be analyzed. Research has shown that there exists a
close link between metric and crystal symmetry. Conse-
quently, symmetry determination procedures based on
reduction and reduced forms are widely used in the
software that is associated with automated x-ray diffrac-
tometers. Likewise they are used by the crystallographic
data centers to critically evaluate symmetry.

2. Determination of the Bravais Lattice
and Conventional Cell

A cell is reduced provided it satisfies both the main
and special conditions for reduction as given in Table 1.
The main conditions are used to establish that a cell is
based on the three shortest lattice translations whereas
the special conditions serve to select a unique cell when
two or more cells in the lattice have the same numerical
values for the cell edges. Procedures and transformation
matrices for calculating this cell are given in [2] and in
Karen and Mighell [6] and are incorporated into the
computer program NIST*LATTICE [10]. From the re-
duced cell, the reduced form (a�a b�b c�c /b�c a�c a�b )
is determined which can then be used to determine the
metric symmetry1 of the lattice via table lookup proce-
dures. As the metric symmetry is highly correlated with
the crystal symmetry, such lookup procedures are
widely used in modern crystallography—e.g. in auto-
mated single-crystal x-ray diffractometers.

2.1 Classification of the 44 Reduced Forms

In Table 2, the 44 reduced forms and the correspond-
ing conventional cells are presented in a simple format.
This table is a slight modification of Table 5.1.3.1, which
was published in the International Tables for X-Ray
Crystallography (1969) [9]. It is a shortened version
with appropriate errata and addenda [11,12,13]. Table 2
gives the transformation matrices relating the reduced
cell to the corresponding conventional cell. For conve-
nience, the reduced forms are grouped into four cate-
gories: 1) a = b = c ; 2) a = b � c ; 3) a � b = c ; and 4)
a � b � c (i.e., no special conditions other than those
required for the reduced cell). Within each category, the
reduced forms are further divided into positive and neg-
ative reduced forms. To match a reduced form against
the table, one starts with the highest possible category
and works down. Once a match is found, the experimen-
talist can transform the reduced cell to the conventional
cell using the matrix given in the last column of the
table.

2.2 Rules for the Conventional Cells

The conventional cells obtained by using Table 2 are
logical cells for the reporting of crystallographic results
as they are based on both symmetry and metric consid-

1 The metric symmetry is the symmetry of the lattice only treated as
a mathematical entity. Consequently, it is equal to or greater than the
crystal symmetry but never less.
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Table 1. Conditions for a reduced cella

The cell is specified by three noncoplanar vectors: a , b , c . The cell matrix (a�a b�b c�c /b�c a�c a�b )
is defined by the dot products between these vectors.

A. Positive Reduced form, Type I cell, all angles < 90�

Main conditions:
a�a � b�b � c�c ; b�c � 1/2 b�b ; a�c � 1/2 a�a ; a�b � 1/2 a�a

Special conditions:
(a) if a�a = b�b then b�c � a�c
(b) if b�b = c�c then a�c � a�b
(c) if b�c = 1/2 b�b then a�b � 2 a�c
(d) if a�c = 1/2 a�a then a�b � 2 b�c
(e) if a�b = 1/2 a�a then a�c � 2 b�c

B. Negative reduced form, Type II cell, all angles � 90�

Main conditions:
(a) a�a � b�b � c�c ; |b�c | � 1/2 b�b ; |a�c | � 1/2 a�a ; |a�b | � 1/2 a�a
(b) (|b�c | + |a�c | + |a�b |) � 1/2 (a�a + b�b )

Special conditions:
(a) if a�a = b�b then |b�c | � |a�c |
(b) if b�b = c�c then | a�c | � |a�b |
(c) if |b�c | = 1/2 b�b then a�b = 0
(d) if |a�c | = 1/2 a�a then a�b = 0
(e) if |a�b | = 1/2 a�a then a�c = 0
(f) if (|b�c | + |a�c | + |a�b |) = 1/2 (a�a + b�b ) then a�a � 2 |a�c | + |a�b |

a To be reduced the cell must be in normal representation (type I or II) and all the main and special
conditions for the given cell type must be satisfied. The main conditions are used to establish that a
cell is based on the three shortest lattice translations. The special conditions are used to select a unique
cell when two or more cells in the lattice have the same numerical values for the cell edges.

erations. For cell edges not defined by symmetry, the
shortest edges are used. The following conventions ap-
ply: (1) In the hexagonal and tetragonal systems, c is
taken as the unique axis. (2) In the rhombohedral sys-
tem, the triply primitive hexagonal cell is used. (3) In
the orthorhombic system, the axes of the primitive,
body-centered, and face-centered cells are labeled to
obey a < b < c . The side-centered cell is taken as C-cen-
tered with a < b . (4) In the monoclinic system, b is taken
as the unique axis, and a and c are chosen coincident
with the shortest two translations in the net perpendicu-
lar to b . (To assure the shortest translations, the condi-
tions in the footnote for the specified centered mono-
clinic lattices must be checked. In those cases for which
the transformation matrix in the footnote premultiplies
a given table matrix, the resultant cell centering is indi-
cated in parentheses following the transformation ma-
trix.) The angle � is taken to be non-acute. This choice
allows primitive, side-centered, and body-centered cells.
In the primitive and body-centered cells a and c obey
a < c . The side-centered cell is taken as C-centered. (5)
In the triclinic system, the conventional cell is the re-
duced cell with a � b � c .

2.3 Adoption of the Conventional Cells by the
Scientific Community

Today, conventional cells as specified above for Table
2—or closely related cells—are widely used for the
reporting of crystallographic results in the scientific lit-
erature. For example, this is true for almost all structures
reported in the Journals ChemCom and Acta Crystallo-
graphica C . As soon as it was published, Table 2 was
integrated into the software associated with automated
single-crystal x-ray diffractometers that collect the data.
In addition, to facilitate the use of these conventions,
Volume A of the International Tables for Crystallogra-
phy has been expanded to give explicitly the required
space group settings in the monoclinic system (e.g. the
atomic positions in an I-centered cell).

The widespread acceptance and use of these conven-
tions has had a major scientific impact both in solving
structures and interpreting the results of structure deter-
minations. For example, use of the conventions has
made structure determination more efficient, prevented
duplicate structure determinations, helped to eliminate
errors in symmetry determination, and helped prevent
confusion especially in working with monoclinic struc-
tures, which include approximately 70 % of all organic
and organometallic crystalline compounds.
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Table 2. Metric classification of the 44 reduced formsa. From the nature of the reduced form, one can determine the reduced form number, Bravais
lattice, and the transformation matrix to the conventional cell

Reduced form matrix Cell
Reduced First row Second row Reduced transformation

form form Bravais reduced →
No. a�a b�b c�c b�c a�c a�b type lattice conventional

a = b = c

1 a�a a�a a�a
a�a
2

a�a
2

a�a
2

+ Cubic F 111/111/111

2 a�a a�a a�a b�c b�c b�c + Rhombohedral hR 110/101/111

3 a�a a�a a�a 0 0 0 � Cubic P 100/010/001

4 a�a a�a a�a �|b�c | �|b�c | �|b�c | � Rhombohedral hR 110/101/111

5 a�a a�a a�a �
a�a
3

�
a�a
3

�
a�a
3

� Cubic I 101/110/011

6 a�a a�a a�a
�a�a + |a�b |

2
�a�a + |a�b |

2
�|a�b | � Tetragonal I 011/101/110

7 a�a a�a a�a �|b�c |
�a�a + |b�c |

2
�a�a + |b�c |

2
� Tetragonal I 101/110/011

8 a�a a�a a�a �|b�c | �|a�c | �(|a�a |�|b�c |�|a�c |) � Orthorhombic I 110/101/011

a = b

9 a�a a�a c�c
a�a
2

a�a
2

a�a
2

+ Rhombohedral hR 100/110/113

10 a�a a�a c�c b�c b�c a�b + Monoclinic Cd 110/110/0 01

11 a�a a�a c�c 0 0 0 � Tetragonal P 100/010/001

12 a�a a�a c�c 0 0 �
a�a
2

� Hexagonal P 100/010/001

13 a�a a�a c�c 0 0 �|a�b | � Orthorhombic C 110/110/001

14 a�a a�a c�c �|b�c | �|b�c | �|a�b | � Monoclinic Cd 110/110/0 01

15 a�a a�a c�c �
a�a
2

�
a�a
2

0 � Tetragonal I 100/010/112

16 a�a a�a c�c �|b�c | �|b�c | �(a�a�2|b�c |) � Orthorhombic F 110/110/112

17 a�a a�a c�c �|b�c | �|a�c | �(a�a�| b�c |�|a�c |) � Monoclinic Ie 101/110/0 11

b = c

18 a�a b�b b�b
a�a
4

a�a
2

a�a
2

+ Tetragonal I 011/111/100

19 a�a b�b b�b b�c
a�a
2

a�a
2

+ Orthorhombic I 100/011/111

20 a�a b�b b�b b�c a�c a�c + Monoclinic Cb 011/011/1 00

21 a�a b�b b�b 0 0 0 � Tetragonal P 010/001/100

22 a�a b�b b�b �
b�b
2

0 0 � Hexagonal P 010/001/100

23 a�a b�b b�b �|b�c | 0 0 � Orthorhombic C 011/011/100

24 a�a b�b b�b �

b�b �
a�a
3

2
�

a�a
3

�
a�a
3

� Rhombohedral hR 121/011/100

25 a�a b�b b�b �|b�c | �|a�c | �|a�c | � Monoclinic Cb 011/011/1 00
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Table 2. Metric classification of the 44 reduced formsa. From the nature of the reduced form, one can determine the reduced form number, Bravais
lattice, and the transformation matrix to the conventional cell—Continued

Reduced form matrix Cell
Reduced First row Second row Reduced transformation

form form Bravais reduced →
No. a�a b�b c�c b�c a�c a�b type lattice conventional

a � b � c

26g a�a b�b c�c
a�a
4

a�a
2

a�a
2

+ Orthorhombic F 100/120/102

27 a�a b�b c�c b�c
a�a
2

a�a
2

+ Monoclinic If 011/100/1 11

28 a�a b�b c�c
a�b
2

a�a
2

a�b + Monoclinic C 100/102/010

29 a�a b�b c�c
a�c
2

a�c
a�a
2

+ Monoclinic C 100/120/001

30 a�a b�b c�c
b�b
2

a�b
2

a�b + Monoclinic C 010/012/100

31 a�a b�b c�c b�c a�c a�b + Triclinic P 100/010/001

32 a�a b�b c�c 0 0 0 � Orthorhombic P 100/010/001

33 a�a b�b c�c 0 �|a�c | 0 � Monoclinic P 100/010/001

34 a�a b�b c�c 0 0 �|a�b | � Monoclinic P 100/001/010

35 a�a b�b c�c �|b�c | 0 0 � Monoclinic P 010/100/001

36 a�a b�b c�c 0 �
a�a
2

0 � Orthorhombic C 100/102/010

37 a�a b�b c�c �|b�c | �
a�a
2

0 � Monoclinic Cc 102/100/0 10

38 a�a b�b c�c 0 0 �
a�a
2

� Orthorhombic C 100/120/001

39 a�a b�b c�c �|b�c | 0 �
a�a
2

� Monoclinic Cd 120/100/0 01

40 a�a b�b c�c �
b�b
2

0 0 � Orthorhombic C 010/012/100

41 a�a b�b c�c �
b�b
2

�|a�c | 0 � Monoclinic Cb 012/010/1 00

42 a�a b�b c�c �
b�b
2

�
a�a
2

0 � Orthorhombic I 100/010/112

43 a�a b�b c�c �
b�b � |a�b |

2
�

a�a � |a�b |
2

�|a�b | � Monoclinic I 100/112/010

44 a�a b�b c�c �|b�c | �|a�c | �|a�b | � Triclinic P 100/010/001

a Based on Table 5.1.3.1 of the International Tables for X-Ray Crystallography [9] and published revisions [11,12,13].
b If a�a < 4|a�c |
c If b�b < 4|b�c | � Premultiply table matrix by 001/010/101 (I centered).
d If c�c < 4|b�c |
e If 3a�a < c�c + 2|a�c | � Premultiply table matrix by 101/010/100 (C centered).f If 3b�b < c�c + 2|b�c |
g No required relationships between symmetrical scalars for reduced forms 26–44.
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3. Population Statistics

The reduced cell and reduced form are routinely cal-
culated using NBS*AIDS83 [14] for all compounds en-
tering the various crystallographic databases including
the Cambridge Structural Database [15], and the ICDD
Powder Diffraction File [16] and NIST Crystal Data
[17]. For organic compounds in NIST Crystal Data,
Tables 3, 4, and 5 give the metric lattice statistics for the
44 reduced forms, the 14 Bravais lattices, and the 7
crystal systems, respectively. These results are in sharp

Table 3. Reduced form frequency for 133 613 organic compounds

Reduced Bravais lattice Count % Total
form No.a

1 Cubic F 165 0.12
2 Rhombohedral R 324 0.24
3 Cubic P P 544 0.41
4 Rhombohedral R 441 0.33
5 Cubic I 137 0.10
6 Tetragonal I 123 0.09
7 Tetragonal I 231 0.17
8 Orthorhombic I 28 0.02
9 Rhombohedral R 281 0.21

10 Monoclinic C/I 2151 1.61
11 Tetragonal P 1499 1.12
12 Hexagonal P 921 0.69
13 Orthorhombic C 737 0.55
14 Monoclinic C/I 1277 0.96
15 Tetragonal I 304 0.23
16 Orthorhombic F 265 0.20
17 Monoclinic I/C 765 0.57
18 Tetragonal I 504 0.38
19 Orthorhombic I 188 0.14
20 Monoclinic C/I 667 0.50
21 Tetragonal P 1154 0.86
22 Hexagonal P 801 0.60
23 Orthorhombic C 327 0.24
24 Rhombohedral R 351 0.26
25 Monoclinic C/I 398 0.30
26 Orthorhombic F 386 0.29
27 Monoclinic I/C 2350 1.76
28 Monoclinic C 110 0.08
29 Monoclinic C 436 0.33
30 Monoclinic C 141 0.11
31 Triclinic P 13959 10.45
32 Orthorhombic P 27154 20.32
33 Monoclinic P 15937 11.93
34 Monoclinic P 20554 15.38
35 Monoclinic P 20048 15.00
36 Orthorhombic C 237 0.18
37 Monoclinic C/I 1201 0.90
38 Orthorhombic C 442 0.33
39 Monoclinic C/I 2718 2.03
40 Orthorhombic C 232 0.17
41 Monoclinic C/I 393 0.29
42 Orthorhombic I 136 0.10
43 Monoclinic I 138 0.10
44 Triclinic P 12458 9.32

a Reduced form number (see Table 2).

contrast to the corresponding population statistics for
inorganic materials for which the higher symmetry re-
duced forms, Bravais lattices and crystal systems are
more heavily populated.

Table 3 shows that most organic compounds (82 %)
crystallize in lattices that are characterized by only 6 of
the 44 reduced forms (31-35, 44). Furthermore, collec-
tively many materials (9.5 %) crystallize in the 13 side-
centered monoclinic reduced forms (10, 14, 17, 20, 25,
27-30, 37, 39, 41, and 43). Table 4 shows that most
organic compounds crystallize in a triclinic, mono-
clinic, or orthorhombic Bravais lattice with the primi-
tive lattice (87.1 %) by far the most common. Table 5
shows the distribution by crystal system. Only 5.8 % of
organic compounds are in the higher symmetry—rhom-
bohedral, tetragonal, hexagonal and cubic—crystal sys-
tems. A comparison of the statistics with those reported
earlier [18] shows the same general distribution. How-
ever, as molecules studied become larger and more
complex, the triclinic system becomes more common
(19.8 % vs 15 %).

Table 4. Population frequency for the 14 Bravais lattices for 133 613
organic compounds

Bravais lattice Count % Total

1 Triclinic P 26417 19.77
2 Monoclinic P 56539 42.32
3 Monoclinic C/I 12745 9.54
4 Orthorhombic P 27154 20.32
5 Orthorhombic C 1975 1.48
6 Orthorhombic I 352 0.26
7 Orthorhombic F 651 0.49
8 Rhombohedral P 1397 1.05
9 Tetragonal P 2653 1.99

10 Tetragonal I 1162 0.87
11 Hexagonal P 1722 1.29
12 Cubic P 544 0.41
13 Cubic I 137 0.10
14 Cubic F 165 0.12

Table 5. Population frequency by crystal system for 133 613 organic
compounds

Bravais lattice Count % Total

1 Triclinic 26417 19.77
2 Monoclinic 69284 51.85
3 Orthorhombic 30132 22.55
4 Rhombohedral 1397 1.05
5 Tetragonal 3815 2.86
6 Hexagonal 1722 1.29
7 Cubic 846 0.63
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4. Applications in Routine Diffractometry
and in Data Evaluation

4.1 Routine Diffractometry

The reduced cell is a standard cell that can be calcu-
lated [10] from any experimentally determined cell that
defines the lattice. From this unique cell, one calculates
the reduced form, which is then used to establish—by
matching against the 44 reduced forms in Table 2—the
metric lattice symmetry. Research with the crystallo-
graphic databases has proved that the metric and crystal
symmetry are almost always the same. Furthermore,
crystal symmetry can never exceed the lattice metric
symmetry (e.g., if the metric symmetry is triclinic, the
crystal symmetry must be triclinic). Consequently, as an
integral part of the strategy for symmetry determination
[19] outlined in Fig. 1, the experimentalist first estab-
lishes the metric symmetry and then the crystal symme-
try. Thus in modern diffractometry, automated proce-
dures use reduction procedures: (i) to establish if the
compound has previously been investigated [8] and (ii)
to obtain the metric symmetry.

4.2 Data Evaluation on Individual Entries

Because of the link between metric and crystal sym-
metry, the relationships in Table 2 are routinely used by
the Crystallographic Data Centers in the critical evalua-
tion of data. It is not uncommon for a compound to be
reported in a space group of too low symmetry. A re-
markable case of what can happen is illustrated in Table
6, in which, five independent determinations of 1,8-ter-
pin are given [20-24] in chronological order (left to
right). The first two papers report lattice parameters
only, whereas the latter three describe full structure
refinements. Reduction techniques prove that all five
papers report the same compound (i.e., the reduced
cells/compositions are identical). Note that for Lattice
IV, the compound is described in a C-centered mono-
clinic space group. However, inspection of Table 2,
reveals that the reduced form (reduced form num-
ber = 16) corresponds to an F-centered orthorhombic
lattice. In the final study (Lattice V), Marsh and Herb-
stein correct determination 4 and refine the compound
in the F-centered orthorhombic lattice. It is instructive
to note that the authors of determinations 4 and 5 make
no reference to determination 3, which was originally
correct!

4.3 Data Evaluation on Sets of Compounds

Experience in data evaluation has shown that experi-
mentalists sometime miss the symmetry for centered

↓

↓

↓

↓

↓

↓

↓

↓

Fig. 1. Symmetry determination: The reduced cell and reduced form
as a routine tool.

Bravais lattices. In such cases, the compound is often
reported in a crystal system of too low symmetry. For
example, sometimes a crystalline compound that is
rhombohedral is incorrectly reported in a C-centered
monoclinic space group. Likewise an F-centered or-
thorhombic compound (e.g. determination 4 in Table 6)
is sometimes incorrectly reported in a C-centered mon-
oclinic space group. Using a crystallographic database

Determine any primitive cell
of the lattice

Refine all six cell parameters

Verify that the cell is primitive:
Systematically check for possible subcells in

reciprocal space

Calculate reduced form:
(a�a b�b c�c /b�c a�c a�b )

Determine reduced form type:
1-44

Bravais lattice: Transform
reduced cell → conventional cell

Confirm crystal symmetry: Check
equivalence of appropriate

intensities

Check for extinctions

Space group or aspect
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Table 6. Crystallographic parameters reported for 1,8-terpin (C10H20O2�H2O) in Refs. [20-24]. Lattice IV was incorrectly reported as monoclinic.
However, the reduced form (No. 16) for Cell 4 shows that the lattice is metrically F-centered orthorhombic. Numbers in parentheses represent
standard deviations

No. 1[20] 2[21] 3[22] 4[23] 5[24]

Lattice I Lattice II Lattice III Lattice IV Lattice V
Orthorhombic F Orthorhombic F Orthorhombic F Monoclinic C Orthorhombic F

Literature cells

Cell Cell 1 Cell 2 Cell 3 Cell 4 Cell 5
a (Å) 18.51 18.60 10.930(2) 10.912(3) 18.421
b (Å) 22.87 23.00 18.425(5) 22.791(4) 22.791
c (Å) 10.96 10.86 22.791(6) 10.705(2) 10.912
� (�) 90.0 90.0 90.0 90.0 90.0
� (�) 90.0 90.0 90.0 120.64 90.0
� (�) 90.0 90.0 90.0 90.0 90.0
V (Å3) 4639.6 4645.9 4589.8 2290.6 4581.2
Sp. Gr. F* Fdd2 Fdd2 Cc Fdd2
Yr. Pub. 1951 1965 1982 1986 1988

Reduced cells

Cell R1 R2 R3 R4 R5
a (Å) 10.76 10.769 10.712 10.705 10.705
b (Å) 10.76 10.769 10.712 10.705 10.705
c (Å) 12.68 12.718 12.638 12.634 12.634
� (�) 102.72 102.43 102.74 102.71 102.71
� (�) 102.72 102.43 102.74 102.71 102.71
� (�) 118.74 119.44 118.65 118.72 118.72
V (Å3) 1159.9 1161.5 1147.4 1145.3 1145.3

Reduced forms

Form F1 F2 F3 F4 F5
a�a 115.68 115.98 114.74 114.60 114.60
b�b 115.68 115.98 114.74 114.60 114.60
c�c 160.79 161.74 159.72 159.62 159.62
b�c �30.03 �29.48 �29.87 �29.77 �29.77
a�c �30.03 �29.48 �29.87 �29.77 �29.77
a�b �55.62 �57.00 �55.00 �55.06 �55.06
Form No. 16 16 16 16 16

one can systematically evaluate any given reduced from
type. To evaluate this problem, all of the reduced forms
in NIST Crystal Data [17] that correspond to or-
thorhombic centered lattices—i.e., reduced forms 8, 13,
16, 19, 23, 26, 36, 38, 40, 42—have been analyzed.

The results of the analysis are summarized in Table 7.
The total number of compounds crystallizing in a given
reduced form is given in the column labeled ALL . Those
reported in the orthorhombic and monoclinic systems
are presented in the columns labeled orthorhombic and
monoclinic , respectively. As noted above the crystal and
metric symmetry are highly correlated. Consequently, in
Table 7, the compounds reported in the monoclinic sys-
tem represent cases with potential error. Indeed a fur-
ther analysis of selected cases from this category has
revealed that many of these monoclinic compounds

should have been reported in the orthorhombic system.
For example, the selected compounds that were reported
in monoclinic space groups but with metric orthorhom-
bic F-centered lattices (reduced form 16, and 26) were
shown using MISSYM [25,26] to have the higher crystal
symmetry.

5. Derivative Lattices, Specialized
Reduced Forms, and Lattice Metric
Singularities

5.1 Derivative Lattices

Derivative lattice theory can be applied to the system-
atic study of lattices and to identification procedures. To
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Table 7. Analysis of the centered orthorhombic Bravais lattices in NIST Crystal Data. The total number of
organic compounds in all 44 reduced forms is 133 613 out of which 2978 have centered orthorhombic lattices

No. Bravais Reduced ALLa Monoclinicb Orthorhombicc % Lower
lattice form No. symmetry

1 OId 8 28 3 25 10.7
2 OC 13 737 159 578 21.6
3 OF 16 265 22 243 8.3
4 OI 19 188 19 169 10.1
5 OC 23 327 158 169 48.3
6 OF 26 386 22 364 5.7
7 OC 36 237 109 128 46.0
8 OC 38 442 154 288 34.8
9 OC 40 232 139 93 59.9

10 OI 42 136 11 125 8.1

Sum = 2978 796 2182

a Total number of compounds with specified reduced form.
b Number of compounds reported as monoclinic. For these compounds, the crystal symmetry is less than the
metric symmetry.
c Number of compounds reported as orthorhombic. For these compounds, the crystal symmetry is equal to
the metric symmetry.
d Orthorhombic I- centered (i.e., 1st letter = system; 2nd letter = centering).

understand and evaluate lattice symmetry, it is necessary
to calculate and analyze the symmetry of the sets of
associated derivative lattices. Definitions and treatment
of derivative lattices are given in [27]. A convenient
method for calculating the derivative sub- and superlat-
tices of an original lattice of any desired multiplicity is
outlined in reference [28] in an Appendix. (Multiplicity
is defined as equal to the value of the determinant of the
transformation matrix. Thus the value of the determi-
nant times the volume of the original lattice is equal to
the volume of the derivative lattice.) This method gener-
ates unique sets of upper triangular matrices for any
given value of the determinant of the matrix. The re-
quired calculation can conveniently be done by the com-
puter program NIST*LATTICE [10]. Table 8 gives the
upper triangular matrices required to calculate the
unique superlattices of multiplicities two, three, and
four associated with an original lattice.

5.2 Specialized Reduced Forms

Sometimes a reduced form will exhibit specialization
beyond that required for one of the 44 reduced forms in
Table 2. Specialization can occur in two ways—a legiti-
mate function of the crystal lattice or from an experi-
mental error. For example, it can occur when one is
dealing with an original lattice which is also a derivative
lattice of a lattice with higher metric symmetry (see
Tables 9 and 10). To recognize and characterize such
specialization is desirable because many properties of

Table 8. Unique Q matrices [28,10] generating 7, 13, and 35 super-
lattices for |Q | = 2, 3, and 4, respectively. The unique matrices gener-
ating 7, 13, 35 sublattices for |X | = 1/2, 1/3, 1/4 are obtained by taking
the transpose of the inverse of the matrices given for the superlattices.
For each value of |Q | or |X |, the matrices can be applied to any
primitive cell of the original lattice, but they must be applied to the
same cell

100 / 010 / 002 100 / 011 / 002 101 / 010 / 002
|Q | = 2 101 / 011 / 002 100 / 020 / 001 110 / 020 / 001

200 / 010 / 001

100 / 010 / 003 100 / 011 / 003 100 / 012 / 003
101 / 010 / 003 101 / 011 / 003 101 / 012 / 003

|Q | = 3 102 / 010 / 003 102 / 011 / 003 102 / 012 / 003
100 / 030 / 001 110 / 030 / 001 120 / 030 / 001
300 / 010 / 001

100 / 010 / 004 100 / 011 / 004 100 / 012 / 004
100 / 013 / 004 101 / 010 / 004 101 / 011 / 004
101 / 012 / 004 101 / 013 / 004 102 / 010 / 004
102 / 011 / 004 102 / 012 / 004 102 / 013 / 004
103 / 010 / 004 103 / 011 / 004 103 / 012 / 004

|Q | = 4 103 / 013 / 004 100 / 020 / 002 100 / 021 / 002
101 / 020 / 002 101 / 021 / 002 110 / 020 / 002
110 / 021 / 002 111 / 020 / 002 111 / 021 / 002
100 / 040 / 001 110 / 040 / 001 120 / 040 / 001
130 / 040 / 001 200 / 010 / 002 200 / 011 / 002
201 / 010 / 002 201 / 011 / 002 200 / 020 / 001
210 / 020 / 001 400 / 010 / 001

crystals are not only related to the symmetry of the
original lattice, but also to the symmetry of the associ-
ated derivative lattices.
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Table 9. Specialized derivative sublattices (derived from a Cubic F lattice). All sublattices with symmetry less than cubic have extra specialization
in their reduced form

Reduced Reduced forma

form First row Second row No.
No. a�a b�b c�c b�c a�c a�b Bravais lattice lattices V /Vorg

Original lattice

1 2 2 2 1 1 1 Cubic F 1 1

7 Sublattices |X | = 1/2

3 1 1 1 0 0 0 Cubic P 1 1/2
23 1 3 3 �1 0 0 Orthorhombic C 6 1/2

13 Sublattices |X | = 1/3

12 2 2 4 0 0 �1 Hexagonal P 4 1/3
18 4 10 10 1 2 2 Tetragonal I 3 1/3
19 2 14 14 5 1 1 Orthorhombic I 6 1/3

35 Sublattices |X | = 1/4

5 3 3 3 �1 �1 �1 Cubic I 1 1/4
9 2 2 6 1 1 1 Rhombohedral P 4 1/4

11 1 1 2 0 0 0 Tetragonal P 3 1/4
21 1 4 4 0 0 0 Tetragonal P 3 1/4
23 1 12 12 �4 0 0 Orthorhombic C 6 1/4
26 4 5 9 1 2 2 Orthorhombic F 6 1/4
33 3 4 11 0 �1 0 Monoclinic P 12 1/4

a The reduced forms have been normalized.

Table 10. Specialized derivative superlattices (derived from a Cubic P original lattice). All superlattices with symmetry less than cubic have extra
specialization in their reduced form

Reduced Reduced forma

form First row Second row No.
No. a�a b�b c�c b�c a�c a�b Bravais lattice lattices V /Vorg

Original lattice

1 1 1 1 0 0 0 Cubic P 1 1

7 Superlattices |Q | = 2

1 2 2 2 1 1 1 Cubic F 1 2
11 1 1 4 0 0 0 Tetragonal P 3 2
21 1 2 2 0 0 0 Tetragonal P 3 2

13 Superlattices |Q | = 3

11 1 1 9 0 0 0 Tetragonal P 3 3
12 2 2 3 0 0 �1 Hexagonal P 4 3
40 1 2 5 �1 0 0 Orthorhombic C 6 3

35 Superlattices |Q | = 4

5 3 3 3 �1 �1 �1 Cubic I 1 4
9 2 2 6 1 1 1 Rhombohedral P 4 4

11 1 1 2 0 0 0 Tetragonal P 3 4
11 1 1 16 0 0 0 Tetragonal P 3 4
15 2 2 5 �1 �1 0 Tetragonal I 3 4
21 1 4 4 0 0 0 Tetragonal P 3 4
23 2 3 3 �1 0 0 Orthorhombic C 6 4
32 1 2 8 0 0 0 Orthorhombic P 6 4
40 1 4 5 �2 0 0 Orthorhombic C 6 4

a The reduced forms have been normalized.
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5.2.1 Specialized Reduced Forms Derived From an
Original Cubic F Lattice

Specialized reduced forms can be generated by calcu-
lating derivative sublattices of an original cubic F lat-
tice. The matrices (X ) for calculating the sublattices are
derived as noted from the Q matrices in Table 8. Table
9 shows sets of sublattices of an original cubic F lattice.
Relations of the first seven sublattices in the Table to the
original lattice are specified by a set of seven unique
transformation matrices (X , |X | = 1/2), the next 13 are
specified by 13 unique transformation matrices (X ,
|X | = 1/3), etc. The sublattices have different orienta-
tions with respect to the original lattices. In the general
triclinic system, they also have seven different reduced
forms. But as Table 9 illustrates, for the cubic F original
cell, six of the sublattices (|X | = 1/2) have identical re-
duced forms (i.e., reduced form 23 = C-centered Bravais
Lattice). This reduced form exhibits specialization as
the relation (b�b = 3 a�a ) is not required. In fact, as the
table shows, all the sublattices with symmetry less than
cubic have extra specialization in the reduced form.

5.2.2 Specialized Reduced Forms Derived From an
Original Cubic P Lattice

A second example of specialization can be generated
by calculating derivative superlattices of an original cu-
bic P lattice. The matrices (Q ) for calculating the super-
lattices are given in Table 8. Table 10 shows sets of
superlattices of an original cubic P lattice. Relations of
the first seven superlattices in the Table to the original
lattice are specified by a set of seven unique transfor-
mation matrices (Q , |Q | = 2), the next 13 are specified
by 13 unique transformation matrices (Q , |Q | = 3), etc.
As the table shows, all the superlattices with symmetry
less than cubic have extra specialization in the reduced
form. In Tables 9 and 10, the reduced forms are repre-
sented in a normalized form—i.e., all the dot products
are divided by smallest—so that extra specialization can
readily be recognized.

5.3 Experimental Error Resulting From Omitted
Nodes

Specialization sometimes occurs—especially if the
original cell is of high symmetry—simply because the
experimenter has determined a derivative rather than the
original cell defining the lattice. Suppose a supercell of
two times the volume of a primitive reciprocal cell has
been selected. Depending on which nodes in the recip-
rocal lattice are omitted, one can obtain seven different
superlattices of twice the volume of the original cell
(note that some of the seven may be metrically identi-

cal—see Table 10—but have different orientations rela-
tive to the original lattice). Nevertheless, if a cell from
a given superlattice is used as a basis cell, it is possible
to calculate the set of seven sublattices of this superlat-
tice. One of these is the true lattice.

5.4 Lattice Metric Singularities (LMS) in Powder
Indexing

A lattice metric singularity (LMS) occurs when unit
cells defining two or more lattices yield the identical set
of unique calculated d -spacings [29]. In Table 11, a
quaternary LMS is illustrated. In this highly unusual
singularity, all four lattices are different Bravais lattices,
each of which is characterized by a different reduced
form. Furthermore, Lattices II–IV are all derivative sub-
lattices of a cubic I-centered Bravais lattice and are all
characterized by specialized reduced forms. Recently a
ternary LMS was analyzed in which two of the lattices
were hexagonal and one was orthorhombic. In this case,
the two hexagonal lattices had the same volume and all
three reduced forms were specialized. The existence of
such singularities provides a warning to researchers
who index powder patterns and rely on “Figures of
Merit” as a sign of correctness.

6. Conclusion

Symmetry determination and identification proce-
dures based on reduction have proved invaluable in crys-
tallography and in the materials sciences. The symmetry
determination strategies outlined herein are based on the
fact that the reduced cell represents a unique standard
cell that can be calculated from any cell of the lattice.
This cell can be rigorously defined mathematically.
Consequently, procedures based on reduction are highly
reliable and are widely used in the scientific commu-
nity—by individual scientists as well as by the crystallo-
graphic data centers. Because of their precise mathe-
matical nature, they have been adapted to automated
diffractometry and are routinely used as an integral part
of structure-determination methodology worldwide.

Due somewhat to serendipity, however, the most sig-
nificant and lasting value of this work is probably not
reduction itself. Rather, reduction has played a key tran-
sition role in helping to move the discipline of crystal-
lography in new directions with new insights. The re-
search on reduction proved that there are excellent
reasons for looking at the crystal lattice from an entirely
different point of view. Consequently, with time, many
other lattice-related papers followed, including papers
on sublattices and superlattices, composite lattices, co-
incidence site lattices, and lattice-metric singularities in
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Table 11. Quaternary lattice metric singularity. The four lattices yield the same set of unique calculated
d -spacings. For each lattice, the table gives the conventional cell along with the corresponding reduced cell
and normalized reduced form. The normalized reduced forms reveal extra specialization in forms F2-F4

Lattice I Lattice II Lattice III Lattice IV
Cubic I Tetragonal P Orthorhombic F Orthorhombic P

Conventional cells

Cell Cell 1 Cell 2a Cell 3b Cell 4c

a (Å) 10.0000 7.0711 4.7140 3.5355
b (Å) 10.0000 7.0711 10.0000 5.0000
c (Å) 10.0000 5.0000 14.1421 7.0711
� (�) 90.0 90.0 90.0 90.0
� (�) 90.0 90.0 90.0 90.0
� (�) 90.0 90.0 90.0 90.0
V (Å3) 1000.0 250.0 666.67 125.0

Reduced cells

Cell R1 R2d R3e R4f

a (Å) 8.6603 5.0000 4.7140 3.5355
b (Å) 8.6603 7.0711 5.5277 5.0000
c (Å) 8.6603 7.0711 7.4536 7.0711
� (�) 109.471 90.0 82.251 90.0
� (�) 109.471 90.0 71.565 90.0
� (�) 109.471 90.0 64.761 90.0
V (Å3) 500.0 250.0 166.67 125.0

Normalized reduced forms

Form F1 F2 F3 F4
a�a 3 1 4 1
b�b 3 2 5.5 2
c�c 3 2 10 4
b�c �1 0 1 0
a�c �1 0 2 0
a�b �1 0 2 0
Form No. 5 21 26 32

Transformations
a Cell 2 → Cell 1 [ 0 0 2 / 1 �1 0 / 1 1 0 ] � = 4.
b Cell 3 → Cell 1 [1/2 �2/3 �1/2 / 2 1/3 0 / 1/2 �2/3 1/2] � = 3/2.
c Cell 4 → Cell 1 [ 0 2 0 / 2 0 1 / 2 0 �1 ] � = 8.
d R2 → R1 [ 1 �1 0 / �1 0 1 / �1 0 �1 ] � = 2.
e R3 → R1 [ 1 1 0 / �2 1 0 / 0 �1 1 ] � = 3.
f R4 → R1 [ 0 �1 �1 / 2 1 0 / 0 �1 1 ] � = 4.

the indexing of powder patterns. At NIST, the mathe-
matical analysis of lattices was pursued further and
evolved to a matrix approach that offered a more ab-
stract and powerful way to look at lattices and their
properties. The matrix approach, in particular, has
many applications including, for example, symmetry
determination [3,30].

Acknowledgments

The author gratefully acknowledges a long-term col-
laboration in research on lattices—as indicated in the

references—with Vicky Lynn Karen and earlier with
Antonio Santoro. I thank them for many interesting ex-
periences, conversations, and enjoyable times with re-
spect to our productive endeavors. In addition, the NIST
Center for Neutron Research, the Ceramics Division,
and the Standard Reference Data Program are all
thanked for their support of this research. Finally, the
author thanks Ronald Munro and Shozo Takagi for their
thorough and careful reading of the manuscript and for
their helpful comments and suggestions.

994



Volume 106, Number 6, November–December 2001
Journal of Research of the National Institute of Standards and Technology

7. References

[1] P. Niggli, Handbuch der Experimentalphysik, Vol 7, Part 1.
Leipzig: Akademische Verlagsgesellschaft (1928).

[2] A. Santoro and A. D. Mighell, Determination of Reduced Cells,
Acta Cryst. A26, 124-127 (1970).

[3] V. L. Karen (Himes) and A. D. Mighell, A Matrix Approach to
Symmetry, Acta Cryst. A43, 375-384 (1987).

[4] V. L. Karen and A. D. Mighell, Converse Transformation Anal-
ysis, J. Appl. Cryst. 24, 1076-1078 (1991).

[5] A. D. Mighell, The Reduced Cell: Its Use in the Identification
of Crystalline Materials, J. Appl. Cryst. 9, 491-498 (1976).

[6] V. L. Karen and A. D. Mighell, NBS*Lattice: A Program to
Analyze Lattice Relationships, Natl. Bur. Stand. (U.S.) Tech.
Note 1214 (1985).

[7] A. D. Mighell and V. L. Karen, Compound Identification and
Characterization Using Lattice-Formula Matching Techniques,
Acta Cryst. A42, 101-105 (1986).

[8] S. K. Bryam, C. F. Campana, J. Fait, and R. A. Sparks, Using
NIST Crystal Data within Siemens’ Software for Four-circle and
Smart CCD Diffractometers, J. Res. Natl. Inst. Stand. Technol.
101, 295 (1996).

[9] A. D. Mighell, A. Santoro, and J. D. H. Donnay, Reduced-cells
section, published in International Tables for X-Ray Crystallog-
raphy, Vol. I, 3rd ed., Birmingham, Kynoch Press (1969) pp.
530-535.

[10] V. L. Karen and A. D. Mighell, NIST*LATTICE—A Program
to Analyze Lattice Relationships, Version of Spring 1991, NIST
Technical Note 1290 (1991). (See also NBS Technical Note
1214 (see Ref. [6]).
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