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This paper describes an improved method
for computing Fresnel integrals with an
error of less than 1 � 10�9. The method is
based on a known approximate formula
for a different integral which is due to
Boersma and referenced by Abramowitz
and Stegun.
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1. Improved Computation of Fresnel
Integrals

In a previous paper [1], this author presented formulas
for numerical computations of the Fresnel cosine and
sine integrals,
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to six significant figures by using the first three terms of
the Taylor expansions of C (x ) and S (x ) for | x | � 0.6, the
first three terms of the asymptotic expansions of the
auxiliary functions f (x ) and g (x ) for | x | � 3, and mod-
ified rational approximations of f (x ) and g (x ) for the

mid range. These formulas proved hard to use because
they involve too many numerical constants.

It was found subsequently that a simpler and more
accurate method of computation can be based on a for-
mula derived by Boersma [2],
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where pn and qn are numerical constants tabulated in
Ref. [2] and the notation has been changed in order to
avoid confusion with symbols used elsewhere in this
paper. On substituting t = �� 2/2 and x = �u 2/2 this is
transformed into
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fn = (8/�)n+1/2 qn , gn = �(8/�)n+1/2 pn . (2c)

Hence it follows by separation of real and imaginary
parts and comparison with Eqs. (1a) and (1b) that
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The required coefficients, as computed from Boersma’s
data and Eq. (2c), are listed in Table 1. Equation (2d) was
tested by computing sample values of C (x ) and S (x ) and
comparing them to the values tabulated in Ref. [3] to
eight digits. The agreement was perfect, which is consis-
tent with Boersma’s statement that the error of Eq. (2a)
is less than 5 � 10�10.

Table 1. Numerical values of fn and gn

n fn gn

0 0.318309844 0
1 9.34626E-08 0.101321519
2 �0.09676631 �4.07292E-05
3 0.000606222 �0.152068115
4 0.325539361 �0.046292605
5 0.325206461 1.622793598
6 �7.450551455 �5.199186089
7 32.20380908 7.477942354
8 �78.8035274 �0.695291507
9 118.5343352 �15.10996796

10 �102.4339798 22.28401942
11 39.06207702 �10.89968491

The above method is implicitly contained in Ref. [3],
which mentioned Boersma’s paper as well as the rela-
tionship between the integrals in Eqs. (1a), (1b), and
(2a). Boersma also gave an approximation formula sim-
ilar to Eq. (2a) for |u | � 4, or |x | � 1.6. This was not
used in this work because in this range it is simpler to
compute C (x ) and S (x ) by using their Taylor expan-
sions [3],
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These give results with errors less than 6 � 10�10 for
|x | � 1.6 if the first 11 terms of the expansions are
carried.

Software and algorithms for computing Fresnel inte-
grals in Fortran and C (not based on this paper) are also
available on the Internet [4,5].
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