If this symbol - “ω” - is not a lower case omega inside quotation marks you should go the Browser Selection Considerations page.


Volume 104, Number 2, March – April 1999

Journal of Research of the National Institute of Standards and Technology


[J. Res. Natl. Inst. Stand. Technol. 104, 147 (1999)]

Crystal Structures and Reference Powder Patterns of BaR2ZnO5 (R=La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er , and Tm )


J. A. Kaduk
Amoco Corporation,
Naperville, IL 60566

W. Wong-Ng
National Institute of Standards and Technology,
Gaithersburg, MD 20899-0001

W. Greenwood and J. Dillingham
Geology Department, University of Maryland,
College Park, MD 20742

B. H. Toby
National Institute of Standards and Technology,
Gaithersburg, MD 20899-0001

Abstract

Reference x-ray powder patterns and the crystal structures of the lanthanide compounds, BaR2ZnO5, in which R=La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, or Tm, were determined by the x-ray Rietveld refinement technique. A structural trend was confirmed for this series of compounds. The compounds with smaller ionic radii (R=Sm, Eu, Gd, Dy, Ho, Y, Er, or Tm) are isostructural to the orthorhombic “green phase” (BaY2CuO5). The lattice parameters for compounds with R=Tm to Sm range from a =7.01855(9) Å to 7.20452(14) Å , b=12.25445 (17) Å to 12.5882(2) Å , and c=5.6786(14) Å to 5.81218(11) Å , respectively. R is seven-fold coordinated inside a monocapped trigonal prism. These prisms share edges to form wave-like chains parallel to the long b-axis. The BaR2ZnO5 compounds which contain larger size R (La and Nd ) crystallize in the tetragonal space group 14/mcm. The lattice parameters are a=6.90982(10) and c=11.5977(2) Å for BaLa2ZnO5, and a=6.75979(5) Å and c=11.54560(12) Å for BaNd2ZnO5. The structure consists of ZnO4 tetrahedra (instead of planar CuO4 groups as found in BaR2CuO5) with 10-fold coordinated bicapped square prismatic Ba and 8-fold coordinated bicapped trigonal prismatic R ions between them. The reference x-ray powder patterns will be submitted to the Powder Diffraction File (PDF).

Keywords: BaR.2ZnO5 (R=lanthanides); crystal structure; x-ray and neutron Rietveld refinements; x-ray reference powder patterns.

Accepted: February 8, 1999

Available in PDF for printing from the NIST Virtual Library. Go!


1. Introduction

Extensive structural and property investigations involving substitution of Cu in the Ba2RCu3O6+x system by various transition metals including Ti, Cr, Mn, Fe, Co, Ni, Au, and Zn have been carried out in order to understand the correlations between superconducting properties and crystal chemistry [1 – 4]. When the Cu2+ (nine 3d electrons) of Ba2YCu3O6+x is completely substituted by Zn2+(ten 3d electrons), the sample does not become superconducting, presumably the result of filling of electronic bands. A strong correlation between superconductivity and electronic and magnetic properties of the substituting elements was reported by Xiao et al. [1]. Therefore, studies of the structure and properties of the Zn-analogs should enhance understanding of the factors contributing to superconductivity.

Successful replacement of Cu by Zn in the lanthanide Ba-R-Cu-O system has been described [5 – 9]. According to Michel et al. [5 – 8], selected barium lanthanum zinc oxides apparently isostructural to the “ green phases” , BaR2CuO5 [2], can be prepared. The structures of the La, Nd, and Y-compounds have been studied using x-ray powder diffraction [5,6] and neutron powder diffraction methods [9]. It was found that, while the structures of the La and Nd analogs are tetragonal, the Y-compound is orthorhombic. Neutron diffraction studies of selected lanthanide analogs (Dy, Ho, Y, and Er) have also been reported [9]. High neutron absorption cross sections meant that compounds containing the lanthanide ions with larger ionic radius such as Sm, Eu, and Gd were not studied. Michel and Raveau [8] further reported that, while in the Cu-containing system BaR2CuO5 the orthorhombic structure can be prepared for R=Er, Tm, Yb and Lu, attempts to replace Cu with Zn did not succeed for these compounds. Recently we reported that the Er-analog of BaR2ZnO5 has been prepared [9].

As the x-ray powder diffraction technique is of primary importance for phase characterization, extensive coverage by accurate reference diffraction patterns of superconductor and related phases in the Powder Diffraction File (PDF) [10] is essential for the high-Tc superconductivity community. Presently, no reference diffraction pattern other than R=La is available in the PDF for phase identification for BaR2ZnO5.

The main goals of this investigation were: to supplement the reference diffraction patterns and crystal structures of the BaR2ZnO5 series by using x-ray Rietveld refinement techniques [11]; to determine the structural details of the analogs with R=Sm, Eu, and Gd; and to investigate the possibility of preparing the analogs of the lanthanide ions with smaller ionic radius (R=Tm, Yb, and Lu).

2. Experimental Details

2. 1. Sample Preparation

Eleven polycrystalline samples of the BaR2ZnO5 series (R=La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu) were prepared by a solid-state sintering method. Well-mixed stoichiometric powders of BaCO3, R2O3, and ZnO were compacted by pressing the powder in a pelletizing die at about 0.3 GPa. The compacted powders were heated in air according to the schedule shown in Table 1. Each time the samples were taken out of the furnace, they were reground and repelletized. About 4 g to 5 g of each of the samples was prepared except for the Er, Tm, Yb, and Lu samples, for which only about a 1 g sample was attempted in order to investigate the feasibility of sample preparation. The colors of these materials are also reported in Table 1. When Cu is replaced by Zn, the color of the phases changes from dark green or brown to the much lighter colors of cream, blue, beige, or peach.

Table 1. Heat treatment scheme for BaR2ZnO 5(R= La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er and Tm). The duration of annealing (number of days) is given in parenthesis.

R Color Temp. (°C)
La white 850(2) 950(3) 1000(1.5)
Nd pale blue 850(2) 950(3) 1000(1.5)
Sm cream 850(2) 950(3) 1000(1.5)
Eu grey 850(2) 950(3) 1000(1.5)
Gd beige 850(2) 950(3) 1000(1.5)
Dy grey 850(2) 950(3) 1000(1.5) 1080(5) 1090(1.5)
Ho pink 850(2) 950(3) 1000(1.5) 1080(5) 1090(1.5)
Y beige 850(2) 950(3) 1000(1.5) 1080(5) 1090(1.5) 1100(7)
Er lavender 850(2) 950(3) 1000(1.5) 1080(5) 1090(1.5)
Tm cream 850(2) 950(3) 1000(1.5) 1100(1.5) 1200(3)
Yb cream 850(2) 950(3) 1000(1.5) 1100(1.5) 1200(3)
Lu cream 850(2) 950(3) 1000(1.5) 1100(1.5) 1200(3)

2. 2. X-Ray Powder Studies

X-ray powder diffraction was used to identify the phases synthesized and to confirm phase purity. The PDF reference x-ray diffraction pattern of BaY2ZnO5 was used for performing phase identification. While the La, Nd, and Y preparations were phase-pure, small concentrations of binary oxides were observed in the Eu, Dy, Ho, and Er products. A minor concentration of an unidentified phase was detected in the Sm, Eu, and Gd products. The Tm preparation contained significant concentrations of Ba5Zn4Tm8O21 [13,14] and Tm2O3 (see Fig. 1a). The Yb and Lu preparations yielded only Ba5Zn4R8O21 and R2O3.

Fig. 1. X-ray diffraction patterns of (a) BaTm2ZnO5 and (b) BaSm2ZnO5. The impurity phases are marked.

Figure 1

For the Rietveld refinements, the powders were mounted in zero-background quartz holders with double-sided adhesive tape. A Scintag PAD V diffractometer1 equipped with an Ortec intrinsic Ge detector was used to measure the powder patterns (Cu Kα radiation, 40 kV, 30 mA) for values of 2θ from 3° – 140° in 0.02° steps, counting after each step for 10 s or 12 s.

All data processing was carried out using the GSAS software suite [12]. To minimize the effects of surface roughness and incomplete interception of the beam, only the 18 ° to 140° portions of the patterns were used in the refinements. The initial structure models were taken from Ref. [9]. For the La and Nd compounds, the tetragonal space group I4/mcm was used, while for compounds of the smaller lanthanides, the orthorhombic space group Pbnm (an alternate setting of Pnma) was used.

All atomic positions were refined isotropically. The displacement coefficients of the two independent lanthanide ions in Pbnm were constrained to have a common value. In all refinements, a single isotropic displacement coefficient was refined for the oxygen atoms. A scale factor and the lattice parameters were refined for the major phase. In some samples, impurity phases were detected, and were subsequently included in the refinements using fixed structural models. The peak profiles were described using a pseudo-Voigt function. Only the Cauchy X, asymmetry, and sample displacement parameters were refined. Backgrounds were described using a 3-term cosine Fourier series.

1Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

3. Results and Discussion

As the ionic size of R in BaR2ZnO5 decreases, it becomes progressively more difficult to prepare the BaR2ZnO5 phase. This phase cannot be prepared for R=Yb and Lu under the specified conditions. We believe that under more appropriate heat treatment conditions (i.e., different oxygen partial pressure), a single phase can be formed in the Ba-Tm-Zn system. This possibility is under investigation. Since the refined structural parameters for BaTm2ZnO5 are not as accurate or precise as those derived from the pattern of a pure phase, these parameters will not be discussed. The x-ray diffraction pattern of the nominal single phase BaSm2ZnO5 is illustrated in Fig. 1b; selected Miller indices are indicated. Figures 2a and 2b show the x-ray diffraction patterns of BaLa2ZnO5 and BaNd2ZnO5. The patterns of these analogs are similar. The small displacement of the corresponding peaks in the La and Nd patterns indicates the effect of ionic size on the isostructural compounds.

Fig. 2. X-ray diffraction patterns of (a) BaLa2ZnO5 and (b) BaNd2ZnO5.

Figure 2

The refinement residuals using the GSAS suite [12] are reported in Table 2. The observed, calculated, and difference pattern of BaSm2ZnO5 is illustrated in Fig. 3. The upper graph shows the fit between the experimental and calculated patterns while the lower one shows the difference between these two patterns. The refined structural parameters for the tetragonal compounds are reported in Table 3, and those of the orthorhombic phases are reported in Table 4. Global parameters are given in Table 5. Selected structural quantities such as bond lengths and bond angles are reported in Tables 6 and 7. Also reported in the above tables are results of the neutron refinements of the lattice parameters [9] and bond lengths and angles for the R=La, Nd, Dy, Ho, Y, and Er compounds for comparison wherever appropriate. Although the refined overall structure, structural parameters, and bond distances derived from the x-ray and neutron refinements [9] for the tetragonal structures agree quite well, there are differences in the bond distances for some of the orthorhombic structures. These small differences are most likely associated with the relatively large uncertainties in the determination of the oxygen positions by using x-ray techniques.

Table 2. Rietveld refinement residuals for BaR2ZnO5using the GSAS software system. The ionic radius of R (R+3) used are 8-fold coordinated for R=La, and Nd and 7-fold coordinated for the rest of the smaller ions [16]. The values for the Ho and Tm analogs were estimated by using the interpolated values between those of the 6- and 8-fold coordination.

R La Nd Sm Eu Gd Dy Ho Y Er
R3+(Å) 1.160 1.109 1.02 1.01 1.00 0.97 0.96 0.96 0.945
wRp 0.0997 0.1339 0.1486 0.1184 0.0811 0.0733 0.0734 0.1145 0.0712
Rp 0.0749 0.0899 0.1107 0.0893 0.0627 0.0577 0.0568 0.0853 0.0524
R(F) 0.0593 0.0436 0.0592 0.0536 0.0374 0.0493 0.0353 0.0408 0.0369
χ2 1.756 2.355 2.912 1.927 1.431 1.703 1.883 3.918 2.463
No. var. 15 15 30 35 30 33 32 30 33
ΔF +/- 4.4/-3.6 4.1/-2.2 3.6/-2.7 4.9/-2.8 3.0/-2.0 2.5/-2.5 4.4/-1.8 1.6/-2.2 1.8/-1.9

Table 3. Refined Structural Parameters of tetragonal BaR2ZnO5 (Space Group I4/mcm ). Values in italics are from the neutron refinements. The numbers inside the parenthesis are standard uncertainties. Z is the number of formulas per unit cell. Uiso is the isotropic temperature factor.

R La Nd
Cell parameter, a ( Å) 6.90991(7)
6.9118(1)
6.75982(4)
6.7608(1)
c (Å) 11.59782(16)
11.6002(2)
11.54565(11)
11.5442(2)
V3) 553.759 527.580
Ba, 00¼ , Uiso (Å2) 0.0048(4)
0.0098(5)
0.0042(4)
0.0105(5)
R, x (½+x)0, x 0.1737(1)
0.1743(1)
0.1743(1)
0.1744(1)
Uiso (Å2) 0.0030(3)
0.0073(2)
0.0024(2)
0.0066(3)
Zn, 0½¼, Uiso (Å2) 0.0115(9)
0.0049(4)
0.0056(7)
0.0091(5)
O1, 000 , Uiso (Å2) 0.0039(18)
0.0106(5)
0.0044(16)
0.0121(6)
O2, x (½+x )z, x 0.3548(9)
0.3553(1)
0.3564(8)
0.3547(1)
z 0.1357(6)
0.1337(1)
0.1310(6)
0.1314(1)
Uiso (Å2) 0.0039(18)
0.0115(3)
0.0044(16)
0.0118(3)

Table 4. Refined Structural Parameters of the Orthorhombic BaR2ZnO5compounds (Space Group Pbnm).Values in italics are from neutron/synchrotron (Er-analog) refinements. The numbers inside the parenthesis are standard uncertainties. Z is the number of formulas per unit cell. Uiso is the isotropic temperature factor.

R Sm Eu Gd Dy Ho Y Er Tm
Cell, a (Å) 7.20447(14) 7.17890(10) 7.15729(9) 7.09330(7)
7.0944(1)
7.07113(6)
7.0713(1)
7.07018(7)
7.0707(1)
7.04515(7)
7.0472(1)
7.01855(9)
b(Å) 12.58817(23) 12.53575(17) 12.49393(15) 12.38464(13)
12.3885(2)
12.34199(11)
12.3437(2)
12.33678(12)
12.3386(1)
12.29815(12)
12.3022(1)
12.25445(17)
c (Å) 5.81214(10) 5.79103(8) 5.77424(7) 5.72979(6)
5.7314(1)
5.71158(5)
5.7120(2)
5.70908(5)
5.7095(1)
5.69410(5)
5.6958(1)
5.67786(14)
V3) 527.109 521.152 516.348 503.350 498.460 497.964 493.350 488.344
Ba, xy 1/4, x 0.9246(3) 0.9238(3) 0.9241(2) 0.9240(3)
0.9252(10)
0.9238(2)
0.9228(5)
0.9238(2)
0.9231(4)
0.9239(2)
0.9229(2)
0.9235(4)
y 0.9012(2) 0.9009(2) 0.9006(1) 0.8999(2)
0.9007(5)
0.8994(1)
0.9001(3)
0.8998(1)
0.9001(2)
0.8989(1)
0.8995(1)
0.8999(2)
Uiso, Å2 0.0071(7) 0.0059(6) 0.0062(5) 0.0039(6)
0.020(2)
-0.0001(4)
0.0103(9)
0.0039(4)
0.0093(6)
0.0049(5)
0.0059(3)
0.0015(20)
R1, xy 1/4, x 0.1186(3) 0.1182(3) 0.1196(3) 0.1206(3)
0.1210(4)
0.1202(2)
0.1206(3)
0.1204(3)
0.1201(2)
0.1205(2)
0.1209(2)
0.1208(5)
y 0.2920(2) 0.2925(2) 0.2930(1) 0.2926(2)
0.2927(2)
0.2924(1)
0.2918(2)
0.2919(2)
0.2919(1)
0.2924(1)
0.2923(1)
0.2935(2)
Uiso, Å2 0.0041(4) 0.0030(3) 0.0017(3) 0.0020(3)
0.0170(6)
0.0096(3)
0.0047(5)
0.0018(3)
0.0055(3)
0.0022(3)
0.0033(2)
0.002
R2, xy 1/4, x 0.3965(3) 0.3977(3) 0.3977(2) 0.3992(3)
0.3984(3)
0.3997(2)
0.3988(3)
0.3988(3)
0.3989(2)
0.4001(2)
0.3994(1)
0.3963(4)
y 0.0750(2) 0.0747(2) 0.0745(1) 0.0740(2)
0.0744(2)
0.0746(1)
0.0741(2)
0.0735(2)
0.0739(1)
0.0744(1)
0.0743(1)
0.0722(2)
Uiso, Å2 0.0041(4) 0.0030(3) 0.0017(3) 0.0020(3)
0.0157(5)
0.0096(3)
0.0043(5)
0.0018(3)
0.0063(3)
0.0022(3)
0.0028(2)
0.002
Zn, xy 1/4, x 0.6890(7) 0.6908(6) 0.6909(5) 0.6920(6)
0.6984(9)
0.6936(4)
0.6904(4)
0.6910(4)
0.6907(3)
0.6927(5)
0.6902(3)
0.6908(9)
y 0.6499(4) 0.6497(4) 0.6490(3) 0.6502(3)
0.6492(6)
0.6501(2)
0.6505(3)
0.6499(2)
0.6501(2)
0.6493(3)
0.6501(2)
0.6555(6)
Uiso, Å2 0.0071(16) 0.0076(14) 0.0046(12) 0.0059(12)
0.0179(13)
-0.0022(8)
0.0074(6)
0.0073(8)
0.0061(4)
0.0041(10)
0.0035(5)
0.0011(20)
O1, x 0.1692(22) 0.1662(18) 0.1657(15) 0.1754(16)
0.1678(6)
0.1645(12)
0.1669(3)
0.1578(12)
0.1663(2)
0.1744(14)
0.1666(13)
0.1720(26)
y 0.4292(17) 0.4368(14) 0.4323(11) 0.4333(13)
0.4343(5)
0.4315(9)
0.4347(2)
0.4323(8)
0.4344(1)
0.4312(11)
0.4323(11)
0.4231(25)
z -0.0226(29) -0.0052(23) -0.0018(19) -0.0083(21)
-0.0008(8)
-0.0085(16)
-0.0036(4)
-0.0036(16)
-0.0024(3)
-0.0050(18)
0.000(2)
-0.026(4)
Uiso, Å2 0.014(3) 0.006(2) 0.004(2) 0.005(2)
0.019(1)
0.01
0.0093(4)
0.0031(14)
0.0074(3)
0.003(2)
0.010(2)
0.012(4)
O2, x 0.3566(26) 0.3530(21) 0.3547(18) 0.3554(20)
0.3586(8)
0.3574(15)
0.3592(3)
0.3503(13)
0.3586(2)
0.3607(17)
0.3579(15)
0.367(4)
y 0.2174(15) 0.2216(12) 0.2225(10) 0.2261(11)
0.2249(4)
0.2261(8)
0.2249(2)
0.2281(7)
0.2251(1)
0.2250(9)
0.2240(8)
0.2310(19)
z 0.5020(31) 0.5025(25) 0.5023(21) 0.4899(22)
0.5058(10)
0.5015(17)
0.5020(5)
0.5054(18)
0.5014(3)
0.5030(19)
0.5045(2)
0.499(5)
Uiso, Å2 0.014(3) 0.006(2) 0.004(2) 0.005(2)
0.022(1)
0.01
0.0097(5)
0.0031(14)
0.0093(3)
0.003(2)
0.006(2)
0.012(4)
O3, xy 1/4, x 0.0663(34) 0.0833(29) 0.0748(24) 0.0755(26)
0.0762(11)
0.0690(19)
0.0763(5)
0.0817(20)
0.0752(3)
0.0776(22)
0.0756(2)
0.110(5)
y 0.0996(21) 0.0978(17) 0.0991(14) 0.0954(16)
0.0999(6)
0.1004(12)
0.1005(3)
0.0986(11)
0.1008(2)
0.0997(13)
0.1024(11)
0.0971(25)
Uiso, Å2 0.014(3) 0.006(2) 0.004(2) 0.005(2)
0.026(2)
0.01
0.0100(8)
0.0031(14)
0.0077(5)
0.003(2)
0.006(3)
0.012(4)

Table 5. Refined global parameters of BaR2ZnO5using the GSAS software suite [12]. The meaning of the variables listed in this table are given in Ref. [12]. The numbers inside the parenthesis are standard uncertainties. The impurity phases are expressed in mass fraction %.

R La Nd Sm Eu Gd Dy Ho Y Er Tm
Second Phases unident 3 % Eu2O3
0.5 % ZnO unident.
unident. 3 % Dy2O3 2 % Ho2O3 5 % Er2O3 11% Tm2O3
43% Ba5Zn4Tm8O21
Profile X 3.63(8) 1.60(5) 2.78(5) 0.60(5) 0.88(4) 0.49(4) 0.98(4) 0.26(12)
Y 12.7(1) 8.2(1)
asym 3.6(2) 1.9(2) 3.51(1) 3.5(1) 3.2(1) 2.3(1) 3.5(1) 2.1(1)
BK1 10.05(3) 5.40(3) 6.20(4) 7.48(3) 13.90(4) 22.72(5) 21.20(5) 11.27(6) 31.25(7) 24.79(8)
BK2 1.39(4) 0.62(4) 0.58(5) 70.06(4) 0.02(5) 0.19(7) 0.24(7) 0.21(7) 0.50(9) -2.28(11)
BK3 4.76(4) 2.38(4) 2.20(4) 1.88(4) 1.96(4) 2.46(6) 1.75(6) 1.79(6) 2.29(8) 1.67(10)

Table 6. Selected bond distances (Å) in tetragonal BaR2ZnO5compounds. Distances in italics are from the neutron refinements.

R La Nd
Ba-O1×2 2.89945(4)
2.90004(4)
2.88641(3)
2.88605(4)
Ba-O2×8 2.962(4)
2.9749(6)
2.939(4)
2.9308(7)
R-O1×2 2.5542(4)
2.5532(3)
2.4970(3)
2.4971(3)
R-O2×2 2.369(9)
2.3531(14)
2.306(8)
2.2964(15)
R-O2×4 2.715(6)
2.7038(11)
2.636(6)
2.6483(12)
Zn-O2×4 1.941(9)
1.9541(11)
1.942(8)
1.9501(12)

Table 7. Selected bond distances (Å) in Orthorhombic BaR2ZnO5compounds. Values in italics are from the neutron/synchrotron (Er-analog) refinements.

R Sm Eu Gd Dy Ho Y Er
Ba-O1×2 3.346(17) 3.324(14) 3.300(11) 3.231(12)
3.252(8)
3.288(9)
3.271(4)
3.318(9)
3.269(3)
3.205(10)
3.249(10)
Ba-O1'×2 3.113(17) 3.093(14) 3.136(11) 3.049(13)
3.091(9)
3.101(9)
3.069(4)
3.132(9)
3.076(3)
3.067(11)
3.094(11)
Ba-O2×2 3.159(19) 3.124(15) 3.094(12) 2.995(13)
3.041(8)
3.005(10)
3.271(4)
3.027(9)
3.269(3)
2.992(11)
3.286(11)
Ba-O2'×2 2.900(18) 2.891(15) 2.897(12) 2.929(14)
2.904(9)
2.893(10)
3.020(4)
2.862(10)
3.018(2)
2.885(11)
3.025(10)
Ba-O3 2.699(28) 2.722(22) 2.705(19) 2.650(20)
2.689(10)
2.685(15)
2.702(4)
2.695(14)
2.699(3)
2.696(17)
2.718(14)
Ba-O3'×2 2.9068(6) 2.8960(4) 2.88713(6) 2.8655(4)
2.866(7)
2.8562(2)
2.856(5)
2.8549(2)
2.855(4)
2.8471(1)
2.848(13)
R1-O1×2 2.372(19) 2.361(15) 2.293(13) 2.319(14)
2.292(6)
2.285(10)
2.271(3)
2.273(9)
2.297(2)
2.273(11)
2.258(11)
R1-O2×2 2.443(18) 2.402(15) 2.394(13) 2.411(14)
2.387(6)
2.355(10)
2.364(7)
2.273(9)
2.363(2)
2.372(11)
2.365(10)
R1-O2'×2 2.378(19) 2.389(15) 2.382(13) 2.311(14)
2.339(6)
2.350(10)
2.370(3)
2.321(10)
2.341(2)
2.318(12)
2.331(10)
R1-O3 2.450(27) 2.453(21) 2.443(18) 2.463(20)
2.409(8)
2.397(15)
2.304(4)
2.400(13)
2.379(2)
2.388(16)
2.358(14)
R2-O1×2 2.471(21) 2.398(13) 2.396(11) 2.401(12)
2.302(7)
2.347(11)
2.306(3)
2.311(9)
2.291(2)
2.384(10)
2.301(12)
R2-O1×2 2.369(16) 2.320(16) 2.340(14) 2.347(15)
2.388(5)
2.327(9)
2.367(3)
2.300(10)
2.263(2)
2.342(12)
2.363(10)
R2-O2×2 2.333(19) 2.373(15) 2.374(13) 2.352(14)
2.389(6)
2.377(10)
2.338(3)
2.425(10)
2.371(2)
2.363(11)
2.362(10)
R2-O3 2.399(25) 2.275(21) 2.331(18) 2.312(18)
2.308(8)
2.360(14)
2.381(4)
2.263(14)
2.313(3)
2.294(15)
2.308(14)
Zn-O1×2 1.944(19) 2.059(15) 2.035(13) 1.967(14)
2.034(7)
1.980(10)
2.026(3)
2.037(10)
2.027(2)
1.950(11)
2.019(11)
Zn-O2×2 2.230(19) 2.181(15) 2.174(13) 2.164(13)
2.123(8)
2.116(10)
2.120(4)
2.074(10)
2.124(2)
2.124(11)
2.114(10)
Zn-O3 1.945(24) 2.072(20) 2.002(17) 2.015(17)
1.981(10)
1.956(13)
1.972(10)
2.029(13)
1.976(3)
1.999(15)
1.963(14)

Fig. 3. Rietveld refinement results for BaSm2ZnO5. The upper graph shows the fit between the experimental and calculated patterns while the lower graph shows the difference between these two patterns.

Figure 3

The trend of unit cell volume with the ionic radius, R3 + of BaR2ZnO5 (where R 3+=La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, and Tm) is illustrated in Fig. 4. These ionic radii are chosen based on the structural environment surrounding these ions, namely, 8-fold coordination for R=La and Nd, and 7-fold coordination for the rest of the smaller ions [15,16]. Since the 7-fold coordination radii for the Ho and Tm analogs were not reported, they were estimated by interpolating between those for 6- and 8-fold coordination. A monotonic decrease of the volumes vs the ionic radius from Sm to Tm is observed, agreeing well with the trend expected from lanthanide contraction. Since the La and Nd analogs adopt a different structure, the cell parameters of these two compounds do not fall on the same line as the smaller analogs.

Figure 4. Plot of unit cell volume vs R 3+ (R=La, Nd, Sm, Eu, Gd, Dy, Y, Ho, Er and Tm) as found in BaR2ZnO5. R3+ is the ionic radius for coordination number (C.N.)=8 for the La and Nd compounds and C.N.=7 for the rest [15,16].

Figure 4

3. 1. Crystal Structures of BaR2ZnO5

It has been reported that, since the effective ionic radii of Zn2+ (0.68 Å for coordination number (C.N.) of 5, and 0.60 Å for C.N.=4) and Cu2+ (0.65 Å for C.N.= 5, and 0.57 Å for C.N.=4) are comparable [15,16], it is possible for the Zn series and the Cu series (BaR2CuO5) to be isostructural. Results of both neutron and x-ray Rietveld refinements showed that the BaR2ZnO5 compounds with smaller R are indeed isostructural to the “green phase” compounds [6,8,9,17]. When R=La and Nd, the structures of BaR2ZnO5 are different from the “brown phase” BaR2CuO5 analogs. The refined atomic coordinates for the La and Nd compounds agree well with those reported by Michel et al. using x-ray diffraction [6,8] and Wong-Ng et al. [9].

3. 1. 1. Structure of Tetragonal BaR2ZnO5, R=La or Nd

Detailed descriptions of the structures of BaLa2ZnO5 and BaNd2ZnO5 have been reported by Michel et al. [6,7], Taibi et al. [18], and Wong-Ng et al. [9] (Fig. 5). Despite similar effective ionic sizes of Zn2+ and Cu2+, the structures of BaR2ZnO5 and the brown phase BaR2 CuO5 compounds are different [5,19]. The brown phase crystallizes in the space group P4/mbm, and the structure contains square planar CuO4 groups. The Zn analogs consist of a three-dimensional array of interconnected BaO10 and RO8 polyhedra as well as tetrahedral ZnO4 groups (see Fig. 5). The RO8 polyhedron is a trigonal prism capped on two of the three rectangular faces, and the capped BaO10 polyhedron is a square prism capped on both ends by tetragonal pyramids. The structure can be viewed as consisting of alternate layers of Zn-Ba-O and R-O extending infinitely in the abplane and perpendicular to the c axis.

Figure 5. Structure of BaNd2ZnO5, showing the ZnO4 tetrahedra. Ba ions are located between these tetrahedra.

Figure 5

The atomic valence values Vb for Ba, R/R1, R2, and Zn were calculated [20] and are listed in Table 8. The Vb of an atom i is defined as the sum of the bond valences vij of all the bonds from atom i to atoms j (Vbi = Σ vij). The most commonly adopted empirical expression for the bond valence vij as a function of the interatomic distance dij is

vij = exp [(r0dij)/B].

The parameter B is commonly taken to be a “universal” constant equal to 0.37 Å [20,21]. The values of the reference distance r 0 are tabulated for various pairs of atoms [20]. The Vb values (1.686 and 1.784) of Ba in the La and Nd analogs indicate an underbonded situation in both compounds. These values, which agree with those derived from neutron data, are significantly less than the expected value of 2 and indicate the size of the BaO10 cages are relatively large. The Vb values for Zn (2.108 and 2.102 in the La- and Nd-analogs) are very close to the expected value of 2.

Table 8. Atomic valence values (Vb) for the Ba, Zn and R calculated form the measured bond distances, A [20, 21]. R1 and R2 are used for the two independent lanthanide sites in the BaR2ZnO5compounds containing Sm, Eu, Gd, Dy, Ho, Y and Er. The values initalicsrefer to calculations based on data from neutron/synchrotron (Er-analog) refinements [9].

R Ba R or R1 R2 Zn
La 1.686
1.641
3.269
2.890
- 2.108
2.035
Nd 1.784
1.815
2.900
2.899
- 2.102
2.057
Sm 1.616 3.005 3.109 2.049
Eu 1.654 2.974 3.352 1.687
Gd 1.673 3.111 3.124 1.826
Dy 1.868
1.783
2.923
3.023
2.934
2.997
1.991
1.937
Ho 1.817
1.565
2.991
3.070
2.883
2.954
2.001
1.972
Y 1.798
1.568
3.211
2.909
2.988
3.174
1.964
1.958
Er 1.892
1.544
2.964
3.020
2.778
2.901
2.122
2.011

3. 1. 2. Structure of Orthorhombic BaRZnO5, R= Sm, Eu, Gd, Dy, Ho, Y, or Er2

The structures of the orthorhombic BaR2ZnO5 compounds are similar to those of the “green phase” BaR2CuO5 analogs. The detailed structure of the green phase type structure has been reported [6,7,9,22,23,24]. The basic structure of these compounds consists of RO7, BaO11, and ZnO5 polyhedra. R is 7-fold coordinated inside a monocapped trigonal prism, and two such units join to form the basic structure motif of R2O11. The Ba atoms are found to reside in distorted 11-fold coordinated cages, characterized by Ba – O distances between 2.650(20) Å and 3.346(17) Å , where the values inside the brackets are standard uncertainties. Both CuO5 and ZnO5 in BaR2CuO5 and BaR2ZnO5 have a distorted tetragonal pyramidal coordination. Similar to the La-analog, the Vb values for Ba are less than 2 (Table 8). The Zn – O distances in the seven compounds range from 1.950(11) Å to 2.164(13) Å . The Vb values for R and Zn do not deviate significantly from the expected values of 3 and 2, respectively, except for the Eu-analog. In this compound, the Eu2-O polyhedron appears to be relatively small (overbonded, with Vb =3.353), whereas the size of the Zn-O square pyramid is relatively large (Vb= 1.687). This result may be due to the relatively large uncertainty associated with the position of O3 derived from the x-ray data.

In Fig. 6, the projection of the Sm2O11 blocks at z= 1/4 is shown as solid lines and the second layer at z=3/4 is represented as dotted lines. These prisms share edges to form wave-like chains parallel to the long b-axis. Chains are crosslinked by Cu and Ba atoms. The c direction is the shortest axis, and is also the direction in which layers of prisms are stacked parallel to each other, sharing the trigonal faces.

Figure 6. Projection of the structure of BaSm2ZnO5 in the (001) plane showing the linkage of R2O11 polyhedra at z =1/4 (broken line) and z=3/4 (solid line). The wave-like chains along the b-axis are displayed, and the two independent Sm atoms are labelled.

Figure 6

3. 2. Reference X-Ray Diffraction Patterns

Reference x-ray powder patterns of the nine compounds BaR2ZnO5, in which R=La, Nd, Sm, Eu, Gd, Dy, Ho, Y, or Er, were obtained using a pattern decomposition technique. Because the refined structural parameters for the R=Tm analog are not as accurate or precise as those derived from the pattern of a pure or nearly pure phase, the x-ray diffraction pattern of this phase is not reported here. These patterns represent ideal specimen patterns. They are corrected for systematic errors both in dand I. The reported peak positions are calculated from the refined lattice parameters, as this represents the best measure of the true positions. For peaks resolved at the instrument resolution function, the individual peak positions are reported. For overlapping peaks, the intensity weighted average peak position is reported with multiple indices. For marginally resolved peaks, individual peaks are reported, to more accurately simulate the visual appearance of the pattern.

Tables 9 to 17 list these patterns with d spacings, Miller indices h, k, l and integrated intensities I, normalized to the value 999 as the maximum. The symbols M and + refer to peaks containing contributions from two and more than two reflections, respectively. These patterns have been submitted to International Centre for Diffraction Data (ICDD) for inclusion in the PDF.

4. Summary

The reference x-ray diffraction patterns and the crystal structures of both tetragonal and orthorhombic BaR2ZnO5, R=La, Nd, Sm, Eu, Gd, Dy, Ho, Y, or Er were obtained by Rietveld refinement. The most striking difference between the orthorhombic and tetragonal BaR2ZnO5 structures is the Zn-O coordination environment. In the orthorhombic structure, the Zn atom is coordinated to five oxygen atoms, four of which form the base of a square pyramid, whereas in the tetragonal structure, the Zn atom is tetrahedrally coordinated.

Table 9. X-ray diffraction pattern of BaLa2ZnO5 with d spacings (Å), Miller indices h k l, and integrated intensities I normalized to the value of 999 as the maximum.

d I h k l d I h k l d I h k l
3.79885 53 0 0 2 3.73647 200 1 1 2 3.45491 20 2 0 0
2.98599 480 2 1 1 2.96806 999 2 0 2 2.89942 345 0 0 4
2.49345 22 1 1 4 2.44299 239 2 2 0 2.41379 540 2 1 3
2.25136 39 2 2 2 2.22096 20 2 0 4 2.18508 208 3 1 0
2.04473 31 3 1 2 1.93295 43 0 0 6 1.89080 18 3 2 1
1.86824 214 2 2 4 1.85508 207 2 1 5 1.79741 34 1 1 6
1.74502 114 3 1 4 1.72746 7 4 0 0 1.68688 178 2 0 6
1.65865 135 4 1 1 1.65556 104 4 0 2 1.62866 33 3 3 0
1.56799 97 3 3 2 1.54508 77 4 2 0 1.53762 131 4 1 3
1.49299 21 4 2 2 1.48403 19 4 0 4 1.46018 37 2 1 7
1.44971 44 0 0 8 1.44777 8 3 1 6 1.36356 82 4 2 4
1.35842 76 4 1 5 1.31957 27 5 1 2 1.28804 53 4 0 6
1.27534 24 5 2 1 1.24672 53 2 2 8 1.24549 66 3 3 6
1.22150 20 4 4 0 1.21780 41 5 2 3 1.20775 63 3 1 8M
1.20775 63 4 2 6M 1.19527 12 4 4 2 1.18936 36 2 1 9
1.18502 32 5 3 0 1.17823 42 4 1 7 1.16103 18 5 3 2
1.15164 56 6 0 0 1.13032 7 6 1 1+ 1.12881 5 1 1 10+
1.12568 16 4 4 4 1.12278 27 5 2 5 1.10961 16 5 1 6
1.09948 42 2 0 10 1.09694 58 5 3 4 1.08286 17 3 3 8
1.07383 102 5 4 1M 1.07383 102 6 2 2M 1.07030 69 6 0 4
1.05721 45 4 2 8 1.03940 31 5 4 3 1.02155 32 4 1 9
1.01447 11 5 2 7 1.01028 8 5 3 6 0.99785 30 2 1 11
0.97843 24 5 4 5 0.96647 13 0 0 12 0.96361 14 5 5 2M
0.96361 14 7 1 2M 0.96289 18 4 0 10 0.95112 64 6 2 6
0.94564 70 7 2 1M 0.94564 70 6 4 2M 0.94472 30 3 3 10
0.93412 15 4 4 8 0.92176 30 7 2 3 0.91750 52 5 3 8
0.90951 31 6 4 4M 0.90951 31 5 2 9M 0.90424 20 5 4 7
0.90174 74 6 0 8 0.89870 25 2 2 12 0.89242 45 4 1 11
0.88388 28 3 1 12 0.88113 16 5 1 10 0.87844 32 7 2 5
0.87209 20 7 1 6M 0.87209 20 5 5 6M 0.86590 7 7 3 4
0.85852 46 6 4 6 0.85713 26 2 1 13 0.85452 100 8 1 1M
0.85452 100 7 4 1M 0.85452 100 8 0 2M 0.83794 31 8 2 0
0.83674 70 7 4 3M 0.83674 70 8 1 3M 0.82887 6 5 3 10
0.82735 16 5 4 9 0.82357 27 7 2 7

Table 10. X-ray diffraction pattern of BaNd2ZnO5 withd spacings (Å), Miller indices h k l, and integrated intensitiesI normalized to the value of 999 as the maximum.

d I h k l d I h k l d I h k l
5.77280 93 0 0 2 4.77989 8 1 1 0 3.68165 169 1 1 2
3.37989 20 2 0 0 2.92448 484 2 1 1 2.91674 999 2 0 2
2.88640 340 0 0 4 2.47085 31 1 1 4 2.38995 234 2 2 0
2.37733 541 2 1 3 2.20819 29 2 2 2 2.19493 17 2 0 4
2.13763 197 3 1 0 2.00461 18 3 1 2 1.92427 5 0 0 6
1.85059 9 3 2 1 1.84082 184 2 2 4 1.83504 206 2 1 5
1.78505 25 1 1 6 1.71784 104 3 1 4 1.68995 5 4 0 0
1.67224 171 2 0 6 1.62265 239 4 1 1M 1.62265 239 4 0 2M
1.59330 38 3 3 0 1.53587 121 3 3 2 1.51153 81 4 2 0
1.50833 141 4 1 3 1.49883 7 2 2 6 1.46224 29 4 2 2
1.45837 23 4 0 4 1.44789 47 2 1 7 1.44320 60 0 0 8
1.43016 6 3 1 6 1.39489 15 3 3 4 1.33904 80 4 2 4
1.33681 82 4 1 5 1.29207 25 5 1 2 1.26978 44 4 0 6
1.24791 22 5 2 1 1.23542 46 2 2 8 1.22722 61 3 3 6
1.19612 51 3 1 8 1.19497 16 4 4 0 1.19339 38 5 2 3
1.18866 13 4 2 6 1.18092 32 2 1 9 1.17017 11 4 4 2
1.16277 44 4 1 7 1.15929 33 5 3 0 1.13660 17 5 3 2
1.12663 51 6 0 0 1.12228 6 1 1 10 1.10602 10 6 1 1M
1.10602 10 6 0 2M 1.10409 15 4 4 4 1.10284 28 5 2 5
1.09232 62 2 0 10M 1.09232 62 5 1 6M 1.07577 60 5 3 4
1.06963 18 3 3 8 1.05104 104 5 4 1M 1.05104 104 6 2 2M
1.04952 69 6 0 4 1.04382 46 4 2 8 1.01809 30 5 4 3
1.01515 6 4 4 6 1.01032 34 4 1 9 0.99888 11 5 2 7
0.99301 11 5 3 6 0.99154 31 2 1 11 0.96213 15 0 0 12
0.96012 25 5 4 5 0.95332 18 4 0 10 0.94313 16 5 5 2M
0.94313 16 7 1 2M 0.93455 101 3 3 10M 0.93455 101 6 2 6M
0.92554 34 7 2 1 0.92529 44 6 4 2 0.92163 5 6 1 7
0.92041 17 4 4 8 0.91752 8 4 2 10 0.90381 48 5 3 8
0.90263 35 7 2 3 0.89720 13 5 2 9 0.89252 26 2 2 12
0.89157 10 6 4 4 0.88916 23 5 4 7 0.88802 84 6 0 8M
0.88802 84 7 3 0M 0.88397 40 4 1 11 0.87736 22 3 1 12
0.87066 14 5 1 10 0.86149 32 7 2 5 0.85615 17 7 1 6M
0.85615 17 5 5 6M 0.85211 27 2 1 13 0.84840 6 7 3 4
0.84273 47 6 4 6 0.83625 71 7 4 1M 0.83625 71 8 1 1M
0.83606 64 8 0 2+ 0.82362 6 3 3 12

Table 11. X-ray diffraction pattern of BaSm2ZnO5 with d spacings (Å), Miller indices h k l, and integrated intensitiesI normalized to the value of 999 as the maximum.

d I h k l d I h k l d I h k l
6.29411 31 0 2 0 6.25287 49 1 1 0 4.74001 10 1 2 0
4.52364 66 1 0 1 3.67333 27 1 2 1 3.60226 19 2 0 0
3.46325 71 2 1 0 3.14705 129 0 4 0 3.12643 31 2 2 0
3.07636 999 1 3 1 2.97513 751 2 1 1 2.90609 592 0 0 2
2.88392 208 1 4 0 2.76742 105 0 4 1 2.75337 62 2 2 1
2.73323 21 2 3 0 2.58339 80 1 4 1 2.47363 157 2 3 1+
2.37636 98 1 5 0+ 2.35896 24 3 1 0 2.26182 21 2 0 2
2.24373 114 3 2 0 2.22617 73 2 1 2 2.21951 54 3 0 1
2.19988 28 1 5 1 2.18579 57 3 1 1 2.13503 60 0 4 2
2.12855 17 2 2 2 2.09804 57 0 6 0 2.09318 16 3 2 1
2.04703 276 1 4 2 1.99099 115 2 3 2 1.97340 7 0 6 1
1.96195 23 3 3 1 1.94466 14 2 5 1 1.90914 142 3 4 0
1.90329 22 1 6 1 1.83978 51 1 5 2 1.81333 40 3 4 1M
1.81333 40 2 6 0M 1.80113 64 4 0 0 1.78297 14 4 1 0
1.77599 85 3 2 2 1.74478 49 1 7 0 1.73072 7 2 6 1
1.70877 145 1 3 3 1.70457 32 4 1 1 1.70106 27 0 6 2
1.69081 150 2 1 3 1.67111 46 1 7 1 1.66491 14 3 5 1
1.65554 11 1 6 2 1.64982 19 0 4 3 1.64683 12 2 2 3
1.60819 19 1 4 3 1.59562 137 3 4 2 1.58038 51 2 3 3M
1.58038 51 3 6 0M 1.57353 8 0 8 0 1.55065 104 2 7 1
1.53804 39 2 6 2M 1.53804 39 1 8 0M 1.53094 48 4 0 2
1.51919 47 4 1 2M 1.51919 47 0 8 1M 1.50923 75 4 4 1M
1.50923 75 3 0 3M 1.50168 7 1 5 3 1.49632 47 3 1 3M
1.49632 47 1 7 2M 1.48618 26 1 8 1 1.46554 16 3 2 3M
1.46554 16 4 5 0M 1.45305 94 0 0 4 1.43917 43 3 7 0M
1.43917 43 4 3 2M 1.42017 25 4 5 1M 1.42017 25 3 3 3M
1.40457 11 5 2 0 1.39857 10 5 0 1 1.39636 6 1 6 3
1.38811 24 3 6 2 1.38371 6 0 8 2 1.36661 13 4 6 0
1.35939 16 3 4 3M 1.35939 16 1 8 2M 1.33989 5 2 1 4
1.33627 8 1 9 1 1.33033 5 4 6 1 1.32681 90 5 3 1
1.31195 10 4 1 3 1.30808 6 4 5 2 1.29727 52 1 4 4M
1.29727 52 1 7 3M 1.28990 17 3 7 2 1.28366 43 3 8 1+
1.27223 6 2 9 1 1.26461 15 5 2 2 1.25882 8 0 10 0
1.25057 5 5 5 0 1.24315 28 4 7 1 1.23971 17 1 5 4
1.23778 57 2 7 3 1.23669 13 4 6 2 1.23030 14 0 10 1
1.22142 13 0 8 3 1.21963 28 3 2 4 1.21658 28 4 4 3
1.20424 16 1 8 3 1.20075 7 6 0 0 1.19893 5 3 8 2
1.19453 17 0 6 4 1.18835 5 2 10 0 1.18500 11 4 8 0
1.16846 13 4 5 3 1.16572 5 4 7 2 1.16371 7 5 6 1
1.16112 5 4 8 1 1.15624 48 3 4 4M 1.15624 48 5 0 3M
1.15475 21 0 10 2M 1.15475 21 6 3 0 1.14873 6 5 5 2
1.14054 16 1 10 2 1.13382 10 2 6 4 1.13091 30 4 0 4
1.12637 6 4 1 4 1.12447 7 5 7 0 1.12025 5 1 9 3
1.11656 22 1 7 4 1.11469 57 3 10 0M 1.11469 57 5 3 3M
1.10964 24 6 0 2 1.10964 24 1 11 1M 1.10694 41 1 3 5
1.10547 6 6 1 2 1.10400 7 5 7 1 1.10202 31 2 1 5
1.09994 8 2 10 2 1.09728 13 4 8 2 1.09062 36 2 11 0M
1.09062 36 0 4 5M 1.08870 17 3 8 3 1.08528 5 4 9 1
1.07815 7 1 4 5 1.07287 28 6 3 2 1.06962 21 2 3 5M
1.06962 21 3 6 4M 1.06751 6 0 8 4 1.06543 5 6 5 1
1.06365 15 4 7 3 1.05557 10 0 10 3 1.04870 16 5 7 2
1.04631 5 3 0 5 1.04232 16 3 1 5M 1.04232 16 6 6 0M
1.04095 19 3 10 2 1.03207 34 0 12 1+ 1.02579 8 7 1 0M
1.02579 8 6 6 1M 1.02262 21 3 7 4 1.02112 56 2 11 2
1.01591 16 4 10 1 1.01345 18 7 0 1 1.01001 14 7 1 1M
1.01001 14 5 2 4M 0.99804 11 5 8 2 0.99550 12 4 6 4
0.98419 33 6 7 1 0.98098 28 6 6 2 0.97823 13 7 4 0
0.97624 7 1 11 3 0.97376 8 4 1 5 0.97240 15 5 7 3M
0.97240 15 4 10 2 0.96870 19 0 0 6 0.96737 12 1 7 5M
0.96737 12 7 1 2M 0.95284 10 4 11 1 0.95143 9 0 10 4
0.94786 6 5 5 4 0.94687 17 1 13 1 0.94523 5 7 3 2
0.94225 29 2 7 5 0.93564 12 5 10 1 0.93498 9 0 8 5
0.93282 27 2 1 6M 0.93282 27 4 4 5M 0.92714 31 1 8 5
0.92714 31 7 4 2M 0.92561 9 6 0 4 0.92325 5 2 13 1
0.92247 13 0 12 3 0.91989 6 2 10 4 0.91830 40 4 8 4M
0.91830 40 1 4 6M 0.91305 11 2 3 6 0.91070 13 4 10 3

Table 12. X-ray diffraction pattern of BaEu2ZnO5 with d spacings (Å), Miller indices h k l, and integrated intensitiesI normalized to the value of 999 as the maximum.

d I h k l d I h k l d I h k l
6.26795 33 0 2 0 6.22978 47 1 1 0 4.72157 15 1 2 0
4.50738 63 1 0 1 3.65943 11 1 2 1 3.58951 13 2 0 0
3.45083 54 2 1 0 3.13397 66 0 4 0 3.11489 19 2 2 0
3.06438 999 1 3 1 2.96443 815 2 1 1 2.89554 427 0 0 2
2.87222 194 1 4 0 2.75625 100 0 4 1 2.74324 67 2 2 1
2.72284 18 2 3 0 2.57312 92 1 4 1 2.46444 183 2 3 1+
2.36698 63 1 5 0 2.35056 15 3 1 0 2.25369 21 2 0 2
2.23562 125 3 2 0 2.21813 77 2 1 2 2.21163 56 3 0 1
2.19103 27 1 5 1 2.17799 62 3 1 1 2.12676 60 0 4 2
2.12077 13 2 2 2 2.08932 50 0 6 0 2.08560 14 3 2 1
2.03916 286 1 4 2 1.98358 92 2 3 2 1.95472 15 3 3 1
1.93704 5 2 5 1 1.90195 116 3 4 0 1.89557 18 1 6 1
1.83259 51 1 5 2 1.80624 36 3 4 1M 1.80624 36 2 6 0M
1.79476 66 4 0 0 1.77664 18 4 1 0 1.76956 113 3 2 2
1.73759 48 1 7 0 1.72385 7 2 6 1 1.70242 141 1 3 3
1.69851 32 4 1 1 1.69430 27 0 6 2 1.68469 138 2 1 3
1.66429 45 1 7 1 1.65855 12 3 5 1 1.64899 8 1 6 2
1.64360 17 0 4 3 1.64083 12 2 2 3 1.60214 21 1 4 3
1.58968 144 3 4 2 1.57444 54 2 3 3M 1.57444 54 3 6 0M
1.56699 8 0 8 0 1.54444 104 2 7 1 1.53196 48 2 6 2M
1.53196 48 1 8 0M 1.52548 52 4 0 2 1.51321 47 4 1 2M
1.51321 47 0 8 1M 1.50370 78 4 4 1M 1.50370 78 3 0 3M
1.49596 8 1 5 3 1.49178 17 3 1 3 1.48991 31 1 7 2
1.48010 30 1 8 1 1.45937 8 4 5 0 1.44777 82 0 0 4
1.43359 39 3 7 0M 1.43359 39 4 3 2M 1.41488 26 4 5 1M
1.41488 26 3 3 3M 1.40208 5 2 7 2 1.39955 12 5 2 0
1.39361 9 5 0 1 1.39097 5 1 6 3 1.38279 30 3 6 2
1.37812 7 0 8 2 1.36142 13 4 6 0 1.35425 10 3 4 3M
1.35425 10 1 8 2M 1.33504 7 2 1 4 1.33078 9 1 9 1
1.32203 88 5 3 1 1.31431 6 0 4 4 1.30725 14 4 1 3
1.30321 7 4 5 2 1.29282 30 1 4 4 1.29145 17 1 7 3
1.28490 20 3 7 2 1.27879 47 3 8 1+ 1.26708 5 2 9 1
1.26008 13 5 2 2 1.25359 5 0 10 0 1.24596 6 5 5 0
1.23837 26 4 7 1 1.23644 5 1 9 2 1.23505 18 1 5 4+
1.23279 64 2 7 3+ 1.22521 12 0 10 1 1.21660 15 0 8 3
1.21521 32 3 2 4 1.21212 30 4 4 3 1.20775 5 1 10 1
1.19950 15 1 8 3 1.19650 6 6 0 0 1.19424 5 3 8 2
1.18999 16 0 6 4 1.18349 7 2 10 0 1.18039 10 4 8 0
1.16413 14 4 5 3 1.15937 5 5 6 1 1.15661 5 4 8 1
1.15199 57 3 4 4+ 1.15034 26 0 10 2M 1.15034 26 6 3 0M
1.14450 8 5 5 2 1.13591 15 1 10 2 1.12954 10 2 6 4
1.12685 32 4 0 4 1.12232 8 4 1 4 1.12022 6 5 7 0
1.11580 6 1 9 3 1.11228 23 1 7 4 1.11061 61 5 3 3+
1.10553 30 6 0 2M 1.10553 30 1 11 1M 1.10289 38 1 3 5
1.10154 8 6 1 2 1.09983 7 5 7 1 1.09802 34 2 1 5
1.09552 9 2 10 2 1.09306 14 4 8 2 1.08899 5 6 2 2
1.08618 37 2 11 0+ 1.08449 20 3 8 3 1.08103 5 4 9 1
1.06901 26 6 3 2 1.06565 20 2 3 5M 1.06565 20 3 6 4M
1.06338 5 0 8 4 1.06154 5 6 5 1 1.05963 18 4 7 3
1.05135 8 0 10 3 1.04476 16 5 7 2 1.04265 11 6 4 2M
1.04265 11 3 0 5M 1.03851 18 3 1 5M 1.03851 18 6 6 0M
1.03682 17 3 10 2 1.02793 31 0 12 1+ 1.02208 10 7 1 0M
1.02208 10 6 6 1M 1.01875 24 3 7 4 1.01700 62 2 11 2
1.01304 5 3 11 1 1.01191 14 4 10 1 1.00986 18 7 0 1
1.00641 18 7 1 1M 1.00641 18 5 2 4M 0.99425 10 5 8 2
0.99179 12 4 6 4 0.98052 31 6 7 1 0.97736 32 6 6 2
0.97471 14 7 4 0 0.97212 11 1 11 3M 0.97212 11 3 8 4M
0.97025 7 4 1 5 0.96864 18 5 7 3M 0.96864 18 4 10 2M
0.96518 25 0 0 6 0.96378 15 7 1 2M 0.96378 15 1 7 5M
0.94906 11 4 11 1 0.94769 8 0 10 4 0.94500 5 5 9 2
0.94438 6 5 5 4 0.94296 14 1 13 1 0.94185 6 7 3 2
0.93870 27 2 7 5 0.93176 20 5 10 1M 0.93176 20 0 8 5M
0.92942 22 2 1 6M 0.92942 22 4 4 5M 0.92374 31 7 4 2M
0.92374 31 1 8 5M 0.92235 14 0 4 6M 0.92235 14 6 0 4M
0.91875 14 0 12 3 0.91630 7 2 10 4 0.91490 38 1 4 6M
0.91490 38 4 8 4M 0.90972 9 2 3 6 0.90798 5 3 11 3

Table 13. X-ray diffraction pattern of BaGd2ZnO5 with d spacings (Å), Miller indices h k l, and integrated intensitiesI normalized to the value of 999 as the maximum.

d I h k l d I h k l d I h k l
6.24700 30 0 2 0 6.21045 51 1 1 0 4.49408 62 1 0 1
3.64814 10 1 2 1 3.57865 15 2 0 0 3.44031 62 2 1 0
3.12350 85 0 4 0 3.10523 31 2 2 0 3.05469 999* 1 3 1
2.95550 847 2 1 1 2.88713 525 0 0 2 2.86276 217 1 4 0
2.74731 112 0 4 1 2.73485 74 2 2 1 2.71424 22 2 3 0
2.56485 93 1 4 1 2.45665 156 2 3 1+ 2.35915 77 1 5 0
2.35322 5 2 4 0 2.34343 19 3 1 0 2.24704 27 2 0 2
2.22876 132 3 2 0 2.21156 84 2 1 2 2.20497 56 3 0 1
2.18391 30 1 5 1 2.17920 6 2 4 1 2.17142 69 3 1 1
2.12015 66 0 4 2 2.11441 18 2 2 2 2.08173 77 0 6 0M
2.08173 77 3 2 1M 2.03284 318 1 4 2 1.99943 5 1 6 0
1.97755 115 2 3 2 1.95885 5 0 6 1 1.94870 17 3 3 1
1.93084 7 2 5 1 1.89597 126 3 4 0 1.88937 20 1 6 1
1.85872 7 1 0 3 1.82683 54 1 5 2 1.80051 42 3 4 1M
1.80051 42 2 6 0M 1.78933 72 4 0 0 1.77125 18 4 1 0
1.76424 113 3 2 2 1.73182 58 1 7 0 1.71828 12 2 6 1
1.69734 157 1 3 3 1.69338 36 4 1 1 1.68889 26 0 6 2
1.67974 147 2 1 3 1.65882 47 1 7 1 1.65332 12 3 5 1
1.64374 9 1 6 2 1.63862 21 0 4 3 1.63597 14 2 2 3
1.59730 22 1 4 3+ 1.58480 153 3 4 2 1.56961 54 2 3 3M
1.56961 54 3 6 0M 1.56175 10 0 8 0 1.53941 102 2 7 1
1.52708 46 2 6 2M 1.52708 46 1 8 0M 1.52092 53 4 0 2
1.50977 18 4 1 2 1.50758 35 0 8 1 1.49911 79 4 4 1M
1.49911 79 3 0 3M 1.49137 8 1 5 3 1.48737 21 3 1 3
1.48513 34 1 7 2 1.47521 35 1 8 1 1.45480 11 4 5 0
1.44357 101 0 0 4 1.42903 46 3 7 0M 1.42903 46 4 3 2M
1.41054 31 4 5 1M 1.41054 31 3 3 3M 1.39761 7 2 7 2
1.39530 13 5 2 0 1.38940 11 5 0 1 1.38666 5 1 6 3
1.37845 34 3 6 2 1.37365 7 0 8 2 1.35712 15 4 6 0+
1.35072 8 3 4 3 1.33113 8 2 1 4 1.32638 9 1 9 1
1.31799 95 5 3 1 1.31039 6 0 4 4 1.30336 12 4 1 3
1.29919 9 4 5 2 1.29425 6 2 9 0 1.28896 35 1 4 4
1.28740 20 1 7 3 1.28083 18 3 7 2 1.27578 10 5 1 2
1.27446 36 2 3 4M 1.27446 36 3 8 1M 1.26322 10 4 7 0M
1.26322 10 2 9 1M 1.25628 16 5 2 2 1.24940 8 0 10 0
1.24209 9 5 5 0 1.23445 30 4 7 1 1.23134 19 1 5 4+
1.22913 50 2 7 3+ 1.22820 13 4 6 2 1.22114 14 0 10 1
1.21275 16 0 8 3 1.21162 34 3 2 4 1.20845 32 4 4 3
1.20375 5 1 10 1 1.19570 17 1 8 3 1.19288 6 6 0 0
1.19043 5 3 8 2 1.18637 17 0 6 4 1.17958 7 2 10 0
1.17661 9 4 8 0 1.16058 18 4 5 3 1.15763 5 4 7 2
1.14863 7 5 0 3 1.14855 50 3 4 4+ 1.14670 25 6 3 0M
1.14670 25 0 10 2M 1.14098 8 5 5 2 1.13220 17 1 10 2
1.12610 12 2 6 4 1.12352 31 4 0 4 1.11900 8 4 1 4
1.11669 8 5 7 0 1.11225 6 1 9 3 1.10886 25 1 7 4+
1.10729 58 5 3 3 1.10681 8 3 10 0 1.10249 20 6 0 2
1.10119 7 1 11 1 1.09965 45 1 3 5 1.09822 8 6 1 2
1.09638 7 5 7 1 1.09482 37 2 1 5+ 1.09196 9 2 10 2
1.08960 13 4 8 2 1.08260 38 2 11 0+ 1.08109 20 3 8 3
1.07756 6 4 9 1 1.07099 8 1 4 5 1.06578 27 6 3 2
1.06247 24 2 3 5M 1.06247 24 3 6 4M 1.05828 6 6 5 1
1.05635 17 4 7 3 1.04797 11 0 10 3 1.04150 14 5 7 2
1.03508 13 6 6 0 1.03347 19 3 10 2 1.02464 34 0 12 1+
1.01893 10 7 1 0M 1.01893 10 6 6 1M 1.01563 21 3 7 4
1.01368 67 2 11 2 1.00973 5 3 11 1 1.00864 15 4 10 1+
1.00681 20 7 0 1 1.00340 22 7 1 1M 1.00340 22 5 2 4M
0.99298 5 7 3 0 0.99113 12 5 8 2 0.98878 11 4 6 4
0.97746 30 6 7 1 0.97435 31 6 6 2 0.97173 13 7 4 0
0.96899 11 1 11 3M 0.96899 11 3 8 4M 0.96740 10 4 1 5
0.96556 20 5 7 3M 0.96556 20 4 10 2M 0.96238 22 0 0 6
0.96087 15 7 1 2M 0.96087 15 1 7 5M 0.95276 12 4 9 3M
0.95276 12 7 2 2M 0.95083 6 4 7 4 0.94598 12 4 11 1
0.94471 9 0 10 4 0.94178 16 5 9 2M 0.94178 16 5 5 4M
0.93976 20 1 13 1M 0.93976 20 6 5 3M 0.93900 7 7 3 2
0.93585 32 2 7 5 0.92884 25 5 10 1M 0.92884 25 0 8 5M
0.92668 26 2 1 6M 0.92668 26 4 4 5M 0.92096 27 7 4 2+

Table 14. X-ray diffraction pattern of BaDy2ZnO5 with d spacings (Å), Miller indices h k l, and integrated intensities I normalized to the value of 999 as the maximum.

d I h k l d I h k l d I h k l
6.19234 25 0 2 0 6.15523 32 1 1 0 4.66487 7 1 2 0
4.45727 66 1 0 1 3.61756 13 1 2 1 3.54666 12 2 0 0
3.40961 58 2 1 0 3.09617 63 0 4 0 3.07761 24 2 2 0
3.02875 999 1 3 1 2.93007 827 2 1 1 2.86490 515 0 0 2
2.83763 233 1 4 0 2.72392 112 0 4 1 2.71126 71 2 2 1
2.69019 18 2 3 0 2.54287 105 1 4 1 2.44127 12 1 2 2
2.43515 160 2 3 1 2.33846 89 1 5 0 2.33244 6 2 4 0
2.32250 18 3 1 0 2.22863 29 2 0 2 2.20889 138 3 2 0
2.19340 96 2 1 2 2.18566 61 3 0 1 2.16031 7 2 4 1
2.15240 73 3 1 1 2.10280 60 0 4 2 2.09696 17 2 2 2
2.06345 75 0 6 0M 2.06345 75 3 2 1M 2.01608 315 1 4 2
1.98191 7 1 6 0 1.96111 118 2 3 2 1.94195 5 0 6 1
1.93164 18 3 3 1 1.91407 9 2 5 1 1.87916 134 3 4 0
1.87302 21 1 6 1 1.81159 53 1 5 2 1.78468 39 3 4 1M
1.78468 39 2 6 0M 1.77333 60 4 0 0 1.75543 20 4 1 0
1.74931 114 3 2 2 1.71665 61 1 7 0 1.70333 12 2 6 1
1.68386 192 1 3 3 1.67842 42 4 1 1 1.67471 26 0 6 2
1.66631 171 2 1 3 1.64443 48 1 7 1 1.63885 11 3 5 1
1.62990 10 1 6 2 1.62553 19 0 4 3 1.62283 17 2 2 3
1.58446 22 1 4 3+ 1.57130 138 3 4 2 1.55735 41 2 3 3
1.55496 23 3 6 0 1.54808 7 0 8 0 1.52600 99 2 7 1
1.51406 49 2 6 2M 1.51406 49 1 8 0M 1.50784 51 4 0 2
1.49679 17 4 1 2 1.49450 30 0 8 1 1.48607 73 4 4 1M
1.48607 73 3 0 3M 1.47925 8 1 5 3 1.47518 21 3 1 3
1.47253 35 1 7 2 1.46239 32 1 8 1 1.44189 10 4 5 0
1.43245 75 0 0 4 1.41650 44 3 7 0M 1.41650 44 4 3 2M
1.39830 26 4 5 1+ 1.38568 7 2 7 2 1.38284 12 5 2 0
1.37708 10 5 0 1 1.37527 6 1 6 3+ 1.36663 28 3 6 2
1.36196 5 0 8 2 1.34510 11 4 6 0 1.33951 5 3 4 3
1.33753 5 1 8 2 1.32063 6 2 1 4 1.31484 12 1 9 1
1.30632 86 5 3 1 1.30372 5 2 6 3 1.30005 7 0 4 4
1.29517 5 3 8 0 1.29245 13 4 1 3 1.28796 8 4 5 2
1.27875 34 1 4 4 1.27673 20 1 7 3 1.26982 19 3 7 2
1.26459 13 5 1 2M 1.26459 13 2 3 4M 1.26330 34 3 8 1
1.25216 9 4 7 0M 1.25216 9 2 9 1M 1.24535 16 5 2 2
1.23847 8 0 10 0 1.23105 6 5 5 0 1.22359 25 4 7 1
1.22157 23 1 9 2M 1.22157 23 1 5 4M 1.21888 42 2 7 3
1.21757 11 4 6 2 1.21051 11 0 10 1 1.20211 47 0 8 3M
1.20211 47 3 2 4M 1.19827 22 4 4 3 1.18572 15 1 8 3
1.18222 7 6 0 0 1.18017 6 3 8 2 1.17683 17 0 6 4+
1.16923 6 2 10 0 1.16622 5 4 8 0 1.15078 15 4 5 3
1.14761 6 4 7 2 1.14554 5 5 6 1 1.14279 5 4 8 1
1.13921 44 3 4 4 1.13858 13 5 0 3M 1.13858 13 6 2 1M
1.13669 23 0 10 2M 1.13669 23 6 3 0M 1.13105 8 5 5 2
1.12247 16 1 10 2 1.11694 10 2 6 4 1.11432 27 4 0 4
1.10983 9 4 1 4 1.10445 5 6 4 0 1.10290 6 1 9 3
1.09984 23 1 7 4+ 1.09777 59 5 3 3M 1.09777 59 3 10 0M
1.09283 21 6 0 2 1.09106 45 1 3 5 1.08860 8 6 1 2
1.08634 43 5 7 1M 1.08634 43 2 1 5M 1.08255 11 2 10 2
1.08015 10 4 8 2 1.07609 7 6 2 2+ 1.07311 30 2 11 0
1.07195 20 3 8 3 1.06810 7 4 9 1 1.06258 7 1 4 5+
1.05644 16 6 3 2 1.05387 21 2 3 5M 1.05387 21 3 6 4M
1.04890 6 6 5 1 1.04737 17 4 7 3 1.04591 5 5 8 0
1.03950 17 1 8 4M 1.03950 17 0 10 3M 1.03243 10 5 7 2
1.03052 6 6 4 2 1.02767 6 3 1 5 1.02587 13 6 6 0
1.02453 14 3 10 2 1.01576 28 0 12 1+ 1.00988 13 7 1 0M
1.00988 13 6 6 1M 1.00723 21 3 7 4 1.00492 69 2 11 2
0.99979 14 4 10 1 0.99785 13 7 0 1+ 0.99479 19 5 2 4M
0.99479 19 7 1 1M 0.98249 10 5 8 2 0.98055 11 4 6 4
0.96881 26 6 7 1 0.96582 30 6 6 2 0.96306 10 7 4 0
0.96070 6 3 8 4 0.95959 7 4 1 5 0.95723 18 5 7 3M
0.95723 18 4 10 2M 0.95511 24 2 9 4M 0.95511 24 0 0 6M
0.95291 16 1 7 5M 0.95291 16 7 1 2M 0.94481 5 4 9 3
0.94416 5 7 2 2 0.94289 5 4 7 4 0.93768 12 4 11 1
0.93686 7 0 10 4 0.93373 13 5 9 2M 0.93373 13 5 5 4M
0.93163 14 1 13 1+ 0.93074 5 7 3 2 0.92830 22 2 7 5

Table 15. X-ray diffraction pattern of BaHo2ZnO5 with d spacings (Å), Miller indices h k l, and integrated intensities I normalized to the value of 999 as the maximum.

d I h k l d I h k l d I h k l
6.17101 15 0 2 0 6.13550 17 1 1 0 4.44320 29 1 0 1
3.60579 11 1 2 1 3.53558 16 2 0 0 3.39886 65 2 1 0
3.08551 83 0 4 0 3.06775 22 2 2 0 3.01872 999 1 3 1
2.92082 820 2 1 1 2.85580 489 0 0 2 2.82800 222 1 4 0
2.71471 90 0 4 1 2.70259 79 2 2 1 2.68142 8 2 3 0
2.58908 9 1 1 2 2.53436 127 1 4 1 2.43343 9 1 2 2
2.42724 164 2 3 1 2.33049 99 1 5 0 2.32472 6 2 4 0
2.31521 18 3 1 0 2.22160 32 2 0 2 2.20190 156 3 2 0
2.18646 88 2 1 2 2.17881 53 3 0 1 2.15778 30 1 5 1
2.15320 7 2 4 1 2.14563 86 3 1 1 2.09586 87 0 4 2
2.09027 22 2 2 2 2.05654 87 0 6 0M 2.05654 87 3 2 1M
2.00945 301 1 4 2 1.97513 7 1 6 0 1.95479 96 2 3 2
1.93532 5 0 6 1 1.92545 13 3 3 1 1.90771 13 2 5 1
1.87306 113 3 4 0 1.86667 20 1 6 1 1.80558 69 1 5 2
1.77879 47 3 4 1M 1.77879 47 2 6 0M 1.76779 66 4 0 0
1.74993 26 4 1 0 1.74376 141 3 2 2 1.71077 57 1 7 0
1.69763 14 2 6 1 1.67844 163 1 3 3 1.67316 36 4 1 1
1.66910 24 0 6 2 1.66103 143 2 1 3 1.63883 54 1 7 1
1.63349 13 3 5 1 1.62446 11 1 6 2 1.62025 15 0 4 3
1.61766 14 2 2 3 1.57932 26 1 4 3 1.56623 132 3 4 2
1.55236 37 2 3 3 1.54982 21 3 6 0 1.54275 7 0 8 0
1.52087 87 2 7 1 1.50904 51 2 6 2M 1.50904 51 1 8 0M
1.50311 44 4 0 2 1.49208 22 4 1 2 1.48938 36 0 8 1
1.48132 60 4 4 1M 1.48132 60 3 0 3M 1.47441 7 1 5 3
1.47052 29 3 1 3 1.46759 32 1 7 2 1.45740 29 1 8 1
1.43723 12 4 5 0 1.42790 88 0 0 4 1.41184 49 3 7 0M
1.41184 49 4 3 2 1.39378 30 4 5 1+ 1.38674 5 2 5 3
1.38106 11 2 7 2 1.37849 15 5 2 0 1.37277 11 5 0 1
1.37074 6 1 6 3+ 1.36216 36 3 6 2 1.34071 14 4 6 0
1.33521 8 3 4 3 1.33302 6 1 8 2 1.31645 6 2 1 4
1.31035 10 1 9 1 1.30219 85 5 3 1 1.29945 5 2 6 3
1.29586 7 0 4 4 1.29083 5 3 8 0 1.28838 14 4 1 3
1.28381 9 4 5 2 1.27464 30 1 4 4 1.27250 19 1 7 3
1.26563 15 3 7 2 1.26060 10 5 1 2M 1.26060 10 2 3 4M
1.25908 24 3 8 1 1.24796 12 4 7 0M 1.24796 12 2 9 1M
1.24143 14 5 2 2 1.23420 8 0 10 0 1.22710 6 5 5 0
1.21958 24 4 7 1 1.21759 24 1 9 2M 1.21759 24 1 5 4M
1.21460 47 2 7 3M 1.21460 47 4 6 2M 1.20636 11 0 10 1
1.19822 49 0 8 3M 1.19822 49 3 2 4M 1.19445 23 4 4 3
1.18177 17 1 8 3 1.17853 6 6 0 0 1.17626 5 3 8 2
1.17299 15 0 6 4 1.16525 7 2 10 0 1.16236 7 4 8 0
1.15739 6 6 2 0M 1.15739 6 1 6 4M 1.14708 16 4 5 3
1.14386 6 4 7 2 1.13552 46 3 4 4M 1.13552 46 5 0 3M
1.13294 20 6 3 0M 1.13294 20 0 10 2M 1.12743 7 5 5 2
1.11866 13 1 10 2 1.11332 10 2 6 4 1.11080 26 4 0 4
1.10633 7 4 1 4 1.09921 5 1 9 3 1.09623 19 1 7 4+
1.09336 6 3 10 0+ 1.08941 17 6 0 2 1.08758 35 1 3 5
1.08519 8 6 1 2 1.08286 36 5 7 1M 1.08286 36 2 1 5M
1.07889 9 2 10 2 1.07669 9 4 8 2 1.07282 5 6 2 2
1.06944 26 2 11 0 1.06841 16 3 8 3 1.06455 6 4 9 1
1.06141 5 2 9 3 1.05908 9 1 4 5+ 1.05311 19 6 3 2
1.05099 13 2 3 5+ 1.05014 12 3 6 4 1.04555 5 6 5 1
1.04396 14 4 7 3 1.03661 5 1 8 4 1.03563 8 0 10 3
1.02908 7 5 7 2 1.02441 5 3 1 5 1.02258 10 6 6 0
1.02110 12 3 10 2 1.01234 30 0 12 1+ 1.00658 6 6 6 1
1.00396 20 3 7 4 1.00152 56 2 11 2+ 0.99645 12 4 10 1+
0.99452 17 7 0 1+ 0.99171 22 5 2 4+ 0.98102 5 7 3 0
0.97928 11 5 8 2 0.97740 11 4 6 4 0.96569 22 6 7 1
0.96273 30 6 6 2 0.96002 10 7 4 0 0.95756 5 3 8 4
0.95655 8 4 1 5 0.95453 5 5 7 3 0.95385 11 4 10 2
0.95193 18 0 0 6 0.94984 18 1 7 5M 0.94984 18 7 1 2M
0.94731 5 4 11 0 0.94148 11 4 9 3M 0.94148 11 7 2 2M
0.93983 6 4 7 4 0.93454 13 4 11 1 0.93374 9 0 10 4
0.93070 17 5 9 2M 0.93070 17 5 5 4M 0.92827 25 1 13 1+
0.92528 20 2 7 5 0.91791 21 0 8 5M 0.91791 21 5 10 1M
0.91631 18 2 1 6M 0.91631 18 4 4 5M 0.91003 23 7 4 2+

Table 16. X-ray diffraction pattern of BaY2ZnO5 with d spacings (A), Miller indices h k l, and integrated intensities I normalized to the value of 999 as the maximum.

d I h k l d I h k l d I h k l
6.16838 7 0 2 0 6.13423 32 1 1 0 4.18582 15 0 2 1M
4.18582 15 1 1 1M 3.60450 6 1 2 1 3.55471 11 1 3 0
3.53510 14 2 0 0 3.39833 57 2 1 0 3.08419 112 0 4 0
3.06712 40 2 2 0 3.01758 999 1 3 1 2.92015 831 2 1 1
2.85454 429 0 0 2 2.82693 202 1 4 0 2.71354 33 0 4 1
2.70189 144 2 2 1 2.58804 46 1 1 2 2.53336 161 1 4 1
2.43245 10 1 2 2 2.42654 163 2 3 1 2.32957 115 1 5 0+
2.31487 17 3 1 0 2.22180 53 1 3 2M 2.22180 53 2 0 2M
2.20152 194 3 2 0 2.18575 101 2 1 2 2.17842 25 3 0 1
2.15692 33 1 5 1 2.14523 90 3 1 1 2.09495 121 0 4 2
2.08958 24 2 2 2 2.05563 82 0 6 0M 2.05563 82 3 2 1
2.00863 328 1 4 2 1.95412 74 2 3 2 1.92500 9 3 3 1
1.90705 26 2 5 1 1.87261 135 3 4 0 1.86591 19 1 6 1
1.80483 96 1 5 2 1.77828 70 3 4 1M 1.77828 70 2 6 0M
1.76755 84 4 0 0 1.74968 37 4 1 0 1.74329 171 3 2 2
1.71007 49 1 7 0 1.69702 21 2 6 1 1.67773 166 1 3 3
1.67288 37 4 1 1 1.66838 23 0 6 2 1.66041 159 2 1 3
1.63816 64 1 7 1 1.63302 17 3 5 1 1.62383 15 4 3 0M
1.62383 15 1 6 2M 1.61954 6 0 4 3 1.61705 29 2 2 3
1.57842 48 1 4 3M 1.57842 48 2 7 0M 1.56576 141 3 4 2
1.55177 43 2 3 3 1.54935 25 3 6 0 1.52030 75 2 7 1
1.50829 59 2 6 2M 1.50829 59 1 8 0M 1.50278 37 4 0 2
1.49175 34 4 1 2 1.48874 48 0 8 1 1.48100 45 4 4 1M
1.48100 45 3 0 3M 1.47379 8 1 5 3 1.47004 22 3 1 3
1.46697 19 1 7 2 1.45680 30 1 8 1 1.43970 8 3 2 3
1.43689 14 4 5 0 1.42727 78 0 0 4 1.41144 61 4 3 2M
1.41144 61 3 7 0M 1.39344 32 4 5 1 1.38053 24 2 7 2
1.37829 19 5 2 0 1.37257 12 5 0 1 1.37016 6 1 6 3+
1.36415 8 5 1 1 1.36170 40 3 6 2 1.34036 13 4 6 0
1.33476 11 3 4 3 1.33246 9 1 8 2 1.31592 6 2 1 4
1.30980 14 1 9 1 1.30196 84 5 3 1 1.29894 7 2 6 3
1.29530 12 0 4 4 1.29040 8 3 8 0 1.28802 16 4 1 3
1.28346 12 4 5 2 1.27804 7 2 9 0 1.27409 28 1 4 4
1.27197 25 1 7 3 1.26956 5 3 5 3 1.26519 17 3 7 2
1.26047 6 5 1 2 1.25865 27 3 8 1 1.24760 16 4 7 0M
1.24760 16 2 9 1M 1.24118 18 5 2 2 1.23368 5 0 10 0
1.22685 7 5 5 0 1.21923 26 4 7 1 1.21707 33 1 9 2M
1.21707 33 1 5 4M 1.21412 44 2 7 3M 1.21412 44 4 6 2M
1.20584 11 0 10 1 1.19778 63 0 8 3M 1.19778 63 3 2 4M
1.19409 18 4 4 3 1.18127 15 1 8 3 1.17837 7 6 0 0
1.17584 8 3 8 2 1.17248 17 0 6 4 1.16646 5 2 9 2
1.16479 8 2 10 0 1.16201 6 4 8 0 1.14673 17 4 5 3
1.14351 8 4 7 2 1.14158 7 5 6 1 1.13867 5 4 8 1
1.13512 49 3 4 4M 1.13512 49 5 0 3M 1.13436 10 6 2 1
1.13255 21 6 3 0M 1.13255 21 0 10 2M 1.12715 10 5 5 2
1.11819 13 1 10 2 1.11286 12 2 6 4 1.11044 29 4 0 4
1.10597 12 4 1 4 1.09874 8 1 9 3 1.09576 20 1 7 4
1.09410 52 5 3 3 1.08921 18 6 0 2 1.08711 36 1 3 5
1.08499 7 6 1 2 1.08244 48 5 7 1M 1.08244 48 2 1 5M
1.07626 7 4 8 2 1.07306 14 3 10 1+ 1.07306 14 6 2 2+
1.07007 6 2 2 5 1.06902 28 2 11 0 1.06802 16 3 8 3
1.06421 9 4 9 1 1.05857 14 1 4 5M 1.05857 14 2 7 4M
1.05290 19 6 3 2 1.05007 25 2 3 5M 1.05007 25 3 6 4M
1.04362 20 4 7 3 1.03617 8 1 8 4 1.03519 8 0 10 3
1.02704 5 6 4 2 1.02402 6 3 1 5 1.02237 13 6 6 0
1.02072 14 3 10 2 1.01198 31 4 5 4+ 1.01198 31 0 12 1+
1.00650 11 7 1 0M 1.00650 11 6 6 1M 1.00357 23 3 7 4
1.00112 61 2 11 2 0.99612 11 4 10 1 0.99458 13 7 0 1
0.99143 21 5 2 4M 0.99143 21 7 1 1M 0.98889 6 6 2 3
0.97900 13 5 8 2 0.97706 12 4 6 4 0.97488 5 3 4 5
0.96547 25 6 7 1 0.96250 37 6 6 2 0.95987 9 7 4 0
0.95719 7 3 8 4 0.95622 7 4 1 5 0.95378 20 5 7 3M
0.95378 20 4 10 2M 0.95165 25 2 9 4M 0.95165 25 0 0 6M
0.94950 18 1 7 5M 0.94950 18 7 1 2M 0.94121 12 4 9 3M
0.94121 12 7 2 2M 0.93950 7 4 7 4 0.93422 9 4 11 1
0.93334 7 0 10 4 0.93042 18 5 5 4M 0.93042 18 3 12 1M

Table 17. X-ray diffraction pattern of BaEr2ZnO5 with d spacings (A), Miller indices h k l, and integrated intensities I normalized to the value of 999 as the maximum.

d I h k l d I h k l d I h k l
6.14905 17 0 2 0 6.11312 42 1 1 0 4.63267 8 1 2 0
4.42851 70 1 0 1 4.17113 5 0 2 1M 4.17113 5 1 1 1M
3.59356 13 1 2 1 3.52257 17 2 0 0 3.38640 73 2 1 0
3.07453 68 0 4 0 3.05656 21 2 2 0 3.00833 999 1 3 1
2.91057 809 2 1 1 2.84705 596 0 0 2 2.81788 216 1 4 0
2.70535 134 0 4 1 2.69308 63 2 2 1 2.67169 24 2 3 0
2.52554 106 1 4 1 2.42561 9 1 2 2 2.41869 152 2 3 1
2.32217 81 1 5 0 2.31633 5 2 4 0 2.30670 18 3 1 0
2.21425 31 2 0 2 2.19384 150 3 2 0 2.17921 94 2 1 2
2.17099 68 3 0 1 2.15023 33 1 5 1 2.14560 8 2 4 1
2.13794 81 3 1 1 2.08896 69 0 4 2 2.08330 20 2 2 2
2.04922 72 0 6 0M 2.04922 72 3 2 1M 2.00278 305 1 4 2
1.96808 9 1 6 0 1.94822 140 2 3 2 1.92854 7 0 6 1
1.91855 23 3 3 1 1.90096 12 2 5 1 1.86625 141 3 4 0
1.86011 24 1 6 1 1.83269 5 1 0 3 1.79950 55 1 5 2
1.77241 43 3 4 1M 1.77241 43 2 6 0M 1.76129 70 4 0 0
1.74350 27 4 1 0 1.73777 120 3 2 2 1.70467 63 1 7 0
1.69162 14 2 6 1 1.67310 168 1 3 3 1.66710 36 4 1 1
1.66344 25 0 6 2 1.65570 144 2 1 3 1.63306 51 1 7 1
1.62765 11 3 5 1 1.61893 12 1 6 2 1.61506 23 0 4 3
1.61244 12 2 2 3 1.57423 22 1 4 3 1.56081 153 3 4 2
1.54731 40 2 3 3 1.54422 21 3 6 0 1.53726 8 0 8 0
1.51548 108 2 7 1 1.50416 38 2 6 2 1.50192 7 1 8 0
1.49784 55 4 0 2 1.48685 16 4 1 2 1.48413 37 0 8 1
1.47607 82 3 0 3M 1.47607 82 4 4 1M 1.46944 10 1 5 3M
1.46944 10 2 4 3M 1.46565 20 3 1 3 1.46255 39 1 7 2
1.45225 30 1 8 1 1.43539 5 3 2 3 1.43200 13 4 5 0
1.42352 93 0 0 4 1.40679 45 4 3 2M 1.40679 45 3 7 0M
1.39987 5 5 1 0 1.38878 31 3 3 3M 1.38878 31 4 5 1M
1.37628 6 2 7 2 1.37343 13 5 2 0 1.36777 11 5 0 1
1.36615 8 1 6 3M 1.36615 8 3 7 1M 1.35741 32 3 6 2
1.35267 7 0 8 2 1.33585 15 4 6 0+ 1.33132 9 5 3 0M
1.33132 9 3 4 3M 1.32841 5 1 8 2 1.31229 7 2 1 4
1.30571 7 1 9 1 1.29746 92 5 3 1 1.29178 6 0 4 4
1.28400 13 4 1 3 1.27929 11 4 5 2 1.27060 37 1 4 4
1.26825 19 1 7 3 1.26121 18 3 7 2 1.25625 16 2 3 4M
1.25625 16 5 1 2M 1.25459 32 3 8 1 1.24323 6 2 9 1
1.23702 15 5 2 2 1.22981 6 0 10 0 1.22262 6 5 5 0
1.21520 24 4 7 1 1.21364 15 1 5 4 1.21076 44 2 7 3
1.20934 11 4 6 2 1.20209 17 0 10 1 1.19430 45 0 8 3M
1.19430 45 3 2 4M 1.19036 29 4 4 3 1.17778 15 1 8 3
1.16915 19 0 6 4M 1.16915 19 6 1 0M 1.16108 5 2 10 0
1.15817 6 4 8 0 1.14315 20 4 5 3 1.13982 6 4 7 2
1.13771 6 5 6 1M 1.13771 6 2 10 1M 1.13493 5 4 8 1
1.13184 46 3 4 4+ 1.12890 21 0 10 2M 1.12890 21 6 3 0M
1.12342 6 5 5 2+ 1.11476 15 1 10 2 1.10968 9 2 6 4
1.10713 29 4 0 4 1.10267 7 4 1 4 1.09919 7 5 7 0
1.09547 5 1 9 3 1.09265 25 1 7 4+ 1.09059 54 5 3 3
1.08949 8 4 2 4M 1.08949 8 3 10 0M 1.08550 17 6 0 2
1.08416 48 1 3 5M 1.08416 48 1 11 1M 1.08129 9 6 1 2
1.07939 44 2 1 5M 1.07939 44 5 7 1M 1.07512 8 2 10 2
1.07280 11 4 8 2 1.06897 5 6 2 2 1.06766 9 0 4 5M
1.06766 9 2 2 5M 1.06563 32 2 11 0 1.06475 20 3 8 3
1.05585 6 1 4 5 1.04933 21 6 3 2 1.04762 9 2 3 5
1.04683 14 2 11 1M 1.04683 14 3 6 4M 1.04036 15 4 7 3
1.03210 10 0 10 3 1.02542 14 5 7 2 1.02115 7 3 1 5
1.01885 12 6 6 0 1.01751 15 3 10 2 1.00957 7 4 5 4
1.00856 22 0 12 1M 1.00856 22 4 10 0M 1.00299 8 7 1 0M
1.00299 8 6 6 1M 1.00061 23 3 7 4 0.99801 66 2 11 2+
0.99288 13 4 10 1+ 0.99109 15 7 0 1 0.98817 18 5 2 4M
0.98817 18 7 1 1M 0.97580 11 5 8 2 0.97411 12 4 6 4
0.96219 26 6 7 1 0.95928 27 6 6 2 0.95650 9 7 4 0
0.95439 9 1 11 3M 0.95439 9 3 8 4M 0.95345 7 4 1 5
0.95048 12 4 10 2+ 0.94902 19 0 0 6 0.94695 9 1 7 5
0.93095 16 4 11 1M 0.93095 16 0 10 4M 0.92746 12 5 5 4M
0.92746 12 5 9 2M 0.92516 16 6 5 3M 0.92516 16 1 13 1M

Acknowledgments

The authors acknowledge the International Center for Diffraction Data for partial financial support through the Grant-in-Aid program.


References

  1. G. Xiao, F. H. Streita, A. Gavrin, Y. W. Du, and C. L. Chien, Effect of Transition-Metal Elements on the Superconductivity of YBaCuO, Phys. Rev. B 35, 8782 – 8784 (1992).
  2. W. Wong-Ng, D. Kaiser, F. Gale, S. F. Watkins, and F. Fronczek, X-Ray Crystallographic Studies of a Thermomechanically Detwinned Single Crystal of Ba2YCu3O6+ x , Phys Rev B 41, 4220 – 4226 (1990).
  3. M. Z. Cieplak, G. Xiao, C. L. Chien, A. Bakhshai, D. Artymowicz, W. Bryden, J. K. Stalick, and J. J. Rhyne, Incorporation of Gold into YBa2Cu3O7 : Structure and Tc Enhancement, Phys. Rev. B 42, 6200 – 6208 (1990).
  4. P. F. Miceli, J. M. Tarascon, L. H. Greene, P. Barboux, F. J. Rotella, and J. D. Jorgensen, Role of Bond Lengths in the 90-K Superconductor: A Neutron Powder-Diffraction Study of YBa2Cu3 x Co x O7 y, Phys. Rev. B 37 (10), 5932 – 5935 (1988).
  5. C. Michel, L. Er-Rakho, and B. Raveau, Les Oxydes La42 x Ba2+2 x Cu2 x O102 x : Une Structure Inedite Constituee de Groupements CuO4 Carres Plans Isoles, J. Solid State Chem. 39, 161 – 167 (1981).
  6. C. Michel, L. Er-Rakho, and B. Raveau, Une Nouvelle Famille Structurale: les Oxydes Ln42 x Ba2+2 x Zn2 x O102 x (Ln=La, Nd), J. Solid State Chem. 42, 176 – 182 (1982).
  7. C .Michel and B. Raveau, Les Oxydes A2 BaCuO5 (A=Y, Sm, Eu, Gd, Dy, Ho, Er, Yb), J. Solid State Chem. 43, 73 – 80 (1982).
  8. [8] C. Michel and B. Raveau, Ln2 BaZnO5 and Ln2 BaZn1 x Cu x O5: A Series of Zinc Oxides with Zinc in a Pyramidal Coordination, J. Solid State Chem. 49, 150 – 156 (1983).
  9. W. Wong-Ng, B. H. Toby, and W. Greenwood, Crystallization Studies of BaR2ZnO5 (R=La, Nd, Ho, Er, and Y), Powd. Diffr. 13 (3), 144 – 151 (1998).
  10. Powder Diffraction File (PDF), produced by International Centre for Diffraction Data (ICDD), Newtown Square, 12 Campus Blvd., Newtown Square, PA 19073-3273.
  11. H. M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Cryst. 2, 65 – 71 (1969).
  12. A. C. Larson and R. B. von Dreele, GSAS The General Structure Analysis System, U.S. Government contract (W-7405-ENG-36) by the Los Alamos National Laboratory, which is operated by the University of California for the U.S. Department of Energy, VMS version.
  13. Inorganic Structure Data Base (ICSD), published by Fachinformationszentrum Karlsruhe (1994); Collection Code 406331.
  14. C. R. Sfreddo and H. Mueller-Buschbaum, Zur Kristallchemie von Oxozinkat-Platinaten und Oxozinkaten der Zusammensetzung Ba17Tm16 Zn8 Pt4O37 and Ba5Zn4 Tm8O2 1, Zeit. Anorg. Allg. Chem. 623, 699 – 704 (1997).
  15. R. D. Shannon and C. T. Prewitt, Effective Ionic Radii in Oxides and Fluorides, Acta Cryst. 25, 925 – 946 (1969).
  16. R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. A 32, 751 – 767 (1976).
  17. C. Michel and B. Raveau, Copper Doped Zinc Oxide Y2BaZnO5 : ESR and Optical Investigation, Mat. Res. Bull. 19, 849 – 855 (1984).
  18. M. Taibi, J. Aride, J. Darriet, A. Moqine, and A. Boukhari, Structure Cristalline de l'oxyde Nd2 BaZnO5, J. Solid State Chem. 86, 233 – 237 (1990).
  19. J. K. Stalick and W. Wong-Ng, Neutron Diffraction Study of the `Brown Phase' BaNd2CuO5, Materials Letters 9 (10), 401 – 405 (1990).
  20. I. D. Brown and D. Altermatt, Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database, Acta Cryst. B 41, 244 – 247 (1995).
  21. N. E. Brese and M. O'Keeffe, Bond-Valence Parameters for Solids, Acta Crystallogr. B 47, 192 – 199 (1991).
  22. R. M. Hazen, L. W. Finger, R. A. Angel, C. T. Prewitt, N. L. Ross, H. K. Mao, and C. G. Hadidiacos, Crystallographic Description of Phases in the Y-Ba-Cu-O Superconductor, Phys. Rev. B 35, 7238 – 7241 (1987).
  23. S. F. Watkins, F. R. Fronczek, K. S. Wheelock, R. G. Goodrich, W. O. Hamilton, and W. W. Johnson, The Crystal Structure of Y2BaCuO5, Acta Cryst. C 44, 3 – 6 (1988).
  24. W. Wong-Ng, M. Kuchinskin, B. Paretzkin, and H. F. McMurdie, Crystal Chemistry and Phase Equilibrium Studies of BaO-1/2R2O3 -CuO. I. X-Ray Powder Characterization of BaR2CuO5 and Related Compounds, Powd. Diff. 4 (1), 2 – 8 (1989).

About the authors: James Kaduk is an assoicate research scientist with BP Amoco PLC corporation. He works extensively in the research areas of x-ray and neutron diffraction, including powder and single crystal crystallography. Winnie Wong-Ng is a research chemist in the Phase Equilibria group of the Ceramics Division of the NIST Materials Science and Engineering Laboratory. She has been actively engaged in research on the phase equilibria, crystallography and crystal chemistry of high Tc superconductor materials since 1986. Brian Toby is the leader of the crystallography team of the Radiation Reactor Division of the NIST Materials Science and Engineering Laboratory. William Greenwood was a graduate student, and Jeremy Dillingham is a senior student from the Geology Department of the University of Maryland. The National Institute of Standards and Technology is an agency of the Technology Administration, U.S. Department of Commerce.