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Eric L. Shirley and R. U. Datla We model diffraction errors found when us-  tion. We performed detailed diffraction
ing toothed apertures [L. P. Boivin, Reduc-  calculations within scalar (Kirchoff) dif-
. . tion of diffraction errors in radiometry by fraction theory, using parallel-computing
National Institute of Standards and means of toothed apertures, Appl. OpY, resources at the National Institute of
Techrology, 3323-3328 (1978)]. Using toothed (cf. Standards and Tecblogy.

Gaithersburg, MD 20899-0001 circular) apertures minimizes diffraction by
! inducing destructive interference within the

diffracted signal. Since diffraction effects Key words: aperture; computation; dif-
can be quite complicated, their over-all fraction; parallel processing; tooth.
reduction may help limit uncertainties in,

say calibrations. Our analysis yields three

principles to guide design of nonlimiting

(baffle) apertures which minimize diffrac- Accepted: July 19, 1996

1. Introduction apertures. Diffraction of radiation from broad-band
sources is manifested by the total detected flux differing
Limiting or nonlimiting apertures (the latter of which  from that predicted by geometrical optics. One desires
are also called baffles) and occulting disks are used in to know the ratio of actual flux to “geometrical” flux.
applications ranging from radiometric calibration [1-4] This ratio is often calledF,” for optics like those stud-
to solar coronagraphy [5]. However, the utility of these ied here, andF,” for certain, analogous optics having
devices is hampered by imperfect knowledge of diffrac- limiting apertures [1-4]. As one is concerned with the
tion of radiation at their edges. In radiometry, for in- difference between these ratios and unity, a ratioof
stance, diffraction leads to deviation from geometrical F,) may be reexpressed as X&). This(e) is found by
optics in the total radiation, from a given source, inci- appropriate integration, over wavelength,of the rela-
dent on a detector. Here, we consider the technique oftive difference in flux incident for each, £(A), which
toothing aperture edges to reduce diffraction effects, could be positive or negative.
being motivated by Boivin’s demonstration of the effi- In the “F," case, Boivin found large effects ofz)
cacy of this approach [4]. We model Boivin's experi- from both depth and frequency of teeth, and noted how
mental results, and we formulate and test three princi- Huygens’ principle suggested only a tooth’s aspect ratio
ples to guide design of apertures which lead to minimal would affect diffraction. Better analysis of diffraction
diffraction effects. Specifically, we discuss only the suggested a minimum necessary tooth depth for
effects of teeth on radiatiodetected a significant reduction ife). In general, sufficiently
We limit this work to optics having broad-band (e.g., deep teeth reduce edge-diffraction effects through path-
thermal) sources and fully illuminated detectors sepa- length-related phase cancellations between diffracted
rated by screens with nonlimiting, (toothed) circular rays created at different points on an aperture
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perimeter. This destructive phase interference is the key Aperture

mechanism responsible for Boivin'’s observation of a

reduction in diffraction effects. However, detailed calcu- S°Uree ; Detector

lations to model the measured, reduded's were not By R |tr Ootic Axi

carried out in Boivin’s presentation. ! pic Axis
This paper models the diffraction effects measured by a * b

Boivin. The boundary-diffraction-wave formulation [6]
helps Clarify the effects of depth and frequency of teeth Fig. 1(a). Schematic diagram df, optic: extended source, screen
on diffraction. This leads to guiding principles for de-  with aperture, and detector; various physical dimensions are indicated.
sign of toothed apertures optimal for minimizing dif-
fraction. We test these principles in our own diffraction
calculations. Our objectives include understanding the
diffraction by toothed apertures, and designing such
apertures to control diffraction. This work also demon-
strates the feasibility of computing diffraction effects
for complex optics, e.g., irregular apertures. We use a
parallel-processing implementation of computer pro-
grams which model diffraction. Numerical uncertainties
in our results are controlled, isolatimymericalapprox-
imations to the scalar Kirchoff theory (which we use)
from physicalapproximations of that theory (or, in the
case of comparison to measured diffraction effects, ex-
perimental errors). In the Kirchoff approach, one evalu-
ates the value of a scalar radiation field behind a screen
using the Green'’s Function and the value of the undif-
fracted radiation fieldncidenton an aperture. angle, ¢
Below, we first discuss diffraction theory and compu-
tational issues pertinent to this work. We next present
diffraction calculations modeling Boivin'&s)’s for cir-
cular and toothed apertures in 25 optics. Then we iden-
tify and apply guiding principles for design of apertures
exhibiting minimal diffraction, testing aperture designs
within Kirchoff theory by further calculations. We close

ray length, R+ A
ray length, R

Fig. 1(b). Section of toothed-aperture perimeter.

with some conclusions. r § =T { I
_ _ _ ! S Y
2. Diffraction Theory, Computational |
Issues

Consider (cf. Fig. 1a) an optic consisting of a circular, Fig. 1(c). Geometry involved in the boundary-diffraction-wave
extended source (radiyg and fully illuminated, circu- formulation. Note points on sources), on deltectorr(o), on aperture
lar detector (radiug) placed on opposite sides of a perimeter (), and related vectors, t, andt"
screen with an aperture (nominal radiR3. Source-
screen and screen-detector distances are respedively
and b. Source, aperture and detector areas lie within
parallel planes, and the centers of the areas are colinear,
defining an optical axisR is a “nominal” radius only, _
because we might consider a toothed aperture. The '
perimeters of toothed apertures are defined as follows.
One begins with a circular aperture with radRsand
cuts N teeth by forming a perimeter consisting dfl 2

straight line segments. At intervals separated by angle Trace of simple tecth
¢ =360/(2N), which is subtended by half of a tooth, Trace of circular arc

the aperture radius alternates between the vaRiagad

R+ A, whereA is the tooth depth (cf. Fig. Ib). Fig. 1(d). Section of novel, toothed-aperture perimeter.
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To evaluatd ¢), one could perform extensive integra- Here,r, samples all the aperture area. The derivatives
tion over wavelength and areas of the source, apertureare taken normal to the screen plane in the direction
and detector. Use of an “effective-wavelength” [1-3] towards the detectory; is the incident radiation field,
eliminates wavelength integration, and the boundary- not yet specified. The parametgrplays the following
diffraction-wave formulation of Kirchoff theory re- role: HavingB = 0 yields the Kirchoff theory; having
places double integration over aperture area with single 8 be +1 or —1 respectively yields extensions of Kirchoff
integration over its perimeter. Symmetry simplifies inte- theory which more consistently satisy= 0 or 9¥/on
gration over either the source or detector. Consider such= 0 boundary conditions on the dark side of the screen;
integration in terms of polar coordinates. For instance, cf. Jackson [7] for further discussion of these points.
treatment of diffraction by a circular aperture requires  For a scalar radiation field, intensity is related to a
no angular integration over the source, and requires an-radiation current density,
gular integration over only half of the detector. Treat-
ment of diffraction by a regularly toothed aperture re-
quires angular integration over only a narrow angular
wedge (pie slice) of the source, and integration over only
half (or all) of the detector. Integration over the source However, for our optics, this is approximately propor-
can be avoided in cases where assuming an axial, point-tional to | ¥(rp)|% The relative error in the computed
source is a valid approximation. Then one also needs tointensity, if the latter is estimated using such an approx-
integrate flux over only a small part of the detector. We imate value, is Kb, or typically 107, becausekb is
were not able to establishpeedictivecriterion for deter- typically 10. Therefore, we simply use the square of the
mining whether this simplification affected results. radiation field when computing intensity.

Below, we discuss the formula used to describe If one has anincoherent, extended, broad-band source
monochromatic flux incident on the detector, whence a such as a lamp, detected radiation at each wavelength is
formula fore(A). We also discuss the boundary-diffrac- often expressed as the sum of fluxes from many
tion-wave formulation, and the effective-wavelength monochromatic, mutually incoherent point sources, and
approximation used in this work, touching finally on we compute our total flux as such a sum. Consider a
considerations regarding the fineness of integration over monochromatic, point source located at painon the
points on the source, aperture, and detector in the source. Its radiation field as determined from geometri-

J(rp) = % [P*(rp) VW (rp) — W(ro) VP*(rp)] . (4)

present optics. cal optics, which we denote a¥s, is given by the
We use scalar diffraction theory, so the radiation field, following rule. In the parts of space illuminated by such
¥, obeys the Helmholtz equation in free space, a source, one has
explik|rp—r
[V2+ K% ¥(r) = O. Q) Yo(ro)itum = w . (5)

Herek is the wave number, i.e.72 . More specifically, However, in the geometrical shadow of a screen, one has
we use Kirchoff theory, which solves fa&¥ on the detec-

tor's side of the screen using the Green’s Function We(ro)lsnaa = O. (6)
approach. The Green’s Function is given by

In the boundary-diffraction-wave approach, one
2) rewrites the full ¥ arising from this point source, in-
cluding diffraction effects, in this simplified form:

_ exp [ikjr—r1]

G(r. ) 4 7|r—|

The radiation field at a pointp, on the detector

(Fig. 1c), is given as W(ro) = Welr) +
w(r,) = dr - [( sxt > explik (s+1)]
J R AT st
erA|:(I8 + l) G(rD, rA) % 1[/i(rA) + aper perim
sXt' \ explk(s+t')]
~Blstest — - Y]
(B—1) ¥i(ra) % G(ro, rA)] : ©) <St +S-t> 4qrst ]
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This is exactly equivalent to the previous formula. Here,
s andt are respectively vectors from pointsandrp to
ra; t' is the vector, to point,, from the point obtained
by reflection ofrp through the screen plane. These vec-
tors are illustrated in Fig. 1c. For geometries where
andt are nearly anti-parallel, the value Bfis irrelevant.
For our optics, this is true; expediency dictates that we
set B to zero, simplifying diffraction calculations. For
later purposes, we make the abbreviation,
Y(r) = Yo(r) + Ps(r). (8)

Furthermore, we definélg(rp, rs; A) as the value of
Vs (rp) arising from a point source at emitting radia-
tion at wavelengthy; there is an analogous function,
Wo(rp, A).

Next, for a spatially incoherent, monochromatic,
extended source, we may write

1+e(A)

[ o

source

f erD| Ys(rp,rs; A)+We(rp, rs;/\)|2}

detector

f dzrs[ f drp| Pe(ro, Is; /\)|2]

source dector

©)

The integrand in the numerator may be rewritten as
[We(ro,rs;A) + Pa(ro, s A)°
= |Ws(ro, rs; AP+ |Wa(ro, 1s; A)f?
+ W o(ro, rs; A) Wa(ro, I's; A)

+ g’e(ro,rs;)\)q’*B(rD. rs; A). (10)

Compared to the first (purely geometrical) term, the
second term varies roughly agfor optics studied here.
For optics in which diffraction of detected radiation
implies a substantial angular deflection of that radiation
by the aperture, the third (interference) cross-term
oscillates rapidly withA and can be largely self-

For cases when(A) varies as\, valid in this work, the
effective wavelength is

Jd/\/\S()\)D(A)
)=

(12)
J dAS(A)D(A)

S(A) and D(A) are the source spectral density and
detector responsivity, respectivelys(A) is implied by

Eq. (10) after dropping the cross-term. For< a+b,

the bracketed integral in the denominator in Eq. (10)
depends weakly or. Ignoring this dependence leads to
a relative error of p/(a+b)]? i.e., typically 10° There-
fore, we ignore this dependence. When using Eq. (10) to
evaluate(e), or to determine a diffraction pattern for
other purposes, one must perform many independent
evaluations oz (rp, rs; A) and ¥s (rp, I'p; A) for differ-

ent values ofs andrp. Use of parallel computing tech-
nology caneasily accelerate calculations, and we have
exploited this fact.

Geometrical and other considerations indicate the re-
quired detail in samplings, rp, andra. Ideally, one
would conduct only the coarsest sampling necessary.
Numerical convergence is improved at the cost of fur-
ther computation. From calculations which included ei-
ther coarser or finer samplings than were used to obtain
the results presented, we estimate uncertainties, arising
from controlled errors in numerical integration, as fol-
lows. For eacHe), call its expanded uncertainff ).
Thend{e)/{e) is around 0.03 for the results in Table 1
(simulation of Boivin’s experimental numbers), and
0.05 for the results in Table 2 (simulation of a novel
design of toothed aperture, to be discussed in a later
section), except for results for extended sources, where
it is 0.10. These estimates do not include biases related
to the effective-wavelength approximation.

We sampledp at 0.01 mm radial and 0.2%ngular
intervals, respectively. We improved samplingrefin-
crementally, stopping when we could use numerical in-
terpolation to estimate diffracted flux fog everywhere
on the source. Consequently, the radial coordinate of
was sampled at intervals of 0.05 mm or 0.1 mm. We

cancelling for broad-band sources. This was found to be never found substantial dependence of the diffracted

the case in the present work.

Such cancellation allows us to use an effective-wave-
length approximation, and the particular approximation
used here—which differs slightly from earlier effective-
wavelength approximations—provides a-averaged
value of (M), (&), as follows:

fd/\a(/\)S()\)D()\)

(e) = = &((A)). 11)

J dAS(A)D(A)
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flux on the angular coordinate af. Symmetry was
extensively exploited to accelerate calculations.

Two factors assisted convergence of results with re-
spect to detail of integration. First, te)'s were sums
of strictly positive numbers. Second, distances between
various optical components were large compared to
components’ dimensions, which were transverse to the
optical axes. So phases of emitted or diffracted radiation
exhibited only gradual spatial variations over the aper-
ture and detector areas. This facilitated samptinet
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intervals up to 200 timea. Integration about the aper- segment sample of the perimeter. Use of progressively
ture perimeter in Eq. (7) was usually assisted by two-, high-ordered Gaussian quadrature permitted diminish-
four-, or six-point Gaussian quadrature over each line- ing returns of acceleration of the integration.

Table 1. Diffraction effects for optical configurations discussed in text

Config. a b R A ¢ r (), theory (e), expt.
(cm) (cm) (mm) (mm) €) (mm) (%) (%)
1 50 50 35 smooth 1.25 0.682 0.74(5)
2 50 50 35 0.01 3 1.25 0.642 0.59(4)
3 50 50 35 0.02 3 1.25 0.541 0.52(4)
4 50 50 35 0.05 3 1.25 0.106 0.18(4)
5 50 50 35 0.09 3 1.25 0.023 0.04(4)
6 50 50 7.5 smooth 1.25 0.310 0.36(4)
7 50 50 7.5 0.01 3 1.25 0.288 0.18(4)
8 50 50 7.5 0.02 3 1.25 0.234 0.15(4)
9 50 50 7.5 0.05 3 1.25 0.0246 0.03(4)
10 50 50 7.5 0.09 3 1.25 0.0046 0.01(4)
11 85 40 35 smooth 1.6 0.464 0.32(4)
12 85 40 35 0.1 9 1.6 0.374 0.32(4)
13 85 40 35 0.1 5 1.6 0.149 0.08(4)
14 85 40 35 0.1 3 1.6 0.026 0.04(4)
15 85 40 35 0.1 2 1.6 0.017 0.02(4)
16 85 40 35 0.1 15 1.6 0.014 0.04(4)
17 50 85 35 smooth 1.25 1.10 1.05(5)
18 65 70 35 smooth 1.25 0.95
19 80 55 35 smooth 1.25 0.77
20 95 40 35 smooth 1.25 0.57
17+18 35 smooth 1.25 2.05 2.06(5)
17+18+19 35 smooth 1.25 2.81 2.95(5)
17+18+19+20 35 smooth 1.25 3.38 3.52(5)
21 50 85 35 0.1 3 1.25 0.025 0.00(5)
22 65 70 35 0.1 3 1.25 0.033
23 80 55 35 0.1 3 1.25 0.035
24 95 40 35 0.1 3 1.25 0.025
21+22 35 0.1 3 1.25 0.058 0.06(5)
21+22+23 35 0.1 3 1.25 0.093 0.08(5)
21+22+23+24 35 0.1 3 1.25 0.118 0.13(5)
25 50 50 35 1.4498 45 1.25 0.13 0.2

Table 2. Diffraction for optics discussed in the text.

No. of teeth Is principle 3 Source type A (&)
applied? fum) (%)
120 no point 0.58 0.000 43
120 yes point 0.58 0.000 40
240 no point 0.58 0.000 13
240 yes point 0.58 0.000 23
480 no point 0.58 0.000 13
480 yes point 0.58 0.000 05
960 no point 0.58 0.000 13
960 yes point 0.58 0.000 000 43
960 yes extended 0.71 0.000 009
960 yes extended 0.58 0.000 008
960 yes extended 0.49 0.000 017
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3. Modeling Measured Diffraction Effects

Data modeled were obtained by Boivin [4] using a
3000 K, 1 mm diameter, tungsten-radiation source and
RCA 6217 photomultiplier as the detectofhe effec-
tive detector area was controlled by 2.5 mm or 3.2 mm
diameter proximity apertures. Boivin presented results
for at least 27 optics involving one or more intervening
apertures. Thé ) for this source-detector combination
was 0.58um. When modeling the data, we shall also
analyze the effective-wavelength approximation. Be-
sides that approximation, deviation of our results from
experiment can be attributed to Kirchoff theory and/or
nonideal experimental circumstances. Experimental dif-
ficulties could include misalignments of optical compo-
nents, even by 0.1 mm (based on our results), or could
involve irregularities in aperture perimeters, an effect
stressed in Ref. [4].

We computed theoreticale)’s for 25 of Boivin's
optics. Results for combinations of apertures were ob-
tained by addinge )'s computed for the individual aper-
tures separately. (Effects of multiple diffraction by sev-

eral apertures were assumed to be negligible.) Presents

results and results by Boivin are tabulated in Table 1.
Also shown are parameters specifying optics. {des

are given as percentages. We also give the experimental

uncertainties ire), which are indicated in Ref. [4].
Config. 25 in Table 1 involvé a 7 mmX 7 mm, square
apertureA’s reported in Ref. [4] were up to 0.003 mm
different from those used here. This is a negligible
effect. In Figs. 2 to 5, we plot results for Config. 1 to
Config. 24 in the format of Figs. 3, 6, and 8 of Ref. [4].
In Figs. 2 and 3, we indicate traditional theoretical val-
ues of(e) for a round aperture [1-4],

(A)b

m°Rr’

(13)

<8>|trad =

as well as extrapolated values valid (within Kirchoff
theory) for small4,

A
()= (s | 1-2x+0@I|.  (4)
This latter formula follows from the observation that
first-order effects ofA, those because of a change in
average aperture radius, are equivalent to a similar

change in the radius of a circular aperture.

! Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Techiogy, nordoes it imply that the materials or

equipment identified are necessarily the best available for the purpose.
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Fig. 2. The values of¢) for 7 mm diameter apertures with indicated
tooth depth, cf. Configs. 1 to 5 in Table 1. Theoretical points are
plotted with squares, experimental points are shown as lozenges. The
dashed line shows the theoretical behavioKof in the limit of A
approaching zero.
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Fig. 3. The values of e) for 15 mm diameter apertures with indi-
cated tooth depth, cf. Configs. 6 to 10 in Table 1. Theoretical points
are shown as squares, and experimental points are shown as lozenges.
The dashed line shows the theoretical behaviofeofin the limit of

A approaching zero.
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Fig. 4. The values of¢) for 7 mm diameter apertures with various
numbers of teeth, versus the diameter of a “diffraction-free region,”
suggested by a geometrical model in Ref. [4]; cf. Configs. 11 to 16 in
Table 1. Theoretical points are shown as squares, and experimental
points are shown as lozenges.
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Fig. 5. The values of(e) for combinations of apertures from

Configs. 17 to 20 measured in Ref. [4], and for combinations of
apertures from Configs. 21 to 24, also measured in Ref. [4]. The T T T T
Configs. are described further in Table 1. Theoretical points are shown 0.26 -
as squares, and experimental points are shown as lozenges.
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4. Discussion

o
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Excess flux (%)

We now present results assessing the effective-wave-
length approximation, motivate several guiding princi-
ples for the design of minimally diffracting apertures,
and apply these principles in (simulations of) seveFal
case” optics.

1 1 1 1

10 000 10 500 11 000 11 500 12 000 12 500
Wave number (mm ')

4.1 EﬁeCtive'Wavelength Approximation Fig. 7. For Config. 8 (cf. Table 1)g(A) (solid line), as well as the

) ) ) function, 2520/k/mm), shown as a dashed line, for a range of wave
The present effective-wavelength approximation numbers, assuming an extended sourcé witt mmdiameter.

assumes tha#y(A) is a local average of(A) with re-
spect tox, and that this local average varies as the first
power of A. We have computedy(A) and £(A) for a
range ofA for Config. 8 in Table 1, but with an axial
point source, and we have computg(h ) for a range of

A for the same configuration, foa 1 mm diameter,
incoherent source. These results are presented in Figs.

4.2. Principles for Minimizing Diffraction

Consider anF, optic with a circular, toothed aper-
éure, where diffracted radiating reaching the detector
and 7. Evidently, the effective-wavelength approxima- would have experlgnced onlyasmailliangular deflection

at the aperture perimeter, yet a sufficiently large deflec-

tion affects results by a small amount(af) for a point : . . )

tion to permit the present effective-wavelength approxi-

source, and to a lesser degree for an extended source, .. : : : .

i . . mation. Assume that Kirchoff theory is a valid descrip-
Selection of Config. 8 for the analysis was spurred by

the large discrepancy between its theoretical and exper—:fg\gc(:g:rgg:?]?n'n;nng Se?{)lj:ce.-lr:aﬁ;lggﬁnslgjfé?;{ d
imental (¢)'s. (Based on these tests of the effective- 9 b P g '

wavelength approximation, we conclude that such a dis- has azimuthal and a radial components (cf. Fig. 1b):
crepancy is not attributable to the effective-wavelength

approximation.) dra = aull + ;0 . (15)
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(We use cylindrical, polar coordinatas, 6, andz, and
still considerplanar screens with apertures. Usewfor
radial coordinate prevents confusing it with source
radius,p.)

When the aperture radius varies azimuthally—e.g.,

Fourier transform, one anticipates that diffraction
effects would be smaller for more deeply cut teeth. The
diffracted flux is related to the integral, over radius, of
the square of the fraction of the aperture perimeter at
each value of radius. However, the integral over radius of

there are teeth—there will be path-length-induced phasethe first power of that fraction must be one.

differences between diffracted rays, so their contribu-
tions to Ye(rp) by the azimuthal components of the
dra’s will have large cancellations. Also, these contribu-
tions will converge to some limit, if the depth of teeth is
fixed, but the frequency of teeth is increased.

Regarding analogous contributions ¥(rp) by the
0-components of therd’s, there should also be cancel-
lations because of similar effects of phase. Also, cancel-
lations arise from the alternating, inward/outward direc-
tion of dr,. Concomitantly, contributions t@g(rp) from
the(-components of therd’s will typically exhibit high
azimuthal variations, and regularity s requires con-
tributions with high azimuthal variations to vary as high
powers ofu whenu is small. Suppose there is a very
high frequency of teeth on ohg aperture. Then, in the
case of a sufficiently remote and/or small source close to
the optical axis, a small detector which is also close to
the optical axis will receive minimal flux arising from
thel-components of therd’s. We confirmed this effect
numerically in our calculations.

With the above considerations, two principles of de-
signing baffle apertures that minimize diffraction are as
follows:

(1) Having deep teeth should help reduce diffracted
flux in the central region, because of path-
length-induced phase-cancellation effects.

(2) Having a high frequency of teeth prevents

contributions to the diffracted flux because of

radial components of aperture-perimeter seg-
ments. This permits one to consider diffracted
radiation as the coherent superposition of dif-
fracted radiation from several hypothetical,

concentric, circular apertures with different

radii. In such a picture, each radius is weighted
according to the fraction of the actual aperture
perimeter which is at such a radius (distance
from the optical axis).

Both of these principles are consistent with the results in
Table 1.
For high frequencies of teeth, the diffracted radiation

One might wish to constrain tooth depth. Very deep
teeth may be difficult to realize and, obviously, under-
mine the functioning of a baffle. Given such a con-
straint, we propose a third principle for design of mini-
mally diffracting apertures:

(3) Whereas diffracted rays from any single tooth
might not be sufficiently weak, diffracted flux
on a small, central detector may also be reduced
by radially displacing half of the teeth by the
distance mab/[(k)R(a+b)], (k) being 27/(A).

For diffracted rays reaching the detector, rays
originating from one tooth will be similar to,
except differing by a 180phase-shift from, rays
originating from an adjacent tooth (cf. Fig. 1d).

The 180 phase-shift depends on the wavelength and
above, designed path-length difference. So this third
principle works best when one’s source and detector are
smaller than an aperture, and the effective bandwidth of
radiation transferred for the source-detector combina-
tion is small compared to the radiation’s effective central
frequency. The 180phase-shift being exploited would
vary as the wave number of radiation from a broad-band
source, somewhat degrading the level of destructive in-
terference. The wavelength range having substantial
interference would presumably encompass many oscil-
lations with respect to\ of the relative signs of the
geometrical and boundary-diffraction waves.

To illustrate these three principles further, we
consider a set of optics like the others used in this work.
We usea=b =50 mm,r =1.25 mm,R=7.5 mm, and
either an extended source wijph= 0.5 mm or an axial,
point source. We vary the number of tedth,from 120
to 240, 480 and 960, and use several effective wave-
lengths. Without application of the third principle, we
setA = 0.2 mm (cf Fig. 1b). Application of the third
principle to aperture design is as follows (cf. Fig. 1d).
For the case oN teeth, divide an aperture intd/4
equal angular wedges. Further, divide each wedge
equally into 8 smaller wedges. The aperture perimeter
contains one straight segment within each of these
smallest wedges. At the nine, equally spaced angles,

field in the central region is related to a Fourier trans- which collectively define both edges of all eight smallest
form of the radial distribution of the aperture perimeter. wedges, the aperture radius has the following values:
Based on Parseval’s theorem, relating the integral of the 7.5 mm, 7.704 84 mm, 7.509 67 mm, 7.714 50 mm,
square of a function to the integral of the square of its 7.51934 mm, 7.714 50 mm, 7.509 67 mm,
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7.704 84 mm, 7.5 mm. All apertures reflecting the third length approximation, the validity of the Kirchoff
principle are designed for = 0.58 um. So we radially model, and extensions of this work to optics having
displace alternate pairs of teeth. In Table 2, we presentlimiting apertures. One might also consider further
results for(e)'s with different combinations oN, (A ), simplifying physical and mathematical approximations
source, and whether or not the third principle is applied. in the diffraction theory used, as these can reduce
The results in both Tables demonstrate all three princi- computational resources needed for various applications
ples, and the third principle is robust with respect to [9].

small changes in.
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One should critically assess Kirchoff theory and the
feasibility for manufacturing and using toothed aper-
tures. This is particularly true for the apertures with the
third principle applied, whose design relies on very
small structure. One should also consider effects of edge
roughness in real apertures. Within Kirchoff theory, suf-
ficiently small features should not have large effects.
However, since careful radial displacements of teeth b
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