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We present quantum scattering calculations
for the collisional relaxation rate coeffi-
cient of spin-polarized’Rb(f = 2,m= 2)
atoms, which determines the loss rate of
cold Rb atoms from a magnetic trap. Un-
like the lighter alkali atoms, spin-polar-
ized *Rb atoms can undergo dipolar relax-
ation due to both the normal spin-spin
dipole interaction and a second-order spin-
orbit interaction with distant electronic
states of the dimer. We presat initio
calculations for the second-order spin-or-
bit terms for both Rpand Cs. The correc-
tions lead to aeductionin the relaxation
rate for®’Rb. Our primary concern is to an-
alyze the sensitivity of thé’Rb trap loss

to the uncertainties in the ground state
molecular potentials. Since the scattering
length for thea®3", state is already known,
the major uncertainties are associated

with the X'S*; potential. After testing the
effect of systematically modifying the
short-range form of the molecular poten-
tials over a reasonable range, and intro-
ducing our best estimate of the second-or-
der spin-orbit interaction, we estimate
that in the low temperature limit the rate
coefficient for loss of Rb atoms from the
f=2,m=2 state is between 04 10 *°
cn/s and 2.4x 107*® cnls (where this
number counts two atoms lost per colli-
sion). In a pure condensate the rate coef-
ficient would be reduced by 1/2.
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(BEC) in magnetically trapped alkali atoms [1,2,3] has
brought to completion a 15 year attempt to achieve BEC
in a weakly interacting atomic system [4]. The success
of BEC in both®Rb [1] and®**Na [3] and evidence for
BEC in Li [2] were remarkable achievements brought
about by the development of laser cooling during the
past decade, the design of optical and magnetic traps for
holding cold atomic samples, and most recently the de-
velopment of evaporative cooling technigues to cool
atoms below the recoil limit. This experimental success
has renewed the interest in collisional loss rates for spin
aligned alkali systems, since the binary and ternary
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collisional rates will limit the lifetimes of the experi- volume per unit time) is—2Ke.en? Wheren is the
mental condensates. Experimentdligb is trapped in density off,=2,m, = 2 atoms, since two atoms are lost
the ¢, = 2, m, = 2) state, designated the doubly polarized per event represented by Eq. (1). If a condensate is
state or the stretched state, for which binary hyperfine presente.enis multiplied by (2— £%)/2, whereé is the
changing collisions could be the dominant loss process. condensate fraction [8].
Heref, and m, designate the quantum numbers for the ~ Two atomic parameters are required to describe the
total angular momentum of tfé&Rb atom and its projec-  separated atoms: the isotopic masg = 158425.8n,
tion on some convenient space-fixed axis. On the other (wherem. is the electron mass = 9.109 103! kg) and
hand,>®Na atoms have so far been trapped in the (1, the 6834.683 MHz splitting between thes 2 andf,= 1
m, = — 1) state, which is theoretically expected to be hyperfine components. Assuming that the molecular hy-
more resistant to binary collisional loss. Hence, the life- perfine Hamiltonian can be adequately represented by a
time of the?Na condensate will probably be limited by  unitary frame transformation of the asymptotic atomic
three-body rates, although a condensate of stretchedhyperfine Hamiltonians, the accuracy of the loss rate is
state”®Na atoms may be affected by binary collisional basically limited by the accuracy of the molecular inter-
loss as well. actions we incorporate in our close-coupled scattering
The purpose of this paper is to provide the most codes. To perform the dynamic calculations, we require
accurate calculations possible of the binary collision four accurate molecular potentials o(R): one defined
rates for all inelastic hyperfine scattering processes by the groundX'>*, state withS= 0 and with molecule-
which can contribute to the loss of spin-polarized fixed spin projectionf2 = 0; and three defined by the
ground staté”’Rb atoms at temperature3 € 1 pK) lowest a®%*, state with S=1 and spin projections
associated with the recent experimental observation [1] 2= 0, = 1. These potentials take the following asymp-
of Bose-Einstein Condensation (BEC). This spin-relax- totic form [9,10,11],
ation is due to the following processes:
VO’O(R) -~ = CexceiaR - (C5R76 + CBR78 + CloRilO) (Za)
8Rb(5s,f,= 2,m, = 2) +*Rb(5s,f, = 2,m, = 2)
Vlo(R) ~ + CexceiaR - (C6R76 + CgRis + CloRilo)
- ¥Rb(5s,fs,my) + TRb(5s, fiy, my). Q)
+V%0-o(R) + V=%-o(R) (2b)
Having all®*’Rb atoms in the stretched state with= f,
is ideal for Bose-Einstein condensation, since inelastic Vi «1(R) ~ + Co& ® — (CeR®+ CgR 2+ C1oR ™)
collisions between such stretched states have very small
rate coefficients. The entrance channel in Eq. (1) has a +V55,. . 1(R) + V5% . 4(R) (2¢)
spinf =f, + f, of magnitudef = 4. Since thé’Rb atom
has nuclear spin 3/2, this entrance channel can only whereVs5,_4(R)=a’R 2andV>%,-. (R)=— 1/2a’R®
project onto the triplela®X*, state of the atom pair (a = 1/137 is the fine structure constant) are the famil-
which has total electron sp®= 1. Consequently a sim-  iar spin-spin dipole terms that are primarily responsible
ple spin-exchange model of the collision [5,6] shows for dipolar relaxation in hydrogen and the lighter alkalis.
that stretched states do not relax during the collision. These spin-spin dipole terms have been elegantly treated
Our concern is determining the small but significant in a series of papers by Verhaar and collaborators in
rate coefficient for the trap loss processes indicated in Eindhoven [7,12]. The second-order spin-orbit terms
Eq. (1) that occur when the degeneracy of the molecule- V5°, which we have included are less well known in
fixed projection {2| = 0 or 1 of theS= 1 triplet potential atomic collision physics, although they are well recog-
is broken by relativistic forces. This splitting leads to nized as significant terms in molecular spectroscopy
spin-relaxation. We use standard quantum scattering[13,14]. These terms, which are induced by spin-orbit
methods to calculate the spin-relaxation event rate coef- interactions mediated through distant electronic states,
ficient Kevens defined by Stoof et al. [7], summed over all  mimic the effect of the direct spin-spin terms by intro-
f., My, fy ,my channels that lead to loss of trapped atoms, ducing a splitting in the2 =0, = 1 projections of the
namely channels for which eith&rand/orfy # 2. Such S=1 state and can significantly modify the spin-relax-
collisions lead to loss of both atoms from the trap be- ation rates. These terms will be discussed in detail in
cause of the large kinetic energy release (equal to one orSec. 5, where we will show that they are of opposite sign
two units of ground state hyperfine splitting shared to thea?R 3 terms and tend tdiminishthe spin relax-
equally between the atoms). The total rate of spin relax- ation rate for*’Rb.
ation in a Maxwellian gas (humber of atoms lost per unit
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Our goal in this paper is to systematically assess the 2. Scattering Theory of Ground State
uncertainties in the spin-relaxation rates that are intro- Alkali Atoms
duced by various uncertainties in the molecular parame-
ters that enter into Eqg. (2), and provide realistic bounds  In a field-free collision both the total angular momen-

on the possible range of the loss rate coefficiéntn tumF =f,+f,+ ¢=f+ ¢ and the total paritypp==*+ 1

that can be expected for RIAIl our rates are calculated  are constants of the motion. The parity is the symmetry
using molecular potentials obtained froab initio associated with the inversion afl electron and nuclear
MCSCF codes employing the highly accurate initio space-fixed coordinates through the center-of-mass of

pseudopotentials of Krauss and Stevens [10Rer20 the dimer. The collision loss rate coefficidf,en(E) for
a, (1 a,=0.0529177 nm), and joined on to the well-an- total collision energ)E is expressed in terms of sums
alyzed long range dispersion potentials for the diatoms overF andp involving the scattering matriceXF ,p,E)
[11] for R> 20 a, Because of the usual limitations of [8]. EachS-matrix is derived from a multichannel wave-
pseudopotentials and the typical convergence propertiesfunction calculated from standard close-coupled codes
of ab initio calculations combined with the extraordi- for a givenF ,p, andE, using an expansion in a channel
nary demands we make on the required accuracy of thestate basis H,M,p;?,f,f,f,), which describes the
molecular potentials at ultra-cold collision energies, asymptotic properties of the separated atoms,
these potentials can only serve as excelieitial esti-
mates of the short range portions of tig,(R) poten- v (E,R)= 3 [F,Mp;v )FL(ER), (3)
tials in Eq. (2). yTalh

Collaborative work combining photoassociative spec- where is the angular momentum (partial wave) quan-
troscopic data from the Texas group with theoretical tum number of the interatomic coordina® f repre-
analysis by the Eindhoven group [15,16] has done an sents the magnitude of the channel angular momentum
excellent job of characterizing tha®X," potential, f=f,+f, andy gives the spin channel in which the
which controls the entrance channel dynamics for the collision starts. The + indicates normal scattering
spin relaxation described by Eq. (1). In Sec. 3, we exam- boundary conditions for an incoming state in chanpel
ine the sensitivity of the scattering length to variations and outgoing spherical waves in channglsThe chan-
in this potential. We will accept the analysis of the Texas/ nel states are symmetrized with respect to interchange
Eindhoven group and have insured that our potential of the identical nuclei. One consequence of this sym-
reproduces both the scattering length= + 1104, for metrization is that odd partial waves are missing from
the®Rb isotope andy, = — 3004, for the®*Rb isotope. Eqg. (3) for a collision of twdf,= 2, m,= 2 ¥Rb atoms.
In addition, we introduce a useful new way to associate In the absence of spin-spin and second-order spin-or-
the scattering length with the binding energy of the last bit interactions, the molecular Hamiltonian of two col-

bound state in an attractive molecular potential. liding ground state alkali atoms in (ns) orbitals, which
In Sec. 4, we demonstrate a strong sensitivity of the can be expected to have zero total electromibital
relaxation rate to the shape of théX," singlet poten- angular momenturh = (¢, + &) = 0, possesses two ad-

tial, when thea®,," scattering length is kept fixed at its  ditional almostgood quantum numbers. These &=nd
known value. In this case the sensitivitynistdue to the f. Although this is not true when one or more of the
a®x, entrance channel, but depends offiral-state atoms possesses electrooibital angular momentum,
close coupling effect in the exit channels. The sensitiv- such as an alkali in its first excitedg) orbit, it is an
ity to the potential leads to a factor of six uncertainty in excellent approximation for the two colliding RIs(5
the rate coefficient, which is analyzed using generalized atoms in Eq. (1). The physical reason is that lfor O
MQDT theory [17] and especially the associated half there are no electrostatic interactions that cause locking
collision amplitude version [18] of the theory. We also of the electron spin angular momentum of the system to
describe the interplay between the spin-spin (SS) andthe internuclear axis. Ultimately, weak spin-spin dipole
second-order spin-orbit (SO) contributions to the relax- (SS) and second-order spin-orbit (SO) interactions cause
ation rate. the total electronic spiB = (s, + &) to couple to the axis
We previously had speculated that the SO terms and lead to the small energetic splittings between the
would modify Rb spin-relaxation [19]. In Sec. 5 we molecule-fixed spin projection$) represented in Eq.
present nevab initio calculations of these SO terms for  (2). For the moment, if we ignore these latter interac-
Rb, and Cs. We also give our current understanding of tions the(2 projections are perfectly degenerate and we
the uncertainty range of the spin-relaxation rat&ieb. can easily transform the asymptotic channel states
Finally, a summary of our results is presented in Sec. 6. [F,M p;¢,f,f,f, ) into a basis defined by the total elec-
tron spin angular momentuBy{S = s, + §,) and the total
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nuclear spif (I =i, +ip), wheres, ands, are the atomic ~ of commonf and ¢ values. The atomic stretched state
electron spin angular momenta andand i, are the angular momentd, = f, = 2 andm,=m, = 2, can only

nuclear spin angular momenta (fRb, s,=5,=1/2 couple to anf =4 state, which then couples with the
andi, =i, = 3/2). This transformation is ¢=0 s-wave to give a total angular momentus= 4.

This is the onlyF value for which there is a stretched

) states-wave. The spin-spin dipole interaction can only

IFMp;.f.S1) = 2 V(2S+ 1)@+ 1)(Zat 2o+ 1) change¢ by two units, and thus upon examining the
F=4, p=+1 Hamiltonian, we find that thef € 4,
¢=0) subspace can only couple directly to ttie @,

{Sa ia fa} EM . hh) ¢=2) and =2, ¢= 2) subspaces.
’ Mty hlaslp /-

fafp

%" 'lb ]:cb Our calculations are carried out with the full compli-
ment of accessible channels associated with a given
F,M,p and our rates are obtained with a sufficient sum-
In this new representation two adiabatic Born-Oppen- mation over=,M,p to insure convergence. However, we
heimer potentials, uniquely identified by the quantum find that at the temperatures relevant to BEIC<(100
numbersS= 0 (i.e., theX'*; state) andS=1 (i.e., the nK) only the single set ofFf =4, p=+1 solutions,
a%x", state), appear on the diagonal of the Hamiltonian which involve the close coupling of 20 channels in Eq.
matrix. In the absence of SS and SO interactions the (3), contribute significantly to the stretched state spin
block of S channel states and the block bfthannel relaxation. This is because only the incidswave con-
states are diagonal and only couplings involving a simul- tributes to spin relaxation, since the contributions from
taneous change ihandSare introduced by the hyper- incident channels witlf = 2 are strongly suppressed at
fine interactions. These coupling are constrained to sub-these temperatures due to quantum threshold effects.
blocks which insure that=1 + Sis conserved, and we  Furthermore, of the 20 channels contributing to Eq. (3)
find bothf and ¢ remain perfectly good quantum num- for F=4,p=+ 1, and coupled by the 28 20 interac-
bers at all distances. Of course, at small distances thetion matrix U, ,(R), only the five diabatic channels
exchange splitting between the molecular potentials is labelledy = 1-5 in Table 1 and consisting of the three
large compared to the hyperfine splittings and hyperfine subspaces described above, play any significant role.
coupling is negligible. However, as we shall see, at dis- Figure la shows the diagonal interaction potentials
tances of the ordeR = 20 a, to 40 a,, the hyperfine U, (R) for these five channels. Because of complicated
interaction becomes important and the- S coupling curve crossings and strong interactions in thbasis,
drives the system back into the asymptotically diagonal more insight comes when we examine the five 1,5
basis of channel stateB,M ,p;?,f, 5, ). “adiabatic” potentialsV, (R) shown in Figs. 1a and 1b.
As seen in Eq. (2), both SS and SO interactions pro- These are obtained by diagonalizing th& % interac-
duce an energy splitting of th@ states which impliesa  tion potentialU,,,(R) at eachR. The five potentials
locking of Sto the internuclear axis. This effect is high- never cross and are labeled in order of increasing energy.
lighted by applying a frame transformation of the Each adiabatic channelcorrelates asymptotically with
|F,M,p;¢,f,S,1) channel basis such tha? becomes  the corresponding state in Table 1. At shoRR eacha
represented as a “good” quantum number. However, in potential corresponds to a very good approximation with
this new basi$ and consequently are no longer con-  either theX'X"; or a3, potentials. Thus, at shoR,
served. Fortunately the splitting of the degeneracy of and out to where the exchange interaction t&g in
the a3}, state is small, and hendeand ¢ still remain Eq. (2) remains dominant, thé,-,(R) potential essen-
good approximate quantum numbers. This allows us to tially mimics the purex'3*, potential, and the other four
block the Hamiltonian for a giveR andp into subspaces  V,(R) are basically pur@>*, potentials.

Table 1. SignificantF =4, p=+ 1 channel states for spin-depolarization rates near

threshold

Diabatic (asymptotic) basis Adiabatic Basis

y ¢ f fa fy Asymptotic energy (mK) « ShortR label
12211 —656.022 1 3

2 22 21 —328.011 2 =N
32321 —-328.011 3 =N

4 0 4 2 2 0.000 4 A
522 2 2 0.000 5 =N
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where . is the reduced mass of the Rimer, and
k ="V (2uel#4?) is the wave number of the = 4 channel
incident with relative kinetic energy. At threshold the
first three terms $.4? o =1,2,3 vary ask and their
contribution toKe.entapproaches eonstantat low ener-
gies. These inelastic elements measure the coupling to
the exothermic channels and invariably cause lo$&of
Rb atoms from the trap. The fourth term produces dis-
orientation of the stretched-state atoms which ultimately
leads to loss from the trap as well. However, as this
element vanishes a&]? «<k?, its contribution is negligi-
ble ask -~ 0 and can be neglected.

The close coupled equations can be numerically
solved usingeither the « or +y basis. Since these basis

p=+1 channels. The dashed curves show diagonal elements of theSets are asymptoticallgquivalent they lead to exactly

v = 1-5 case(e) diabatic interaction mattix,, (R). The solid curves
show the adiabatic potentia\4,(R) for « = 1-5 in Table 1. On the
scale of this figure the twg = 3,4 and the four = 2,3,4,5 channels
essentially track tha®3", potential. They = 1,2,5 potentials are ad-
mixtures of Voo and Vi, and are strongly coupled by off-diagonal
terms proportional to the exchange term in Eq. (2). The adiabatic
a =1 channel tracks th¥'>*; potential.

02
0- (2222)
0422
E -02
2 @321
(9]
& —p4- @221)
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&
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-08
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R,

Fig. 1b. Asymptotic correlations of five adiabatic potentials- 1-5
in Table 1.

Solving the set of five close-coupled equations and
obtaining the 5x 5 scattering matris(y,y') = S(«,a')
for this abbreviated set of channels is sufficient to quan-
titatively reproduce the elaborate multichannel calcula-
tions to within a few percent at all energies below
100wK. What has been defined [8] as the “event” rate
constanKeenis simply the sum over all inelastic events

the sameS-matrix. In actual practice the basis is
vastly more convenient in solving the close-coupling,
while thea basis is much more useful in gaining physi-
cal insight from the results. For example, examining the
non-adiabatic coupling [17] we find that only channels
a=1 anda =2 are strongly coupled, and this occurs
over a very limited regiolR = 20 a, to 25 a, (see be-
low). All the remaining couplings are weak and pertur-
bative. This latter feature will play an important role in
assessing the sensitivity of the rates to the singlet poten
tial in Sec. 4.

3. Sensitivity Analysis of the Triplet
Scattering Length

All our rates are calculated using molecular potentials
obtained fromab initio MCSCF codes employing the
highly accurateb initio pseudopotentials of Krauss and
Stevens [10] for R < 2@,, and joined on to the well-an-
alyzed long range dispersion potentials for the diatoms
[11] for R > 20 a,, Since the calculation of ultracold
collision rates requires extraordinary accuracy of the
molecular potentials, these potentials can only serve as
excellentinitial estimates of the short range portions of
the Vs, (R) in Eg. (2). In particular, they are not accu-
rate enough to confidently calculate threshold properties
such as the scattering length. These parameters are de-
termined by an integration o¥s,(R) over the entire
range ofR.

Since we have confidence in the long range parame-
ters in Eq. (2), we only vary the short range potential in
order to assess the sensitivity of the scattering calcula-

experienced by the incident stretched state channeltions to these potentials. We have added an adjustable

y= a=4,

525

harmonic-likeshort rangeterm to thea®s," and X',4*
potentials as follows,
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5(R) =V o(R) + Co(R— Reo)® R<Rs=7.890323,
(5a)
R<R.;=11.66833,

(5b)

V1 0(R)=V10(R) +Cy(R— Rey)?

where Eq. (5) is only applied at distancawallerthan

the indicated equilibrium internuclear distances for the
attractive singlet and triplet potentials respectively. Note
that the functional form in Eq. (4) is chosen arbitrarily
and has no physical significance; other short-range
forms could be used with equal effect. In particular we
want to show that by choosing an appropriate value for
C: in Eq. (4b) we insure that the associatéd,(R)
potentials give a scattering length of 144as suggested
by the joint theoretical-experimental analysis of Boesten
et al. [16].

Our initial fit to the ab initio calculations [10] for the
a®x", potential happened to support 38 vibrational
levels. The last levelv=37 has a binding energy
of —1.45618x 10°® au (1 au =e%a, = 4.359748x
10 J, wheree is the electron charge), and a positive
scattering length of 21.6,. This corresponds to the
point atC; = 0 in Fig. 2 where we show the variation in
scattering length as we systematically vay in Eq.
(5b). The figure shows that the scattering lengthis
extremely sensitive to the short-range portion of the
potential. The scattering length is defined by sheave

threshold behaviour of the elastic scattering phase shift

& - — kA in the limit that the asymptotic wavenumber

1000

500 39
38T S
(=)

—500 37m

Scattering Length A, (a,)

—1000 T T T T
-4 -2 0 2

C, 105 aua,®)

T T T
-12 -10 -8 -6 4 6

Fig. 2. The variation of®’Rb, scattering length, for the entrance
s-wave channel incident on th&®S*, potential, as a function of the
short rangeC, parameter, extracted from the wavefunction at
e/kg = 0.1 nK (full circles). The solid line through the points gives the
fit of Eq. (6). We also plot the threshold value®) of the bound state
phase as we varyC; (full squares). The modulasr values of
V(en) = nw identify the bound state eigenvalues. As the last bound
state e, eigenvalue approaches zero the predicted scattering length
passes from a largeositivevalue to a larg@egativevalue as the level
“pops” out of the potential. This occurs at aboQt = — 2.6 X 10°°
auk,? for ®Rb, wherev(0) — 38.

526

k goes to zeroAk?/2u = € with € the collision energy).

It is well known [20] that the actual value and the sign
of A is critically dependent on the position of thest
bound statdhat can be supported by a given potential.
This in turn is related to what we like to call [17,21] the
bound state phase(k), which is defined for negative
energies = —%2k?/2u which lie below the threshold at

€ =0, and wherex in turn is defined as a continuous
positive realvariable. The modulatr value of the bound
state phase&(k,) = nw locates the position of thath
vibrational eigenvalue [21,25], such that= —74%«.%
2. Actually the deviation of the threshold valuew@D)
from modularar is a useful measure of the last bound
state position. This quantity plays a prominent role in
many descriptions of threshold behaviour (see Stwalley
[22], LeRoy and Bernstein [23] and the Eindhoven
group [16]), where it has been denoted wasand is
sometimes called the effective vibrational quantum
number at the dissociation limit. For our initial fit with
C. =0 we foundv(0) = 37.699544%. This quantity in-
creases or deceases monotonically as we systematically
make the potential more or less attractive by vary@ig

in Eq. (4b). At 9.75a,, the zero energy turning point of
the a%x*, potential for C;=0, a value of C,=

+ 5 X 10 % auk,’ produces a+ 50 cn * change in the
potential. For comparison, the triplet state potential is
204 cni! deep at its potential minimurRe;.

Figure 2 shows that the scattering length as a function
of the C,; shift parameter passes from plus to minus
infinity as the last bound state is pushed out of the
potential. The position of the singularity is easily lo-
cated by examining the threshold behaviour of the bound
state phase&(0). We see that this quantity approaches
38w just asC, approaches- 2.6 X 107° auk,? and A,
passes through infinity. In fact a nice analytic relation-
ship exists between the scattering lengtandv(0),

v
Kk-0" S—

and the derivative is defined by

(6)

2) + cotv(O)],

7%K?
where e= — —
2

v(x) = v(0) +% -

k. The parametes in cot(m/
0+

(s — 2)) is defined by the leading asymptotic power law
— C4/Rs for the potential. Both tha®3*, and thex*Y",
potential have as the leading tel@R ° and we have
cot(m/(s — 2)) = 1. (Instead of the pura®X.*, potential

we actually prefer to use the adiabatic potential desig-
nated asx =4 in Table 1, in which case the lower order
a’R3terms in Eq. (2b) and (2c) arigorouslyremoved

by the diagonalization of the interaction matrix and do
not contribute to the threshold behaviour of thisvave
channel). If we evaluate(e) at an eigenvalue = €, then
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V
a—Kn:nTr+6n.
0K

€, - — 0 and the last bound state lies just below the

v(0) = nm — In the special case, as

dissociation limit, such tha®, = — % kn<<1 and

tans, — 6,, we obtain the usual perturbative expression
(Ref. [20] p. 48) for the scattering length

142 -

Although the conventional derivation of this expression
is limited to a potential with a single bound state, we
find perfect agreement with this limiting behavior even
for wells supporting many bound states.

Actually, if we have a situation wherg0) is not quite
ready to support the bound state, i.ey(0) =nm — §,

1
&

ov 1 1

_mgna;n.

_ov
K

A (7)

such thats, = — % (En) << 1, then we can visualize a

“pseudobound” state lying jushbovethe dissociation
limit with an “eigenvalue” e, = + %%k /2. In the limit
where tanv(0) - — &, we obtain an expression which

complements Eq. (7THh - — _i , and predicts aega-
K,

tive scattering length whenevgr a pseudobound state lies
just abovethe dissociation limit. This behavior is well
substantiated, and quantitatively confirmed, by the re-
sults in Fig. 2.

Numerical studies show that the bound state phase

does indeed vary ag(k) = v(0) +% k near threshold,

and furthermore the quanti% required in Eq. (6) is

basically anasymptoticproperty that only depends on
the long-range potential, and is totally insensitive to
variations in the short range potential, such as those
introduced by the shift paramet&;. From these data

we estimate th% ~ — 78 a,. Using this estimate we

have plotted Eq. (6) as the solid curve in Fig. 2 and find
perfect agreement over the entire (modutarange of
v(0) with the calculated points. Note that this expression
also predicts the exact locations of the zeros in the
scattering length, which are always located at
v(0) =n + 0.75m. It is interesting to note that over the
modulars range the scattering length is predicted to be
positivefor 3/4 of the range, andegativefor only 1/4.
This means that, if we know nothing about the short
range potential, we can at least prediotre is a 3:1
probability that the scattering length will be positive!
The functional form of Eq. (6) was also confirmed for
an asymptotidr 8 by settingCs = 0 in Eq. (2), such that
cot(m/(s — 2)) = cotm/6) =V/3.
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If we chooseC, =3.128% 107° auk,> we obtain a
scattering lengthA,(87) =+ 109.1a, and a threshold
value of vg7(0) - 37.3761r, which predicts 38 bound
vibrational levels with a last bound state &, =
— 2.947925x% 10 ° au. This choice is made to conform
to the scattering length obtained by the Texas/Eindhoven
group [15,16]. Further confidence is obtained from Fig.
3 where we compare the scattering lengths for’fRé
and the®™Rb isotopes. In calculating the two scattering
lengths, the only difference is the mass of the two iso-
topes. We see that at the same valu€gte calculated
scattering lengtt&;(85) = — 309.1a, for ®Rb is in good
agreement with [15,16]. In addition, the threshold value
Vgs(0) = 36.9367 predicts 37 vibrational levels with a
last bound state dzs = — 3.305245% 10 au.

A1(87) and A4(85) @,)

1
2
au a,

-2 0
c, (10~

Fig. 3. Scattering lengths as in Fig. 2, for tA&b(solid circles) and
%Rb(open circles) isotopes. These are evaluated for the sdhig
potential, using the appropriate mass for each isotope. For all future
calculations we us€,; = 3.13x 107° auk.?, indicated by the vertical
arrow. This choice yields scattering lengtAg87) = 109.1a, and
Aq(85) = — 309.3a,, as prescribed by the analysis given by the Texas/
Eindhoven group [15,16].

One final confirmation of the validity of tha®3,*
potential we are using is obtained by examining the
d-wave shape resonance structure defined by the adia-
batic channekr =5 in Table 1. This corresponds to an
incident channel which correlates with the triplet state at
short distance, and correlates with fhe f, = 2 atomic
states at large distance entering with &n 2 partial

wave. This gives rise to the centrifugal barrier shown in

Fig. 4, with a barrier height of 42Q.K. The radial

wavefunctions,-4(R) andf.-s(R) are shown in Fig. 5 for
four incident kinetic energies: 10QK, 200 pK, 350

wK, and 500uK. Thesef,(R) are the single-channel,
energy normalized elastic scattering wavefunction asso-
ciated with theV, (R) adiabatic potential. Boesten et al.
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500 £=500uK +—
peak at 426uK
400
4
3 € ax=300uK +—
~ 300
&
)
Itl5
~ 200+ £=200uK +—

100 £=100uK +«—

T T T T T
250 300 350 400 450 500

R@,)

T T
100 150 200

Fig. 4. The ¢=2 centrifugal barrier for thex=5 channel, which
asymptotically correlates with the®S,", potential. The four energies
indicated will be used in Fig. 5.

2000

dash = d—wave

15004  solid = s—wave (350uK)

1000

at—— 500uK

500

f R o=45

=500

—1000

—1500 T T T T T T : T

Fig. 5. Energy normalized continuum wavefunctions for the adiabatic
a =5 channel for energies= 100K, 200 K, 350 nK, and 500uK
(dashed lines) and for the adiabatic= 4 channel for energy = 350

K (solid line). The adiabatiex =5 channel exhibitsl-wave shape

4. Sensitivity of Loss Rates to the Singlet
Potential

As we systematically varied the short-ranyé&s’,
potential by varyingCo in Eq. (5) we find a surprisingly
large, and seemingly erratic variation in the stretched
state loss rate coefficient. The spin-relaxation rates are
determined by the very sma#i(«,4) matrix elements,
which typically have a magnitude of 19 We found that
the variation was intimately associated with the varia-
tion of the large$(a = 1,& = 2)f element shown in Fig.

6. As seen from Fig. 1 and Table 1, tf8smatrix ele-
ment measures the probability for thé,f,=

1,2 - f,f,=1,1 transition. The coupling which deter-
mines this transition probability is the short-range ex-
change potential, which causes the strongest and only
non-perturbative inelastic event associated with the
channels in Table 1. Sinc®(1,2) is evaluated at a total
energy determined by ther=4 entrance channel,
namely 0.1uK above thea = 4 channel threshold, the
asymptotic kinetic energies in channels 1 anda = 2

are 656 mK and 328 mK, respectively (see Table 1).

0.8 1

064 ", UO)/m —120.75

0.4

B12F and vO/r

ts,f

0.2

resonance structure with maximum amplitude enhancement near Fig. 6. Variation of Bif” (for a total energye/ke = 0.1 K incident in

€max= 350 pK.

[16] have concluded that there is a shape resonance

channel 4) as a function of the short-rar@@garameter (dashed line)
and variation of/(0) as a function of the same parameter (dotted line).
At Co=8.0x 10°° auh,? the quantityv(0)/m = 121 and theX'S*,
potential supports exactly 122 vibrational states. At this point the

enhancement of the photoassociation from channel ginglet scattering length passes through infinity. HoweSsf aries

a =5 relative to thew = 4 channel with incident = 0.
The solid curve shows the = 4 wavefunction for 350
pK. The a = 5 channel amplitude increases with energy
up toe = 350 uK, after which it decreases. One would
infer from these plots that thé-wave shape resonance
is very broad with a “width” extending from 20K to
500 K. This behaviour is consistent with the analysis
given in reference [16].
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smoothly through this region, because channels 1 and 2 have high
asymptotic kinetic energy, well away from threshold.

Before we can understand the strong influence of the
X3, potential on the perturbativé(a,4) elements we
must first examine the profound effect of this potential
on the behaviour 05(1,2). The change to the short
range potential is sufficient to make small displacements
in the nodes of .-;(R) in the coupling region which is
important for determining(1,2), but it is not immedi-
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short distances by increasii@, with nodes being sys- 16

tematically pushed to larger distances, Fig. 9 shows that L
Kewentracks the associated values $€1,2)f with Keyen 141 Pt
varying by roughly a factor of 4. The figure also shows 2] P

that several of the individual components contributing to
the spin-relaxation show similar qualitative variation
with differences in detail.

1 6
) |31£|2 41 SS plus SO
0.8
24
SO only
0.6 - 0 T T T - T
: 0 02 04 0.6 08 1
51.2F
0.4 - ) - > . .
Fig. 10. Rate coefficientKeyent versus $io” as Co is varied for the
X3, potential. The variation o, is sufficient to “pop” two bound
states out of thex'S"y potential. Three such curves are shown. The
021 curve labeled “SS only” includes the spin-spin (SS) interaction only.
The lowest curve labeled “SO only” includes the second-order spin-
orbit (SO) interaction only. The middle curve labeled “SS plus SO”
0 T T T T includes both the SS and SO interactions.

—25 —IZO —Il5 —IlO —|5 0 5 IIO 15 20 25
Co (10-% au a, %)
followed |5(1,2)F over a range o€, that changes(0)/m
Fig. 9. |Si? and Keyent VErsus the short-rangg, parameter for the by unity and "pushes’ one bound state out of ﬁhé?jg
- I 2) event = . . . .
groundX*S*, potential. The figure shows the strong correlation be- _pOterm?‘l well. We find two identical values cS(ll,Z)F
tween the two quantities. The correlation with specific components 1N this interval. The second value occurs when the

Keven(22,22 - fm,, fymy) are also shown: (afam, fom,=11,11; function is shifted byapproximately halfa deBroglie
(B) fam, formy, = 22,10 (C)famy, fomy = 21,11, (d)fam fimy = 22,11, All wavelength in the peak region @k, thereby maintain-
rate coefficients have been divided byx210™*° cnm¥/s in order to ing the same value of the distorted wave integral for

place them on the same scale as the dimensiorfigfs |

[S(1,2)F (see Fig. 8). This changes the sigrSgt,2) but
results in the sameS(1,2)f. However, this change in
sign results in slightly differeninterferenceeffects in
the evaluation of5(«,4) and thu...nat distances be-
yond R = 26 a,, as we will discuss below. Actually, in
Fig. 10 we variedC, enough to “eject” two bound states
from the potential, and, for a given resulte®tl],2)f the
rate coefficients in Fig. 10 can not be distinguished.

At the extrema 0Keenin Figs. 9 or 10, it is possible
to associate a singld, scattering length for thX'x*,
potential with the particularS(1,2)f value. This is not
possible away from the extrema, since there are two
values that correspond to the sakig.« The minimum
in KeverrCOrresponds to a scattering length for ¥,
potential ofA, = + 95a, and the maximum corresponds
to a value ofA, = + 54 a,. If the scattering length were
measured to be near one of these values, then the relax-
ation rate will be near one of its extreme values.

We will now present a qualitative argument why vary-
ing the magnitude d8(1,2) affects the magnitude of the
spin-relaxation rate involving th®(«,4), a # 4, matrix
elements. Since the coupling is weak it is an excellent
approximation to represent these elements as follows:

Figure 10 shows the behavior Kf..with respect to
the variation in$(1,2)f. We show the dependence of the
stretched state rate coefficients on #&.*, potential
for three different situations. Th8S-onlycurve gives
KeventWhen we only include the usual spin-spin splitting
which varies as @%/2R5. The SO-onlycurve shows the
very small rate coefficient, almost independent of
S(1,2), that results if the SS splitting is removed and
only the short-range second-order spin-orbit splitting is
included. In Sec. 5 we will show that tf&0D-onlycon-
tribution primarily occurs at short distande< 20 a,,
where significant molecular interactions can occur.
Consequently, the dependence of 8@-onlyrate coef-
ficient on B(1,2)f is minuscule. Finally th&S-plus-SO
curve shows the rate coefficient when both SS and SO
interactions are included in the close-coupling calcula-
tion. This curve demonstrates up to a factor of two
reductionin the rate coefficient when compared to the
SS-curve

The rate coefficients in Fig. 10 are double valued as
afunction of §(1,2)f except at the extremes of the range.
This property can be traced to Fig. 9, where we have
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ately obvious why this leads to such large variations in
the above-threshol8(1,2). Fig. 6 shows3(1,2)f varies
from a minimum of 0 aCy = — 9.4 X 10 % auk,2to a
maximum of 0.834 aC, =~ — 16.4X 10 ° aul,”.

This variation is best understood by considering the
matrix element of the radial coupling operator

Q.4R) %{ [17] between the adiabatic states: 1,2 in

Table 1 and Fig. 7. In the first order distorted wave
approximation (Ref. [20] p. 349, and Refs. [26 and 27])
theS(1,2) matrix element is proportional to the integral,

S(1,2)* [dRE(R)Q:AR) %2 £(R),

where Q.x(R) is determined by th&-variation of the
orthogonal 5< 5 matrix M;(R) which diagonalizes the
diabatic interaction matrixJ (R) = M (R)V(R)M (R),
such that

QuAR) = X, My (R) 0z (R)/9R.

Not surprisingly we find the coupling is highly localized
in the vicinity of R = 22 (see Fig. 7) where the spin-ex-
change splitting between the singlet and triplet potential
in Eq. (2) becomes comparable to the hyperfine splitting
of the atoms. Althougl®;, causes strong nonadiabatic
mixing between channels 1 and 2, the distorted wave
approximation above is suitable for the qualitative argu-
ment we make below, even though it is not suitable for
quantitative calculations.

(=]
!

|
¢

—100 4

—150

1R), Vo—a(®) (cm™)

Q, (arb. units)

—200

Va

—250

26 30

Fig. 7. The adiabatic potentials for channéls: 1 anda = 2 together
with the non-adiabatic coupling operator (in arbitrary units) between
these channels. The latter is well localized in the region 0&8

R < 26 a,, where the exchange splitting between ¥f&*, anda’s",
potentials becomes comparable to the hyperfine splitting.
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Changing the singlet potential has a negligible effect
on the adiabati€&(R), which is shown by the solid curve
in Fig. 8 and primarily portrays a pure triplet state, at
least up to the vicinity of strong coupling near a2
The two different short range singlet potentials, associ-
ated with the indicated minimum and maximum
[S(1,2)F in Fig. 6, are used to obtain the two differént
functions which we designate 3., andf; maxin Fig. 8.
Note the structure of these functions in the vicinity of
the peak of the non-adiabatic coupling oper&er The
fomin function has an almost perfect overlap with the
function. Since the complete non-adiabatic operator is
equal toQ, times the radial derivative/dR this perfect
overlap implies a very poor overlap betweénand
of,min(R)/OR, and therefore implies that the distorted
wave integral should be quite small. In fact, for this case
our exact close-coupling results vyield S{1,2)f =
0.000017 (presumably by varying, slightly we could
have found a perfect cancellation wig(1,2)f = 0). The
second functiorf, max in Fig. 8 is phase shifted with
respect td;, implying improved overlap betwedpnand
of,maR)/OR and a larger distorted wave integral. For
this case our close-coupling predicts the maximum
[S(1,2)F=0.83.

200

solid=f,,

feR) o=12

"/ Q. (arb. unity)
200 . . . T -
22 2 26

R@,)

28

Fig. 8. The adiabatid, wavefunction (solid curve) and the adiabatic
wavefunctiond; max (dotted curve) andi min (dashed curve). The latter
were calculated using the singlet shift parame@rs — 16.4%x 107°
auk,? andCy = — 9.80X 107° auk,?, which produce the maximum
and the minimum inelasticS],* elements in Fig. 7 respectively. The
Q2 operator (in arbitrary units) is also shown, and locates the region
of strong non-adiabatic coupling between channels 1 and 2.

Our initial fit to the ab initio calculations [4] for the
3, potential, combined with th&*, potential with a
scattering length®; = 109 a, prescribed by Ref. [16],
just happened to yield a value oB(lL,2)f = 0.0731.
When the'Y*, potential was systematically modified at
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S@d)3 (Fou QR 516 @) v=[2 =127 (10

whereF,, are defined in the same manner as in Eqg. (3), where, especially if one uses an adiabatic representa-
but now in the adiabatic channel basis and with an tion, the diagonal element$ are generally negligible.
outgoing state in channel. Each column vector in the  For the strong coupling cas&(LL,2)| = B(1,2)| can have
matrix F~(R) defines the radial components of a five- a maximum value approaching unity.

channel close-coupled outgoing wavefunction for each  For the simple model used here, we use1l for the

of the adiabatic channets= 1,5. The functiorf; repre- strong coupling case amxi= 0 for the weak coupling
sents the incoming wavefunction of thhe= 4 adiabatic case. For these two extreme cases the funétioim Eq.
potential of Fig. 1. This can beewed as a gesralized, (9b) takes a simple form. For the two channeks 1 and

multichannel version of the Distorted Wave Approxima- « = 2 the relevant matrix elements Bf are:
tion [20,26,27]. The&,, , matrix elements introduce the
weak spin-dependent coupling between adiabatic chan-__ _ 1 [h{e*ig1 ihyee
nels 4 anda'. " 2i [ihye ' hie e
At short distances, to the left of the strong coupling

region in Fig. 8 the solutions™(R) are simply propor-
tional to the 5x 5 diagonal matrix of adiabatic refer- __ [fle’i§1 0

) F = i
ence functiond, 0 fe'@

} x=1, 1B(1,2)|=1 (11s)

] x=0, [S(1,2)]=0 (11w)

F (R) « f(R)eé = §,.f,(R)e ' for R<20a,. We designate these two cases “s” and “w” respec-
(9a) tively, for strong and weak inelastic scattering probabil-
ity measured by(1,2). Using these limits in Eq. (8) we
Applying generalized MQDT theory [17] and its associ- find
ated half collision amplitude [18] to the outgoing multi-
channel functions at distances beyond abi®ut26 a,,
the exact close-coupled wavefunctions can be repre-
sented rigorously as follows

i + i 1, —i
5(1,4) o — E <hle §1|V1'4|f4> + E <h2 e §1|V2'4|f4>

_i_ ta &) 1‘ —a b
FR) =« [f(R)+gRIVI (1 +Y) e forR>26au, i)™~ 7 e HVadlo +5 (e BVl (129)

(9b)
or
whereg(R) = 6...0.(R) andg.(R) is an irregular solu-
tion for the adiabatid¢/, (R) potential. Alternatively, this S(1,4) = (f & "V 4ff )
may be written using running wave reference functions:
S(2,4) = (f, €2V, ) (12w)

-1 -5 | a-i + _ ; — 12, +i(kR+
F T2 [h -hZ ]e LohT=gEif o ke The radial functiond; andf, are just the elastic scatter-
(9¢) ing standing waves shown in Fig. 8 and oscillate strongly

against the standing wavie defined by the incident

where the real symmetri¥ matrix is related to the  channel. Thus, we expect small values for the matrix

close-coupled scattering matr= €<.€¢ = d¥(1 +iY) elements in Eq. (12w). In the strong coupling regime the
(1 —iY) et The onlyY matrix element of any magni-  matrix elements involve the overlap fafwith pure out-
tude in this ultracold five channel system¥s,; there- going (or incoming) running waves with amplitudes

fore, we need only consider the=1 and 2 channels  which do not oscillate witlR, and we can easily under-

and we can reducé™ to a 2X 2 matrix for these two  stand why the matrix elements in Eq. (12s) are much

channels. For the weak coupling case in Fig. 8 even the larger than those in Eq. (12w). The enhancement of the

Y., element is negligible and the structure Bf(R) spin-relaxation rate coefficient in the presence of strong

remains diagonal as in Eq. (9a) for Rl However, if the final state interactions is well demonstrated in Figs. 9

chosenX'Y*, potential yields a larg&(1,2), the struc- and 10.

ture in Eg. (9b) can strongly influence Eq. (8). It is not Further insight into this final state effect can be

a bad approximation [17] to represent &2 Y matrix gleaned by evaluatinge..while systematically limiting

as follows, the range of the spin-spin coupling in Eq. (2). We do this
by assuming the fine structure constanhas its usual
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constant value 1/137 up to some cutoff distaRggand We now discuss the interesting effect that the total
then vanishes identically f& > R... The results of such  loss rates are decreased when we includé/ttteaerms
a study are shown in Fig. 11. The solid curves show the as well as th&/SSterms. The distorted wave approxima-
result using theX'X*, potential which yields the maxi-  tion in Eq. (8) implies that th&(4,«) S-matrix elements
mum B(1,2)f. In this case we expect Egs. (10s) and can be separated into an SS and an SO term. The loss
(11s) to prevail at distances larger than the peak of the rate depends on the squareS®fmatrix elements:
Q2 operator, which is shown by the dotted curve in Fig.
11. The dashed curves show the corresponding results S35+ S5 = |S°F + |S592 + S55559" + S59'SS0,
for the minimum $(1,2)f case, for which Egs. (11w)
and (12w) should be valid for all distances. There are The first two terms sum the individual contributions to
two sets of curves. Each set has one line with the SSthe rate, whereas the last terms exhibit the interference
interaction only and one with our best estimate of the between them. Figures 10 and 11 show 185} is
second-order spin-orbit terms included. Since these SOindependent of the strength of the exit channel coupling
terms are short ranged and their principle contributions measured by3(1,2)f and is always small compared to
occur at distances to the left of tigg, operator, we did  |S°°. On the other hand,Sf%* does depend very
not apply a cutoff to these terms. strongly on the strength of the exit channel coupling.
Obviously the interference effect is more significant for
20 the case of weak SS coupling than for the case of strong
SS only SS coupling. In the former caséeenis decreased by a
factor of 2 when SO coupling is included, whereas in the
latter case, the decrease is only 20 %. Including the SO
terms causes a decreaseigen, since the SO coupling
has an opposite sign from the SS coupling, as discussed
in the next section.

solid= max IS1 2|2

dash= min ISl 2F
SS plus SO

—-
o
1

Q 1 ,z(nrhunits)

Kevent 1078 cm3/)
S
1

5. Evaluation of Second-Order Spin-Orbit
SS only . COUp|Ing

i SS plus SO . . .
et T The doubly spin polarized atomic states on the left

o= hand side of Eq. (1) can only be relaxed by the weak
0 40 80 120 160 200 coupling between the two electron spins. Two terms,
shown in Eq. (2), contribute to the effective spin-spin
interaction Hamiltonian: theirect spin-spin dipole in-

- - . s ! oul teractionVs%,(R), varying at long range asRj, and the
spin interaction. Th&>YR) coupling is set to zero foR > Reu: Kevent L . e 150
is shown for the twdC, values which yield the largest (solid lines) and indirect secopd—order spin-orbit mtergcuc)hs o(R).
smallest (dashed lines) inelasf. Two curves are shown foreach ~ 1he latter originates when the atomic charge clouds
choice ofC,. One corresponds to including the SS interaction only, overlap as a molecule is formed, and the interaction
and the other corresponds to including both the SS and SO interactionshetween the ground state spins are modified due to
(the SO coupling in not cut-off). The arrows show the values for couplings mediated through distant excited electronic
Reu = = states of the molecule. These interactions are well
known in molecular spectroscopy and mimic the direct
spin-spin coupling for &% state [13,14]. The reason
these interactions mimic spin-spin coupling is that they
split thef2 = 0 and=+ 1 components in a similar manner
as the direct spin-spin terms. For heavy species like Rb
and Cs we will see that these indirect terms can be much
larger than theVsS,(R) term at short distances and
strongly influence the spin-relaxation rate.

We have calculatedb initio molecular spin-orbit ma-
trix elements to obtain estimates of the second-order
spin-orbit correction term¥*°,(R) in Eq. (2). For the

Fig. 11. KeventVersus the artificial cutoff parametByssof the spin-

Both dashed curves in Fig. 11, associated with the
standing-wave weak coupling solutions in Eqg. (11w),
have achieved their asymptotic values by abBut
40a,-60a,. Any possible contributions to the loss-rates
beyond this region are quenched by standing wave oscil-
lations in the matrix elements Eq. (12w). On the other
hand, as shown by the behavior of the pair of solid
curves, running wave terms in the strong field Eq. (12s)
continue to add to the rates out to distance beyond
R=2004a, and finally reach full convergence at about
R = 300 a,.
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a’%y," state these terms are mediated through distant 12
electronic states offl,, °II,, °IL, and®%,” symmetry. E
We calculate theR-dependent spin-orbit matrix ele- 1
ments for these states using all-electron wavefunctions 01+
for the molecular states generated by stana@dréhitio
methods. The second-order interaction for @&, ]
state is dominated by the matrix elements -~ ]
(a3 oHso(R)PP 1, ) involving 11, and *[1, states ! 3
which correlate to the first excitedS +?P atomic L

-

asymptotes. In this case the second-order coupling term OI-

0,001
due to a specifié¢>™1,, state takes the form [14]
VE(S,R) = b%°(S,02)Ps(R) (13a) 00001
where -
0.00001 T T T T T T T
b3%(S,00=0, bSY(S,+1)=1 forS=0 (13b) 6 7 8 9 10 1 12 13 14

R (ao)
b%¥(S,0)=2, b%¥(S,=1)=1 forS=1 (13¢c) Fig. 12. Calculated second-order spin-orbit coupling parameter of
Eqg. (11d) as a function of the internuclear separaRorThe circles
and show the contribution from the first excitéHl,, state, and the squares
show that from théll,, state. Solid points are for Rland open ones
for Cs. The dashed line shows the difference between(2tve0 and
(13d) |2] =1 components of the spin-spin interaction.

2
|<32u,.() = 1|HSO|ZS+1HU,_Q = 1>|

PS(R) == V(ZS+1HU,R) — V(3ZU,R) .

an order of magnitude larger thah. Figure 12 also
shows thaP, andP; have a much shorter range than the
1/R? spin-spin term. To a good approximation we find
we can fit the numericalb initio results to the following
expression,

HereHso(R) is the electronic spin-orbit coupling opera-
tor and 2= A+ 3, where A is the projection of the
electronic orbital angular momentum adds the pro-
jection of the electron spin angular momentum on the
internuclear axis. Since the important aspect of the sec-
ond-order spin orbit coupling for dipolar relaxation is V% o(R) = — 2VS%,_4(R) = — Ca?e 8RR (15)
the splitting it introduces betweef = 0 and+ 1 com-

ponents of thé,," state, we represent the second-order where for Rb C = 0.001252 auB = 0.975a, %, and for
spin-orbit couplings as an “effective” spin-spin cou- Cs, C=0.02249 aup = 0.830a, * andRs = 10 a, for
pling termV3(R) as follows, &
both; hereC is given in au (1 au %—0:4.359748><

V2(R) =§[P1(R) — Po(R)] 10*f8. J). Note t_hat\/ﬁ?o is neggtivecompared to the
positivea?/R?® spin dipolar term in Eq. (2b) and at about
R =~ 10.33a, these two terms exactly cancel in the case
V2. (R) = — % [Py(R) — Po(R)]. (14) of Rb,. The same is true for Eq. (2c). Since it is the
differencebetween the potentials from Egs. (2b) and
(2c) that gives rise to spin-relaxation, and the overall
magnitude of these differences is reduced by the addi-
tion of the spin-orbit interaction, we might anticipate the

Since Ps(R) decays exponentially to large, and its
magnitude at shoR is small compared to uncertainties
in the short rang€’s," potential, we can ignore the spin-dipolar relaxation rates will beeduced accord-
mean contribution of these interactions Whlch equals ingly. However, we should emphasis that although this is
[3P§(R+) + Po(R))/2 and assume that our adjustment of ¢,a for spin aligned Rb, where the two contributions are
the’," potential to _flt the expe_rlmental-theoretu_:al esti- o similar magnitude, the opposite effect appears likely
mate of the scattering length in Sec. 3 actually incorpo- ¢or cg, since the magnitude of the second-order spin-or-
rates this mean spin-orbit contribution. bit term for Cs, although still negative, is much larger

Figure 12 shows our calculatét(R) and P,(R) for than the spin-spin term. The overall effect of the spin-
Rb, and Cs. The b11, state, which is energetically clos- bt term in Cs is to increasethe spin-relaxation rate
est to the’>,* state, has the largest coupling, dPgis relative to that predicted by spin-spin only.
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To test the sensitivity dkevenito the magnitude of the
spin-orbit coupling we have arbitrarily multiplied Eq.
(15) by a factor of two and recalculated the loss-rates.
Although it is impossible to place unequivocal error
bounds on our calculations ®F’, it is unlikely that our
error in estimating/*° is as much as a factor of two.

We wish to make one final point before we conclude
our discussion of the spin-order effects. Figure 12 shows
that VS° is about an order of magnitude larger for,Cs
than for Rb. In fact, the contribution to spin-relaxation
of doubly spin-polarized Cs atoms from the second-or-
der spin-orbit term will dominate that due to the spin-

Such a variation does give a reasonable bound to thespin term. Model calculations for Cs suggest that spin-
possible effect of the coupling. In Fig. 13 we compare relaxation rates for Cs are insensitive to the singlet
the rates for the SS-only calculation to those calculated potential. This agrees with our result for Rb shown by

using V=° and 2x Vs° added toV>S This figure also
summarizes the status of our current confidend€.ig.:
for ®Rb. Since we are not able to determine thg,
potential with sufficient accuracy to place any con-
straint on the magnitude dibf, the rate coefficient is

spanned by the range shown by the curve labeled “SS

plus SO” in Fig. 13. The loss rate coefficientK2ens
lies between 0.4 10 cn/s and 2.4x 10 cnv/s. If
our calculatedvs® should be erroneous, we still expect
the loss rate coefficient to lie between 0110~ *°*cm?/s
and 3.0x 10 ' cm¥s. The lower bound is determined
by the “SS plus 2< SO” curve, and the upper bound by
the “SS only” curve. It must also be remembered that

the nearly horizontal curve labeled “SO only” in Fig.
10. The spin-relaxation rate for Cs atoms is likely to be
much larger than that for Rb atoms, but the actual value
will still depend on thea®s*, potential.

6. Conclusions: Assessment of Current
Accuracy of Calculated Rly» Loss Rates

In conclusion, we have determined the uncertainty in
the spin-relaxation rate coefficient for stretched state
8Rb atoms associated with uncertainties in the molecu-
lar parameters which control the magnitude of the relax-

this assessment is based on having a precise scatteringtion cross section. The stretched state relaxation affects

length for thea®s*, potential. If the estimate &%, = 110
a, supplied by the Texas/Eindhoven should be in error,
then the rate coefficient will be modified accordingly.
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Fig. 13. Rate coefficientKeyen versus $.f° as G is varied for the
X'3*, potential. The upper two curves are the same as in Fig. 10. The
three curves indicate the uncertaintykinen:due to the uncertainty in

the X'3"; potential and in the SO interaction. The three curves show
three different cases of the strength of the second-order spin-orbit
(SO) interaction: the upper curve has no SO interaction, the middle
curve uses our calculateab initio values, and the lower curve uses
twice the calculated values.
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the lifetime of the experimentally observéRb con-
densate [1,24]. The condensate described in [1] remains
dilute enough that its lifetime, ignoring collision with
background thermal atoms, is determined by the binary
stretched state loss rates [24]. Ternary rates will become
dominant in more dense condensates.

Our calculations use the®3.; or stretched state scat-
tering length”A; = 1104a, as required by the experimen-
tal photoassociation data for spin-polariZ&@b atoms
[16]. Our calculations show that the lack of experimen-
tal knowledge of thex'>; potential provides the largest
source of uncertainty in determining the spin-relaxation
rate coefficient. Thes-wave entrance channel for colli-
sion of thef, = 2 +f, = 2 stretched state atoms only cou-
ples very weakly to the two possible exit channels of the
spin-relaxation process, which proddge 1 +f,= 2 or
fo=1+f,=1 separated atoms with increased kinetic
energy. The uncertainty in spin-relaxation rate is associ-
ated with the strength of mixing between the two com-
ponents in these exit channels. We varied the inner wall
of the X'3; potential in order to determine the range of
uncertainty. Our calculations show that the loss rate
coefficient due to spin-relaxationk2.; is uncertain to
about a factor of 6, lying in the range 0410 cm’/s
t0 2.4 10 * cm¥s. In a pure condensate the rate coef-
ficient is simply Kevent [18]. Doubly polarized Rb may
have the smallest collisional loss rate coefficient of any
the alkali species if the rate coefficient lies near the
lower end of its estimated range.
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We have providedb initio estimates for the second-
order spin-orbit term&/3°(R) which contribute to the
effective spin-spin interaction. For the heavier alkali

atoms these terms have an important effect on the spin

relaxation rate. If’Rb, theV5A(R) terms causes a re-
duction in the rate coefficient for the collisional relax-

ation of stretched state atoms throughout the possible

parameter space for varying th€'3; potential. The

decrease ranges between a factor of 2% and 20 %,

[11] M. Marinescu and A. Dalgarno, Phys. Rev.52, 311 (1995).

[12] R. M. C. Ahn, J. P. H. W. v.d. Eijnde, and B. J. Verhaar, Phys.
Rev. B27, 5424 (1983).

[13] H. Lefebvre-Brion and R. W. Field, Perturbations in the Spectra
of Diatomic Molecules, Academic Press, London (1986) pp.
100-109.

[14] S. Langhoff, J. Chem. Phy&1, 1708 (1974); P. S. Julienne, J.
Mol. Spectrosc63, 60 (1976).

[15] J. R. Gardner, R. A. Cline, J. D. Miller, D. J. Heinzen,
H. M. J. M. Boesten, and B. J. Verhaar, Phys. Rev. [#&1t3764
(1995).

depending on whether the rate coefficient lies near the [16] H. M. J. M. Boesten, C. C. Tsai, J. R. Gardner, D. J. Heinzen,

lower or higher end of its range of uncertainty. Our
calculations suggest that the contribution of YH&(R)
terms to the spin-relaxation rate coefficient of stretched
state Cs atoms will be much larger than that from the
spin-spin dipole term.

Our analysis points out a critical need for more pre-
cise determinations of thé'X; anda®s; potentials for
Rb, and Cgand of the spin-coupling parameters. Exper-
imental determination o¥/3%R) could be approached
by precision spectroscopy on the fine and hyperfine
structure of the®; state. The quantum chemistry com-
munity could provide more complete and accurate cal-
culations of the second-order spin orbit interactions as
function of R.
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