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1. Introduction

The study of many-body properties of ultra-cold and
low density atomic samples is a topic of considerable
experimental and theoretical interest. Substantial
advances in this new subfield of atomic, molecular, and
optical physics have been reported in the recent past, the
most spectacular one being without doubt the observa-
tion of Bose-Einstein condensation in weakly interacting
alkali vapors [1-3]. On the theoretical front, quantum
field theories of the interaction between atoms and light
fields are being developed [4-6], and are finding appli-
cations in the analysis of detection schemes for Bose
condensates, nonlinear atom optics, etc.

While in the experiments reported so far, Bose-
Einstein condensation has been detected via the velocity
distribution of the atoms in the condensate, it is of inter-
est to examine alternate techniques, such as optical
methods, which could give clear and unambiguous
signatures of the distinctions between a condensate and
an incoherent atomic sample of the same density [7-12].
In this paper, we use the analogy between nonlinear

optics and nonlinear atom optics to propose and analyze
another measurement scheme sensitive to the coherence
properties of the atomic sample under consideration.
Based on this analogy, we have predicted in earlier work
[13] that it should be possible to achieve atomic phase
conjugation from an atomic condensate. Since phase
conjugation is acoherentoptical effect, which relies on
the mutual coherence between the optical fields in-
volved, we argue and demonstrate numerically that
atomic phase conjugation is rapidly destroyed by
incoherent processes such as spontaneous emission.
Hence, it is not expected to occur for an incoherent
atomic sample, and is a sensitive probe of the coherence
properties and of the lifetime of the condensate.

Section 2 discusses our physical model, and proposes
an experimental scheme where a Bose condensate is
diffracted from an optical grating for atoms to produce
two counter propagating condensate components, as
well as a weak ‘‘probe’’ which is scattered off the
condensate. In a manner reminiscent of the optical case,
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this configuration can lead to matter-wave phase conju-
gation via four-wave mixing. The basic approximations
underlying our analysis, as well as the nonlinear master
equation which models our system, are presented.

Section 3 reviews the coherent dynamics of the atoms
and demonstrates that indeed, phase conjugation is
possible in principle. Because the atoms under consider-
ation are modeled as two-level systems, though, the
theory of phase conjugation is somewhat more compli-
cated than in the situation of degenerate four-wave
mixing familiar in nonlinear optics, and is more remi-
niscent of the case where the polarization of the optical
fields must be taken into account. Spontaneous emission
is included in Sec. 4. In this case, the nonlinear
Schrödinger equation used to describe the coherent
effects is replaced by a nonlinear Hartree-Fock master
equation, which is solved numerically. Spontaneous
emission is shown to drastically reduce the amount of
phase conjugation available, thereby demonstrating its
sensitivity to the coherence of the condensate. In addi-
tion, we compare these results to the solution of a
Hartree nonlinear Monte Carlo wave functions numeri-
cal scheme that we have recently proposed, thereby
gaining useful intuition about the way a condensate’s
description departs from Hartree as dissipation is
increased. Finally, Sec. 5 is a summary and conclusion.
Calculational details are relegated to appendices.

In order to avoid any confusion, we note now that the
nonlinear Schro¨dinger equation that we use in this paper
is not the Gross-Pitaevskii nonlinear Schro¨dinger
equation familiar in the description of Bose conden-
sates, but rather the nonlinear Schro¨dinger equation of
atom optics [4,14]. In the former equation, the effective
nonlinearity results from short-range interactions
between ground state atoms, while in the latter case it
results from the long-range, near-resonant dipole-dipole
interaction between ground and excited atoms. Because
the diffraction grating involved in our scheme induces
real transitions between ground and excited atoms, this
latter interaction is dominant, and hence we neglect the
short range ground-ground interactions here. After
having neglected this interaction, we do treat the dipole-
dipole interaction as local, so that our nonlinear
Schrödinger equation is itself local, just like the
Gross-Pitaevskii equation. However, the physical
situation it describes is quite different, and indeed, its
Schrödinger field is vectorial rather than scalar.

2. Physical Model

In analogy to the optical case of phase conjugation by
four-wave mixing, we aim to realize a situation where a
weak probe wave interacts nonlinearly with a strong

‘‘pump’’ wave to establish a grating from which a coun-
ter propagating pump wave is scattered to produce a
phase-conjugate wave. A possible way to establish this
geometry is shown in Fig. 1, which illustrates how a
Bose condensate is diffracted by a matter waves grating
produced by a periodic evanescent electromagnetic
wave.

If the condensate impinges on the grating at the
Bragg (Littrow) angle, the incident beam will be back-
diffracted into two components, one propagating in the
direction opposite to the incident wave (first-order
diffraction) and the other, resulting from zeroth-order
diffraction, at some angle from these ‘‘beams.’’ We
already note at this point several important differences
between this situation and the optical case: First, the
waves are now de Broglie matter waves, instead of elec-
tromagnetic fields; second, these waves have several
components, corresponding to all electronic states of
relevance for the system at hand, so that the fields under
consideration are vector fields; finally, due to two-body
interactions between the atoms, their evolution is in-
trinsically nonlinear, so that no additional nonlinear
‘‘crystal’’ is required.

In general, atoms impinging on the grating in their
ground electronic state will be diffracted in a superposi-
tion of ground and excited states, with two major conse-
quences: the spontaneous decay of the excited atoms is
an incoherent process that destroys the coherence
between the various interacting waves, a mechanism that
is expected to reduce the amount of phase conjugation
achievable. In addition, a spontaneously emitted photon
can be reabsorbed by another atom in the sample. This
is the physical mechanism leading to the near-resonant
dipole-dipole interaction, which is the major source of
nonlinearity in the gedanken experiment at hand.

Fig. 1. Configuration of the atomic beams incident on and diffracted
from the evanescent light grating.
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We have mentioned in the Introduction that the
dynamics of a Bose condensate is described by the
Gross-Pitaevskii nonlinear Schro¨dinger equation [15],
in which the nonlinearity results from short-range
two-body collisions with a scattering length of the order
of the Bohr radius. In the presence of light fields,
however, the two-body potential is dominated at low
densities by the dipole-dipole interaction between
ground and excited atoms. Neglecting the short-range
interactions, subsequently approximating the dipole-
dipole potential by a ‘‘contact’’ potential, and perform-
ing the Hartree approximation yields an effective single-
particle nonlinear Schro¨dinger equation which forms
the basis of nonlinear atom optics [4]. Although this
equation has the same structure as the Gross-Pitaevskii
equation, it describes substantially different physics.

However, since spontaneous emission cannot be
ignored when excited atomic levels are involved (and in
addition is the cause of the dipole-dipole interaction) the
nonlinear Schro¨dinger equation does not give an appro-
priate description of the system. Rather, it must be re-
placed by a master equation approach. This last equation
results from the common procedure of eliminating the
degrees of freedom of the continuum of modes of the
electromagnetic field in the Born-Markoff approxima-
tion. Invoking in addition the Hartree-Fock factorization
Ansatz results in the effective single particle nonlinear
master equation [16,14]

r (a;b)
t

= –
i
"

ka u[H ,r ] ubl + ka uL ncr ubl

–
i
" E d { i }[ ka : 1u(V + Vc )u2 : 3l(r (2;b)r (3;1)

+ r (3; b)r (2; 1))

– (r (a;1)r (3;2)) + r (a;2)r (3;1))

k1 : 2u(V + Vc)ub : 3l]. (1)

Here r (a;b) are the matrix elements of the single
particle density operatorr , the ‘‘integration over
numbers’’ such asd{ i } means a summation over a
complete set of quantum numbers for the single particle
system,H is the single atom Hamiltonian,L ncr is the
usual single atom spontaneous emission term, the
two-body potentialV describes the dipole-dipole inter-
action, andVc is an imaginary potential which results
from the elimination of the modes of the thermal elec-
tromagnetic field in the Born-Markoff approximation.

We specialize to the case of a system of two-level
atoms with lower electronic levelugl and upper elec-
tronic level uel. The single atom Hamiltonian then takes
the form

H =
p 2

2m
+ "v0s + s–, (2)

wherep is the atomic center of mass momentum,m is
the single particle mass,v0 = k0c is the atomic transi-
tion frequency ands6 are the usual pseudospin raising
and lowering operators. The dipole-dipole potentialV
takes the explicit form [17-19]

V =
"G
2

(N–1){y0(k0ur 12u) –
1
2

{1–3(e(r 12) ? (e(d ))2}

3 y2(k0ur 12u)}( s+ # s – + s – # s+) (3)

and the imaginary potentialVc is

Vc = i
"G
2

(N–1){ j 0(k0ur 12u)–
1
2

{1–3(e(r 12)?(e(d ))2}

3 j 2(k0ur 12u)}{ s – # s+ – s+ # s –} . (4)

In this expression,j i , yi are modified spherical Bessel
functions of the first and second kind respectively [20],
N notes the number of atoms in the sample,
G = ud u 2k0

3 / 3" is the spontaneous emission rate andd
the dipole matrix element of the atomic transition. The
relative position of the atoms is denotedr 12 ande(x ) is
a unit vector in the direction of the vectorx . In the
following, we approximate these potentials by a contact
potential of the form

V + Vc =
V0

2k0
3

d (r 12)(s+ # s – + s – # s+)

+
iVc0

2k0
3

d (r 12)(s – # s+ + s+ # s –) , (5)

an approximation adequate for ultra-cold atoms when
the thermal de Broglie wavelength of the atoms is much
larger than an optical wavelength.

3. Coherent Regime

Having established our model, we briefly review mat-
ter waves phase conjugation in the coherent regime. In
this case, the dynamics of the system is described by the
Hartree nonlinear Schro¨dinger equation [4]

i"
f (a)

t
= E d2 ka uH u2lf (2)

+ E d1d2d3ka, 1uV u2, 3lf*(1)f (2)f (3) . (6)

585



Volume 101, Number 4, July–August 1996
Journal of Research of the National Institute of Standards and Technology

Note that in this equation, we have dropped the imagi-
nary potentialVc. While both V and Vc find their
physical origin in spontaneous emission,V conserves the
purity of the state, while in generalVc does not conserve
Tr (r 2) [14]. As such, it should really be considered a
dissipative term, and consistently, be neglected in the
coherent regime.

In complete analogy with conventional nonlinear
optics [21-23] we proceed by introducing slowly vary-
ing forwardF (r , t ) ≡ (Fe(r , t ), Fg(r , t )) and backward
B (r , t ) ≡ (Be(r , t ), Bg(r , t )) propagating components
of the effective single particle wave functionf (r , t )

f (r , t ) = F (r , t )ei(kz–vt) + B (r , t )e–i(kz+vt), (7)

with u=2 F, (r , t )u << k u= F, (r , t )u << k 2uF, (r , t )u and
u=2 B, (r , t )u << k u=B, (r , t )u << k 2uB, (r , t )u, where
, = {e, g} labels the electronic state of the atoms. Here,
we assume that the main direction of propagation of the
atoms is along thez-axis, see Fig. 1. When substituted
into the nonlinear Schro¨dinger equation, Eq. (6) with the
explicit form of the dipole-dipole potentialV, this
decomposition yields a system of four coupled paraxial
wave equations

S 
t

+ 2k


zD Fe = i ='
2 Fe

–iV0(uFg u2Fe + uBg u2Fe + FgBg* Be )

S 
t

+ 2k


zD Be = i ='
2 Be

–iV0(uFg u2Be + uBg u2Be + BgFg* Fe )

S 
t

+ 2k


zD Fg = i ='
2 Fg

–iV0(uFe u2Fg + uBe u2Fg + FeBe* Bg )

S 
t

+ 2k


zD Bg = i ='
2 Bg

–iV0(uFe u2Bg + uBe u2Bg + BeFe* Fg ) , (8)

where we have introduced the dimensionless wave-
number k → k/k0, time t → v rect , wavefunction
f (y, z, t ) → f (y, z, t )/k0 and position r → k0r
variables, as well as a dimensionless potential
V0 → V0/v rec . Equations (8) resemble theusual model
equations for beam propagation in nonlinear optics [21],

except that due to the vectorial character of the slowly
varying amplitudes F (r , t ) and B(r , t ) and the
exchange of excitation involved in the dipole-dipole
interaction, the nonlinear term only couples partial
waves corresponding to different electronic states. As
such, these equations are reminiscent of those involving
polarization coupling in nonlinear optics, although in
the latter case, terms involving self-phase modulation
would also appear. Still, the analogy with nonlinear
optics is sufficient in that we can readily adapt the beam
propagation method common in optics to the problem at
hand.

For numerical purposes, we restrict our attention to
two dimensions and to the portion of the condensate
confined by the planesz = 0 andz = L and assume that
the boundary conditions are provided by the waves
incident on these planes from the outside of that
volume.1 If we assume that the Bose condensate consists
of ground state atoms sufficiently far from the grating,
we have

Fe(y, 0; t ) . ^e0(0, t ) + ^es(0, t )eiky

Fg(y, 0; t ) . ^g0(0, t ) + ^gs(0, t )eiky

Be (y, L ; t ) = 0

Bg (y, L ; t ) = @g0(L , t ) . (9)

Here, we have introduced a spatial Fourier decomposi-
tion of the transverse variation of the amplitudes to
account for diffraction by the grating, which is assumed
to leave the atoms in a superposition of their excited and
ground electronic states. Hencêe0(z, t ), ^g0(z, t ) and
@g0(z, t ) are the amplitudes of the forward and back-
ward propagating pump beams along thez-axis, while
^es(z, t ) and^gs(z, t ) are the amplitudes of the forward
propagating probe waves propagating at a small angle to
the z-axis such thatk << k.

For pump waves strong enough that the undepleted
pump approximation holds, i.e.,̂ ,0(z, t ) . const,
@,0(z, t ) . const, this problem can be solved analyti-
cally [21,22]. It was shown in Ref. [13] that the intrinsic
nonlinearity of the system results in the ground state
probe being associated to an excited state conjugate
wave propagating with transverse wave number –k , and
similarly, the excited probe leads to a ground state
conjugate.

1 The x-dimension is eliminated by expressing the wave function
f, (r , t ) as f (x)f, (y, z, t ) where f (x) is taken to be a solution
of a linear Schro¨dinger equation. As a resultV0 is replaced by
V0 e dx uf (x)u4/k0.
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We performed numerical simulations of the coupled
paraxial wave equations, Eq. (8) for various boundary
conditions involving different fractionsh of excited
atoms in the diffracted wave atz = 0. As a numerical
check, we verified that the atomic flux through thez = 0
andz = L planes is properly conserved. Fig. 2 shows an
example of the build-up of the ground state phase conju-
gate wave of amplitude@g(– k , 0, t ), and the associated
depletion of the pump amplitude@g (0, 0,t ).

The dipole-dipole potentialV responsible for the non-
linearity is switched on at timet = 0 and the atoms are
assumed to be left in their excited state after being
diffracted by the grating. In that case, the conjugate
beam builds up only in the electronic ground state as
expected from the analytical solution in the undepleted
regime [13]. The partial Schro¨dinger waves first
undergo a transient, with discontinuities in their slope
after the beams cross the condensate an integer number
of times.2 The kicks become less and less pronounced as
a new steady state corresponding toV ? 0 is established.

Figure 3 shows how the fraction of excited state atoms
in the reflected beam influences the intensity of the
conjugate beams. As follows both from analytical con-
siderations [13] and from our numerical simulations, no
conjugate beams are produced if the atoms exit the
grating in their ground state. This is simply because in
that case, there is no spontaneous emission, and no
dipole-dipole interaction between the atoms. Note the
asymmetry between the excited and ground state atomic
conjugation, which results from the asymmetry in the

2 This is an artifact of our numerical algorithm, which starts propagat-
ing the states from the two boundaries atz = 0 andz = L after V is
switched on.

pump beams, the condensate being assumed to consist
of ground state atoms. Of course, the results for large
fractions of excited atoms should be regarded with cau-
tion, due to the neglect of the incoherent effects of
spontaneous emission in these results. This is the object
of the next section.

4. Spontaneous Emission
4.1 Master equation approach

In order to account for the effects of spontaneous
emission, the Hartree nonlinear Schro¨dinger equation,
Eq. (6) must be replaced by the nonlinear master
equation, Eq. (1), as already mentioned. In analogy with
the coherent case, we now expand the effective single
particle density matrix elementr,, ' (r , r' , t ) as

r,, ' (r , r' , t ) = r,, '
f f (r , r' , t )eik(z–z') + r,, '

bb (r , r' , t )e–ik(z–z')

+ r,, '
fb (r , r' , t )eik(z+z') + r,, '

bf (r , r' , t )e–ik(z+z') . (10)

This decomposition yields 16 coupled paraxial-like
partial differential equations of the spatial variables
(y, z), (y', z') and t . Their explicit form is given in
Appendix A. These equations, being first-order inz and
z', require boundary conditions on the four sides of the
squarez, z' e [0, L ]. However, the boundary conditions
Eq. (9) on the wave functions in the coherent case yield
boundary conditions for the density matrix at the cor-
ners of this square only. The additional boundary equa-
tions required for the sides of the square can be derived
from the Hartree nonlinear Schro¨dinger equation with
the complex potentialV + Vc , as shown in Appendix A.

Fig. 3. Strength of the conjugate beamsu@e (–k , 0, t )u2 — dashed
line, andu@g (–k , 0, t )u2 — solid line, in steady state, as a function of
the fractionh of excited atoms in the reflected beam.k = k0, k = 10k0,
L = 40/k0, V0 = 0.4vrec, Vc0 = 0 andG = 0.

Fig. 2. Time-dependence of the backward propagating atomic
beamsu@g(– k , 0, t )u2 — dashed line, andu@g(0, 0,t )u2 — solid line,
for k = k0, k = 10k0, L = 40/k0, V0 = 0.4v rec, Vc0 = 0, G = 0,
^e0 = 0.5, ^es= 0.5, ^g0 = 0, ^gs = 0 and@g0 = 0.7.
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We have numerically solved the Hartree-Fock nonlin-
ear master equation in two dimensions for various spon-
taneous decay rates and fractionsh of excited atoms at
the exit of the beam splitter. As we are interested in
particular transverse directions of the wave propagation
we introduce a spatial Fourier transform of the atomic
density operator in the transverse dimension

oL ,, '
ab (ky, z; k'y, z', t ) =

Edky dk'y r
,, '
ab (y, z; y', z', t )eiky y eik'y y', (11)

where a and b stand for the forward and backward
propagating wave.3

Figure 4 shows the probabilitiesoL gg
bb (–k , 0; –k , 0, t )

and oL gg
bb (0, 0; 0, 0,t ) as a function of time, for the case

where the atoms exit the diffraction grating in their
excited state. As such, it is the same as Fig. 2, except that
now the spontaneous emission rate has been set equal to
G = 0.5 and the imaginary potential isVc = 0.1, in recoil
units. Clearly, the amount of phase conjugation is sub-
stantially reduced as compared to the coherent situation.
This is further illustrated in Fig. 5, which shows the
steady state phase conjugate probability as a function of
the spontaneous decay rate.

Already for a decay rate equal to the recoil frequency,
phase conjugation has all but disappeared.4

4 The parameters of our simulations were largely dictated by com-
puter limitations. It is expected that phase conjugation will survive
larger spontaneous emission rates if larger dipole-dipole potentials and
longer propagation distances are considered.
3 As it should be, our numerical results agree with the coherent ones
for G = Vc = 0.

4.2 Hartree Monte Carlo Simulations

The numerical solution of the nonlinear master equa-
tion leads to substantial computer memory require-
ments. In a recent paper [24], we have proposed an
alternative approach to its brute force solution, based on
the average over ‘‘quantum trajectories’’ resulting from
the solution of a Hartree nonlinear Schro¨dinger equa-
tion, interrupted by quantum jumps. The validity of this
approach, which is inspired by the now well-established
Monte Carlo wave functions technique [25-27], can
however only be proven provided that the Hartree ap-
proximation is exact, which holds strictly only for con-
densates. In addition, the two-body contribution to dis-
sipation must be of the form of a complex potential,
which is the case in the present situation. A direct com-
parison of the Hartree Monte Carlo and master equation
results should therefore give us not only an indicator of
the practical validity of the former method, but also a
sense of how spontaneous emission destroys the conden-
sate.

In order to implement this approach, we generalize
the Hartree nonlinear Schro¨dinger equation, Eq. (6) to
include the imaginary potentialVc, so that it becomes

i"
 f (a)

 t
= Ed2 k a uH u2l f (2)

+Ed1d2d3ka, 1uV + Vc u2, 3l f*(1) f (2) f (3) .

(12)

Expressing furthermore thelinear Liouvillian L nc in
Eq. (1) as the Lindblad form

Fig. 5. Influence of G on the strength of the conjugate beam
oL gg

bb(–k , 0; –k , 0; t ) in steady statek = k0, k = 10k0, L = 40/k0,
V0 = 0.2vrec, Vc0 = 0. 1vrec, kspont= k0, ^e0 = 0.5, ^es= 0.5, ^g0 = 0,
^gs = 0 and^g0 = 0.7.

Fig. 4. Master equation simulations in the incoherent regime. Time-
dependence of the backward propagating atomic beams
oL gg

bb(0, 0; 0, 0,t ) — solid line, oL gg
bb (–k , 0; –k , 0; t )—dashed line, for

k = k0, k = 10k0, L = 40/k0, V0 = 0.2v rec, Vc0 = 0.1v rec, G = 0.5v rec,
kspont= k0, ^e0 = 0.5, ^es= 0.5, ^g0 = 0, ^gs = 0 and^g0=0.7.
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L nc r (t ) = –
1
2 O

m
SCm

† Cm r (t ) + r (t ) Cm
† CmD

+ O
m

Cm r (t ) Cm
† (13)

where theCm’s are system operators appearing in its
coupling to the continuum of electro-magnetic field
modes, the Hartree Monte Carlo algorithm proceeds as
follows [24]. We first formally reexpress the nonlinear
Schrödinger equation, Eq. (12) as

i" uf (t )l = Hnl [ uf (t )l] uf (t )l . (14)

where the nonlinear ‘‘Hamiltonian’’ Hnl [ uf (t )l]
is a functional of the effective single-particle state
vector uf (t )l, see Eq. (12). We then decompose the
Liouvillian L nc into a contributionHd added toHnl to
yield the effective nonhermitian ‘‘Hamiltonian’’

Heff [ uf l] ≡ Hnl [ uf l] + Hd

= Hnl [ uf l] –
i"
2 O

m

Cm
† Cm (15)

and a linear ‘‘fill-up term,’’ see Eq. (13). As in the
usual case,Heff is responsible for the Schro¨dinger-like
evolution of the system, while the ‘‘fill-up term’’ causes
randomly distributed quantum jumps.

The probabilitydp for one of these jumps to occur is
given for the small time intervaldt by5

dp =
i dt

"

k f (t )uHd – Hd
†uf (t )l

kf (t )uf (t )l

= dt

kf (t )uO
m

Cm
† Cm uf (t )l

kf (t )uf (t )l
≡ O

m

dpm . (16)

A jump is said to occur if a quasi-random numbere,
uniformly distributed between 0 and 1, is less thandp.
The post-jump wave function is chosen amongst the
various possible final statesCm uf (t )l according to the
probability lawdpm /dp, with

uf (t + dt )l = Cm uf (t )l/(dpm /dt )1/2 . (17)

5 Note that we keep track of the norm of the state vector explicitly,
since only a partial volume of the system is considered explicitly, and
thus the flux, rather than the norm, is conserved in our numerical
solution.

In case no jump occurs, the state vector evolves under
the influence of the nonlinear and nonhermitian effec-
tive HamiltonianHeff, so that

uf (1) (t + dt )l . uf (t )l –
iH eff [ uf (t )l] uf (t )l

"
dt

(18)

and the new wave function is

uf (t + dt )l = uf (1) (t + dt )l/Ï1–dp . (19)

We performed Monte Carlo simulations within the
slowly varying envelope approximation introduced in
Sec. 2 and for the same beam configuration as in the
preceeding example (see Appendix B). As pointed out in
Ref. [24], the accuracy of the Monte Carlo simulations
as compared to the Hartree-Fockmaster equation
description is expected to depend on the amount of
dissipation in the problem. Figure 6 shows the relative
difference between the two methods as a function of the
spontaneous emission rateG . These results confirm that
the Hartree Monte Carlo simulations work surprisingly
well, although the discrepancy between the two
methods increases withG , as expected.

We attribute this surprisingly good agreement to the
fact that the type of dissipation that we are considering
here is however quite special, in that the only effect of
the nonlinear LiouvillianL nl is in the form of an imagi-
nary two-body potentialVc. It corresponds to a modifi-
cation of the spontaneous decay rate resulting from the
interference of the spontaneous emission probability

Fig. 6. Comparison of the Monte Carlo and master equation simula-
tions. Influence ofG on D , the standard deviation between the steady
state results of the Monte Carlo and master equation predictions,
normalized by the Master equation result.

589



Volume 101, Number 4, July–August 1996
Journal of Research of the National Institute of Standards and Technology

amplitudes due to the undistinguishability of the two
particles. In other words, it describes acollectivedecay
mechanism (albeit as a result of the Born-Markov
approximation, only two-atom effects are retained). Due
to this collective nature, it is reasonable to expect that
this imaginary potential might not do too much violence
to the Hartree ansatz.

The only other incoherent contribution to the nonlin-
ear master equationis asingle-particleLiouvillian L r .
But due to the indistinguishability of the particles in the
sample, it describes a decay mechanism that occurs for
all N atoms simultaneously. As a result, it leaves all
atoms in the same state, albeit now described by a
product ofN identical single-particle density operators.
It appears then that for the very specific form of decay
we are considering, the Hartree ansatz might not be as
bad as otherwise expected, a conjecture largely con-
firmed by the result of Fig. 6.

5. Summary and Conclusions

In this paper we have discussed the possibility of
observing atomic phase conjugation off Bose conden-
sates, and to use it as a diagnostic tool to determine the
spatial coherence properties and lifetime of that conden-
sate. Since phase conjugation results from the scattering
of a partial matter wave off the spatial grating produced
by two other waves, it offers a very natural way to
directly measure these coherence properties, and as
such provides an attractive alternative to the optical
methods proposed in the past.

As expected, incoherent mechanisms such as sponta-
neous emission rapidly destroy phase conjugation,
thereby demonstrating that the proposed technique
should easily distinguish a condensate from an incoher-
ent sample of the same density. We have also compared
Hartree-Fock master equation results to those based on
Hartree Monte Carlo wave function simulations, thereby
obtaining a measure of the destruction of the condensate
as a function of the rate of spontaneous emission.

We conclude by noting that in replacing the nonlocal
dipole-dipole potential by a local interaction, the grat-
ings established in the condensate are probed only
locally. It will be interesting to investigate if more infor-
mation can be gained by treatingV as a nonlocal poten-
tial. In particular, one can expect that effects such as
spatial diffusion in the sample should be accessible by
such nonlocal sampling.

6. Appendix A. Master Equation
in the Slowly Varying Envelope
Approximation

In analogy to the wave function description in terms
of forward and backward propagating beams each of the
four density matrix elementsree, rgg , reg, rge can be
decomposed into four parts

r,, ' (r , r' , t ) = r,, '
f f (r , r' , t )eik(z–z') + r,, '

bb (r , r' , t )e–ik(z–z')

+ r,, '
fb (r , r' , t )eik(z+z') + r,, '

bf (r , r' , t )e–ik(z+z') , (20)

where

r,, '
fb = F, (r , t ) B*

, ' (r' , t ) . (21)

The 16 coupled paraxial-like partial differential equa-
tions obtained from the nonlinear master equation,
Eq. (1) in the slowly varying envelope approximation are
of the form

S 
t

+ 2k S 
z

+


z'DD ree
f f (r , r' ; t ) =

i (='
2 –=' '

2 ) ree
f f (r , r' ; t )

– iV *t0 [(reg
f f (r , r ; t ) + reg

bb (r , r ; t )) reg
f f (r , r' ; t ) +

reg
fb (r , r ; t ) rge

bf (r , r' ; t )]

– iV *t0 [(rgg
f f (r , r ; t ) + rgg

bb (r , r ; t )) ree
f f (r , r' ; t ) +

rgg
fb (r , r ; t ) ree

bf (r , r' ; t )]

+ iVt0[(rge
f f (r' , r' ; t ) + rge

bb (r' , r't )) reg
f f (r , r' ; t ) +

rge
bf (r' , r' ; t ) reg

fb (r , r' ; t )]

+ iVt0[(rgg
f f (r' , r' ; t ) + rgg

bb (r' , r' ; t )) ree
f f (r , r' ; t ) +

rgg
bf (r' , r' ; t ) ree

fb (r , r' ; t )]

+ ker' uL nc ree
f f (t )uer l, (22)

whereVt0 = V0 + Vc0. Similar equations can be obtained
for all other components.

These first-order differential equations inz and z'
require boundary conditions on the four sides of the
squarez, z' = [0, L ]. However, the boundary conditions
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for the wave functions in the coherent case Eq. (9) yield
boundary conditions for the density matrix only at the
corners of the square. Ignoring spontaneous emission at
the boundaries, we can express the density matrix
elements asree

ff (y, z, y', 0, t ) = Fe (y, z, t )F*(y', 0, t ),
etc. In this expression,Fe (y, z, t ) undergoes a
Schrödinger evolution, whileF*(y', 0, t ) is a boundary
value. Thus, the dynamics of the system on the sides
of the square is obtained by considering aboundary
equationfor the master equation, which involves only
the evolution corresponding to the change of ‘‘half’’ of
the density matrix element.

This boundary equation can be derived from the
Hartree nonlinear Schro¨dinger equation with the poten-
tial V + Vc . In particular, we find forree

f f (r , r'bound; t )

S 
t

+ 2k


zD ree
f f (r , r'bound; t ) =

i ='
2 ree

f f (r , r'bound; t )

– iV *t0 [(reg
f f (r , r ; t ) + reg

bb (r , r ; t )) rge
f f (r , r'bound; t ) +

reg
fb (r , r ; t ) rge

bf (r , r'bound; t )]

– iV *t0 [(rgg
f f (r , r ; t ) + rgg

bb (r , r ; t )) ree
f f (r , r'bound; t ) +

rgg
fb (r , r ; t ) ree

bf (r , r'bound; t )] (23)

Here r'bound is the position coordinate on the boundary,
r'bound = (x', y', 0) for the forward propagating compo-
nent and r'bound = (x', y', L ) for the backward
propagating component. Note that this situation is
different from the case of confined systems, where
r,, ' (y, z; y', z'bound, t ) = 0 on the boundary.

7. Appendix B. Explicit Expressions
for the Hartree Monte Carlo
Simulations

The explicit form of the incoherent LiouvillianL nc in
Eq. (1) leads to the system operators

Cx
6 = ! 3G

4
(1 – x 2)s6e6i

v0
c

e(k)r

, (24)

where 3 (1 –x 2)/4 is the dipole radiation pattern for the
two-level atoms andx = cosu , u being the angle be-
tween the quantization axis and the direction in which the

spontaneous photon is emitted and expS6 i
v0

c
e(k )rD

resemblesatomic recoil due to the spontaneous emission
event [26]. The effective HamiltonianHeff [ uf l] is then

Heff [ uf l] = Hnl [ uf l] –
i"G

2
s+s– (25)

and yields the quantum jump probability

dp =
3G
4

dt
ufe(t )u2

uf (t )u2 E1

–1

dx (1 – x 2)

≡ O
x

dpx . (26)

Finally, the post-jump wave function turns out to be

uf (t + dt )l =
e–i

v0
c

e(k)rs–uf (t )l

Î ufe(t )u2

uf (t )u2

(27)

i.e., fe (t + dt ) = 0 and

fg (t + dt ) = e–i
v0
c

e(k)rs–ufe(t )l/Ïufe(t )u2/ uf (t )u2 .

In case of decay the wave functions are given by
Eq. (19).

These simulations are carried out within the slowly
varying envelope approximation introduced in Sec. 2.
The expressions for the slowly varying amplitudes
Be(r ,t+dt ),Bg (r ,t+dt ),Fe (r ,t+dt ) andFg (r ,t+dt ) can
be found easily from the Eqs. (17) and (19).
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