THE PRESSURE OF SATURATED WATER VAPOR IN THE RANGE 100° TO $374^{\circ} \mathrm{C}$.

By N. S. Osborne, H. F. Stimson, E. F. Fiock, and D. C. Ginnings

Abstract

The method and apparatus employed, and the measurements made in this determination of the vapor pressure of water are described, and the results obtained are given and formulated.

The method used was the "static method" in which the pressure is determined at the stationary boundary between the liquid and the vapor in equilibrium at a contant temperature in a closed container.

The container for the water sample was a calorimeter specially built for high pressure work. Pressures were measured by a precision piston gauge which balances the pressure by the gravitational force on a piston loaded with weights. Temperatures were measured by platinum resistance thermometers supplemented by thermoelements.

A total of 394 measurements were made at 38 temperatures so distributed as to facilitate formulation of the pressure-temperature relation.

The formulation was made by using an empirical equation which was fitted to the results in two temperature ranges. Values of pressure and its derivative with respect to temperature are tabulated from this formulation in stand ard atmospheres, centibars, and $\mathrm{kg} / \mathrm{cm}^{2}$ at each degree centigrade, and in pounds per square inch at each degree Fahrenheit. This provides a mutually consistent group of vapor pressure tables in convenient form for practical working tables of fundamental steam data.

It is estimated that the results are reliable to 3 parts in 10,000 .
CONTENTS
I. Introduction
Page 155
II. Method and apparatus 156

1. General description 156
2. Calorimeter shell 158
3. Calorimeter heater 158
4. Heater diffuser 159
5. Envelope 159
6. Connections to the calorimeter shel 160
7. Pressure connections and auxiliary indicators 160
8. Pressure gauge 162
9. Thermometric installation 163
(a) Reference block 163
(b) Thermoelements 163
(c) Resistance thermometers 165
III. Experimental procedure 166
IV. Results of measurements 168
V. Formulation of results 176
VI. Estimation of accuracy 188
VII. Acknowledgment 188

I. INTRODUCTION

The relation between the temperature and the pressure of saturated water vapor is of prime importance in establishing the thermodynamic behavior of steam. This relation, commonly called the vapor pressure relation, is a characteristic property which can be observed
directly. Moreover, its derivative is an essential factor in correlating other important thermodynamic properties. It is evident that adequate knowledge of this property is indispensable to the success of any systematic effort to determine and formulate the thermal properties of steam.

The vapor pressure measurements to be described here were made as a coordinate part of the larger and more formidable project of calorimetric measurement of the enthalpy (heat content) of saturated water and steam. Since pressure and temperature of saturated vapor are definitely related, measurements of other thermal properties may be referred to either temperature or pressure as an independent variable, depending on which is the more expedient. This characteristic was utilized in planning a new high pressure calorimetric ${ }^{1}$ apparatus for surveying the bahavior of saturated steam. As a refinement in technique, provision was made for observing both the temperature and the pressure of a water sample in the calorimeter. The arrangements for control and measurement of temperature, and for transmission of pressure to the measuring gage, were perfected to a degree which permits the rapid and reliable measurement of saturation pressure in the range 100° to $374^{\circ} \mathrm{C}$.

Measurements within this range have already been made in several laboratories in accordance with definitely specified, recognized standards, permitting reduction of the results to a common basis. The results of these independent determinations, differing considerably in method and technique, have been regarded as in virtual agreement for technical purposes. Nevertheless, close scrutiny disclosed discrepancies which seemed unnecessarily large, particularly in the derivative on which reliance must be placed for making thermodynamic correlations of other experimental data.

The equipment available in this laboratory provided a favorable opportunity for making vapor pressure measurements. These were undertaken prior to the calorimetric measurements with the object of further verifying the numerical values of this property.

To provide for trustworthy correlation of thermodynamic properties, it is necessary not only that the observations of the corresponding pressures and temperatures be adequate in number, distribution, and precision, but also that a formulation be used which yields reliable values of the derivative. This latter requirement has been met by the successful application of a type of empirical equation which conforms with remarkable fidelity to the observed behavior of saturated steam.

II. METHOD AND APPARATUS

1. GENERAL DESCRIPTION

In the calorimetric equipment used in making the vapor pressure measurements, provision is made for observing temperature, pressure, mass of water sample, and the energy added. The arrangements provided for controlling the state of the fluid in the calorimetric experiments are also especially appropriate for the determination of vapor pressure. In this report, which concerns only the latter, the

[^0]description is intended to record those features which are essential to the vapor pressure measurements.

A schematic diagram of the vapor pressure measuring equipment is shown in Figure 1. The metal calorimeter shell contains, besides the water sample, an electric heater and a system of radial silver plates for diffusing heat. This shell is suspended within a thermally controlled inclosure or envelope which shields it against heat exchange with the surroundings.

Figure 1.-Schematic diagram of the vapor pressure measuring equipment

A, high pressure air.
C, calorimeter shell (special steel).
D, heat diffusing system (silver).
E, envelope (silver).
F, water container (silver).
H, electric heater.
I, water indicator (glass capillary).
\vec{J}, oil indicator (glass capillary).
O, air vent.
P, piston.
R, reference block (silver).
U, union.
V, valves.
W, weights.
Y, vacuum connection.
Z, pressure transmission cell.

The pressure in the calorimeter is transmitted directly through a tube from the bottom of the calorimeter shell to a cell with a thin elastic metal diaphragm which readily transmits pressure, yet prevents escape of the water sample. The pressure in the calorimeter is thus transmitted through this sensitive diaphragm to a column of water, and through this column to a balancing artificial atmosphere of air. The meniscus between the water and air is visible in a glass capillary, and serves to indicate balance between the air pressure and the pressure in the calorimeter. The pressure of the artificial atmosphere which is subject to very delicate manual control, is transmitted to the measuring piston gage through an oil column The air-oil meniscus is visible in another glass capillary and is used as an indicator to show when the piston is properly loaded.

The temperature of the water sample, which is observed after the load on the piston has been properly adjusted, is obtained by the combined use of platinum resistance thermometers and thermoelements. Resistance thermometers located in a reference block of thick silver, yield the temperature of the block according to the international temperature scale. The thermoelements, with principal junctions distributed on the shell and reference junctions located on the reference block, indicate the small differences which exist between the calorimeter and the reference temperature. The thermoelements can be used in series to indicate average temperatures, or individually to indicate local temperatures. A diagrammatic scale drawing of the assembled apparatus is shown in Figure 2. The principal parts will be described in detail forthwith.

2. CALORIMETER SHELL

The calorimeter shell shown at C in Figure 2 provides a receptacle for the sample of water so that its thermal behavior may be observed. It has the shape of a cylinder with hemispherical ends and, as assembled with the various accessory parts in place, will hold approximately $320 \mathrm{~cm}^{3}$. The material is a special alloy steel containing about 19 per cent chromium, 7.5 per cent nickel, 4.5 per cent tungsten, 1.3 per cent silicon, 0.5 per cent manganese, and 0.46 per cent carbon. This material was chosen because of its resistance to creep and to attack by water at temperatures up to $400^{\circ} \mathrm{C}$. The shell was machined from a solid bar and was made in two similar parts held together on a thin silver gasket by the tension developed in the right and left threaded band which is screwed on with powerful wrenches engaging machined lugs. This annular joint was formed by machining one member to a plane surface and the other to a blunt angled edge, giving a contact with the silver gasket of about a half millimeter width. All parts were accurately machined and the surfaces well polished.

The shell, having a thickness of 0.125 inch (3.2 mm), was designed to stand steam pressures up to the critical without permanent deformation. Actually in hydraulic proof tests, it showed no permanent stretch for an internal pressure of $4,500 \mathrm{lbs}$. inch 2. After carrying a charge of water at $350^{\circ} \mathrm{C}$., the inner surface showed on examination no sign of attack by the water other than the formation of a very thin film of light-straw color similar to that formed on the outside where in contact with air.

3. CALORIMETER HEATER

The electric heater in the calorimeter shell, shown at $H 1$ (fig. 2) is an insulated resistor encased in a metal tubular coil sealed hermetically to the shell. It consists of about 10 ohms of calido wire, 0.2 mm in diameter, with gold leads. This resistor was wound in helical form, 0.6 mm outside diameter, and embedded in magnesia for insulation. It was sheathed in a platinum tube drawn down tightly on the magnesia to an outside diameter of about 2 mm . This sheathed resistor was then bent into the form of a helical coil 12 mm outside diameter, the resistor occupying about two turns. Each projecting end of this heater was put through a threaded plug of silver-palladium alloy and sealed by soldering with gold. To

(Note.-This is not a true section but shows sections of important parts projected on a plane.)
G, guard (silver)
H_{1}, H_{2}, etc., electric heaters.
I water indicator (glass capillary).
I, water indicator (glass capilary)
K, casing (brass).
M , gear drive.
N, rotating arus.
O, air vent.
P, piston.
Q. oil pump.
$\xrightarrow[S]{R}$, relerence (aluminum).

T, platinum resistance thermometers
V, valves.
Y, vaculum connection
Y, pressure transmission cell. 152894-33. (Face p. 158.)
complete the seal, the shoulders of these plugs were drawn tightly on thin silver gaskets by threaded nuts outside the shell.

The design of this heater was chosen with regard to influence on the calorimetric performance of the instrument. The heater surface has been made small with three objects in view, namely, to avoid unnecessary heat capacity, to permit operation with small amounts of liquid, and to avoid excessive accumulation of energy as superheat in the liquid. The characteristics of the heater have relatively little to do with the technique of pressure measurements since it is used only for bringing the water sample to a desired temperature.

4. HEAT DIFFUSER

For promoting temperature equalization in the calorimeter shell, a system of heat-conducting plates is provided. This heat-diffusing system consists of 30 flat plates of silver 0.5 mm thick, shaped to conform to the vertical profile of the shell and held radially in two slotted hubs so as to penetrate and interconnect the space within the shell with a good heat conductor. The chief function of this arrangement is to hasten the equalization of temperature after a period of change. This feature is important in both the calorimetric and the pressure measurements, and to some extent compensates for the lack of positive circulation by mechanical means.

5. ENVELOPE

The principal purpose of the envelope which surrounds the calorimeter shell is to provide protection from fortuitous exchanges of heat. This feature, which is vital to the energy accounting in calorimetry, contributes to the suitability of the instrument for pressure measurements by favoring the attainment of thermal equilibrium of the water sample and its container.
This protecting envelope is a double-walled inclosure formed of two coaxial cylindrical silver shells with flat ends, the inner one 6.3 mm thick and the outer one 3.2 mm thick, which will be designated as "envelope" and "guard" respectively. Electric heating elements are distributed over the outer surfaces of these shells. Subdivision of these heaters provides for meeting various local thermal requirements. The heater on the envelope is used only when its temperature is being raised. The guard may also be heated at a controlled rate, or its temperature may be maintained automatically at any desired value by a sensitive thermoregulator using a platinum resistance thermometer.
At a steady temperature the guard heater supplies the heat loss to the outside while the envelope temperature remains fixed. Such conditions are favorable for the establishment and maintenance of temperature equality of the calorimeter and its contents.

In the space outside the guard two thin aluminum shields are placed to impede the loss of heat by radiation and convection. These light shields, 0.05 mm thick, furnish effective thermal insulation and prevent excessive heat loss without introducing any considerable thermal lag. The whole is inclosed in a heavy brass casing which serves not only as a cover but also as protection in case of an explosive failure.

6. CONNECTIONS TO THE CALORIMETER SHELL

The calorimeter shell is held in place by two tubes of silverpalladium alloy. The one at the top bears the weight of the shell and the one at the bottom centers it. Besides furnishing firm, thermally resistant support for the shell, these tubes serve also for the transfer of fluid to or from the calorimeter. The upper tube is intended for a vapor outlet to be used in calorimetric measurements of heat of vaporization and was temporarily closed during the pressure measurements by a disk in the union at the top of the shell. This suspension tube reaches from the body of the vapor valve which is carried on a light but firm support from the guard shell.

The lower tube is used as a connection to transfer liquid to or from the calorimeter, and also to transmit pressure from within to the auxiliary measuring equipment outside. A cylindrical brass cell for cooling water surrounds this tube where it passes through the outer brass casing. Where the tube passes through the outer silver guard shell it bears an electric heater mounted on a silver support attached to the tube. There is a free length of about 2.6 cm between this heater and the union at the shell. The purpose of the heater is to control the thermal gradient in this section of the tube as indicated by thermoelements installed for that purpose. Similarly, the gradients on the upper tube are controlled by a heater on the vapor valve body.

The lower tube is always filled with liquid while observing saturation behavior in the calorimeter. From a union just below the cooling cell at the bottom, connection is made through a copper-nickel tube to the liquid valve and the pressure transmission cell. Beyond the liquid valve the line extends to a union by which the water receiver with its valve is connected. A side connection leads through a valve to a vacuum pump to permit evacuation of the calorimeter and its connecting lines.

7. PRESSURE CONNECTIONS AND AUXILIARY INDICATORS

Pressure is transmitted from the free surface of the liquid in the calorimeter through a continuous column of liquid water to the elastic diaphragm of the pressure transmission cell to be described forthwith. The purpose of this cell is to allow the pressure in the calorimeter system to be communicated to the pressure measuring gage, while at the same time interposing a barrier to the escape of water from the system through the gage line. A limited amount of inward and outward movement is allowed the water column by the necessary flexibility of the transmitting device, but this movement is restricted to the small volume displacement of $0.04 \mathrm{~cm}^{3}$ required for observation. In this transmitting cell, a circular diaphragm of thin silver about 3 cm in diameter is held under slight tension between the two parts of the cell which clamp the diaphragm tightly near the edge. Small pressure changes suffice to move the diaphragm back and forth across the space between the two parts. The inner cell walls are shaped to conform approximately to the figure of the distended diaphragm. The delicate diaphragm must encounter support from the cell walls to avoid deformation beyond its olastic limit when the pressures are far out of balance.

The cell is made of two disks of stainless steel, each about 5 cm in diameter and about 1.4 cm thick, provided with 12 screws to draw them tightly together on the silver diaphragm. The two parts have nipples with unions for making connections with the lines as shown. The apertures to the inner cell are made only 0.035 cm in diameter to avoid too large an unsupported area of the thin silver diaphragm. This diaphragm is a vital part of the device, and its characteristics determine the limit of sensitivity of the transmitting cell. It is of rolled sheet silver about 0.06 mm thick. The diaphragm and cell were put together at a temperature of about $150^{\circ} \mathrm{C}$. in order to produce sufficient tension, when cooled, to flatten out the slight unevenness of the sheet which otherwise would interfere with the freedom of motion between the cell walls. This procedure left enough flexibility to give a satisfactory sensitivity to pressure change.

On the measuring or gage side of the diaphragm a continuous column of liquid water extends and transmits pressure to air at the meniscus boundary in a glass capillary indicator. The volume of this water column is small. The meniscus is a reliable indicator of the position of the diaphragm and is used as a null device to tell when the pressures on the two sides are balanced to bring the diaphragm to a chosen zero position near the neutral. The air column extends to the end of an oil column in a second glass capillary indicator, whence the pressure is transmitted through the oil directly to the piston of the measuring gage. Sensitive needle valves permit fine adjustment of the pressure in the air line to balance the pressure in the calorimeter. When these pressures are balanced and the piston gage is also balanced by weights, the vapor pressure in the calorimeter may be found from the pressure measured at the piston by taking into account the fluid columns between the piston and the free surface in the calorimeter and whatever pressure difference the diaphragm may support.
The fluid columns to be accounted for are the oil, air, and water columns. The oil-column correction is constant and is easily measured. The air-column correction depends on the pressure and is almost negligible. The correction for the water column is somewhat more complicated due to the variation of the position of each end. The position of the meniscus in the glass capillary is directly observed and easily corrected for in each measurement. From a reference point on this capillary to a point near the calorimeter there is a constant pressure correction which is computed from the difference in height. From this latter point to the free surface the pressure correction varies both with the filling in the calorimeter and with its temperature, and was computed for the conditions of each measurement.
The correction for pressure difference supported by the diaphragm is small, but arises because the chosen zero position is not necessarily the neutral or unstrained position. It was determined by making a vapor pressure measurement near $100^{\circ} \mathrm{C}$. with the air column open to the atmosphere instead of being connected to the piston gage. Since the vapor pressure of water is one standard atmosphere at $100^{\circ} \mathrm{C}$. by definition of the international temperature scale, and its temperature variation there is well known, the difference between the computed pressure at the open end and the observed barometric pressure gives the desired diaphragm zero correction. This correction was determined occasionally during the progress of measurement.

This method of calibration connects the scale of pressure with the standard unit at the one atmosphere fixed point and in effect includes that point in the range of the observations.

A preliminary calibration of the assembled diaphragm with its capillary indicator was made at atmospheric pressure to determine its sensitivity to pressure differences. This showed the diaphragm displacement to be nearly proportional to the pressure difference over a considerable portion of the middle range. Within this linear range a pressure difference of 0.001 atmosphere was found to correspond to about 0.6 mm on the capillary indicator. This sensitivity calibration is merely an index of the limit of precision to be expected when the diaphragm is set to a chosen zero position and does not enter into the reduction of the observations.

8. PRESSURE GAGE

The pressure-measuring gage used in these determinations was one of a group of piston gages whose construction and calibration have been described previously. ${ }^{2}$ These gages were designed and built at this bureau to meet a need for precision pressure-measuring instruments in determining thermodynamic properties of fluids. They have been studied with great care to determine their reliability as standard instruments.

This type of gage employs a loaded rotating piston which is supported in a vertically mounted, closely fitting cylinder by oil under the pressure to be measured. A balancing load of weights on the piston is borne axially above it on a carrier which engages the piston. A horizontal couple applied to the carrier by motor-driven arms produces a slow continuous rotation which is transmitted through it to the piston. Thus the entire load consisting of piston, carrier, and weights is rotated without introducing any appreciable vertical component of driving force. The rotation of the piston maintains a lubricating film of oil between it and the closely fitting cylinder. This provides greater freedom for vertical motion of the loaded piston in case of unbalance, by preventing direct contact between the piston and cylinder.

The gage chosen for the present work and shown in Figure 2 has a piston area of about $1 \mathrm{~cm}^{2}$. It was designed for the range from about 3 to 100 atmospheres pressure. As it was desired to cover the range of steam pressures from 1 atmosphere to 218 atmospheres, it was necessary to make some modification to provide for this extension of the range. This was done by substituting for the original weight carrier two special ones, the first very light to permit a small load on the piston, and the second a larger carrier to accommodate the extra weights for the high pressures. This gage is provided with a set of weights in units ranging from 20 to 0.1 kg , specially built to stack on the carrier with proper stability. Standard laboratory weights were used for the range 100 to 1 g . The weights were calibrated at the time of their use in these measurements, and corrections were applied where significant.

The effective piston area had been determined in 1928 by a series of calibrations using a multiple-column mercury manometer as the fundamental standard. Direct comparisons with this standard

[^1]manometer were made at a pressure of 15 atmospheres. In addition to these, comparisons were made at pressures up to 75 atmospheres, using another gage to step up from the 15 -atmosphere limit of the manometer to the higher pressures. These calibrations all gave a value of $0.9961 \mathrm{~cm}^{2}$ at $20^{\circ} \mathrm{C}$. for the effective piston area at that time.

During the course of the present pressure measurements a comparison was made with two other similar standard piston gages, and with the vapor pressure of a standard sample of carbon dioxide as a precaution against any significant change in the effective piston area which might have occurred since its 1928 calibration. The results of these comparisons gave the same value of $0.9961 \mathrm{~cm}^{2}$.

9. THERMOMETRIC INSTALLATION

The thermometric installation used in the control and measurement of the temperature of the water sample includes platinum resistance thermometers and thermoelements. Thermoelements alone suffice for the survey of temperature distribution. For determining the actual temperature of the water sample, certain of the thermoelements are used to supplement the indications of platinum resistance thermometers.
(a) REFERENCE BLOCK

A silver reference block located in the space above the calorimeter shell serves as an isothermal union between the resistance thermometers and the reference junctions of the thermoelements. Thus the thermometers measure the temperature of the reference junctions, while the thermoelements indicate the small additional differences between this reference temperature and those of chosen points where the principal junctions are located.

The reference block is made of two similar rectangular pieces of pure silver, each 5.6 by 3.8 by 0.63 cm , held together flatwise by screws. It is suspended horizontally from the top of the envelope by four slender straps of stainless steel. A pair of electric heaters and two resistance thermometers fit in receptacles machined across the horizontal midsection. A hole 12.7 mm in diameter in the vertical axis accommodates the small tube which suspends the calorimeter shell. This well-conducting block of silver is designed to keep the reference junctions at the same temperature as the resistance thermometers.

(b) THERMOELEMENTS

The temperature-measuring system includes thermoclements with 38 principal junctions. These thermoelements are connected in groups to economize leads and to permit combinations for surveying temperature distribution, for indicating average temperature differences of surfaces, and for determining the temperature of the water sample. These combinations are completed at the option of the observer by the use of specially built distributing switches with allcopper circuits.

The thermoelements which are used to indicate the temperature of the water are a group of five with principal junctions located on the calorimeter shell at points selected as representative. These chosen points lie in one vertical element of the shell. The five junctions, designated as $1,2,3,4$, and 5 , are spaced as shown in Figure 2. The indications of these five junctions may be observed individually, giving the temperature difference between any zone and the reference
block, or all five may be observed in series to give a composite of the temperatures of the five zones. The single junctions may also be observed differentially against junction No. 5 at the top of the calorimeter to show directly the vertical distribution of temperature on the shell. The ability to make such a temperature survey enables the observer to follow the approach to equilibrium and make due allowance of time to assure a reliable temperature determination.

Each thermoelement is made of one wire of "chromel P," 0.127 mm in diameter, and two wires of "copel," 0.10 mm in diameter, the latter twisted together. For insulation and support, these wires are threaded through thin strips of mica which are assembled with mica separators and covers into sturdy but light and flexible bundles carrying groups of thermoelements.

Each principal junction of chromel to copel is made by silver soldering the wires to a tiny gold terminal which is used to attach the

Figure 3.-Details of thermojunction attachment

$$
\begin{aligned}
& a, \text { gold wire. } \\
& N, \text { mica insulation. } \\
& N, \text { nnt. }
\end{aligned}
$$

S, stud.
${ }_{T}^{T}$, gold terminal.
W, thermoelement wires. junction in the desired place. The reference junctions, two to each element, are made similarly by attaching gold terminals to the chromel and copel wires. These gold terminals make electrical connection to gold lead wires and provide for attachment of the reference junctions tothe reference block.

Figure 3shows how the terminals are installed to secure good thermal union, electrical insulation, and electrical connection where desired. They are held firmly under nuts on threaded studs which are screwed into the metal at the desired places. The terminals are insulated electrically from above and below by mica washers, and from the stud by centering. Additional thermal attachments of the gold lead wires are made in a similar manner at the reference block and at the bottom of the envelope to prevent thermal lead conduction from directly affecting the reference junctions and thus causing erroneous temperature indications.

Gold wires, insulated with mica as described above, are brought out in a bundle from the reference junctions within the heated space to an accessible place at the temperature of the room. Here an isothermal attachment on copper blocks is provided for the junctions between these gold wires and the copper wires which lead across to the observing station.

The electromotive forces of the thermoelements, amounting in nearly all cases to less than 20 mv , are measured on a Wolff poten-
B. S. Journal of Research, RP523

Fiscure: 4. Platinum resistance thermometer and sheath, pen point for comparison of size
tiometer designed by F. Wenner. Calibration of this instrument showed its corrections to be negligible. When the temperature of the calorimeter is being observed by means of the five therinoelements in series, a scale deflection of 1 mm corresponds to about $0.001^{\circ} \mathrm{C}$.

The five thermoelements which are used in the measurement of water temperature were calibrated in place against a resistance thermometer in the reference block by the following procedure: With the block at nearly the same temperature as the calorimeter, a small emf is indicated on the thermoelements. When the block is heated the thermoelement reference junctions are heated by the same amount as the resistance thermometer. Therefore, the change in thermoelement emf is equivalent to the change in temperature as indicated by the thermometer. Calibrations were made at every temperature where pressure observations were made.

(c) RESISTANCE THERMOMETERS

Two specially constructed platinum resistance thermometers were used as working standards for the temperature measurements. These are of the 4 -lead potential-terminal type. They were made small and compact to fit into the receptacles in the reference block. The windings were made of highly refined platinum which showed at $100^{\circ} \mathrm{C}$. a resistance as high as 1.392 times that at $0^{\circ} \mathrm{C}$. The platinum wire, 0.1 mm in diameter, was first wound in helical form 0.45 mm in diameter, and again wound in a second helical form 4.8 mm in diameter upon a mica cross with the edges notched to carry the winding, yet leave it free from mechanical constraint. Initial strains were relieved by annealing the completed thermometer at $660^{\circ} \mathrm{C}$. Each thermometer is mounted in a cylindrical silver case which fits the receptacle in the reference block. Figure 4 shows the construction of one of these thermometers.

This type of thermometer winding has been described by C. H. Meyers ${ }^{3}$ and is particularly adapted to use where large size is objectionable. The question as to whether a platinum winding of this compact double-helical type will define the same temperature scale between the fixed points as a winding of the customary strain-free type, has been studied by making a direct comparison between one of the thermometers of this apparatus and one of the earlier standard thermometers of this laboratory. In the interval from 200° to $320^{\circ} \mathrm{C}$., the maximum observed difference in indication was at 270° and amounted to $0.013^{\circ} \mathrm{C}$., which is not more than that attributable to the uncertainty of reproduction of the scale itself.
The two thermometers used ($\mathrm{M}-22$ and $\mathrm{M}-26$) were selected from a group of eight by consideration of their characteristics and behavior over a period of time. They were calibrated according to the specifications of the international temperature scale, ${ }^{4}$ which uses the fixed points of ice, steam, and boiling sulphur as 0,100 , and 444.6°, respectively. The thermometers were calibrated before and during the progress of the pressure measurements and showed no significant changes. The thermometer No. M-22, which was used in all the experiments, had the constants $R_{0}=27.6637, R_{100}=38.5158, \delta=1.496$, which were used in the Callendar formula given later for the tem-

[^2]perature computation. The thermometer No. M-26, which was used only occasionally to check the other thermometer, had the constants $R_{0}=27.7640, R_{100}=38.6555, \delta=1.496$.

The resistances of the thermometers are measured with a Mueller ${ }^{5}$ bridge built by O . Wolff. The bridge coils are immersed in a thermostated oil bath. A separate commutator switch permits the observation of either thermometer. The bridge coils were recalibrated several times during this investigation. A bridge current of 4.5 milliamperes was used both in the calibration and in the measurements of temperature. A galvanometer scale deflection of 1 mm corresponded approximately to 0.0001 ohm , or about $0.001^{\circ} \mathrm{C}$. for the thermometers used.

III. EXPERIMENTAL PROCEDURE

The first step in a vapor pressure determination is the introduction of a chosen amount of pure air-free water into the calorimeter. The water used in these measurements was prepared from distilled water by continuous low-pressure distillation in a special apparatus. The air was removed by pumping from the condenser a small fraction of the vapor which carried with it all but a trace of the air dissolved in the original water. This purification was found adequate to avoid aay measurable partial pressure of air in the steam. A measured sample of the purified water is transferred without contact with air from the distilling apparatus to a special container, With this container attached to the evacuated calorimeter system, the water is driven into the calorimeter shell by heating the container. Weighing the container before and after this operation checks the amount transferred to the calorimeter. This must be known in order to compute the correction for the height of the liquid at any time.

The calorimeter with its charge of water is next brought to the desired temperature by adding heat electrically. At the same time the envelope, guard, reference block, and connecting tubes are all heated in a similar manner and at about the same rate. Their temperatures are finally adjusted by successive approximations while the calorimeter with its contents approaches the desired uniform stationary temperature. As this chosen temperature is approached, the automatic temperature control of the guard shell is put into operation.

The behavior of the fluid in the calorimeter varies appreciably in the temperature range covered by these experiments. At temperatures below $350^{\circ} \mathrm{C}$., thermal gradients produced by heating the fluid, diminish quickly, leaving only small persistent gradients. As the critical region is approached, however, the gradients become larger. The procedure used to hasten favorable conditions for observing pressure at these high temperatures is first to heat the water above the desired temperature and then to cool by lowering the envelope temperature. This produces condensation on the upper calorimeter walls, bathing them with liquid which tends to bring them nearer the effective saturation temperature.

As equilibrium is approached, successive approximations are made to the adjustments necessary for a pressure measurement. The calorimeter pressure is balanced by the air pressure which in turn is balanced by the load on the piston. If the temperature and pressure

[^3]in the calorimeter were stationary and the measuring apparatus adjusted to proper balance, the diaphragm of the pressure cell would be at rest in its zero position, the two capillary indicators stationary, and the loaded rotating piston of the gage neither rising nor falling. This ideal condition of absolute constancy is not necessary to a satisfactory measurement. After close control and adjustment have been obtained, they are held over a period of about two minutes while a series of temperature readings is taken. The definitive value of the load is that at the mid-point of this period. The pressure observation includes the balancing load on the piston, temperature of the piston, barometric pressure, and height of fluid columns in the capillary indicators. The balancing load could always be determined to the nearest gram, and at low pressures it was possible to estimate fractions of a gram. At the higher steam pressures it is unnecessary to determine the load more closely than to 1 g in order to have the precision of the pressure measurement correspond with that of the temperature.

For determining the effective saturation temperature, four successive temperature readings are made at equal time intervals. Each temperature reading consists of simultaneous observations of resistance thermometer and thermoelements. The above method of reading several successive temperatures is desirable for several reasons. First, the 4-lead potential-thermal resistance thermometer requires at least two observations to eliminate the lead resistance from the measurement. Second, increasing the number of readings decreases the accidental error of observation. Third, a regular schedule of readings takes account of slight drift of temperatures. Fourth, the schedule permits the observation of local temperatures during the measurement.

The best selection of thermoelements to determine the temperature of the free surface of the water depends on the temperature distribution and the location of the liquid level in the calorimeter. In the range of temperature below $350^{\circ} \mathrm{C}$., the water and calorimeter reach a steady state promptly. Below $200^{\circ} \mathrm{C}$. this steady state was a uniform temperature, as indicated by surveys. All five thermoelements were therefore taken to indicate the saturation temperature up to $200^{\circ} \mathrm{C}$.

Between 200° and $350^{\circ} \mathrm{C}$., after the steady state was reached, the bottom of the shell showed a small persistent depression of temperature and the top a small elevation due to inability to control the surroundings perfectly. In this range the three intermediate thermoelements, Nos. 2, 3, and 4, were used.

Above $350^{\circ} \mathrm{C}$. a difference in the behavior of the fluid was observed. The steady state was reached more slowly and thermal gradients were larger over the entire shell. The saturation temperature was estimated from the indication of a single thermo-element located in the vicinity of the liquid level in the calorimeter. If the quantity of water in the calorimeter is checked as previously described, the location of the liquid level is reliably known at temperatures below $370^{\circ} \mathrm{C}$. Near the critical region, a comparatively small difference in the water sample determines whether saturated vapor, superheated vapor, or compressed liquid is present. Experiments were therefore made to indicate the state of the water in the calorimeter. These experiments started with the calorimeter supposed to be full of liquid water. After the pressure was observed, a chosen small amount of liquid was with-
drawn and the pressure again observed. This procedure was repeated until the observed pressure, when reduced to a given temperature, showed a constant value indicating existence of the saturation state.

During the progress of the vapor-pressure measurements, two types of experiments were made to prove the absence of an appreciable amount of permanent gas in the calorimeter. In the first type, pressures were measured before and after the withdrawal of liquid, which increased the vapor space in the calorimeter. In the second type, the presence of gas in the calorimeter was tested by a McLeod gage after removal of the liquid. These tests gave no indication of enough gas to affect the vapor-pressure results.

IV. RESULTS OF MEASUREMENTS

The results of the entire series of measurements have been assembled in Table 1, which includes each measured temperature, reduced to degrees of the international temperature scale of 1927^{6} and the corresponding measured pressure reduced to international standard atmospheres. ${ }^{7}$ This table also contains the reduction of the observed pressures to values corresponding to even temperatures to permit comparison of the individual determinations and to facilitate the formulation of the entire group of results.

Each measured temperature is computed from the observed data, consisting of four readings of the bridge when balanced with the platinum resistance thermometer in circuit, and the four simultaneous readings of the potentiometer when balanced against the thermoelements, as described above in Section III, Experimental Procedure.

Each measured pressure is computed from the following observed quantities: The load on the piston gage, temperature of gage, position of water meniscus and oil meniscus, amount of water in the calorimeter, and barometer reading, including its temperature.

The auxiliary data used in these reductions include the densities of water and of oil, value of gravity at the Bureau of Standards, the relative elevation of gage and barometer from the gravity bench mark, the results of calibrations of the bridge, resistance thermometers, thermoelements, and the piston gage with its connecting lines and weights.

The mean of the four bridge readings corrected for the bridge calibration gives the resistance of the platinum thermometer $\left(R_{\theta}\right)$ at the mean temperature of the series. The temperature, θ, is computed from this resistance by use of the Callendar formula

$$
\theta=100\left(R_{\theta}-R_{0}\right) /\left(R_{100}-R_{0}+0.01 \theta(0.01 \theta-1) \delta\right.
$$

The constants R_{0}, R_{100}, and δ are determined by the calibration previously described.

The mean of the four thermoelement observations is reduced from microvolts to degrees temperature difference by use of the calibration factor determined as previously described. By combining this mean temperature difference between the water and the reference block

[^4]and the mean temperature of the block as determined by the thermometer, the temperature of the water, θ_{w}, is obtained.

The pressure observation, made at the middle of the series of temperature readings, corresponds with the water temperature determined as above. In reducing the pressure observation, the effective weight of the entire load supported by the oil acting on the effective piston area was computed as the sum of the masses of the weights, weight carrier, and the piston, corrected for calibration and air buoyancy. From this total mass the resultant pressure was computed by use of the value of gravity at this laboratory (980.09 $\mathrm{cm} / \mathrm{sec} .{ }^{2}$) relative to the standard value of gravity ($980.665 \mathrm{~cm} / \mathrm{sec} .{ }^{2}$) and the effective piston area, corrected for the effect of thermal expansion. To this component of pressure due to the load was added the observed barometric pressure corrected for temperature, difference in level, and for gravity, thus giving the total pressure at the bottom of the piston. From this pressure at the gage, the pressure at the level of the liquid in the calorimeter was found by applying the following corrections for the intermediate fluid columns: The oil column between the piston and the oil meniscus, the air column between oil and water, the water column between the water meniscus and the water level in the calorimeter, and the correction for the diaphragm position determined by the calibration at atmospheric pressure. The pressure contributed by the liquid water column in the calorimeter was calculated from the mass of water in the calorimeter, the dimensions of the calorimeter and the specific volumes of vapor and liquid water determined by Keyes and Smith. ${ }^{8}$
The total correction for fluid columns in the transmission line did not exceed 0.04 atmosphere and was estimated to 0.0001 atmosphere. The accuracy of this estimation may have limited the precision attainable at the lowest pressures measured. At the higher pressures, it was of less importance in comparison with several other factors.

Table 1.-Observed pressure of saturated water vapor

Date	Observed quantities		Reduction to eren temperature	Vapor pressure at even temperature P	Residual $P-P_{m}$
	Temperature θ	$\begin{gathered} \text { Pressure } \\ P_{\bullet} \end{gathered}$			
July 20,1932July $21,1932$.	${ }^{\circ} \mathrm{C}$. (Inl.)	Standard atmospheres (Int.)			
	110.027	1.4146	-0.0013	1.4133	-0.0010
	110.018	1. 4152	-. 0009	1.4143	.0000 +.0005
	110.003 110.019	1.4149 1.4156	-. 00009	1.4147	+.0005 +.0004
	110.011	1. 4148	-. 0005	1. 4143	. 0000
	109. 994	1.4138	+. 0003	1.4141	-. 0002
	110.008	1.4146	-. 0004	1.4142	-. 0001
	110.027	1.4156	$-.0013$	1.4143	. 0000
Even temperature 110°.	Mean value of pressure at $110=P_{\text {m }}=1.4143 \mathrm{~atm}$.				
	119.975	1.9579	+0.0015	1.9594	-0.0004
July 20, 1932July 21, 1932	119.991	1.9587	+. 0008	1. 9593	$-.0005$
	119.981	1. 9587	+. 0012	1. 9599	+.0001
	120.010	1. 9608	$-.0008$	1.9602	+.0004 +.0003
	119.982	1.9590	+.0011	1. 9601	+.0003 -.0007
	119.956 120.004	1.9564 1.9604	+.0027 +.0003	1. 9591 1.9601	-. 00003 +.0003
	119.988	1. 9596	+.0007	1. 9603	$+.0005$

Even temperature 120°. Mean value of pressure at $120^{\circ}=P_{m}=1.9528 \mathrm{~atm}$.
${ }^{1}$ Mechanical Engineering, vol. 53, No. 2 ,p. 133, 1931.

Table 1.-Observed pressure of saturated water vapor-Continued

Date	Observed quantities		Reduction to even temperature	Vapor pressure at even temperature P	Residual $P-P_{m}$
	Temperature θ_{w}	$\underset{P_{w}}{\text { Pressure }}$			
April 2, 1932	${ }^{\circ} C \text { (Int.) }$	Standard atmospneres (Int.)			
		2. 6624	+0.0028	2.6652	
	129.965	2. 6635	+. 0028	2. 6663	$+.0005$
	129.965		+. 0028		+. 0006
April 5, 1932	130. 014	2. 6656	-. 0011	2.6645	-. 0013
April 7, 1932	130. 008	2. 6644	$-.0006$	2.6638	-. 0020
April 8, 1932	129. 996	2. 6641	$+.0003$	2.6644	-.0014+.0001
	129. 990	2.66522.6636	$+$	2.6659	
July 2, 1932	129.971		+.0023.0000	$\begin{aligned} & 2.6659 \\ & 2.6660 \end{aligned}$	+.0001 +.0001
	130.000	2. 6660			+. 0002
July 7, 1932	130.046	2.6692	-. 0037	2.6655	+.0003+.0009
	129.998	2.66652.6649	$\begin{aligned} & +.0002 \\ & +.0019 \end{aligned}$	2. 6667	
July 21, 1932	129.976			2.6668	$\begin{array}{r} +.0009 \\ +.0010 \end{array}$
July 21, 1932..	130.003	2. 6670	-. 0002	2.6668	$+.0010$
	130.023	2. 6686	-. 0018	2. 6668	+.0010 +.0010

Even temperature 130°. Mean value of pressure at $130^{\circ}=P_{m}=2.6658 \mathrm{~atm}$.

Even temperature 140°. Mean value of pressure at $140^{\circ}=P_{m}=3.5661 \mathrm{~atm}$.

March 25, 1932	149.879	4. 6802	+0.0152	4. 6954	-0.0015
March 28, 1932	149.911	4.6849	+. 0112	4. 6961	-. 0008
March 29, 1932	149.868	4.6789	+. 0166	4. 6955	-. 0014
March 30, 1932	150.032	4.7018	-. 0040	4. 6978	+.0009
April 1, 1932	149.998	4. 6970	+. 0002	4. 6972	+. 0003
April 7, 1932	149. 984	4.6922	+.0020	4.6942	-. 0027
April 8, 1932	150. 004	4.6964	-. 0005	4. 6959	-. 0010
July 7, 1932	150.035	4.7017	-. 0044	4. 6973	+.0004
	149.985	4.6971	+. 0019	4. 6990	+. 0021
July 21,1932	150:004	4. 6994	$-.0005$	4. 6989	+. 0020
	150. 025	4.7019	-. 0031	4. 6988	+. 0019

Even temperature 150°. Mean value of pressure at $150^{\circ}=P_{m}=4.6969 \mathrm{~atm}$.

Even temperature 160°. Mean value of pressure at $160^{\circ}=P_{m}=6.0998 \mathrm{~atm}$.

A pril 2, 1932	169.994 169.993	7.8182 7.8182	+0.0011 +.0013	7.8193 7.8195	+0.0015 +.0017
	169.994	7.8182	+.0013 +.0011	7.8195	+. 0017
April 5, 1932	170.994	7.8182	+. 0011	7.8193	+. 0015
April 7, 1932	169.993	7.8147	-. 0000	7.8153	-. 0025
A pril 8, 1932	169.992	7.8140	+.0015 +.0015	7.8160 7.8155	二. 0018
	169.991	7.8159	+.0017	7.8176	-. 0002
July 2, 1932	169.981	7.8140	+.0036	7.8176	-. 0002
July 7, 1932	169.996	7.8168	+.0008	7.8176	-. 0002
	170.002	7.8174	-. 0004	7.8170	-. 0008
July 21,1932	169.996	7. 8148	+. 0042	7. 8190	+. 0012
	170.014	7.8216	-. 0026	7.8190	+.0012

Even temperature 170°. Mean value of pressure at $170^{\circ}=P_{m}=7.8178 \mathrm{~atm}$.

Table 1.-Observed pressure of saturated water vapor-Continued

Date	Observed quantities		Reduction to even temperature	Vaporpressure ateventemper-atureP	$\begin{aligned} & \text { Residual } \\ & P-P_{m} \end{aligned}$
	Temperature θ_{ω}	$\begin{gathered} \text { Pressure } \\ P_{w} \end{gathered}$			
	${ }^{\circ} \mathrm{C}$. (Int.)		ndard atm	spheres (Int.)	
April 2, 1932	180.024 180.022	9. 90023	-0.0055 -.0050	9. 88988	+0.0010
	180.022	9.9017	-. 00050	9.89067	+.0003 +.0009
April 5, 1932	180. 014	9. 8990	-. 0032	9.8958	+.0000
April 7, 1932	180.001	9.8966	-. 0002	9.8964	+.0006
April 8, 1932	179.999	9. 8918	+. 0002	9. 8920	-. 0038
	1779.982	9. 8929	+. 0041	9. 8967	+.0005
July 7, 1932	179. 969	9. 8888	+.0071	9. 8959	$\begin{array}{r} .0000 \\ +\quad 0004 \end{array}$

Even temperature 180°. Mean value of pressure at $180^{\circ}=P_{m}=9.8958 \mathrm{~atm}$.

	190.001	12.3913	-0.0003	12. 3910	+0.0023
April 2, 1932	190.002	12.3904	-. 0005	12.3899	+.0012
	190.002	12.3905	-. 0005	12.3900	+.0013
April 5, 1932	190.005	12.3890	-. 0014	12.3876	-. 0011
April 7, 1932	190.010	12. 3908	-. 0027	12.3881	-. 0006
April 8, 1932	190.010	12. 3898	-. 0027	12. 3871	-. 0016
	190.010	12. 3908	-. 0027	12.3881	-. 0006
July 7, 1932	189.998	12. 3871	+. 0005	12.3876	-. 0011
	190.012	12.3918	-. 0033	12. 3885	-. 0002

Even temperature 190°. Mean value of pressure at $190^{\circ}=P_{m}=12.3887 \mathrm{~atm}$

March 25, 1932	200. 141	15. 3920	-0.0453	15. 3467	-0.0005
March 28, 1932	199.957	15.3332	+. 0138	15.3470	-. 0002
March 29, 1932	200.037	15.3576	-. 0119	15.3457	-. 0015
March 30, 1932	199.700	15. 2530	+. 0963	15. 3493	+. 0021
April 1, 1932	199.935	15. 3264	+. 0209	15.3473	+. 0001
April 7, 1932	199.990	15. 3443	+. 0032	15.3475	+.0003
April 8, 1932	199. 712	15. 2535	+. 0924	15. 3459	$-.0013$
	199.996	15.3463	$+.0013$	15. 3476	+. 0004
July 7, 1932	199.976	15. 3395	+. 0077	15. 3472	. 0000
	199.987	15. 3440	+. 0042	15.3482	+. 0010

Even temperature 200°. Mean value of pressure at $200^{\circ}=P_{m}=15.3472$ atm.

April 4, 1932	209.991	18.8256	+0.0034	18.8290	-0.0010
April 5, 1932	210.026	18.8393	-. 0098	18.8295	-. 0005
April 7, 1932	210. 006	18.8314	-. 0023	18.8291	-. 0009
April 8, 1932	210.030	18.8424	-. 0113	18.8311	+.0011
April 29, 1932	209.979	18.8245	+. 0079	18.8324	+. 0024
	209.979	18.8213	+.0079	18.8292	-. 0008
July 7, 1932	209.957	18. 8133	+. 0162	18.8295	$-.0005$
	209. 994	18.8277	+. 0023	18.8300	. 0000

Even temperature 210°. Mean value of pressure at $210^{\circ}=P_{m}=18.8300 \mathrm{~atm}$.

April 4,	219.998	22.8960	+0.0009	22.8969	+0.0005
April 5, 1932	220.002	22.8963	-. 0009	22.8954	-. 0010
April 7, 1932	220.003	22.8960	-. 0013	22.8947	-. 0017
April 8, 1932	220.013	22.9006	-. 0057	22. 8949	-. 0015
April 29, 1932	219.993	22.8948	+. 0031	22. 8979	+. 0015
	219.999	22.8963	+. 0004	22.8967	+. 0003
July 7, 1932.	219.977	22.8867	+. 0101	22.8968	+.0004
	219.996	22.8960	+. 0018	22.8978	+.0014

Even temperature 220°. Mean value of pressure at $220^{\circ}=P_{m}=22.8964 \mathrm{~atm}$.

A pril 4, 1932	230.007	27.6156	-0.0036	27.6120	$!+0.0003$
April 5, 1932	230.019	27.6187	-. 0096	27.6091	-. 0026
April 7, 1932	230.015	27.6203	-. 0076	27. 6132	+.0015
April 8, 1932	230.010	27.6137	-. 0051	27. 6086	-. 0031
April 29, 1932	230.006	27. 6160	-. 0030	27. 6130	+ +.0009
	229.986	27.6055	+. 0071	27.6126	+.0009
July 7, 1932	229. 951	27.5883	+.0248 +.0005	27. 6131 27.6120	+.0014 +.0003
	229.999	27.6115	$+.0005$	27.6120	+.0003

Even temperature 230°. Mean value of pressure at $230^{\circ}=P_{m}=27.6117 \mathrm{~atm}$.

A	240.014	33.0550	-0.0081	33.0469	+0.0053
April 5, 1932	240.060	33.0706	-. 0349	33. 0357	-. 0059
April 7, 1932	240.015	33.0474	-. 0087	33.0387	. 0029
April 8, 1932	240.021	33. 0499	-. 0122	33.0377	-. 0039
April 29, 1932	240.026	33. 0575	-. 0151	33.0424	+.0003
J	239.976	33. 0307	+.0139 +.0261	33.0446 33.0449	+.0033 +.0033

Even temperature 240°. Mean value of pressure at $240^{\circ}-P_{m}-33.0146 \mathrm{~atm}$.

Table 1.-Observed pressure of saturated water vapor-Continued

Date	Observed quantities		Reduction to even temperature	Vapor pressure at even temper- ature $\underset{P}{ } \quad$.	$\begin{aligned} & \text { Residual } \\ & P-P_{m} \end{aligned}$
	$\underset{\substack{\text { ature } \\ \theta_{w}}}{\text { Temper- }}$	Pressure P_{\star}			
	${ }^{\circ} \mathrm{C}$. (Int.)	Standard atmnspheres (1nt.)			
March 25, 1932	250.186	39. 3760	-0.1233	39.2527	-0.0039
March 28, 1932	250. 026	39. 2729	-. 0172	39. 2557	-. 0009
March 29, 1932	249.968	39. 2340	+. 0212	39. 2552	-. 0014
March 30, 1932	249.832	39. 1476	+. 1114	39.2590	+. 0024
April 1, 1932	250.131	39. 3401	-. 0869	39. 2532	-. 0034
April 7, 1932	250.030	39. 2729	-. 0199	39. 2530	-. 0036
April 8, 1932	250.005	39. 2660	-. 0033	39. 2627	+. 0061
	249. 977	39. 2403	+. 0153	39. 2556	-. 0010
July 8, 1932	249.933	39. 2148	+. 0444	39. 2592	+. 0026
	249.985	39. 2497	+. 0099	39. 2596	+.0030

Even temperature 250°. Mean value of pressure at $250^{\circ}=P_{m}=39.2566 \mathrm{~atm}$.

March 28, 1932	259.991	46. 3170	+0.0068	46. 3238	-0.0048
April 4, 1932	259.999	46. 3287	+. 0008	46.3295	+. 0009
April 5, 1932	260.011	46.3334	-. 0083	46.3251	-. 0035
April 7, 1932	260.010	46. 3326	-. 0075	46.3251	-. 0035
A pril 8,1932	260.005	46.3367	-. 0038	46.3329	+. 0043
April 29, 1932	259.998	46. 3244	+. 0015	46.3259	-. 0027
	259.986	46. 3200	+. 0105	46.3305	+. 0019
July 8, 1932	$\begin{aligned} & 259.970 \\ & 259.997 \end{aligned}$	$\begin{aligned} & 46.3086 \\ & 46.3310 \end{aligned}$	+.0226 +.0023	$\begin{aligned} & 46.3312 \\ & 46.3333 \end{aligned}$	+.0026 +.0047

Even temperature 260°. Mean value of pressure at $260^{\circ}=P_{m}=46.3286 \mathrm{~atm}$.

March 28, 1932	269.996	54. 3349	+0.0034	54. 3383	+0.0050
April 4, 1932	270.000	54. 3318	. 0000	54. 3318	-. 0015
April 5, 1932	270.030	54.3533	-. 0255	54.3278	-. 0065
April 7, 1932	270.018	54. 3454	-. 0153	54.3301	-. 0032
April 8, 1932	269.986	54.3193	+. 0119	54.3312	-. 0021
April 26, 1932	269. 994	54. 3305	+. 0051	54.3356	+.0023
	270.002	54.3337	-. 0017	54.3320	-. 0013
April 28, 1932	269.990 270	54.3245 54.3325	+.0085 +.0017	54.3330 54.3308	-. 00003
April 29, 1932	269.994	54.3303	+. 0051	54. 3354	+. 0021
	269.990	54.3286	+. 0085	54. 3371	+. 0038
July 8, 1932	269.975	54. 3138	+.0213 +.0043	54.3351 54.3345	+.0018 +.0012
	269.995	54.3302	+. 0043	54.3345	+. 0012

Even temperature 270°. Mean value of pressure at $270^{\circ}=P_{m}=54.3333$ atm.

A pril 4, 1932	275.059	58. 7648	-0.0532	58. 7116	-0.0009
April 5, 1932	275. 415	59.0855	-. 3756	58.7099	-. 0026
April 7, 1932	275.015	58.7218	-. 0135	58. 7083	-. 0042
April 8, 1932	275. 669	59.3127	-. 6041	58.7086	-. 0039
	274.990	58.7073	+. 0090	58.7163	+. 0038
July 8, 1932	274. 968	58.6857	+.0289	58.7146 58 8154	+.0021
July 8, 193	274. 963	58.6820	+. 0334	58.7154	+.0029
	274.998	58.7132	+. 0018	58.7150	+. 0025

Even temperature 275 . Mean value of pressure at $275^{\circ}=P_{m}=58.7125 \mathrm{~atm}$.

March 28, 1932	280.015	63.3688	-0.0143	63.3545	-0.0013
A pril 4, 1932	280.009	63.3635	-. 0086	63.3545	-. 0013
A pril 5, 1932	280.219	63. 5622	-. 2093	63.3529	-. 0029
April 7, 1932	280.054	63.4020	-. 0516	63.3504	-. 0054
April 8, 1932	279.996	63. 3651	+. 0038	63.3689	+. 0131
April 26, 1932	280.098	63.4445	-. 0937	63.3508	-. 0050
A pril 29, 1932	280.005	63.3602	-. 0048	63.3554	-. 0004
	279.988	63.3444	+. 0115	63.3559	+.0001
July 8, 1932	279.962	63.3214	+. 0363	63.3577	+. 0019
	279.988	63.3458	+. 0115	63.3573	$+.0015$

Even temperature 280°. Mean value of pressure at $280^{\circ}=P_{m}=63.3558 \mathrm{~atm}$.

March 28, 1932	290. 406	73. 9146	-0.4351	73. 4795	+0.0016
A pril 4, 1932	290.027	73.5075	-. 0289	73. 4786	+. 0007
A pril 5, 1932	290.027	73.5066	-. 0289	73.4777	-. 0002
April 7, 1932	290.001	73.4771	-. 0011	73. 4760	-. 0019
A pril 8, 1932	290.009	73.4944	-. 0096	73. 4848	+. 0069
April 26, 1932.	290.014	73.4824	-. 0150	73. 4674	-. 0105
A pril 29, 1932	290.040	73.4963	二. 02428	73. 771781	-. 00062
	289.986	73.4657	+. 0150	73.4807	+. 0028
July 8, 1932	289. 949	73. 4254	+. 0546	73. 4800	+. 0021
	289.996	73.4796	+. 0043	73. 4839	+. 0060

Even temperature 290°. Mean value of pressure at $290^{\circ}=P_{m}=73.4779$ atm.

Table 1.-Observed pressure of saturated water vapor-Continued

Date	Observed quantities		Reduction to even temperature	Vaporpressure ateventemper-atureP	Residual $P-P_{m}$
	Tempersture θ_{0}	$\begin{gathered} \text { Pressure } \\ P_{\infty} \end{gathered}$			
March 25, 1932	${ }^{\circ} \mathrm{C} .($ 1 $n t$.300.129300.005299.970299.953300.048300.047300.025299.609299.954299.813299.654300.009299.974299.973300.012		andard atmospheres (1nt.)		
March 28, 1932		84. 84.8075	-0. 1546	84.7918 84.8015 8.705	-0.0051
March 29, 1932		84.7592	+.0358	84. 7950	+.0013
March 30, 1932		84.7475	+. 0561	84.8036	+. 0067
April 1, 1932		84.8578	-. 0573	84.8005	+. 0036
April 7, 1932		84.8492	-. 0561	84. 7931	-. 0038
A pril 8, 1932		84.8232	-. 0299	84, 7933	-. 0036
June 30, 1932		84.3244 84.7441	+ 4665 +.0549	84.7909 84.7990	-. 00060
		84. 5766	+. +.2234 +	84. 8000	+.0021 +.0031
July 1, 1932		84.3803	+. 4128	84. 7931	-. 0038
		84.8095	-. 0107	84.7988	+. 0019
July 8, 1932		84. 7671	+. 0311	84, 7982	
July 8, 1932.		84.7662 84.8111	+.0322 -.0143	84.7984 84.7968	$\begin{array}{r} +.0015 \\ \hline .0001 \end{array}$

Even temperature 300°. Mean value of pressure at $300^{\circ}=P_{m}=84.7969 \mathrm{~atm}$.

March 28, 1932	310.019	97. 4298	-0.0253	97.4045	-0.0017
April 4, 1932	310.039	97.4615	-. 0518	97.4097	+. 0035
April 5, 1932	310.036	97.4503	-. 0478	97. 4025	-. 0037
April 7, 1932	309.980	97.3822	+. 0266	97.4088	+. 0026
April 8, 1932	309.902	97.2816	+. 1302	97.4118	+. 0056
	310.015	97.4259	-. 0199	97. 4060	-. 0002
April 25, 1932	310.015	97.4246	-. 0199	97.4047	-. 0015
	310.017	97.4264	-. 0226	97.4038	-. 0024
April 29, 1932	310.030	97. 4361	-. 0399	97.3962	-. 0100
July 1, 1932.	309.975	97.3685	+. 0332	97.4017	-. 0035
	309.993	97.4006	+. 0093	97.4098	+. 0037
July 11, 1932	309.973	97.3753	+. 0359	97.4112	+.0050
	309.989	97.3949	+. 0146	97. 4095	+. 0033

Even temperature 310°. Mean value of pressure at $310^{\circ}=P_{m}=97.4062 \mathrm{~atm}$.

April 4, 1932	320.070	111. 524	-0. 103	111.421	+0.003
A pril 5, 1932	320.032	111. 473	-. 047	111. 426	+. 008
April 7, 1932	320.045	111. 493	-. 066	111.427	+. 009
April 8, 1932	320.020	111. 460	-. 030	111. 430	+. 012
April 29, 1932	320.017	111. 447	-. 025	111.422	+. 004
	320.007	111. 426	-. 010	111. 416	-. 002
	320.007	111.422	-. 010	111.412	-. 008
July 1, 1932	319.957	111. 333	+. 063	111.396	-. 022
	320.012	111.418	-. 018	111. 400	-. 018
	320.017	111.446	-. 025	111.421	+. 003
July 11, 1932.	319,994	111.415	+. 009	111. 424	+. 006
	320.003	111. 425	-. 004	111. 421	+.003

Eren temperature 320°. Mean value of pressure at $320^{\circ}=P_{m}=111.418 \mathrm{~atm}$.

April 4, 1932	325.025	119. 033	-0.039	118. 994	$+0.006$
April 5, 1932	325. 033	119. 043	-. 051	118. 992	+.004
April 7, 1932	325. 004	118. 994	-. 006	118.988	. 000
April 8, 1932	325. 004	118.998	-. 006	118.992	+. +.018 +
July 1, 1932..	324.923	118.920	+ +.050 $+\quad .120$	118.974	-. 014
	325. 005	119.004	+. 008	118.996	+.008
July 11, 1932	324. 997	119.986	+. 005	118. 991	+. 003
July 11, 1932	325. 038	119.052	-. 060	118. 992	+. 004

Even temperature 325°. Mean value of pressure at $325^{\circ}=P_{m}=118.988$ atm.

April 4, 1932	330.020	126. 994	-0.033	126. 961	+0.001
April 5, 1932	330.010	126.980	-. 016	126. 964	+. 004
April 7, 1932	330.009	126.983	-. 015	126.968	+.00
April 8, 1932	330.012	126.988	-. 020	126. 968	+.008 +.003
	330.020	126.990	-.033 -.054	$\begin{aligned} & 126.957 \\ & 126.954 \end{aligned}$	-.003
A pril 26, 1932	330.033 330.038	$\begin{aligned} & 127.008 \\ & 127.012 \end{aligned}$	二.054	126.950	-. 010
A pril 29, 1932	330.043	127.030	-. 070	126.960	. 000
	330.026	127.002	-. 042	126. 960	. 00
	330. 014	127.982	-. 023	126. 959	-. 00
July 11, 1932	330.032	127.005	-. 052	126. 953	-. 00
	330.025	127.004	-. 041	128.963	+.003

Even temperature 330°. Mean value of pressure at $330^{\circ}=P_{m}=126.960 \mathrm{stm}$.

Table 1.-Observed pressure of saturated water vapor-Continued

Date	Observed quantities		Reduction to even temperature	$\begin{gathered} \text { Vapor } \\ \text { pressure at } \\ \text { even } \\ \text { temper- } \\ \text { ature } \\ P \end{gathered}$	Residual $P-P_{m}$
	Temperature θ_{w}	$\underset{P_{w}}{\text { Pressure }}$			
	${ }^{\circ} \mathrm{C}$. (Int.)	Standard atmospheres (Int.)			
April 4, 1932-	340.035	144.229	-0. 063	144.166	-0.001
April 5, 1932	340.040	144. 243	-. 072	144.171	+. 004
April 7, 1932	340.041	144. 231	-. 074	144.157	-. 010
April 8, 1932	340.015	144. 197	-. 027	144.170	+. 003
April 28, 1932	340.021 340.025	144. 208	-. 038	144.170	+.003 +.008
April 29, 1932	340. 028	144. 213	-. 051	144.162	-. 005
	340. 026	144. 216	-. 047	144. 169	+. 002
	340.023	144.211	-. 042	144.169	+. 002
July 11, 1932	339. 994	144. 161	+. 011	144. 172	+. 005
	340.028	144. 222	-. 051	144. 171	+. 004

Even temperature 340°. Mean value of pressure at $340^{\circ}=P_{m}=144.167 \mathrm{~atm}$.

March 29, 1932	349. 998	163. 208	+. 0.004	163. 212	$+.007$
March 29, 1932	349.996	163. 209	+. 008	163. 217	+. 012
March 30, 1932	349.989	163. 183	+. 022	163. 205	. 000
April 1, 1932	350. 089	163. 382	-. 178	163. 204	-. 001
April 5, 1932	350.057	163. 324	-. 114	163.210	+. 005
April 7, 1932	349.999	163.198	+. 002	163. 200	-. 005
	350. 026	163. 254	-. 052	163. 202	-. 003
April 8, 1932	350.043	163. 282	-. 086	163. 196	-. 009
	350.060	163. 332	-. 120	163. 212	+. 007
	350. 001	163.215	-. 002	163.213	+. 008
April 27, 1932	350. 018	163. 225	-. 036	163. 189	-. 016
	350.027	163.262	-. 054	163. 208	+. 003
July 11, 1932	350.009	163. 218	-. 018	163. 200	$-.005$
	350. 020	163. 246	-. 040	163. 206	+. 001
July 12, 1932	350.025 349.995	163. 254	+.050	163. 204	-. 001
July 12, 1032	350.006	163. 214	-. 012	163. 202	+.003

Even temperature 350°. Mean value of pressure at $350^{\circ}=P_{m}=163.205 \mathrm{~atm}$.
July 12, 1932...............................-- $\left\{\begin{array}{rl|r|r|r|r}355.037 & 173.552 & -.0 .078 & 173.474 & +0.001 \\ 355.006 & 173.475 & -.013 & 173.462 & -.011 \\ 355.022 & 173.521 & -.046 & 173.475 & +.002 \\ 354.988 & 173.449 & +.025 & 173.474 & +.001 \\ 354.966 & 173.402 & +.072 & 173.474 & +.001 \\ 355.013 & 173.507 & -.027 & 173.480 & +.007\end{array}\right.$

Even temperature 355°. Mean value of pressure at $355^{\circ}=P_{m}=173.473 \mathrm{~atm}$.

April 29, 1932	360.008	184. 311	-0.018	184. 293	-0.004
	360.029	184. 365	-. 064	184. 301	+. 004
July 12, 1932	359.996	184. 291	+. 009	184. 300	+. 003
	360.004	184. 308	-. 009	184. 299	+. 002
	359.976	184. 241	+. 053	184. 294	$-.003$
July 13, 1932.	359.959	184. 208	+. 091	184. 299	+. 002
	359.996	184. 285	+. 009	184. 294	-. 003

Even temperature 360°. Mean value of pressure at $360^{\circ}=P_{\boldsymbol{m}}=184.297 \mathrm{~atm}$.

July 12, 1932	361.993	188. 770	$+0.016$	188.786	-0.001
	361.990	188. 765	+.023	188. 788	+. 001
	361.973	188. 729	+. 061	188. 790	+. 003
	362.007	188. 803	$-.016$	188.787	. 000
July 13, 1932.	361.981	188. 741	+. 043	188.784	-. 003
	361.965	188. 708	+.079	188.787	. 000
	361.992	188.770	+. 018	188.788	+. 001

Even temperature 362°. Mean value of pressure at $362^{\circ}=P_{m}=188.787$ atm.

July 12, 1932.	363.996	193. 367	+0.009	193. 376	-0.002
	363. 978	193. 323	+. 051	193. 374	-. 004
	364. 009	193. 401	-. 021	193. 380	+. 002
	363.972	193.314	+. 065	193.379	+. 001
July 13, 193	363.958	193. 282	+. 097	193. 379	$+.001$
	363.981	193.338	$+.044$	193.382	+. 004

Even temperature 364°. Mean value of pressure at $364^{\circ}=P_{m}=193.378 \mathrm{~atm}$.

Table 1.-Observed pressure of saturated water vapor-Continued.

Date	Observed quantities		Reduction to even temperature	Vaporpressure ateventemper-atureP	$\begin{aligned} & \text { Residual } \\ & P-P_{m} \end{aligned}$
	Temper- ature θ_{ω}	$\begin{gathered} \text { Pressure } \\ P_{\mathbf{w}} \end{gathered}$			
July 12, 1932	${ }^{\circ} \mathrm{C}$. (Int.)	Standard atmospheres (Int.)			
	366.019	198. 110	-0.045	198. 065	+0.001
	365. 992	198. 038	+. 019	198. 057	-. 007
	366. 034	198. 143	-. 081	198.062	-. 0001
	366. 022	198. 119	-. 052	198. 067	+. 003
	365. 951	197. 949	+. 116	198. 065	+. 001
July 13, 1932	365, 938	197. 917	+. 147	198. 064	. 000
	366. 004	198. 078	-. 009	198.069	+. 005

Even temperature 366°. Mean value of pressure at $366^{\circ}=P_{m}=198.064 \mathrm{~atm}$.

Even temperature 368°. Mean value of pressure at $368^{\circ}=P_{m}=202.857 \mathrm{~atm}$.

Even temperature 370°. Mean value of pressure at $370^{\circ}=P_{m}=207.771 \mathrm{~atm}$.

July 14, 1932		210.147	+0.120	210. 267	-0.003
	370.952 370.966	201.182	+0.120 +.085	210. 267	-. 003
	371, 091	210.511	-. 227	210. 284	+. 014
	371, 082	210. 480	-. 205	210. 275	+. 005
	371.046	210. 389	-. 115	210.274	+. 004
	371.038	210.360	-. 095	210. 265	$-.005$
	371.015	210.315	-. 037	210. 278	+. 008
	371.011	210. 297	-. 027	210. 270	. 000
	370.953	210.149	+. 117	210. 266	-. 004
	370.914	210.047	$+.215$	210. 262	$-.008$
July 15, 1932	370.900	210.022	+. 250	210. 272	+. 002
	370.892	209.987	+. 270	210. 257	-. 013

Even temperature 371°. Mean value of pressure at $371^{\circ}=P_{m}=210.270 \mathrm{~atm}$.

Even temperature 372°. Mean value of pressure at $372^{\circ}=P_{m}=212.795 \mathrm{~atm}$.

July 15, 1932

373.012	215.393	-0.031	215. 362	-0.001
373.012	215.391	-. 031	215.360	-. 00
373.003	215.373	-. 008	215. 365	. 00
373.005	215.367	$-.013$	215. 354	. 000
372. 987	215.330	+. 033	215.363	00
372.983	215.318	+.043	215.361	-. 00
372.974	215. 294	+. 066	215.360	-.00
372.974	215.299	+. 066	215.365	$+.00$
372.996	215.361	+. 010	215.371	$+.00$
373. 059	215.515	-. 151	215. 364	+.001
373.029	215.447	-. 074	215.373	+. 01
373.008	215. 381	-. 020	215.361	-. 00

Even temperature 373°. Mean value of pressure at $373^{\circ}=P_{\mathbf{m}}=215.363 \mathrm{~atm}$.

Table 1.-Observed pressure of saturated water vapor-Continued

Date	Observed quantities		Reduction to even temperature	Vaporpressure ateventemper-atureP	$\begin{aligned} & \text { Residual } \\ & P-P_{\mathbf{m}} \end{aligned}$
	$\begin{aligned} & \text { Temper- } \\ & \text { ature } \\ & \theta_{\omega} \end{aligned}$	$\begin{gathered} \text { Pressure } \\ P_{\bullet} \end{gathered}$			
July 22, 1932	${ }^{\circ} \mathrm{C}$. (Int.)	Standard atmospheres (Int.)			
	374.001	217.985	-0.003	${ }^{217.982}$	-0.003
	373. 998	217.980	+. 005	217.985	. 000
	373.992 373.999	217.956	+.021	217.977	-. 008
	373.978	217.913	+.003 +.057	217.974	-. 011
	373. 957	217.859	+. 111	217.970	-. 015
	374. 039	218.091	-. 101	217.990	+. 005
	373. 971	217.912	+. 078	217.990	+. 005
	373. 948	217.855	+. 134	217.989	+. 004
July 25, 1832	374. 037	218. 090	-. 096	217. 994	+. 009
	374.052	218. 135	-. 134	218.001	+. 016
	374. 044	218. 106	-. 114	217.992	+. 007
	374.069	218. 169	-. 178	217.991	+. 006

Even temperature 374°. Mean value of pressure at $374^{\circ}=P_{m}=217.985 \mathrm{~atm}$.

V. FORMULATION OF RESULTS

Proceeding with the mean values of vapor pressure corresponding to even temperatures assembled in Table 1 as described above, the next step was to express the aggregate result of the entire series by

Figure 5.-Deviation of mean observed pressures from the Bureau of Standards formulation
means of a formula in order to smooth out irregularities caused by accidental errors of observation, and to provide a trustworthy method for interpolating intermediate values and for obtaining the derivative. The results of this formulation are given in Table 2. The constants of the empirical equation were determined by the method of least squares. Since the pressure at the 100° point is fixed by definition, the formula was made to give the value of exactly 1 atmosphere at this point. It was found necessary to apply the formula over two overlapping temperature ranges in order to secure a satisfactory fit.

The agreement of the formula with observation is shown by the differences in columns 4 and 5 and graphically in Figure 5. Since these differences in no case exceed the amount which experimental errors might cause, the formula is taken as a reliable representation of the aggregate results of the complete series of measurements. This formulation is the basis of a mutually consistent group of tables suitable for use as actual working tables. They are expressed in various appropriate units and arranged in convenient form to provide for intercomparison of current steam tables. The number of significant figures retained may be more than corresponds to the absolute accuracy of measurement, yet was determined by considerations of consistency and precision of formulation, calculation, conversion of units, and comparisons. The derivative is included because this factor is important for making thermodynamic correlations and for interpolating intermediate values.

For the units which involve the value of the intensity of gravity the internationally accepted value of $980.665 \mathrm{~cm} / \mathrm{sec}^{2}{ }^{2}$ or its, equivalent in the English system ($32.174 \mathrm{ft} . / \mathrm{sec} .{ }^{2}$) has been used. Obviously it would be undesirable to complicate the tabulation further by taking into account the difference of gravity in different localities. It may be regarded as unfortunate that existing engineering practice still retains pressure units which involve local values of gravity, particularly since the difference is usually so small that the change to standard gravity could be made painlessly.
It should not be overlooked that the temperatures given in this group of tables are expressed either on the international centigrade scale or on the Fahrenheit scale derived from it. For correlations involving the second law of thermodynamics, the departure of this temperature scale from the absolute or thermodynamic scale must be taken into account if it should be found to be significant.
Table 3 contains the values of the pressure of saturated water vapor and the derivative with respect to temperature at each ${ }^{\circ} \mathrm{C}$. from 100° to 374°. Values are given in each of the three units of pressure which are ordinarily used with the centigrade scale. The standard atmosphere is the standard international unit which has been used as the basis of reduction of the measurements. The centibar is a decimal subdivision of an internationally recognized unit of pressure. ${ }^{9}$ This unit possesses several advantages for use as a practical working standard. It is derived directly from the fundamental units of length, mass, and time independently of the properties of any substance or of the intensity of gravity. It may therefore be used in thermodynamic calculations with other current cgs units without requiring a conversion factor, a property possessed by no system of thermodynamic units used in current steam tables. This unit is of convenient size for practical use and has a convenient and unequivocal name, which is a unique combination.

[^5]Table 2.-Saturation pressure of water vapor
[Results and formulation of observations]

Tem-perature	Saturation pressure		Deviations		Derivative ${ }^{2}$
θ	$\begin{gathered} \text { Mean } \\ \text { observed } \\ P_{m} \end{gathered}$	Calcu- lated ${ }^{1}$ P	$\mathrm{P}_{m}-P$	$\frac{P_{m}-P}{P} \times$	Calculated $d P / d \theta$
$\begin{aligned} & { }^{\circ} C . \\ & 100 \end{aligned}$	Standard atmospheres (Int.)			Parts in $10,000$	$\begin{aligned} & \text { Atm. } /{ }^{\circ} C . \\ & 0.03569 \end{aligned}$
110	1.4143	1.4138	+0.0005	+3.5	. 04750
120	1. 9598	1. 9593	+. 0005	+2.5	. 06208
130	2.6658	2. 6658	. 0000	. 0	. 07978
140	3. 5661	3. 5664	-. 0003	-. 8	. 10095
150	4.6969	4.6977	-. 0008	-1.7	. 12598
160	6.0998	6.1000	-. 0002	$-.3$. 15521
170	7.8178	7.8171	+. 0007	+. 9	. 18899
180	9.8958	9. 8962	-. 0004	$-.4$. 22768
190	12. 3887	12. 3881	+. 0006	+. 5	. 27161
200	15. 3472	15. 3468	+. 0004	+. 3	. 32110
210	18. 8300	18. 8296	+. 0004	+. 2	. 37647
220	22.8964	22.8969	-. 0005	-. 2	. 43805
230	27.6117	27.6122	-. 0005	-. 2	. 5061
240	33.0416	33.0421	-. 0005	-. 2	. 5810
250	39. 2566	39.2563	+. 0003	+. 1	. 6630
260	46. 3286	46. 3280	+. 0006	+. 1	. 7526
270	54. 3333	54. 3339	$-.0006$	-1	. 8500
275	58.7125	58.7122	$+.0003$	$+.1$. 9016
280	63.3558	63.3529	+. 0029	$+.5$. 9553
290	73.4779	73.4723	+. 0056	+. 8	1.0701
300	84.7969	84.7881	+. 0088	+1.0	1. 1947
310	97.4062	97.4015	+. 0047	+. 5	1. 3297
320	111.418	111.420	-. 002	-. 2	1. 4760
325	118.988	118. 994	-. 006	-. 5	1.5538
330	126. 960	126.964	-. 004	-. 3	1.6349
340	144. 167	144. 168	-. 001	-. 1	1. 8086
350	163. 205	163. 200	$+.005$	+. 3	2. 0016
355	173.473	173.470	$+.003$	$+.2$	2. 1076
360	184.297	184.290	$+.007$	+	2. 2220
362	188.787	183. 782	+. 005	+. 3	2. 2705
364	193.378	193. 373	+. 005	+. 3	2. 3208
366	198. 064	198. 067	-. 003	-. 2	2. 3732
368	202.857	202. 867	-. 010	-. 5	2. 4277
370	207.771	207. 781	-. 010	-. 5	2.4846
371	210.270	210. 279	-. 009	-. 4	2. 5141
372	212.795	212. 808	-. 013	-. 6	2. 5442
373	215. 363	215. 367	-. 004	-. 2	2. 5751
374	217.985	217.958	+. 027	+1.2	2. 6068

${ }^{1}$ Calculated from the equation

$$
\theta \log _{10} P=a \theta+b+c x^{3}+d x^{5}+e x^{6}
$$

where a, b, c, d, and e are constants given in the table below for the two temperature ranges, $\theta=(273.1+\theta)$, and $x=\left(\frac{\theta^{2}}{298,000}-1\right)$.
${ }^{2}$ Calculated from the equation

$$
\frac{d P}{d \theta}=2.302585 P\left(\frac{a-\log _{10} P}{\theta}+6 c x^{2}+10 d x^{4}+12 e x^{5}\right)
$$

which is the derivative of the above equation, using the same notation and constants.

Table of constants

	Range $100^{\circ}-275^{\circ} \mathrm{C}$.	Range $275^{\circ}-374^{\circ} \mathrm{C}$.
$a=$	+5.4247285	+5.4231165
$b=$	-2003.853	-2002.971
$c=$	+87.880	+109.54
$d=$	+107.35	+608.22
$e=$	-96.252	+1399.0

Table 3.-Pressure of saturated water vapor
[1 star.dard atmosphere $=101.325$ centibars $=1.033228 \mathrm{~kg} / \mathrm{cm}^{\text {1.]] }}$]

Temperature θ	$\begin{aligned} & \text { Pressure } \\ & P \end{aligned}$	$\begin{gathered} \text { Derivative } \\ d P / d \theta \end{gathered}$	$\begin{aligned} & \text { Pressure } \\ & P \end{aligned}$	$\begin{gathered} \text { Derivative } \\ d P / d \theta \end{gathered}$	$\stackrel{\text { Pressure }}{P}$	$\begin{gathered} \text { Derivative } \\ d P / d \theta \end{gathered}$	Temperature θ
		Std. Atm.	Centibars	Centibars		$\mathrm{kg} / \mathrm{cm}^{\text {a }}$	
${ }^{\circ} \mathrm{C}$. (Int.)	Std. Atm.	${ }_{\text {per }} 0.035 \mathrm{C} 9$.	Ceniol 102	${ }^{\text {per }}{ }_{3.615}$	1.03323	per 0.03688	${ }^{\circ} \mathrm{C}$. (Int.)
101	1. 0362	. 03676	104.99	3. 725	1.0706	. 03798	101
102	1.0735	. 03785	108. 77	3. 835	1. 1092	. 03911	102
103	1. 1119	. 03896	112.66	3. 948	1.1488	. 04025	103
104	1. 1515	. 04011	116. 68	4.064	1. 1898	. 04144	104
105	1. 1922	. 04128	120.80	4. 183	1. 23188	. 04265	105
106	1. 2341	. 04247	125.05	4. 303	1.2751	. 04388	106
107	1. 2771	. 04369	129.40	4. 427	1.3195	. 04514	107
108	1. 3214	. 04493	133. 89	4. 553	1.3653	. 04642	108
109	1. 3670	. 04621	138.51	4. 682	1.4124	. 04775	109
110	1. 4138	. 04750	143. 25	4.813	1. 4608	. 04908	110
111	1. 4620	. 04883	148. 14	4. 948	1. 5106	. 05045	111
112	1.5115	. 05019	153. 15	5. 086	1. 5617	. 05188	112
113	1. 5624	. 05157	158. 31	5. 225	1. 6143	. 05328	113
114	1.6146	. 05298	163.60	5.368	1.6682	. 05474	114
115	1. 6683	. 05442	169.04	5. 514	1. 7237	. 05623	115
116	1. 7235	. 05590	174. 63	5. 664	1.7808	. 055776	116
117	1. 7802	. 05740	180.38	5. 816	1. 8894	. 059391	117
118	1. 8383	. 05893	186. 27	5. 971	1.8994	. 06059	118
119	1. 8980	. 06049	192.31	6. 129	1.9611	. 06250	119
120	1. 9593	. 06208	198. 53	6. 290	2. 0244	. 06414	120
121	2. 0222	. 06370	204.90	6. 454	2. 0894	. 065852	121
122	2. 0867	. 06536	211.43	6. 623	2. 21560	. 066753	
123	2.1529 2.2208	. 066704	218. 14.14	6.793 6.967	2. 22244	. 066927	124
						.07285	125
125	2. 2904	. 07051		7. 326	2. 4404	. 07470	126
126	2. 3619	. 07230	239. 32	7. 510	2. 215160	. 07658	127
129	2. 5101	. 07597	254.34	7.698	2. 5935	. 07849	128
129	2. 5870	. 07786	262. 13	7.889	2. 6730	. 08045	129
130	2. 6658	. 07978	270.11	8. 08.4	2. 7544	. 08243	130
131	2. 7466	. 08173	278.30	8. 281	2. 8379	. 08445	131
132	2. 8293	. 08372	286. 68	8. 483	2. 9233	. 088650	${ }_{133} 13$.
133	2. 9140	. 08575	295. 26	8. 689	3. 0108	. 08860	
134	3. 0008	. 08781	304.06	8.897	3. 1005	. 09073	134
135	3. 1889	. 08991	313.05	9. 110	3. 1924	. 09290	135
136	3. 1806	. 09204	322. 27	9. 326	3. 2883	- 09510	135
137	3. 2738	. 09421	331. 72	9. 546	3. 3882	- 09734	137
138	3. 3691	-09642	341. 37	9. 7770	3. 4810		
139	3. 4666	. 09867	351. 25	9.998	3. 5818	. 10195	139
140	3. 5664	. 10095	361.37	10. 229	3. 6849	. 10430	140
141	3. 6686	. 10323	371.72	10. 465	3. 7905	. 10871	142
142	3. 7730	. 10564	382. 39	10.704	3. 8984	. 110915	142
143	3. 8798	. 10804	393. 12	10.947	4. $\begin{aligned} & \text { 4. } 1216\end{aligned}$		144
144	3. 9891	. 11048	404.20	11. 194	4. 1216	. 11415	144
145	4. 1008	. 11296	415. 51	11. 446	4. 2371	. 11671	115
146	4. 2150	11548	427.08	11. 701	4. 3551	. 112197	147
147	4. 3318	. 11805	438. 92	11. 961	4. 5999	. 12466	148
148	4. 4511	. 12065	${ }^{\text {451. }} 461$	12. 4222		. 12739	149
149	4.5731	. 12329	463.37				
150	4.6977	. 12598	475.99	12. 765	4. 8538		
151	4. 8251	. 12871	488. 90	13. 042	4. 9858	. 132985	152
152	4. 9552	. 13148	${ }^{502.09}$	13. 322	5. 1198	. 13875	153
153	5. 18880	. 13714	515.54 529	13. 896	5. 3974	.14170	154

[^6]Table 3.-Pressure of saturated water vapor-Continued

Temperature θ	$\begin{gathered} \text { Pressure } \\ P \end{gathered}$	Derivative $d P / d \theta$	$\underset{P}{\text { Pressure }}$	Derivative $d P / d \theta$	$\begin{aligned} & \text { Pressure } \\ & P \end{aligned}$	Derivative $d P / d \theta$	Temperature θ
${ }^{\circ} \mathrm{C}$. (Int.)	Std. Atm.	Std. Atm. per ${ }^{\circ} C$.	Centibars	Centibars per ${ }^{\circ} \mathrm{C}$.	$\mathrm{kg} / \mathrm{cm}^{2}$	$\begin{aligned} & \mathrm{kg} / \mathrm{cm}^{2} \\ & \mathrm{per} \end{aligned}$	${ }^{\circ} \mathrm{C}$. (Int.)
C. (155.)	5.3623	. 14004	543.34	14. 190	5.5405	per 14469	${ }^{\circ} \mathrm{C}$ ((1nt.)
156	5. 5039	. 14298	557.68	14. 487	5. 6868	. 14773	156
157	5. 6483	. 14597	572.31	14. 790	5. 8360	. 15082	157
158	5. 7959	. 14901	587.27	15. 098	5. 9885	. 15396	158
159	5. 9464	. 15209	602.52	15. 411	6. 1440	. 15714	159
160	6. 1000	. 15521	618.08	15. 727	6.3027	. 16037	160
161	6. 2568	. 15837	633.97	16.047	6. 4647	. 16363	161
162	6. 4168	. 16159	650.18	16. 373	6. 6300	. 16696	162
163	6. 5800	. 16485	666.72	16.703	6. 7986	. 17033	163
164	6.7465	. 16816	683.59	17.039	6. 9707	. 17375	164
165	6.9163	. 17151	700.79	17.378	7. 1461	. 17721	165
166	7.0895	. 17491	718.34	17.723	7.3251	. 18072	166
167	7.2661	. 17836	736.24	18.072	7.5075	. 18429	167
168	7. 4462	. 18185	754.49	18. 426	7.6936	. 18789	168
169	7. 6298	. 18540	773.09	18. 786	7.8833	. 19156	169
170	7.8171	. 18899	792.07	19. 149	8.0768	. 19527	170
171	8.0079	. 19263	811.40	19.518	8.2740	. 19903	171
172	8. 2023	. 19632	831.10	19.892	8.4748	. 20284	172
173	8. 4005	. 20007	851.18	20.272	8.6796	. 20672	173
174	8.6025	. 20386	871.65	20.656	8.8883	. 21063	174
175	8.8083	. 20770	892.50	21.045	9.1010	. 21460	175
176	9.0179	. 21159	913.74	21. 439	9.3175	. 21862	176
177	9. 2315	. 21554	935.38	21.840	9.5382	. 22270	177
178	9. 4490	. 21953	957.42	22. 244	9.7630	. 22682	178
179	9. 6705	. 22357	979.86	22.653	9.9918	. 23100	179
180	9. 8962	. 22768	1,002.7	23.070	10. 225	. 23525	180
181	10. 126	. 23183	1,026. 0	23. 490	10. 462	. 23953	181
182	10. 360	. 23604	1, 049.7	23.917	10. 704	. 24388	182
183	10. 598	. 24029	1,073.8	24.347	10.950	. 24827	183
184	10.840	. 24460	1, 098.4	24.784	11. 200	. 25273	184
185	11.087	. 24896	1,123.4	25.226	11.455	. 25723	185
186	11.338	. 25338	1,148.8	25. 674	11.715	. 26180	186
187	11.594	. 25786	1,174.8	26. 128	11.979	. 26643	187
188	11.854	. 26238	1,201. 1	26.586	12.248	. 27110	188
189	12. 119	. 26697	1,228.0	27.051	12.522	. 27584	189
190	12.388	. 27161	1,255.2	27.521	12.800	. 28064	190
191	12.662	. 27630	1,283. 0	27.996	13.083	. 28548	191
192	12.941	. 28105	1,311.2	28.477	13.371	. 29039	192
193	13. 224	. 28585	1,339.9	28.964	13. 663	. 29535	913
194	13. 512	. 29071	1,369.1	29.456	13. 961	. 30037	194
195	13.806	. 29564	1,398.9	29.956	14.265	. 30546	195
196	14.104	. 30061	1,429. 1	30.459	14.573	. 31060	196
197	14.407	. 30564	1,459.8	30.969	14.886	. 31580	197
198	14.715	. 31074	1,491. 0	31. 486	15. 204	. 32107	198
199	15.028	. 31589	1,522.7	32.008	15.527	. 32639	199
200	15.347	. 32110	1,555. 0	32.535	15.857	. 33177	200
201	15.671	. 32637	1,587.9	33.069	16. 192	. 33721	201
202	16.000	. 33169	1,621. 2	33.608	16. 532	. 34271	202
203	16.334	. 33708	1,655.0	34.155	16.877	. 34828	203
204	16.674	. 34252	1,689.5	34. 706	17. 228	. 35390	204
205	17.019	. 34803	1,724.5	35. 264	17. 585	. 35959	205
206	17.370	. 35360	1,760.0	35.829	17.947	. 36535	206
207	17.726	. 35922	1,796. 1	36.398	18.315	. 37116	207
208	18.088	. 36491	1,832.8	36.975	18.689	. 37704	208
209	18.456	. 37066	1,870. 1	37.557	19.069	. 38298	209
210	18.830	. 37647	1,907.9	38.146	19.456	. 38898	210
211	19. 209	. 38235	1,946.4	38.742	19.847	. 39505	211
212	19. 594	. 38828	1,985.4	39.342	20.245	. 40118	212
213	19.986	. 39428	2, 025.1	39.950	20.650	. 40738	213
214	20.383	. 40034	2,065. 3	40.564	21.060	. 41364	214
215	20.786	. 40846	2,106. 1	41.185	21.477	. 41997	215
216	21. 196	. 41265	2,147. 7	41.812	21.900	. 42636	216
217	21.612	. 41800	2,189.8	42.445	22. 330	. 43282	217
218	22.034	. 42522	2,232. 6	43.085	22.766	. 43935	218
219	22.462	. 43160	2,276.0	43.732	23.208	. 44594	219

Table 3.-Pressure of saturated water vapor-Continued

Temperature θ	$\begin{aligned} & \text { Pressure } \\ & P \end{aligned}$	Derivative $d P / d \theta$	$\begin{gathered} \text { Pressure } \\ P \end{gathered}$	Derivative $d P / d \theta$	$\begin{gathered} \text { Pressure } \\ P \end{gathered}$	Derivative $d P / d \theta$	Temperature θ
${ }^{\circ} \mathrm{C}$. (Int.)	Std. Atm.	Std. Atm. per ${ }^{\circ} C$.	Centibars	Centibars per ${ }^{\circ} \mathrm{C}$.	$\mathrm{kg} / \mathrm{cm}^{2}$	$\begin{gathered} \mathrm{kg} / \mathrm{cm}^{2} \\ \mathrm{per}{ }^{\circ} \mathrm{C} . \end{gathered}$	${ }^{\circ} \mathrm{C}$. (Int.)
C. 220	22.897	per 43805	2,320.0	-44.385	kg/cm 23.658	${ }^{\text {per }} .45261$	${ }^{\circ}$ C. (Int.)
221	23.338	. 44455	2,364. 7	45.044	24. 113	. 45932	221
222	23. 786	. 45113	2,410.1	45.711	24. 576	. 46612	222
223	24.240	. 45777	2,456. 1	46. 384	25.045	. 47298	223
224	24.702	. 46448	2,502. 9	47.063	25.523	. 47991	224
225	25. 170	. 47125	2, 550.4	47.749	26.006	. 48691	225
226	25.644	. 47809	2, 598.4	48.442	26.496	. 49398	226
227	26.126	. 48500	2,647.2	49.143	26.994	. 5011	227
228	26.614	. 49197	2,696. 7	49.849	27.498	. 5083	228
229	27.110	. 49901	2,746.9	50.56	28, 011	. 5156	229
230	27.612	. 5061	2,797. 8	51. 28	28.529	. 5229	230
231	28.122	. 5133	2,849. 5	52.01	29.056	. 5304	231
232	28.639	. 5205	2,901. 8	52.74	29.591	. 5378	232
233	29.163	. 5279	2,954. 9	53.48	30.132	. 5454	233
234	29.695	. 5352	3,008. 8	54.23	30.682	. 5530	234
235	30. 234	. 5427	3063. 5	54. 98	31. 239	. 5607	235
236	30. 780	. 5502	3118.8	55. 75	31. 803	. 5685	236
237	31.334	. 5578	3174.9	56.52	32. 375	. 5763	237
238	31.896	. 5655	3231.9	57.30	32. 956	. 5843	238
239	32. 465	. 5732	3289.5	58.08	33. 544	. 5923	239
240	33.042	. 5810	3348.0	58.87	34. 140	. 6003	240
241	33.627	. 5889	3407.3	59.67	34. 744	. 6085	241
242	34. 220	. 5968	3467.3	60.47	35. 357	. 6167	242
243	34.821	. 6049	3528.2	61.29	35. 978	. 6250	243
244	35.430	. 6130	3589.9	62.11	36.607	. 6333	244
245	36. 047	. 6211	3652.5	62.93	37. 245	. 6418	245
246	36. 672	. 6293	3715.8	63. 77	37.891	. 6503	246
247	37. 305	. 6377	3779.9	64.61	38.545	. 6589	247
248	37. 947	. 6460	3845. 0	65.46	39. 208	. 6675	248
249	38. 598	. 6545	3910.9	66. 32	39.881	. 6763	249
250	39. 256	. 6630	3977.6	67.18	40. 560	. 6851	250
251	39.924	. 6717	4045. 3	68. 06	41.251	. 6940	251
252	40.600	. 6803	4113.8	68.93	41.949	. 7029	252
253	41. 284	. 6891	4183.1	69. 82	42.656	. 71211	253
254	41.978	. 6979	4253.4	70. 72	43. 373	. 7211	254
255	42. 680	. 7068	4324.6	71. 62	44. 098	. 7303	255
256	43. 392	. 7158	4396.7	72. 53	44.834	. 7396	256
257	44. 112	. 7249	4469.6	73.45	45. 578	. 74984	257
258	44.841	. 7340	4543.5	74. 38	46.331	. 7684	258
259	45. 580	. 7433	4618.4	75. 31	47.095	. 7680	259
260	46.328	. 7526	4694.2	76. 25	47. 867	. 7776	260
261	47.085	. 7619	4770.9	77. 20	48.650	. 7873	261
262	47.852	. 7714	4848.6	78. 16	49. 442	. 7970	263
263	48.628	. 7809	4927.2 5005	79.13 80.10	50.244 51.056	. 8069	264
264	49.414	. 7906	5005.9	80.10	51.056	. 8168	264
265	50.209	. 8002	5087.4	81.08	51.877	. 8208	265
266	51.014	. 8100	5169.0	82. 08	52. 709	. 8369	268
267	51.829	. 8199	5251.6	83. 08	53.551	. 8471	208
268	52.654	. 8298	5335.2	84. 08	54. 404	. 8574	269
269	53.489	. 8399	5419.8	85.10	55.266	. 8678	269
270	54. 334	. 8500	5505.4	86. 12	56. 139	. 8788	270
271	55. 189	. 8602	5592.0	87. 16	57.023 57.917	. 88887	272
272	56. 054	. 8704	5679.7	88. 20	57.917 58.822	. 889101	273
273	56.930	. 8808	5768.4	89.25 90.31	58.822 59.737	. 9209	274
274	57.816	. 8912	5858.2	90.31	69.73		
275	58.712	. 9018	5949.0	91.37	60. 663	. 9317	275 276
276	59. 619	. 9120	6040.9	92.41	61. 600	. 9423	278
277	60.536	. 9227	6133.8	93. 49	62.547	. 9845	278
278	61. 464	. 9335	6227.8	94. 58	64. 477	. .9757	279
278	62.403	. 9444	6323.0	95.69	64. 47	. 975	270
280	63.353	. 9553	6419.2	96. 80	55.458	. 9871	280
281	64. 314	. 9664	6516.6	97.92	66.451	. 9985	281
282	65. 286	. 9775	6615.1	99.05	67.455	1.0100	2×2
283	66. 269	. 9888	6714.7	100. 19	f6. 471	1.0216	284
284	67. 263	1.0001	6815.4	101.34	69.488	1.0333	204

Table 3.-Pressure of saturated water vapor-Continued

Temperature θ	$\begin{gathered} \text { Pressure } \\ P \end{gathered}$	Derivative $d P / d \theta$	$\begin{gathered} \text { Pressure } \\ P \end{gathered}$	Derivative $d P / d \theta$	$\underset{P}{\text { Pressure }}$	Derivative $d P / d \theta$	Temperature θ
	Std Atm.	Std. Atm.	Centibars	Centibars	$\mathrm{kg} / \mathrm{cm}^{2}$	${ }^{\mathrm{kg} / \mathrm{cm}^{2}}{ }^{\text {d }}$	${ }^{\circ} \mathrm{C}$. (Int.)
${ }^{\circ} \mathrm{C}$. (Int.)	Sta. Atm.	per 1.0116	Centibars	per ${ }^{102.50}$	kg/cm 70.537	per 1.0452	${ }^{\circ}$ C. (Int.)
286	69. 286	1. 0231	7020.4	103.67	71.588	1. 0571	286
287	70.315	1. 0347	7124.7	104. 84	72. 651	1. 0691	287
288	71.356	1. 0464	7230.1	106. 03	73. 727	1. 0812	288
289	72.408	1. 0582	7336.7	107.22	74.814	1. 0934	289
290	73.472	1.0701	7444.6	108.43	75. 913	1. 1057	290
291	74. 548	1.0821	7553.6	109.64	77.025	1. 1181	291
292	75.637	1.0942	7663.9	110.87	78.150	1. 1306	292
293	76. 737	1. 1064	7775.4	112.11	79. 287	1. 1432	293
294	77.850	1.1188	7888.2	113.36	80.437	1. 1560	294
295	78.974	1. 1312	8002.0	114.62	81.598	1. 1688	295
296	80.112	1. 1437	8117.3	115.89	82.774	1. 1817	296
297	81.262	1.1563	8233.9	117. 16	83.962	1. 1947	297
298	82. 424	1. 1690	8351.6	118.45	85. 163	1. 2078	298
299	83.600	1. 1818	8470.8	119.75	86.378	1. 2211	299
300	84. 788	1. 1947	8591.1	121.05	87.605	1. 2344	300
301	85.989	1. 2077	8712.8	122.37	88.846	1. 2478	301
302	87. 204	1. 2209	8835.9	123.71	90.102	1. 2615	302
303	88.431	1. 2341	8960.3	125. 05	91.369	1. 2751	303
304	89.672	1. 2474	9086.0	126.39	92.652	1. 2888	304
305	90.926	1. 2609	9, 213.1	127.76	93.947	1. 3028	305
306	92.194	1.2744	9, 341.6	129.13	95.257	1.3167	306
307	93.475	1. 2881	9, 471. 4	130.52	96.581	1.3309	307
308	94.770	1.3019	9,602. 6	131.92	97.919	1.3452	308
309	96.079	1.3157	9,735. 2	133.31	99.272	1.3594	309
310	97.402	1. 3297	9, 869.3	134.73	100.64	1. 3739	310
311	98.738	1.3438	10,005	136.16	102.02	1. 3885	311
312	100.09	1.3581	10,142	137.61	103.42	1.4032	312
313	101.45	1.3724	10, 279	139.06	104.82	1.4180	313
314	102.83	1.3868	10, 419	140.52	106.24	1.4329	314
315	104.23	1.4014	10,561	142.00	107.69	1.4480	315
316	105. 64	1. 4161	10, 704	143.49	109.15	1.4632	316
317	107.06	1. 4309	10,848	144.99	110.62	1.4784	317
318	108. 50	1. 4458	10, 994	146.50	112.11	1.4938	318
319	109.95	1. 4609	11, 141	148.03	113.60	1. 5094	319
320	111.42	1. 4760	11, 290	149.56	115.12	1. 5250	320
321	112.90	1.4913	11, 440	151.11	116.65	1. 5409	321
322	114.40	1. 5068	11, 592	152.68	118.20	1. 5569	322
323	115.92	1. 5223	11, 746	154.25	119.77	1. 5729	323
324	117.45	1. 5380	11,901	155.84	121.35	1.5891	324
325	118.99	1. 5538	12, 057	157.44	122.94	1. 6054	325
326	120.55	1. 5697	12, 215	159.05	124.56	1. 6219	326
327	122. 13	1. 5858	12, 375	160.68	126.19	1. 6385	327
328	123.73	1. 6020	12,537	162.32	127. 84	1. 6552	328
329	125.34	1. 6184	12, 700	163.98	129.50	1,6722	329
330	126.96	1.6349	12, 864	165. 66	131.18	1. 6892	330
331	128.61	1. 6516	13, 031	167.35	132.88	1. 7065	331
332	130. 27	1. 6684	13, 200	169. 05	134.60	1.7238	332
333	131.94	1. 6853	13, 369	170.76	136.32	1. 7413	333
334	133.64	1. 7024	13,541	172.50	138.08	1. 7590	334
335	135.35	1.7197	13, 714	174.25	139.85	1.7768	335
336	137.08	1.7371	13, 890	176.01	141.63	1.7948	336
337	138.82	1,7547	14, 066	177.80	143. 43	1.8130	337
338	140.59	1.7724	14, 245	179. 59	145.26	1.8313	338
339	142.37	1. 7905	14, 426	181.42	147.10	1,8500	339
340	144.17	1. 8086	14, 608	183. 26	148.96	1.8687	340
341	145.98	1. 8269	14, 791	185.11	150.83	1.8876	341
342	147.82	1.8455	14, 978	187.00	152.73	1. 9068	342
343	149.68	1.8642	15, 166	188.89	154.65	1. 9261	343
344	151.55	1.8831	15,356	190.81	156.59	1.9457	344
345	153.44	1. 9023	15,547	192.75	158.54	1. 9655	345
346	155.36	1. 9217	15, 742	194.72	160.52	1. 9856	346
347	157.29	1.9413	15,937	196.70	162. 52	2.0058	347
348	159. 24	1.9611	16, 135	198. 71	164.53	2.0263	348
349	161. 21	1. 9812	16, 335	200. 75	166.57	2.0470	349
350	163.20	2.0016	16,536	202.81	168.62	2.0681	350
351	165.21	2.0222	16, 740	204.90	170.70	2.0894	351
352	167.24	2.0431	16, 946	207.02	172.80	2.1110	352
353	169.30	2.0843	17, 154	209.17	174.93	2. 1329	353
354	171.37	2.0858	17, 364	211.34	177.06	2.1551	354

Table 3.-Pressure of saturated water vapor-Continued

Temperature θ	$\begin{aligned} & \text { Pressure } \\ & P \end{aligned}$	Derivative $d P / d \theta$	$\begin{gathered} \text { Pressure } \\ P \end{gathered}$	$\begin{aligned} & \text { Derivative } \\ & d P / d \theta \end{aligned}$	$\underset{P}{\text { Pressure }}$	Derivative $d P / d \theta$	Temperature θ
${ }^{\circ} \mathrm{C}$. (Int.)	Std. Atm.	Std. Atm. per ${ }^{\circ} \mathrm{C}$.	Centibars	Centibars per ${ }^{\circ} \mathrm{C}$.	$\mathrm{kg} / \mathrm{cm}^{3}$	${ }^{\mathrm{kg} / \mathrm{cm}^{2}} \mathrm{per}{ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$ (Int)
C. (1nt.)	173.47	2.1076	17,577	213. 55	179.23	per 2.1776	${ }^{\circ}$ C. (1mt.)
356	175. 59	2. 1298	17, 792	215.80	181.42	2. 2006	356
357	177. 73	2.1523	18, 008	218.08	183. 64	2. 2238	357
358	179.89	2. 1751	18, 227	220.39	185. 87	2. 2474	358
359	182.08	2. 1984	18,449	222.75	188.13	2. 2714	359
360	184. 29	2. 2220	18, 673	225.14	190.41	2. 2958	360
361	186.52	2. 2460	18, 899	227.58	192. 72	2.3206	361
362	188.78	2. 2705	19, 128	230.06	195. 05	2. 3459	362
363	191.06	2. 2954	19,359	232. 58	197. 41	2. 3717	363
364	193.37	2. 3208	19, 593	235.16	199.80	2. 3979	364
365	195. 71	2. 3467	19,830	237.78	202. 21	2. 4247	365
366	198.07	2. 3732	20, 069	240.46	204.65	2.4521	366
367	200.45	2. 4001	20, 311	243.19	207.11	2.4799	367
368	202.87	2. 4277	20, 556	245.99	209.61	2. 5084	368
369	205.31	2. 4558	20,803	248.83	212.13	2.5374	369
370	207. 78	2.4846	21, 053	251.75	214.68	2. 5672	370
371	210.28	2.5141	21, 307	254.74	217.27	2. 5976	371
372	212.81	2.5442	21, 563	257.79	219.88	2. 6287	372
373	215.37	2.5751	21, 822	260.92	222. 53	2. 6607	373
374	217.96	2. 6068	22, 085	264.13	225.20	2.6934	374

The kilogram per square centimeter has a wide usage, particularly abroad and in scientific circles. Its chief disadvantage is that the intensity of gravity must be specified to make the unit definite. A second is that, lacking a name, it has frequently been confused with the atmosphere, having approximately the same value. The three units are used coordinately in this table to facilitate their use interchangeably and give the user a choice of unit appropriate for his purpose.

Table 4 contains values of the pressure of saturated steam in pounds per square inch at each degree Fahrenheit. This pressure unit, like the $\mathrm{kg} / \mathrm{cm}^{2}$ is indefinite unless the intensity of gravity is specified. Table 5 contains values of the derivative in the corresponding units.

Table 4.-Pressure of saturated water vapor
[Pounds ${ }^{1}$ per square inch]

Tem- pera- ture - F .	0	1	2	3	4	5	6	7	8	9
ϑ	Pressure									
	Lbs./in. ${ }^{2}$	Lbs./in. ${ }^{2}$	Lbs./in. ${ }^{2}$	Lbs./in. ${ }^{2}$	Lbs./ın. ${ }^{2}$	Lbs./2n. ${ }^{2}$	Lbs./in. ${ }^{2}$	Lbs./in. ${ }^{2}$	Lbs./in. ${ }^{2}$	Lbs./in. ${ }^{2}$
210			14.696	14.990	15. 288	15. 592	15. 900	16. 213	16. 532	18.857
220	17.186	17.521	17.862	18. 206	18.556	18. 911	19.273	19.640	20.014	20.393
230	20.777	21.167	21.565	21. 969	22.377	22. 793	23. 215	23.642	24.076	29.318
240	24.966	25.420	25.882	26.349	26. 824	27.305	27.795	28.290	23.794	29.305 34.829
250	29.823	30.348	30.877	31.420	31.969	32. 525	33. 088	33.660	34. 243	34.828
260	35.425	36.028	36.641	37.262	37.892	38. 530	39. 177	39.834	40. 495	41.172
270	41.853	42. 545	43.246	43.957	44. 677	45. 406	46. 144	46.892	47.651	48.419
280	49.198	49. 986	50. 784	51.593	52.412	53. 213	54. 083	54.933	55. 793	56.685 68.000
290	57.549	58. 444	59.349	60.266	61. 194	62. 133	63.085	64.046 74.336	65.020 75.433	66.001 76.546
300	67.006	68.015	69.038	70.074	71.120	72. 181	73.251	74.336	75. 433	7.546
310	77.669	78.805	79.957	81.119	82. 299	83.484	84. 691	85. 909	87.141	88.386
320	89.646	90.922	92. 209	93.514	94.829	96.162	97.510	98. 873	100.25	101. 64
330	103.05	104.47	105.91	107.36	108.84	110.32 126.09	111.83 127.76	113.34 129.45	114.88 131.15	116.43 132.87
340	118.00	119. 58	121.18	122.80	124.44 141.75	126.09 143.58	127.76 145.44	127.31	149.19	151.10
350	134.62	136.37	138.15	139.94	141.75	143.58	145.44	147.31	149.19	151.10

${ }^{1}$ Standard gravity $=32.174 \mathrm{ft} . / \mathrm{sec}^{2}{ }^{2}$

Table 4.-Pressure of saturated water vapor-Continued

Tem. perature	0	1	2	3	4	5	6	7	8	9
θ	Pressure									
	Lbs./in.	${ }^{2}$ Lbs./in.	Lbs..in.	2 Lbs./in.	Lbs./in.	${ }^{2}$ Lbs./in. ${ }^{\text {a }}$				
360	153.02	154.97	156.93	158. 91	160. 91	162.94	164.98	167.04	169. 13	171.23
370	173.35	175. 50	177.67	179.85	182.06	184. 29	186. 53	188.81	191. 10	193.41
380	195. 74	198.10	200. 48	202. 89	205. 32	207.76	210.24	212.72	215. 24	217. 78
390	220.34	222. 92	225. 54	228. 18	230.84	233.50	236.21	238.95	241. 70	244.48
400	247.29	250.11	252.97	255.85	258.75	261.67	254.63	267.61	270.63	273.66
410	276.73	279.81	282.92	236.05	289. 22	292.43	295.65	298.90	302.16	305. 47
420	308. 82	312.17	315. 56	318. 98	322.43	325.89	329.40	332.93	336. 50	340.09
430	343.70	347.35	351.03	354. 74	358.47	362.25	366. 06	369.90	373.76	377.65
440	381. 58	385. 53	389.52	393.53	397. 60	401.68	405. 79	409. 94	414. 12	418. 33
450	422.57	428.86	431.17	435. 53	439.90	444.32	448.77	453. 24	457.76	462.31
460	466.90	471.51	476. 17	480. 86	485. 59	490.35	495. 15	499. 98	504. 85	509. 78
470	514.69	519.68	424.69	529. 78	${ }_{587}^{534.84}$	539.98	545. 12	550.32	555. 57	560.86
480	566.17	571.52	576. 91	582. 36	587.83	593. 33	598. 88	604.46	610.08	615. 77
490 500	621.48 680.84	627.23 687.01	633.03 693.21	638.86 699.46	644.72 705.76	650.63 712.09	656.59 718.47	662.60 724.90	668.64 731.36	674.72 737.88
510	744.44	751.03	757.67	764.35	771.10	777.87	784.71	791.57	798.50	805.46
520	812.46	819.52	826. 82	833.77	840.96	848.20	855.50	862.84	870.23	877. 66
530	885.12	892.65	900. 23	907.85	915. 5\%	923.26	931.04	938.37	940. 74	954. 68
540	962.64	970.67	978.74	986.87	995. 04	1. 003.3	1, 011.6	1, 019.9	1,028.3	1,036. 7
550	1,045.2	1,053.8	1,062.4	1,071.0	1,079.7	1,088.5	1,097.3	1,106.2	1,115.1	1,124.1
580	1,133.2	1,142.3	1,151.4	1,160.6	1,169.9	1,179.2	1,188.6	1,198.0	1,207. 5	1,217.0
570	1, 226. 6	$1,236.3$	1,246.0	1, 255.8	1, 265.7	1,275. 6	$1,285.5$	1,295. 5	1,305. 6	1, 315.8
580	$1,326.0$	1, 338.3	1, $1,346.6$	1, 357.0	1, 367. 4	1,377.9	1, 388.5	1, 399.1	$1,409.8$	$1,420.6$
590 600		1, $1,542.3$	$1,453.3$ $1,566.4$	$1,464.3$ $1,578.1$	$1,375.3$ $1,589.8$	$1,436.4$	1, $1,497.6$	1, 508.9	1, $1,520.3$	1, 531.8
600	1,543.3	1,554.8	1,566. 4	1,578.1	1,589.8	1,601.6	1,613.4	1,625.4	1, 637.4	1,649.5
610	1,661.6	1,673.8	1,686. 1	1,698. 6	1,711.1	1,723.6	1,736.2	1,748.8	1,761.4	1,774.2
620	1,787.0	1,800.0	1,813.1	1, 826.2	1, 839.4	1,852.6	1, 865.9	1,879.3	1,892.8	1,906. 3
630	1,919.9	1,933. 5	1,947. 3	1,961. 2	1,975. 1	1,989.1	2, 003.2	2,017.3	2,031. 5	2,045.8
640	2, 060.2	2, 074.7	2, 089.3	2, 104.0	2, 118.7	2, 133.4	2, 148.3	2,163.4	2, 178.4	2, 193. 6
650	2, 208.8	2, 224.1	2, 239.5	2, 255. 0	2, 270.6	2, 286.3	2, 302.0	2,317.8	2, 333.8	2,349.8
660	2,366. 0	2,382. 2	2,398. 4	2, 414.7	2,431.2	2,447.8	2,464.5	2,481.3	2,498.1	2,515.1
670	2,532.1	2, 549.3	2,566. 6	2,584.0	2,601.4	2, 618.9	2,636.6	2,654.3	2,672.3	2,690.3
680	2, 708.3	2, 726. 5	2, 744. 8	2, 783. 2	2, 781.7	2, 800.3	2, 819.0	2, 838.0	2, 357.0	2,876.2
690	2,895. 5	2,914.8	2,934.1	2, 953. 6	2,973.4	2,993. 3	3,013.3	3,033.4	3,053.6	3,073.9
700	3,094. 4	3,115.0	3, 135.8	\|3,156.7	3,177.7	3,198.9				

Table 5.-Derivative of the pressure of saturated water vapor ($d P / d$)
[Pounds ${ }^{1}$ per square inch per degree Fahrenheit]

Temperature θ	0	1	2	3	4	5	6	7	8	9
	Derivative									
${ }^{-} \mathrm{F}_{210}$	$\begin{gathered} \text { Lbs./inn. } \\ \hline F . \end{gathered}$	$\text { Lbs./in. }{ }_{o}^{2}$	$\begin{gathered} L b s . / i n .{ }^{2} \\ 0 . F . \\ 0.2914 \end{gathered}$	$\begin{gathered} L b s . / i n .{ }^{2} \\ 0 F . \\ 0.2962 \end{gathered}$	$\begin{gathered} L b_{8} . / i n .^{2} \\ 0 F . \\ 0.3011 \end{gathered}$	$\begin{gathered} \text { Lbs./in. }{ }^{2} \\ 0 \text { F. } \\ 0.3061 \end{gathered}$	$\begin{gathered} L b s_{.} / i n .^{2} \\ o F \\ 0.3111 \end{gathered}$	$\begin{gathered} \text { Lbs./in. }{ }^{2} \\ 0 F \\ 0.3161 \end{gathered}$	$\begin{gathered} L b s . / i n .^{2} \\ 0 F . \\ 0.3212 \end{gathered}$	$\begin{gathered} L b s . / i n .^{2} \\ 0 F . \\ 0.3264 \end{gathered}$
220	0.3317	0.3370	. 3424	. 3478	-.3534	. .3590	. 3646	$\begin{array}{r}\text {. } 3703 \\ \hline\end{array}$. 3761	. 3819
230	. 3878	. 3938	. 3999	. 4061	. 4123	. 4186	. 4249	. 4313	. 4378	. 4443
240	. 4511	. 4578	. 4816	. 4714	. 4783	. 4854	. 4924	. 4996	. 5008	. 5142
250	. 5216	. 5291	. 5387	. 5443	. 5520	. 5598	. 5677	. 5757	. 5833	. 5919
280	. 6002	. 6085	. 6169	. 6254	. 6339	. 6427	. 6514	. 6602	. 6691	. 6781
270	. 6872	. 6964	. 7057	. 7151	. 7246	. 7341	. 7437	. 7534	. 7633	. 7732
280	. 7832	. 7933	. 8036	. 8139	. 8242	. 8348	. 8454	. 8561	. 8668	. 8778
290	. 8887	. 8998	. 9110	. 9223	. 9337	. 9452	. 9568	. 9686	. 9803	. 9922
300	1. 0042	1.0163	1. 0288	1. 0409	1. 0533	1. 0659	1. 0786	1. 0913	1. 1042	1. 1171
310	1. 1302	1. 1433	1. 1568	1. 1702	1. 1837	1. 1973	1. 2111	1. 2250	1. 2389	1. 2531
320	1. 2872	1. 2816	1. 2959	1. 3105	1. 3252	1. 3400	1. 3549	1. 3699	1. 3851	1. 4003
330	1. 4157	1. 4312	1. 4468	1. 4828	1. 4784	1. 4944	1.5105	1. 5267	1. 5430	1. 5595
340	1. 5761	1. 5928	1. 6096	1. 6267	1. 6437	1. 6809	1.6783	1. 6958	1.7134	1.7311
350	1.7491	1.7670	1. 7851	1. 8033	1.8217	1.8402	1.8589	1.8777	1. 8986	1.9157
380	1. 9349	1. 9541	1. 9736	1. 9932	2.0128	2.0328	2.0527	2.0728	2.0931	2.1135
370	2. 1340	2.1547	2. 1755	2. 1985	2. 2178	2. 2388	2. 2601	2. 2817	2. 3033	2.3251
380	2.3471	2. 3691	2. 3914	2. 4138	2. 4363	2. 4589	2.4817	2.5046	2. 5278	2. 5511
390	2. 5744	2. 5980	2.6216	2.8456	2. 6695	2.6936	2.7178	2.7423	2.7689	2.7916
400	2.8165	2. 8415	2.8668	2.8921	2.9178	2. 9432	2.9690	2. 9949	3.0211	3. 0473

[^7]Table 5.-Derivative of the pressure of saturated water vapor ($d P / d$)-Continued

Temperature θ	0	1	2	3	4	5	6	7	8	9
	Derivative									
- $F_{\text {. }}$			Los./in. - F.		Lbs./in. ${ }^{2}$ - F.	$L_{0 .}^{L b s . / i n .}{ }^{2}$	$\begin{gathered} L b_{0} . / i n .{ }^{2} \\ o \end{gathered}$	$\begin{gathered} L b s, / i n .{ }^{2} \\ \circ \end{gathered}$	$\begin{gathered} L b s . i / n .{ }^{2} \\ \circ F . \end{gathered}$	$L b s . / i n g_{F}^{2}$
410	3. 0737	3. 1004	3.1271	3.1540	3. 1810		$\text { 3. } 2355$	3. 2031	$\text { 3. } 2908$	3.3186
420	3. 3466	3. 3747	3.4031	3. 4316	3. 4603	3. 4891	3. 5180	3.5472	3. 5764	3. 6060
430	3. 6355	3. 6654	3. 6953	3. 7254	3. 7557	3. 7862	3. 8168	3.8475	3. 8789	3. 9097
440	3. 9410	3. 9724	4.0041	4. 0358	4. 0678	4. 0999	4.1322	4.1648	4. 1974	4. 2303
450	4. 2633	4. 2965	4.3298	4. 3633	4. 3969	4. 4308	4.4649	4.4992	4.5330	4.5681
460	4.6030	4. 6379	4.6730	4. 7083	4. 7437	4. 7794	4.8152	4.8513	4.8874	4.9238
470	4. 9604	4. 9971	5. 034	5. 071	5. 108	5. 146	5. 184	5. 221	5. 2.59	5. 298
480	5. 336	5. 375	5. 413	5. 453	5. 492	5. 531	5. 571	5. 610	5. 650	5. 691
490	5. 731	5. 771	5. 812	5.853	5. 894	5. 935	5. 977	6. 018	6. 080	6. 102
500	6. 144	6.187	6. 230	6.273	6. 316	6. 359	6. 402	6. 446	6. 489	6. 534
510	6. 578	6. 622	6. 667	6. 712	6. 757	6. 803	6. 848	6. 894	6.939	6.986
520	7. 032	7.079	7.126	7.172	7. 219	7. 267	7.315	7. 363	7.411	7. 458
530	7.506	7. 554	7. 602	7.651	7.700	7. 750	7. 800	7. 850	7.900	7.951
540	8.002	8. 053	8.104	8.155	8. 207	8. 259	8. 312	8. 364	8. 416	8.469
550	8. 522	8. 575	8. 629	8.683	8.737	8. 791	8.846	8.901	8. 956	9.011
560	9. 067	9. 123	9. 179	9. 236	9. 292	9. 349	9. 407	9. 464	9. 521	9. 579
570	9. 637	9.695	9. 754	9. 813	9. 872	9. 932	9.992	10. 052	10. 112	10. 172
580	10. 233	10. 294	10.355	10.417	10.479	10. 541	10.604	10.667	10.730	10. 793
590	10.856	10.920	10. 984	11.049	11. 114	11. 179	11. 244	11. 310	11. 376	11.442
600	11.508	11. 575	11. 642	11. 710	11. 778	11.846	11. 914	11. 982	12. 051	12. 120
610	12. 190	12. 260	12.330	12. 401	12. 472	12.543	12. 614	12. 686	12. 758	12. 830
620	12.903	12. 976	13.050	13. 124	13. 198	13. 273	13. 348	13. 424	13. 500	13. 576
630	13.652	13.729	13.806	13.884	13. 962	14.041	14. 120	14. 199	14. 278	14. 358
640	14. 439	14.520	14.602	14. 684	14. 766	14.849	14.933	15. 017	15. 102	15. 187
650	15. 272	15. 357	15. 444	15. 531	15.619	15. 707	15. 796	15. 886	15.976	16. 066
660	16.157	16. 249	16. 342	16. 435	16. 529	16. 624	16. 719	16.815	16. 912	17. 010
670	17. 109	17. 208	17. 308	17. 409	17.511	17.613	17.717	17. 822	17.928	18. 034
680	18.142	18. 251	18.361	18.471	18. 582	18.696	18.810	18. 925	19.042	19.159
690	19. 280	19. 401	19. 522	19.646	19.771	19.898	20.025	20.155	20. 286	20. 419
700	20.553	20.690	20.828	20.968	21.111	21. 254				

Tables 6 and 7 are reciprocal to Tables 3 and 4 and express the same relation of vapor pressure to temperature arranged to indicate temperatures corresponding to integral values of saturation pressures.

Table 6.-Pressure of saturated water vapor
[Even pressures in pounds ${ }^{1}$ per square inch with corresponding temperatures in degrees Fahrenheit]

$\underset{P}{\text { Pressure }}$	Temp. θ	$\underset{P}{\text { Pressure }}$	Temp. θ	$\begin{array}{\|c} \text { Pressure } \\ P \end{array}$	Temp. θ	$\underset{P}{\text { Pressure }}$	Temp. θ
Lbs./in. ${ }^{2}$	${ }^{\circ} \mathrm{F}$.	Lbs./in. ${ }^{2}$	${ }^{\circ} \mathrm{F}$.	Lbs./in. ${ }^{\text {. }}$.	${ }^{\circ}{ }^{\circ} \mathrm{F}$.	$\text { Lbs./fn. } 2$	
${ }_{16}^{15}$	213. 034	30 31	250. 340	45 46	274.444 275.806	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	$\begin{aligned} & 292.711 \\ & 293.792 \end{aligned}$
17	216. 219.436	31 32	252. 224	47	275. 143 277	$\begin{aligned} & 61 \\ & 62 \end{aligned}$	294.859
18	222.405	33	255. 841	48	278.456	63	295.911
19	225.247	34	257. 584	49	279.747	64	296.953
20	227.963	35	259. 288	50	281.018	65	297.980
21	230.572	36	260. 954	51	282. 268	66	298. 9994
22	233.076	37	262. 580	52	283. 499		299.99.4
23	235.493	38	264. 170	53 54	284.708 285.902	68 69	300.985 301.983
24	237.826	39	265.728	54	285.902		301.963
	240.075	40	267. 251	55	287.078		
26	242. 253	41	268.746	56	238. 238	71	303. 888
27	244.367	42	270.214			72	
28	246. 415	43 4	271. 650	$\begin{aligned} & 58 \\ & 59 \end{aligned}$	$\begin{aligned} & 290.505 \\ & 291.616 \end{aligned}$	$\begin{aligned} & 73 \\ & 74 \end{aligned}$	305.762 306.692
	248.405						

${ }^{1}$ Standard gravity $=32.174 \mathrm{ft} . / \mathrm{sec} .^{2}$

Table 6.-Pressure of saturated water vapor-Continued

$\underset{P}{\text { Pressure }}$	Temp. θ	$\left\lvert\, \begin{gathered} \text { Pressure } \\ P \end{gathered}\right.$	Temp. θ	$\underset{P}{\text { Pressure }}$	Temp. θ	$\underset{P}{\text { Pressure }}$	Temp. θ
Lbs./in. ${ }^{2}$	${ }^{\circ} \mathrm{F}$.	Lbs./in. ${ }^{2}$	${ }^{\circ}{ }^{\circ} \mathrm{F}$.	Lbs./in. ${ }^{2}$	${ }^{\circ}{ }^{\circ}{ }^{\text {c }}$.	Lbs./in. ${ }^{2}$	${ }^{\circ}{ }^{\circ} \mathrm{F}$.
75	307.607	180	373.067	475	461.749	1,200	567.211
76	308.509	182	373.973	480	462.817	1,220	569. 309
77	309.405	184	374. 872	485	463.875	1,240	571.381
78	310.293	186	375.763	490	464. 927	1,260	573.428
79	311.170	188	376.647	495	565. 969	1,280	575.449
80	312.037	190	377.522	500	467.004	1,300	577.444
81	312.898	192	378.390	510	469.049	1,320	579. 414
82	313.749	194	379. 253	520	471.064	1,340	581. 362
83	314. 595	196	380.110	530	473.049	1,360	583. 290
84	315. 429	198	380.958	540	475.008	1,380	585.197
85	316. 255	200	381. 799	550	476.939	1,400	587. 082
86	317.074	205	383.868	560	478.841	1,420	588.946
87	317.886	210	385.903	570	480.717	1,440	590.789
88	318. 691	215	387.905	580	482.566	1,460	592.615
89	319.488	220	389.868	590	484.395	1,480	594.421
90	320.279	225	391. 794	600	486. 201	1,500	596. 208
91	321. 061	230	393.687	610	487.983	1,520	597.972
92	321.838	235	395.549	620	489.742	1,540	599.718
93	322.607	240	397.382	630	491. 479	1,560	601.446
94	323.370	245	399.186	640	493.195	1,580	603.162
95	324. 129	250	400.961	650	494.892	1,600	604.863
96	324.879	255	402.708	660	496.568	1,620	606.546
97	325.623	260	404.428	670	498.224	1,640	608.215
98	326. 361	265	406.123	680	499.863	1,660	609.866
99	327.093	270	407.793	690	501.482	1,680	611.499
100	327.819	275	409.439	700	503. 086	1,700	613.114
102	329.257	280	411. 061	710	504.671	1,720	614.716
104	330.671	285	412.662	720	506. 239	1,740	616.307
106	332. 062	290	414.240	730	507.790	1,760	617.885
108	333.434	295	415.799	740	509.324	1,780	619.450
110	334.786	300	417.337	750	510.844	1,800	621.000
112	336. 118	305	418.855	760	512.349	1,820	622.529
114	337.431	310	420.354	770	513.837	1,840	624.047
116	338.725	315	421.835	780	515. 313	1,860	625.556
118	340.002	320	423. 297	790	516. 772	1,880	627.052
120	341. 263	325	424.742	800	518.216	1,900	628.535
122	342.507	330	426. 170	810	519.650	1,920	630, 007
124	343.734	335	427.580	820	521. 068	1,940	631.468
126	344.946	340	428.975	830	522.474	1,960	632.918
128	346.143	345	430.357	840	523.867	1,980	634.351
130	347.326	350	431.721	850	525. 248	2,000	635.773
132	348.495	355	433.070	860	526. 614	2, 050	639. 286
134	349.649	360	434.404	870	527.969	2, 100	642.730
136	350.790	365	435.722	880	529.313	2,150	646. 108
138	351.917	370	437.026	890	530.649	2,200	649.423
140	353. 033	375	438.319	900	531. 970	2,250	652.678
142	354. 137	380	439.599	910	533. 281	2,300	655.873
144	355.228	385	440.866	920	534.579	2,350	659.013
146	356.304	390	442.120	930	565.857	2, 400	662.098
148	357.370	395	443.362	940	537.144	2,450	665.132
150	358. 426	400	444.590	950	538.412	2,500	668.112
152	359. 469	405	445.808	960	539. 670	2,550	671.041
154	360.504	410	447.014	970	540.917	2,600	673.922
156	361.528	415	448. 209	980	542.155	2,650	676.755
158	362.542	420	449.394	990	543.383	2,700	679.542
160	363.545	425	450.566	1,000	544.600	2,750	682.283
162	364. 538	430	451.729	1,020	547.012	2,800	684.981
164	365.521	435	452.881	1,040	549.386	2,850	687.632
166	366.496	440	454. 023	1,060	551.726	2,900	690.241
168	367.462	445	455. 153	1,080	554.033	2,950	692.810
170	368.417	450	456.275	1,100	556. 305	3, 000	695.336
172	369. 364	455	457.388	1, 120	558.544	3, 050	697.822
174	370.303	460	458.493	1,140	560.753	3, 100	700.272
176	371. 232	465	459.588	1,160	562.935	3, 150	702.679
178	372. 153	470	460.674	1,180	565.086	3,200	705.052

Table 7.-Pressure of saturated water vapor
[Even pressures in kilograms ${ }^{1}$ per square centimeter with corresponding temperatures in degrees centigrade]

Pressure	$\underset{\theta}{\text { Ture }} \underset{\substack{\text { Tumpera- } \\ \text { t. }}}{ }$	$\left\lvert\, \begin{gathered} \text { Pressure } \\ P \end{gathered}\right.$	$\underset{\theta}{\substack{\text { Tempera } \\ \text { ture } \\ \\ \hline}}$	$\underset{P}{\text { Pressure }}$	$\underset{\theta}{\text { Tempera- }}$	$\begin{gathered} \text { Pressure } \\ P \end{gathered}$	$\underset{\theta}{\text { Tempera- }} \underset{\substack{\text { Ture }}}{ }$
$\mathrm{Kg} / \mathrm{cm}^{2}$	${ }^{\circ} \mathrm{C}$.	$\mathrm{Kg} / \mathrm{cm}^{2}$	${ }^{\circ} \mathrm{C}$	$\mathrm{Kg} / \mathrm{cm}^{2}$	${ }^{\circ} \mathrm{C}$	$\mathrm{Kg} / \mathrm{cm}^{2}$	${ }^{\circ} \mathrm{C}$.
1.0	99.072	8.0	169.605	55	268.693	120	323.148
1.1	101. 764	8.2	170.626	56	269.842	122	324. 408
1.2	104. 246	8.4	171.629	57	270. 974	124	325. 654
1.3	106. 565	8.6	172.613	58	272.092	126	326. 884
1.4	108. 739	8.8	173.579	59	273.195	128	328.098
1.5	110.759	9.0	174. 526	60	274. 285	130	329. 298
1.6	112. 730	9.2	175. 458	61	275. 361	132	330. 484
1.7	114.575	9.4	176. 375	62	276. 423	134	331. 657
1.8	116.331	9.6	177. 276	63	277. 472	136	332. 816
1.9	118.010	9.8	178. 163	64	278.509	138	333.958
2.0	119.617	10	179. 035	65	279. 534	140	335. 088
2.1	121. 161	11	183.201	66	280.547	142	336. 206
2.2	122. 646	12	187. 079	67	281. 548	144	337.312
2.3	124.076	13	190.708	68	282.537	146	338. 406
2.4	125.457	14	194. 130	69	283.517	148	339. 488
2.5	126. 790	15	197. 360	70	284.485	150	340.559
2.6	128.083	16	200.429	71	285. 441	152	341. 616
2.7	129. 335	17	203. 351	72	286. 388	154	342.661
2.8	130.549	18	206. 145	73	2878. 326	156	343. 696
2.9	131.730	19	208.819	74	288.252	158	344.722
3.0	132.878	20	211.385	75	289. 170	160	345. 737
3.1	133.994	21	213.855	76	290.079	162	346. 742
3.2	135.082	22	216. 234	77	290.978	164	347. 738
3.3	136.143	23	218.530	78	291.867	166	348.723 349.699
3.4	137. 178	24	220.753	79	292. 748	168	349.699
3.5	138. 188	25	222.905	80	293. 621	170	350.664
3.6	139.178	26	224. 988	81	294. 486	172	${ }_{3521.620}^{355}$
3.7	140.144	27	${ }_{2}^{227.012}$	82	295. 343	174	${ }_{353.502}^{352.565}$
3.8	141.089	28	228.979	88	296. 191	176	353.502 354.432
3.9	142.015	29	230.894	84	297. 032	178	354. 432
4.0	142.922	30	232.757	85	297.865	180	355. 353
4.1	143.810	31	234. 572	86	298. 690	182	356.263 357.165
4.2	144. 680	32	236. 345			184	
4.3	145. 534	33	${ }^{238.075}$	88 89	300.319 301.123	188	358. 358.943
4.4	146.374	34	239.766	89	301.123		
4.5	147.200	35	241.419	90	301. 919	190	359.821
4.6	148.008	36	243.035	91	302.710 303	192	360.689 361.551
4.7	148.802	37	244.617	92	303. 493	194	
4.8	149. 584	38	${ }^{246.167}$	94	304. 270 305. 041	198	362. 36348
4.9	150.354	39	247.687	94	305.041		
5.0	151.110	40	249.176	95	305. 804	200	364. 084
5.2	152.586	41	250.637	96	306. 562 307.314	204	364. 3654 134
5.4	154. 018	42	252.073 253.483	97		206	366. 550
5. 5.8	155.409 156.760	43	253.483 254.866	98	308. 3089	208	${ }_{367.358}$
5.8	156.760	44	254.866	99			
6.0	158.075	45	256. 224	100	309. 533	210	368. 157
6.2	159.354	46	257.562	102	310. 936 312.418	214	368.1949 369.734
6.4	160. 602	47 48		104	311.4888 313828	216	370.511
6. 6	161.820	48 49	260. 261.443	108	315. 214	218	371. 280
6.8	163.008	49	261.443	108			
7.0	164. 168	50	262.697	110	316.580	220	372. 042
7.2	165.303	51	263.931	112	317.930	222	${ }^{372.800}$
7.4	166. 412	52	265. 149	114	319.264		
7.6 7.8	167.497 168.563	53	266. 347	116 118	${ }_{321.871}^{320.577}$		
7.8	168. 563	54	267. 527	118	32.87		

${ }^{1}$ Standard gravity $=980.665 \mathrm{~cm} / \mathrm{sec}^{2}{ }^{2}$

VI. ESTIMATION OF ACCURACY

Numerical values of physical quantities derived from measurements are never in exact accord with the true values. No matter how skillful and diligent the experimenter, there is a limit to the precision attained in each separate element of measurement and in the final result. The practical use of physical data is similarly subject to limitations of accuracy. The compiler of tables of properties of steam for practical use is obliged to choose from available experimental sources the definitive values which are to be used as a basis for formulation. This selection may be aided by the experimenter if in addition to the record of methods, standards, and units used in his measurements, he includes also a judicious appraisal of the accuracy of the results.

By careful study of all the factors which enter into the measurements, an estimate may be made of the magnitude of the systematic error which may still remain in each factor after all known corrections for standards and calibrations have been applied. Having made these preliminary estimates, they may be used in a final estimate of the amount by which the results of the measurements might differ from the truth. Such an analysis has been made for the results of the present investigation by considering every apparent source of error, both systematic and accidental.

The sources of systematic error which have been found significant, include the calibration of the piston gage, the determination of the pressure corrections for the connecting line between the water sample and the gage, the difference of the scale of the thermometer used from the ideal international standard temperature scale, and the determination of the actual temperature of the free surface of the water sample relative to the thermometer. Each of these factors has been discussed earlier in its proper place. The magnitude of the accidental errors of measurement was deduced from the actual differences in the individual results.

Obviously, the final appraisal of accuracy can be only approximate. If the facts were known on which an exact estimate of the systematic errors could be based, corrections could be applied for them and their effect eliminated. The element of judgment must enter in the figure which is deduced to indicate the uncertainty remaining after all known corrections have been applied. As such an approximate appraisal, it is believed that the values formulated for the pressure of saturated water vapor do not differ from the truth by more than 3 parts in 10,000 , with the possible exception of the region near the critical, where the rapidly changing properties of water make the measurements somewhat less trustworthy.

VII. ACKNOWLEDGMENT

The work presented in this report marks a further step in the effort to establish reliability and accord in steam tables, a project which has been promoted by the American Society of Mechanical Engineers through the material support of the steam power industries. It is hoped that the results here given may prove an aid in attaining that object.

Washington, October 15, 1932.

[^0]: ${ }^{1}$ Mechanical engineering, vol. 54, No. 2, p. 118, 1932.

[^1]: ${ }^{2}$ Meyers and Jessup, B. S. Jour, Research, vol. 6, (p. 324), June, 1931.

[^2]: 8 B. S. Jour. Research, vol. 9 (RP508), December, 1032.

 - Burgess, G. K., B. S. Jour. Research, vol. 1 (RP22), p. 635, October, 1928.

[^3]: - Mueller, B. S. Bull., vol. 13, p. 547, October, 1916.

[^4]: - Burgess, G. K., B. S. Jour. Research, (RP 22) p. 635, October, 1923.
 ${ }^{7}$ Standard atmospheric pressure is deflned as the pressure due to a column of mercury 760 mm high, having a mass of $13.5951 \mathrm{~g} / \mathrm{cm}^{3}$, subject to a gravitational acceleration of $980.665 \mathrm{~cm} / \mathrm{sec}$. 2 and is equal to 1,013,250 dynes/cm' B. S. Jour. Research, October, 1928, p. 637.

[^5]: ? The bar, equal to 10^{6} dynes/cm ${ }^{2}$ was approved as a unit of pressure by the International Meteorological Commission, Rome, 1913.

[^6]: ${ }^{1} 1$ centibar $=10,000 \mathrm{dyn} / \mathrm{cm}^{\text {? }}$.
 2 Standard gravity $=980.665 \mathrm{~cm} / \mathrm{sec}^{2}{ }^{2}$

[^7]: 1 Standard gravity $=32.174 \mathrm{ft} . / \mathrm{sec} .{ }^{\text {: }}$

