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MUTUAL INDUCTANCE OF ANY TWO CIRCLES 

By Chester Snow 

ABSTRACT 

A formal expansion is derived for the magnetic flux through any circle. A 
similar expansion is obtained for the magnetic potential due to a unit current 
in another circle. Combining the two gives a formal expansion for the mutual 
inductance of the two circles. Application is made to two cases (1) where the 
circles are parallel, (2) where their axes intersect. 

CONTENTS 
Page 

I. Introduction_ _ _ _ _ _________ __ __ _ _ __ _ _ _ _____ _ _ _ _ _________ _____ _ 531 
II. Symbolic expression for magnetic flux through a circ1e_ _ _ _ _ _ _ _ _ _ _ _ 532 

III. Symbolic expression for the magnetic potential of a circular current- _ 535 
IV. Combination of II and III for the mutual inductance of the two 

circles _____________________________ ~_ _ __ _____ ____ _ ____ __ __ _ 536 

1. Case of parallel circles_____________________________ _____ 536 
2. Special case where the axes of the two circles intersecL _ _ _ _ _ 538 

(a) The axes intersect at center of one circle____ _______ 540 
(b) Circles coaxiaL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 541 
(c) Circles concentric, but not necessarily coaxiaL _ _ _ _ 541 

V. Convergence of the expansion_ _ _ __ __ _ _ _ __ _ _ _ _ ___ _ _ ___ _ _ _ _ _ _ ___ _ 541 

I. INTRODUCTION 

In certain absolute measurements it is necessary to compute with 
precision the electromagnetic forces exerted between two current­
carrying solenoids, or the current induced in one by changes of that 

. in the other. Both problems require a formula for the mutual 
inductance of the two, which is generally to be derived by integrating 
t.he expression for the mutual inductance between two circles. The 
fundamental importance of the two circular elements is evident. 
When the circles are not only parallel but coaxial, their mutual 
inductance is given exactly by Maxwell's formula. 

In 1916 Butterworth 1 derived a formula covering (partially) the 
cas,e of two parallel circles. In the present paper is presented a general 
formal expression for any two circles which leads readily to Butter­
worth's formula as a special case, and also to a fairly simple expansion 
in zonal harmonics for the mutual inductance of two circles whose 

I S. Butterwortb, Pbil. Mag., p . 448; May 31, 1916. 
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axes intersect at a finite point (equation (23) below) .. From it may be 
derived simple formulas for the mutual inductance and torque between 
two solenoids whose axes intersect, one lying entirely within the other, 
as in certain types of current balance. 

The starting point of these developments is a formal expression 
here obtained for the magnetic flux through a circle of radius az, the 
field being the negative gradient of a scalar potential n (X2, Y2, Z2) at 
the point P2 (xz, Y2, Z2), which is the center of the circle. It is 

M = - f f Dn2 ndB = - 21ra2 J I (a2D oJ Q (X2, Y2, z~) 

where J I is Bessel's function of the first order, the symbol D02 des­
ignating the space derivative in the direction normal to the plane 
of the circle-at the center. 

Thus 

where 

the direction cosines of the normal to the circle being lz, mz, nz. 
If the field Q (X2, Y2, Z2 ) is that produced by a unit current in a circle 

of radius al center at PI (XI, Yll ZI), it is then shown that 

where r is the distance between centers. The mutual inductance 
between the two circles is then given (formally) by 

M = - 47l'2ala2JI (azDoz) J I (alDOl) .!. r 

By obtaining expansions for 1:. which are suitable from the point of 
r 

view of performing the infinite · series of differentiations here indi­
cated, a variety of series formulas may be obtained. 

II. SYMBOLIC EXPRESSION FOR THE MAGNETIC FLUX 
THROUGH A CIRCLE 

Let Q (x, y, z) be a scalar point function which may be expanded by 
Taylor's (three-dimentional) theorem about the point Xo, Yo, zoo This 
expansion may be written symbolically if we let 

x=xo+x', y=Yo+Y', z=zo+z' 

n (x, y, z) =Q (xo+x', Yo+y', zo+z') =e,,'D'o+y'DyQ+z'n,oQ (xo, Yo, zo) (1) 
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Consider a circle of radius a whose center is at Xo, Yo, 20 and whose 
plane is perpendicular to the 2 axis. Let u denote the surface inte­
gral of n over this circle. Then 

fa l..;a,-x" 
u = dx' dy' n (Xo + x', Yo + y', 20 + Z') 

-a -...ja2-x''J 
(2) 

I h·· 1· x'D +y'D ( ) ntIs expresslOn the symbo lC operator e '0 Yo n Xo, Yo, Zo 
is merely the abbreviated form of the series of operations indicated 
by 

(3) 
D = O 

where each term (x'Dxo + y'DYo)n n (xo, Yo, zo) is to be expanded for­
mally by the binominal theorem. The result of using this formal 
expansion equation (3) in the integral, equation (2), may be found by 
noting that the symbols Dxo and DyO behave like constants as far as 
integration with respect to x' and y' is concerned. It may be written 
out from a consideration of the formal analogy between it and the 
integral uo where 

(4) 

where A, B, and no do not involve x' or y' and are, therefore, con­
stants as far as this integration is concerned. This integral may be 
readily evaluated by choosing a new pair of rectangular axes x", y" 
in the same plane as before and with the same center such that 

In terms of these axes the expression for uo is 

00 J1r a A2+B2 n 
= 2a2n ~ ( -J ) cosn 0 sin2 OdO 

o L.J n! 
n = o 0 
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Now I'eo' •• .rin' 'JP ~ O if n is odd 

71' (28) ! 'f . 2 0 1 2 3 228+1 8!(8+1)! 1 n IS even; n= 8; 8= , , , ... 

Hence 

= f f ex'A+y'B flodS integrated over the circular area. J 1 

is Bessel's function of order one. 
A comparison of this equation with the symbolic equation (2) en­

nables the latter to be put in the form 

The meaning of -VD2xo + D2yo is merely an operator whose repetition 
is equivalent to the operator D2xo + D2yO' .and since none but positive 
even "powers" of this operator occur here it need not be further 
defined. 

The expression (6) assumes a particular interest in case the func­
tion fl (x, y, z) satisfies Laplace's equation for in that case 

(D2 Xo + D2yJ"fl(xo, Yo, zo) = (- 1 )8DZ8zofl(xo, Yo, zo) (7) 

and (6) becomes 

fI fldS = 71'a2 t ( -1)8( ~ y8 fl(xo, Yo, Zo) 
• 8=0 8!(8+ I)! 

(8) 

The surface integral of any harmonic point function fl, over any 
circle of radius a, is thus expressed in terms of the values which 
are assumed at its center by the function and its normal derivatives 
of even order. If fl (x, y, z) is harmonic, then so is Dzofl. Hence, 
if we replace fl by DZofl it becomes 

IIDzOfldS = 271'a iJ (_1)8(~ )28+1 fl(xo, Yo, zo) 

8=0 8!(8+1)! (9) 

= 271'aJI (aDzJfl(xo, Yo, zo) 
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If Q represents the ~agnetic, scalar, potential whose negative gra­
dient is a magnetic field, then the magnetic flux through the circle 
may be written in the symbolic form 

M. - f f DoQdS = - 21ra2J 1 (a2D02)Q(X2' Y2, Z2) (10) 

where ~ is the radius of the circle, P2 (X2, Y2, Z2) its center and D02Q 
represents the value at P2 of the space derivative of Q in the direc­
tion of the positive normal to the plane of the circle, which is such 
that the positive direction of the current encircles it right-handedly. 
It is evident that M is harmonic in the variables X2, Y2 Z2, if the orien­
tation of the circle is held constant; that is, (D2'2 + D2Y2 + D2x2 )M = 0. 

III. SYMBOLIC EXPRESSION FOR THE MAGNETIC POTEN­
TIAL OF A CIRCULAR CURRENT 

If there is a unit current in another circle of radius ai, whose plane 
is in the yz plane and whose positive normal is the positive x axis so 
that its center is at the origin of coordinates, then the (scalar) magnetic 
potential Q (x, y, z) due to it at any point P(x, y, z) may be found 
from the fact that it is harmonic and is a function of the two cylin­
drical coordinates only, namely, x and p =.Jy2+Z2, and reduces 
when x = + 0 to 0 if p>al and to 2 1r if p<al. (This is evident since Q 
is the solid angle sub tended at P by the positive area of the circle.) 
From the known discontinuous function defined by the integral 

ao 

27ralf Jl(als)Jo(ps)ds=O if p> al 
o (11) 

=27r if p< al 

and from the fact that a function of x and p only, which is a particu­
lar solution of Laplace's equation, is e±8' J 0 (p s), it is readily seen that 

ao 

Q(x, p) = 21ralfe-aXJl(als)JO(ps)ds if x> O 
o 

ao (12) 
= - 21ralf ea'Jl (als)Jo(ps)ds if x<O 

o 
where 

p=.Jy2+z2 (13) 

The expression for Q may be given another form by using the formula 

(14) 

and by noting that, since 

(- alDx)O r SX = (als)O r SX 

- J 1 (alD.) r sx = J I (- alDx) r sx = r" J I (als) 
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and consequently 

1<:0 e-sx J I (als) J o (ps) ds = - J I (aID,,) J: ooe-sx J o (ps) ds 

1 
= -JI (aIDx ) -J 2 2 2 

X +y +Z 

(VoU 

Consequently, the two expressions (12) for n may be put in either 
of the following forms, each of which holds for both positive and 
negative values of x, namely 

1 
n (x, p) = - 27ral J I (aID,,) ~x2 2 2 

+y +Z 

= -27ral J I (aIDx) 1<:0 e-s1xl J o (ps) ds 
(15) 

Remembering the special relation of this circle to the x axis, it is easy 
to write out from a consideration of equation (15) the expression for 
the value of the magnetic potential n at a point P2 (~, Y2, Z2) due to unit 
current in a circle of radius al with center at PI (XII Yh ZI), whose plane 
has the positive normal nl. It is 

1 
n (X2' Y2, Z2) = 27ral J I (alDol) -J ( )2 ( )2 ( )2 (16) 

• X2-XI + Y 2-YI + 22- ZI 

where alDDI represents the directional derivative in the direction nil 
with respect to the variables XI, YI, ZI; that is, if ll' ml, nl are the direction 
cosines of the positive normal to this circle 

alDDI = al (lID"1 + mlDYI + nlDzI) 

IV. COMBINATION OF II AND III FOR THE MUTUAL IN­
DUCTANCE OF TWO CIRCLES 

Equation (16) is purley formal, like equation (10), to which it 
bears a certain resemblance. Combining the two, leads to the 
following symbolic formula for the mutual inductance of any two 
circles of radii al and az with positive normals nl and nz. 

where PI (XII YI, 21) and Pz (~, Yz, 22) are the centers of the circles, respec­
tively, and nl) nz are unit vectors normal to their positive sides. 

1. CASE OF PARALLEL CIRCLES 

In the special case where the circles are parallel, the first one may 
be taken in the y2 plane with its center at the origin, the center of the 
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second in the xy plane. Denoting the coordinates of the second 
circle by xy (or polar coordinate r, (J), the formula (17) gives 

M = 471"2 ala2 J I (aIDx) J I (a2Dx) 1. r 

= 471"2 ala2 i OO e-s Ixl J o (ys) J I (aIS) J I (a2S) ds 

( a22) 
2ja: F -n,-n+ 1,2' 2 ()2n 1 

= -471"2a2 (-l)n a I al D2n _ 
2 (n-1) ! n! 2 x r 

n=l 

where F denotes the hypergeometric function. But 

1 (2n)! 2 2n n! r (n +~) 
D 2n x r = r2n+l p 2n (cos (J) = r;;. r 2n+l p 2n (cos (J) 

so that 

(1 8) 

. r(n+~)( a22) 
(n- 1) ! F -n,-n+ 1,2'a21 

which converges for large values of r . This is identical with a formula 
obtained by Butterworth.2 

Formula (18) is valid when r > a l + a2. 
In the other extreme, where r < a1 - a2, one finds 

(18') 

( 1 3 a22X r ) 2n F n+ 2, n+ 2, 2, a 21 ~ P 2n (cos (J) 

This may be derived from (17) by writing the latter in the form . 

M = - 471"2ala2 J o (yDx) J I (a2Dx) f~ e- ax J I (als) ds 

x 
= 47r2a2 J o (yD,) J 1 (a2Dx) .j0f+X2 

by using the binomial expansion 

, See footnote 1, p. 531. 
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together with the operational expansion 

2. SPECIAL CASE WHERE THE AXES OF THE TWO CIRCLES 
INTERSECT 

A considerably more general case (but not the most general) is 
that in which the axes of the two circles intersect. Taking the plane 
of these two axes as the xy plane, with the origin at the point of inter­
section of the two axes, the center of the first circle being on the x 
axis with abscissa XI (XI may be taken as never negative without loss 
of generality), and that of the second circle having the plane polar 
coordinates r, 8, then (17) becomes (see fig. 1) 

M = - 27ra2JI (a2Dr) Q (r, 8) 
1 (19) 

= - 27ra2J I (a2Dr) 27ra1J I (aIDxl ) ...j 2 2 
X 1-2xlr cos 0 + r 

There is no loss of generality in taking for circle No.1 that one of the 
two whose center is most distant from the origin. Hence, we may 
use the expansion 

where p. is Legendre's coefficient. Applying to this expansion the 
symbolic formula (16) one finds 

1 
Q (r, 8) = 27ra1J I (aIDxl) I 2 _2 

-VX 1-2xlrcosO+, 

00 (a )2k+l ""(-l)k ---.! 1 
= 27ra l L.J 2 D 12k+l----r~==:::'=====;:=;===;; 

k=o le! (le + 1) ! x ...jX21 - 2xlr cos 8 + r2 
00 00 

7ra21 ~ ~ (-l)kr (2le +8 + 2) (al )2k( r)8 
=- X21 L.J£.Jr(le+1)r (le+2) r(8+1) 2Xl ~ p.(cosO) 

k=o 8=0 

[ 7ra21 f1( )S 22.+1 ] 
= - ~ f:.1 ~l p. (cos 0) ...j7rr (8+ 1) . 

. [flr( le+~)r(le+~)(_ a:l)kJ 
f::: r(le+1)r(le+2) Xl 

00 

7ra21 ~(r)S (8+2 8+3 a2l ) = - X21 L.J XI (8 + 1) p. (cos 0) F 2 - ' - 2- ,2. - X21 
5=0 
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CD 

~(r)s (2+8 1-8 ) = -11' sin2 al L.J r;- (8 + 1) PI (cos (J) F -2-' - 2- ,2, sin2 al 
8=0 

where 

al d-2 2+2 tan al =- an 1'-1 =X I a 1 
XI 

Now by Gauss's transformation one finds that 

F ( 2 +2 8, 1 - 8 2 . 2 ) 2 (1 - cosal) 'f 0 - 2- ' ,SIn al = . 2 1 8 = sJn al 

2P'. (cosa l) 'f 
= 8(S+ 1) 1 8 = 1, 2, 3, .. ... . (21) 

where p'. denotes the derivative of p. with respect to its argument. 
Using (21) in the preceding expression for n gives 

()() 

n( 8) - 2 (1 ) 2 . 2 E(r)BP.(COS8)P'.(Cosal) (22) •• r - - 11' - cosal - 1I'SIn al -
, ~ 8 

8=1 

a formula which holds when the origin is any point on the axis, 
to the left of the circle if r< rl' Substituting this value of 12 in the 
symbolic formula (19) gives 

( a )2k+1 2k+1 
co ( - lP' ~ D CD 

M 4 2 • 2 ~ 2 r ~rBp"(cos(J)P.(cosal) 
= 1I'a2Smal L.,J k!(k+l)! L.J sri" 

k=o 8=1 

or 

where 

(See fig. 1.) 

2 2 2 t a2 r 2=7 +a 2 an a2=-, 7 

al and a2 are positive acute angles. 
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The formula (23) gives the mutual inductance between any two 
circles of radii al and a2 whose axes intersect. The circle No. 1 js 
chosen as that one of the two whose center is most distant from the 
origin. The origin is the point of intersection of the two axes and 
(J the angle between these axes and may be anywhere in the range 
from zero to 71'. The origin is taken as lying to the left of the circle 
No.1 whose center is on the a; axis at a;=a;l. The distance of the 
center of the second circle from the origin is r. (See fig. 1 where 
r=002.) 

(a) THE AXES INTERSECT AT CENTER OF ONE CIRCLE.-A special 
case of (23) is that in which the center of the second circle O2 coincides 

1 
FIG. I.- A principal section of two circles whose axes intersect 

with 0 (fig. 1) so that r2 becomes a2 and a2 becomes~. In this case 

P' 8 (cos a2) vanishes when 8 is an even integer, and if 8 is an · odd 

2 ( )nr( n+~) 
integer, say 2n+ 1, reduces to .J; -1 nl 

so that (23) reduces to 

r( n+~) 
(n+ I)! P2n+1 (cOSe)p'2n+1COS~l) 

(23a) 
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(b) CIRCLES COAXIAL.-Specializing this still further by making 
the circles coaxial (so that I-'=cos (J=l) gives 

This is easily shown to be reducible to Maxwell's formula involv-
ing elliptic integrals. . 

(c) CmCLES CONCENTRIC, BUT NOT NECESSARILY COAXIAL.­
Specializing (23a) in another direction, by letting the circles become 
concentric (a2 being Jess than aI), gives 

Thus, by considerations of continuity, we have arrived by trans­
formations at a formula which is valid, where the original assump­
tion with which we started is not satisfied, namely, that the field of 
a2 is expressible by Taylor's theorem over a sphere of radius al' 

V. CONVERGENCE OF THE EXPANSION 

Returning to a consideration of the general formula (23), it is 
readily seen that this series converges when r2<ri1 so that by inter­
changing r2 and 1'1 a formula is obtained for the case when r2>rI' 
The proof of the absolute convergence of this series may be based 
upon the fact that p. is never greater than unity when its argument 
is the cosine of a real angle and upon the fact that 

8(8+ 1) 
P ' ( ) _ --l- P.- (cos IX) - p.+1(cos IX) 

• cos IX - + 2 . 2 
8 2 sm IX 

which shows that 

1 
p.(cos (J)P'.(cos IXI)P'.(cos IX2) 1= 

8(S + 1) 
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No discussion of the convergence range' of the symbolic formula 
is possible without first choosing the type of coordinates suitable for 
performing the series of differentiations. The convergence range 
usually makes itself evident in the process of performing the 
expanSIOns. 

WASHINGTON, May 19, 1928. 


	jresv1n4p_531
	jresv1n4p_532
	jresv1n4p_533
	jresv1n4p_534
	jresv1n4p_535
	jresv1n4p_536
	jresv1n4p_537
	jresv1n4p_538
	jresv1n4p_539
	jresv1n4p_540
	jresv1n4p_541
	jresv1n4p_542

