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MUTUAL INDUCTANCE OF ANY TWO CIRCLES

By Chester Snow

ABSTRACT

A formal expansion is derived for the magnetic flux through any circle. A
similar expansion is obtained for the magnetic potential due to a unit current
in another circle. Combining the two gives a formal expansion for the mutual
inductance of the two circles. Application is made to two cases (1) where the
circles are parallel, (2) where their axes intersect.
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I. INTRODUCTION

In certain absolute measurements it is necessary to compute with
precision the electromagnetic forces exerted between two current-
carrying solenoids, or the current induced in one by changes of that
in the other. Both problems require a formula for the mutual
inductance of the two, which is generally to be derived by integrating
the expression for the mutual inductance between two circles. The
fundamental importance of the two circular elements is evident.
When the circles are not only parallel but coaxial, their mutual
inductance is given exactly by Maxwell’s formula.

In 1916 Butterworth ! derived a formula covering (partially) the
case of two parallel circles. In the present paper is presented a general
formal expression for any two circles which leads readily to Butter-
worth’s formula as a special case, and also to a fairly simple expansion
in zonal harmonics for the mutual inductance of two circles whose

1 8. Butterworth, Phil. Mag., p. 448; May 31, 1916.
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axes intersect at a finite point (equation (23) below).. From it may be
derived simple formulas for the mutual inductance and torque between
two solenoids whose axes intersect, one lying entirely within the other,
as in certain types of current balance.

The starting point of these developments is a formal expression
here obtained for the magnetic flux through a circle of radius a,, the
field being the negative gradient of a scalar potential @ (x, ¥s, 22) at
the point Py (s, ¥s, 22), which is the center of the circle. It is

M=—fS D'lz QS = —2ma, J, (aang) Q (@3 Y2, 29)

where J; is Bessel’s function of the first order, the symbol D,, des-
ignating the space derivative in the direction normal to the plane

of the circle—at the center.
Thus

: ® Eis g &2>2k+1
J1 (@:Dny) Q= 2 (_,._)i,_ Dy, @
k=0 k! (ZC S 1) !
where
Dn2 0= (lngZ 4 szy2 A nzD,,z) Q

the direction cosines of the normal to the circle being Iy, mq, ;.
If the field @ (x, s, 2,) is that produced by a unit current in a circle
of radius a; center at P; (x1, 1, 21), it is then shown that

1
Q (22, Yo, 22) =2may Jy (@, Dy)) 7

where r is the distance between centers. The mutual inductance
between the two circles is then given (formally) by

M= —dxa,0,; (@Da) Iy (@Ds) -
By obtaining expansions for % which are suitable from the point of

view of performing the infinite series of differentiations here indi-
cated, a variety of series formulas may be obtained.

II. SYMBOLIC EXPRESSION FOR THE MAGNETIC FLUX
THROUGH A CIRCLE

Let @ (x, y, 2) be a scalar point function which may be expanded by
Taylor’s (three-dimentional) theorem about the point &, %o, 2%o. This
expansion may be written symbolically if we let

=T+, y=yo+vY, 2=2,+2'
Q (x’ Y, Z) =0 (J:Q'i'x’, yo+yl’ 20+z,) =ex’Dx°+Y’qu+z’D-oQ (moy U Zo) (1)
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Consider a circle of radius @ whose center is at @, %o, 2, and whose
plane is perpendicular to the z axis. Let u denote the surface inte-
gral of @ over this circle. Then

+ai—x"
=fdac QY Qo2 Yo Y 201 27)

—Jai—x"1

a?l—x"?
f dl: fdy e Doty Dy, Q (xo’ Yo, zo)
Jar—x71

In this expression the symbolic operator e* =¥ 'Pw @ (z, 4, z,)
is merely the abbreviated form of the series of operations indicated
by
(@' D; +y" D, )~

0 (@ Yoy 20 ()

(-]
x’ Dx_+y’'D et
€ VS (o Yoy Zo) = E ;

n=o

where each term (x'Dy,+y Dy,)" @ (o, Yo, 20) is to be expanded for-
mally by the binominal theorem. The result of using this formal
expansion equation (3) in the integral, equation (2), may be found by
noting that the symbols Dy, and Dy, behave like constants as far as
integration with respect to 2’ and ¥’ is concerned. It may be written
out from a consideration of the formal analogy between it and the

integral u, where
al—x ’1
f dz’ f AR O, )
Val—x?

where A, B, and @, do not involve «’ or %’ and are, therefore, con-
stants as far as this integration is concerned. This integral may be
readily evaluated by choosing a new pair of rectangular axes 2/, "’
in the same plane as before and with the same center such that

=gz A + 9’ B
Ja+B Y Ji+ B

In terms of these axes the expression for u, is

Vart—xi v
f dz'’ f dy’’ ex"VEBi=2a%Q f sin® feavATFBi cos 6 df
+al—x1 2

=200 E (aq/A2+B2)“f cos® @ sin? 6d6
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Now f cos” 0 sin? 0d8=0 if n is odd
o

S (29)!
T2t gl(s+1)!

A E sz

e '(S+1)' Qo =2ma

if n is even; n=2s;s=0, 1,2, 3- - -
Hence

Ji(iay AP

O o B SR

=ffex'A+Y’B Q,dS integrated over the circular area. J,

is Bessel’s function of order one.
A comparison of this equation with the symbolic equation (2) en-
nables the latter to be put in the form

S@eno
U= Q(z,y, 2)dS=rd* s+ 1)! Q (Zo Yoy 20)

s=0

Jy1 (1a+ D, +D%,)
VDt D5,

(6)

=aml Q (X0, Yo, 2o)
The meaning of /D%, + D%, is merely an operator whose repetition
is equivalent to the operator D%+ D?%,, and since none but positive

even ‘“powers’’ of this operator occur here it need not be further
defined.

The expression (6) assumes a particular interest in case the func-
tion @ (x, y, 2) satisfies Laplace’s equation for in that case

(D, + D% )* (o, Yoy 20) =(—1)°D*3.2(Zo, Yo 20) )

and (6) becomes

f f QdS = m2i(‘ 1)"(@])%)259(%, Yor Zo) ®)

s=o  sl(s+1)!

The surface integral of any harmonic point function @, over any
circle of radius @, is thus expressed in terms of the values which
are assumed at its center by the function and its normal derivatives
of even order. If @ (z, y, 2) is harmonic, then so is D, Q. Hence,
if we replace @ by D, @ it becomes

® )24t
ffD%QdS = 2#&2 (= I)S<T) Q(Zoy Yoy 20)

s=0 s!(s+ 1)! (9)
=2mad, ((LD,O)Q(Q}O, Yo, Zo)
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If @ represents the magnetic, scalar, potential whose negative gra-
dient is a magnetic field, then the magnetic flux through the circle
may be written in the symbolic form

M=— S S DS = — 21a2J1(0:D,) (s, Y2, 22) (10)

where a; is the radius of the circle, Py (2, ¥s, 22) its center and D,,Q
represents the value at P, of the space derivative of @ in the direc-
tion of the positive normal to the plane of the circle, which is such
that the positive direction of the current encircles it right-handedly.
It is evident that M is harmonic in the variables x,, ¥, 2, if the orien-
tation of the circle is held constant; that is, (D,+ D?%,+ D%,)M =0.

III. SYMBOLIC EXPRESSION FOR THE MAGNETIC POTEN-
TIAL OF A CIRCULAR CURRENT

If there is a unit current in another circle of radius a,, whose plane
is in the yz plane and whose positive normal is the positive z axis so
that its center is at the origin of coordinates, then the (scalar) magnetic
potential @ (x, y, z) due to it at any point P(z, y, z) may be found
from the fact that it is harmonic and is a function of the two cylin-
drical coordinates only, namely, @ and p=+/y*+2% and reduces
when = 40 to 0 if p>a, and to 2 = if p<la;. (This is evident since Q
is the solid angle subtended at P by the positive area of the circle.)
From the known discontinuous function defined by the integral

21ra1,;‘0J1(als)Jo(ps)ds=O if p>a,
=27 if p<a,

(11)

and from the fact that a function of ¢ and p only, which is a particu-
lar solution of Laplace’s equation, is e***J, (p 8), it is readily seen that

Uz, p) =21ra1j'oe_“J,(als)Jo(ps)ds if >0

P17 (12)

= —27a, S e=J 1 (a18)J o (ps)ds if <0
o

where
p=+y+2 (13)

The expression for @ may be given another form by using the formula

J‘we‘s”“‘ Jo (s P +22) ds s Slal B | (14)

B e
and by noting that, since

(—a; Dy e—5*=(a;8)" e—5=
—Jy (Dy) e~ =J; (—a,Dy) e~* =" J, (a:8)



536 Bureau of Standards Journal of Research [Vol. 1

and consequently

fooe_SX J1 ((148) Jo (PS) ds= —Jl (alpx)Jiooe_sx Jo (Ps) ds

1

STl e

Consequently, the two expressions (12) for @ may be put in either
of the following forms, each of which holds for both positive and
negative values of z, namely

1

R+ 2
=—2ra, Jy (ayDy) fwe‘s"' Jo (ps) ds

Q (x, p) = —2ma, J; (. Dy)
(15)

Remembering the special relation of this circle to the  axis, it is easy
to write out from a consideration of equation (15) the expression for
the value of the magnetic potential 2 at a point Py (@, ¥s, 22) due to unit
current in a circle of radius a; with center at P; (&1, 91, 21), whose plane
has the positive normal n,. Itis

1

=) N@—2)+ @ —y)’ + (22— 21)

where a,Dy, represents the directional derivative in the direction n,,
with respect to the variables @y, ¥y, 21; that is,if [;, m,, n, are the direction
cosines of the positive normal to this circle

. (16)

Q (2, Yoy 22) =2may Jy (a,.D

0/1Dn1 = (Zlel &1 mlDyl = 'nlDzl)

IV. COMBINATION OF II AND III FOR THE MUTUAL IN-
DUCTANCE OF TWO CIRCLES

Equation (16) is purley formal, like equation (10), to which it
bears a certain resemblance. Combining the two, leads to the
following symbolic formula for the mutual inductance of any two
circles of radii a; and @, with positive normals n, and n,.

1
= 1/(332“1’1)24' @—y)?+ (22— 21)°

where P; (21, 1, 21) and P, (2, s, 2;) are the centers of the circles, respec-
tively, and n;, n, are unit vectors normal to their positive sides.

M= —4ra,a5J, (0, Dyy) J1 (@D, 17)

1. CASE OF PARALLEL CIRCLES

In the special case where the circles are parallel, the first one may
be taken in the yz plane with its center at the origin, the center of the



Snow) Mutual Inductance of any Two Circles 537

second in the xy plane. Denoting the coordinates of the second
circle by zy (or polar coordinate 7, 8), the formula (17) gives

M=4r* a0y Iy @Dy Jy (@Dy) -
=41r2 a/la/zf Ot Ix| Jo (ys) J1 ((LIS) Jl (ags) ds
o

« F( BPRE s

22>
2 2n 1
2—4"2“22( 1 (n Dinl =5 <%> i

where F denotes the hypergeometric function. But

S T (n +%
\/q T PR P, (cos 6)

D= 1_en! P (cos 0) =

r r2l1+1
so that

2.2 < 2n--1

M=—4‘7/r;222(~1)“(%1) P,, (cos0) -
1

n=1

<n+1) o
(n—l F( Ty 11,2,

which converges for large values of r. This is identical with a formula
obtained by Butterworth.?

Formula (18) is valid when »>a, +a,.

In the other extreme, where »< @, —a,, one finds

w3t 1043)

n=o

F<n+ n+ 2, P )( ) Py, (cos 6)

This may be derived from (17) by writing the latter in the form

(18%)

M= '—47f2a1a2 Jo (ny) J1 (ang)fwe"“ J] ((7/18) ds

=4x%ay J, (YDy) J1 (a:Dy) %—ix’_r‘;g

by using the binomial expansion

1
a8y

1/a2+:c2 Tk=0

2 See footnote 1, p. 531.
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together with the operational expansion

Jo(yDy)J (a:Dy) = 2 Z s (“2>

A T+D 1
F(-n -n-1,1, iz)pzw
s

2. SPECIAL CASE WHERE THE AXES OF THE TWO CIRCLES
INTERSECT

A considerably more general case (but not the most general) is
that in which the axes of the two circles intersect. Taking the plane
of these two axes as the xy plane, with the origin at the point of inter-
section of the two axes, the center of the first circle being on the x
axis with abscissa @; (x; may be taken as never negative without loss
of generality), and that of the second circle having the plane polar
coordinates 7, 6, then (17) becomes (see fig. 1)

M=-— 21ra2J1 (agD,) Q (7', 0)

1 (19)
= —2xwayd, (aDy) 27ayd, (@, Dr)) ————

waz (a2 D;) 2wayd (a,Dy,) V2 — 2zyr cos 0+ 12

There is no loss of generality in taking for circle No. 1 that one of the
two whose center is most distant from the origin. Hence, we may

use the expansion

[ee]
1 78 3
Vah—2r,r cos 0+72 ;E’m Py (egs ) pimge %127

where P, is Legendre’s coefficient. Applying to this expansion the
symbolic formula (16) one finds

i
Va2 — 2z, cos 0+ 1?

(—Dx(%

——27ra1§ k'(k('l'l))' Du* 1/m21—2:c11 cos 0-+7?
ZENHB’}FG?S‘}ifl i (25) (5) P s
[Walz}( )P bt 1/1r1“2(ﬂs+1+1):|

k st+2 k s+3 2 \k
[; <1"+(k+1?I‘g7c:2) >< i_ﬁ,):l
__"—“—IZK ) (s+1) P, (cosﬂ)F(s+2's+3'2’ _Z_zl)

Q (r, 6) =2ma,J, (aDx,)
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[ee]
= —r sin® aIZ(rL)s (s+1) P, (cos 6) F(2_42_-_s' 1——2_8’ 2, sin® al)
1
8=0

where

a
tan oy =5’ and 74, =% +a?
1

Now by Gauss’s transformation one finds that

(2+s =3 2(1— cosal) if s

—— 2, sin’ey )= o
sin

__ 2P'4(cosay) i s

s(s+1) A O T e (21)

where P’y denotes the derivative of P; with respect to its argument.
Using (21) in the preceding expression for @ gives

Q(r, 0) = — 27 (1 —cosa;) — 2wsin® a12(£~). DalepllE ss(cos AL
1
§=1

a formula which holds when the origin is any point on the axis,
to the left of the circle if »<{r;. Substituting this value of @ in the
symbolic formula (19) gives

2k+1 2k+1
(%) 2.
M= 41!'2(12511'12(11 2 A (’C o 1) 1

k=0 s=1

k+
= 47%a,81n’0y 2 2 (7;(17:_'_ 1)!)I‘(s(— 73] C ) Py(cos 0)P’y(cos ay)

3 34
,’sin 12( ) Py(cosb) P’y(cos ;)T (S)ZI‘(k+ Hrek +2)2(8 —2k)

irsp. (cos 6) P, (cos ay)

87'1a

or
41r2a 4r’a’,a? P,(cos 6) P’ (cos ay) P’ (cos as)
X Z( ) s(s+1) (23)
where
r =a2 +a?, tan o =
; (See fig. 1.)

a
T22=7'2+022, tan « =72

a; and a, are positive acute angles.
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The formula (23) gives the mutual inductance between any two
circles of radii @, and a, whose axes intersect. The circle No. 1 is
chosen as that one of the two whose center is most distant from the
origin. The origin is the point of intersection of the two axes and
6 the angle between these axes and may be anywhere in the range
from zero to m. The origin is taken as lying to the left of the circle
No. 1 whose center is on the x axis at =x,. The distance of the
center of the second circle from the origin is r. (See fig. 1 where
r=00,.)

(@) Tee Axes INTERSECT AT CENTER OoF ONE CIrcLE.—A special
case of (23) is that in which the center of the second circle (; coincides

A

1

-

Bﬁ
F1g. 1.—A principal section of two circles whose axes intersect

with O (fig. 1) so that r, becomes a, and «; becomes % In this case
P’s (cos ag) vanishes when s is an even integer, and if s is an odd

LG
n+
integer, say 2n+1, reduces to 1)

so that (23) reduces to

I‘(n+ )
on+2
M=2r,sin oy 1/_ E ;( 1) (a,:) (n i P2n+1(coso)P’2n+lcosql)

s (23a)



Snowl Mutual Inductance of any Two Circles 541

(0) Circres CoaxiaL.—Specializing this still further by making
the circles coaxial (so that p=cos 8 =1) gives

= 1
o 2n+2 et
M =27a, sin ozn/m-Z}(—l)“(%> 5 I‘(n+2>]?’2,,+1(cos ) (23b)
n=o . (n+1)!
when

a;
r1<1

This is easily shown to be reducible to Maxwell’s formula involv-
ing elliptic integrals.

(¢) CircLEs CoONCENTRIC, BUT NOT NECESSARILY (COAXIAL.—
Specializing (23a) in another direction, by letting the circles become
concentric (a, being less than a,), gives

4m ! Z ( )2n P(n+ %)I‘(n-k g) Pinyii(cos 0) (23c)

n!l(n+1)!

Thus, by considerations of continuity, we have arrived by trans-
formations at a formula which is valid, where the original assump-
tion with which we started is not satisfied, namely, that the field of
a; is expressible by Taylor’s theorem over a sphere of radius a;.

V. CONVERGENCE OF THE EXPANSION

Returning to a consideration of the general formula (23), it is
readily seen that this series converges when r,<(r;, so that by inter-
changing r, and 7, a formula is obtained for the case when r,>r,.
The proof of the absolute convergence of this series may be based
upon the fact that Pj is never greater than unity when its argument
is the cosine of a real angle and upon the fact that

s(s+ 1) Bk 0 L S ek

e, *n2
-I-2 2 sIn“«

P’y(cos a) =

which shows that

Py(cos )P’ ¢(cos o) P s (cos ay) I__
s(s+1) =

3 l |: Py(cos 0) _J [P s1(cos o) — Pm(cos al)] [Pg_l(cos ) — Pyyi(cos az):l ‘

In2
4S(S+1) 2 sin® oy 2 sin” ay

g
1 _7'17'22

== St J T )
SIN° oy SIN° @y A7 1A%
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Hence, if r,<r

[ee]

s 2,2
M=t ) (1) =2700
ey T Ty

s=1
°

No discussion of the convergence range of the symbolic formula
is possible without first choosing the type of coordinates suitable for
performing the series of differentiations. The convergence range
usually makes itself evident in the process of performing the
expansions.

WasHINGTON, May 19, 1928.
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