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EFFECT OF CLEARANCE AND DISPLACEMENT OF 
ATTRACTED DISK AND ALSO OF A CERTAIN AR~ 

RANGEMENT OF CONDUCTING HOOPS, UPON THE 
CONSTANT OF AN ELECTROMETER 

By Chester Snow 

ABSTRACT 

Formulas are here derived for the force upon the attracted disk of an absolute 
electrometer. These take account of the clearance between attracted disk 
and its guard plane, their relative displacem ent, and the separation of the plates. 
The effect of usirlg a set of conducting hoops to compensate for the finiteness 
of the movable plate is also computed. 
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1. INTRODUCTION 

The density of electricity upon the surface of the attracted disk 
of an absolute electrometer is approximately uniform. This uni­
formity is ordinarily achieved (when the separation between the 
attracted disk and the adjustable plate is small compared to the 
diameter of the latter) by the use of Kelvin's guard ring in the plane 
of the disk and having an external diameter as large as that of the 
plate. 

If the diameter of the plate and of the guard ring be considered 
infinite, then it is evident that the distribution 'of electricity upon 
the attracted disk will depend uEon its small clearance with the 
guard ring, its small displacement below or above the plane of the 
latter, and the separation of the two infinite plane conductors. 
The approximate expression for this density of electricity is obtained 
and, hence, for the total force on the disk. The latter and its guard 
ring are at the same potential Vo and are usually about 1 em in thick­
ness. If the clearance between the two is about Y2 mm it is evident 
that very little field will penetrate this crevasse and that an exceed­
ingly small number of lines of force will terminate upon the upper 
face of the disk. The distribution of electricity upon the sides of 
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the disk contributes nothing directly to the downward pull upon it, 
but it must be taken into consideration in order to find the distribu­
tion upon the lower face of the disk. The fact that the quantity of 
electricity is negligible which would be found at a greater height 
than 1 cm upon the vertical sides of disk (or upon its upper face) 
enables one to simplify the electrostatic problem by assuming that 
the disk and its guard ring are infinitely thick. A second simplifica­
tion comes from the fact that the clearance and displacement of the 
disk below the plane of the guard ring are small compared with the 
radius l' of the disk, which is considered to be about 5 em. The 
nonuniformity of charge will, therefore, be confined to the neighbor­
hood of the edge of the disk, so that this distribution may be derived 
from the corresponding two-dimensional problem. The justification 
of ,treating the radius of the adjustable plate (and guard ring) as 
infinite does not lie in the fact that this radius R is always large 
compared to the separation of the plates (for this is by no means the 
case for' measurements contemplated at this bureau), but rather is 
to be found in the fact that a second type of guard conductors is 
used. In the case of a large absolute electrometer now nearing 
completion at the bureau for measuring alternating voltages up to 
250,000 volts, it is necessary to use spacings as great as 110 cm to 
avoid danger of spark over. It is impracticable to make the radius 
R so large in comparison with this spacing as to insure a sufficiently 
uniform flux distribution by the use of the simple guard ring only. 
H. B. Brooks, of this bureau, has devised the further expedient of 
using an additional system of guard conductors. These consist of 
a set of N equal, concentric, equally spaced, parallel hoops (of radius 
R), each of which is to be kept at the potential which would be found 
at its position in their absence, if the two conducting plates were 
infinite planes. They thus compensate for the finiteness of these 
planes and tend to produce a more uniform charge over the face 
of the attracted disk. A discussion of the effect of such guard hoops 
seems to show that the assumption of an infinite radius for the guard 
plane and the adjustable plate is justified. 

II. EFFECT OF CLEARANCE, :QISPLACEMENT, AND SEPARA­
TION OF PLATES 

The aim of this section is to obtain an approximate formula for the 
electrical force acting upon a fairly thick, circular disk of about 5 cm 
radius when it hangs slightly displaced from the plane of its guard 
ring, and has a small clearance of the order of Y2 mm. The movable 
plate may be from 1 to 100 em below them. The derivation of such a 
formula requires the solution of the electrostatic problem leading to 
a knowledge of the distribution of electricity over the surface of the 
attracted disk . 
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The method here followed is that explained and illustrated in 
J. J. Thompson's Recent Researches in Electricity and Magnetism, 
third chapter. The problem here considered is somewhat more 
general than hitherto considered in that the lower face of the movable 
disk is here considered to be displaced below the plane of its guard 
ring, both being infinitely thiclc If this displacement, c- b, is 
placed equal to zero in the solution here obtained, it reduces to the 
solution given by Thompson. The approximations that are made 
below are somewhat unusual because the separation of the plates 
ranges from very small to very large values. 

To obtain an approximate solution we may consider first the fol­
lowing two-dimensional case. 

Let a, b, and c be· positive reals. 
Consider the complex function z:::::::x + iy of the complex variable 

t=t1 + it2 defined by 
t- (3 t-eia 

7r z= b log t-c log (3 +c log --l-aex-ia log t-e-ia (1) 
t-~ 

If the positive real quantities ex and (3 are so cnosen that 

/a2+ (b+C) 2 
f3 = -Ya2+(b_c)2S0 that 1< (3< +00 (2) 

2ab 
tan ex = 2 b2 + 2 o<ex::=: 7r (3) a - c 

then the derivative of (2) may be put in the form 

7r dz (t2 - 1)2 
b dt = (1) (4) t(t-(3) t-fj (t-eia)(t-e- ia) 

This makes ~: = 0 when t = ± 1, and these points are then branch 

points of the multiple-valued function z defined by (1). This was in 
fact the object in choosing ex and {3 in the manner described. 

Along with z we may consider a second complex function of t, 
namely w =u+iv defined by 

. [(t-{3)(t-!) ] 
- .L ' -£2 {3 • __ f3_ 

w=u,w- 7r log t . ({3+1)2 
(5) 

To remove ambiguity, we shall specify that by the· logarithms of 
the complex quantities occurring in (1), (4), and (5) shall be under­
stood in every case that branch whose imaginary component vanishes 
when the point t moves off an infinite distance to the right on the 
real axis of t. This statement, together with reference to Figure 2, 
will show what branch is to be understood by the inverse tangents 
written below. 
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With this understanding we may now show that the point z traces 
the conducting boundary of the insulating region (shown unshaded 
in fig. 1), when the point t moves along the real axis of t (t2 =0) from 
tl = - co to tl = -1, thence around the upper semicircle of radius 1, 
center at origin to the point tl = + 1, tz = 0, thence to tl = + <Xl, and 
finally returning to the starting point by way of a semicircle of infinite 
radius (center at the origin). This description of the path should 
be qualified by the statement that the branch points t = ± 1 are 
avoided by means of small quarter circles, and the singular points 
t =eict and t =(3, by means of semicircles as shown in Figure 2. 

FIG. I.-Conducting section in the z-plane 

To verify the foregoing statement we may consider the six cases 
into which this description of the path naturally falls. If we replace 
z by x+iy and t by tl +it2 in (1) and equate reals and imaginaries, 
there result the two following equations: 

b 1 2 2) 1 c 1 (tl - (3) 2 + t22 
7rx = "2 og (tl +tl -c og {3 +2 Og( 1)2 

tl -73 + tz2 

_ aa + a {tan-1 (t2 - sin a) _ tan-I (t2 + sin a)} (6) 
tl - cos a tl - cos a 

>Y~ b tan-'m+, lto.-'(" t, ~) - tan-' (,,: ~)I 
-~loO" (tl-cos a) 2+ (t2- · s~n a) 2 

2 b(tl-cOSd)2+(tz+sma)2 
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If the point t describes the contour A BOD E F G H I J K A 
of Figure 2, the equations (6) take the following special forms in 
the six cases : 

Case L -oo< t1 < - 1,t2 = O 

{3 - tl {a ( sin a )} 
7fX = b log (- t l ) + clog 1- {3t1 + 2a 7f - 2" - t an- I tl - cos a 

y = b a ( SIna ) O-<x-< -I- 00, 7f - - < tan-I -<7f 
2 t l - cos a 

t - plane 

FIG. 2.- Con·esponding region in the I-plane 

x= O . (6- a) 
j ( .) (.)) Slll --I sm 6 -I sm 6 2 

7fy = be + c tan cos 6 _ {3 - t an 1 - a log . ( 6 -I- a)· 
cos 6- - sm --(3 . 2 

b< y-< + 00 

Case III. Same as II except a> 6 > 0 

x= -a . (a-e) 
( . ) (.)) SIn -sm 6 sm 6 2 

7fY= be +c jtan- 1 cos 6-{3 - tan- 1 1 - alog . (a+ e) 
cos 6- - sm --{3 2 
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Case IV. 1<t1< f3, t 2 =0 

( f3-tl) { (sin IX ) IX} 7fX = b log tl - clog {3 + clog tl _ ~ - 2a tan-l tl _ cos IX +2 

y = c, - oo-<x-<-a 

Case V. {3<t l < + co, t2 =0 

"" ~ b log', -, log P +, log G: =D -2a [tan-'(" ,"~o: .HI 
y=O, -00 <x< + 00 

Case VI. t =ReiO , R = co, 7l'>0>0 

O<y<b 

7fy=be x=+ co 
These equations show that the z-point trace:; the entire conducting 

boundary of the insulating region in the z-plane, when the point t 
describes the contour A B O . .... H I J K A in the t-plane. With 
the branches that have been specified for the logarithms, the equation 
(1), therefore, serves to define z as a single-valued function of t at 
all points within this contour. The entire insulating region in the 
z-plane is conformally represented upon the area within this contour 
A B a .... H I J K A on the t-plane . 

. Upon this same area in the t-plane is conformally represented 

. fi . . f h 1 1 {- co <u< + co} 1 an m mte stnp 0 t e w-pane, namey, O<v<vo' Wlere 

w is defined by (5). To show this one may replace t by tl +it2 in 
(5), and upon equating reals and imaginaries the two following 
equations are obtained: 

u= ~{ -~ log (t12+t22) +log ({3! 1)2+~ log [(tl-{3)2+ t22] 

+~ log [(tl-~} +t22] (7) 

v~ ';[ -tan-'G:)+ tan-,(" ~ p)+ tan-,(" :])) 
As special cases of these equations one finds the following expres­

sions for u and v in the six cases previously considered: 
Case I. 

v=vo 

\ 
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Cases II and III. 

Vo 1 [1- 2{3 cos {I + {32] 
U=-; og ({3+ 1)2 

V=vo 

Case IV. 

Case V. 

Case VI. 
U = en 

Hence, at all points within the contour ABO . . . . H I J K A 
in the t-plane, z and ware each defined by (1) and (5), respectively, 
as single-valued functions of the complex variable t. If it were pos­
sible to eliminate t between (1) and (5) and to obtain thereby an 
explicit formula for w in terms of z, then upon equating imaginary 
components of this equation one would obtain an explicit expression 
for the potential v at any point x, y, in the insulating region of Figure 
1, which potential vanishes at the lower conductor and assumes the 
constant value Vo upon each of the upper ones. It is harmonic at all 
points within the insulating region. 

It is not possible to make such an elimination of t, although it is 
easy, by eliminating t, to obtain z as a function of w. It is more 
convenient, however, to recognize in the equations (1) and (5) the 
solution of the electrostatic problem in the parametric form, and to 
retain the complex parameter t in making all computations of density 
of electricity and ponderomotive force . 

The upper right-hand conductor will be regarded (with c@rtain 
modifications) as the attracted disk of an electrometer, the upper left 
conductor its guard ring, and the lower conductor the adjustable 
plate. The principal value of interest is the downward pull upon 
the disk and to obtain this one need only find the distribution of sur­
face density of electricity upon its horizontal face; that is, along 
the line B A which is Case I where 

.--' 1 - 0 - - b d {O < x < + oo} - en , t1 < - ,t2-. , V-Vo , y - an O<u< + 00 
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Case I gives 

( (3 - t ) { (- t - 1 a)} 7T'X = b log (- t l ) + c log 1- {3~1 - 2a tan-I _ t~ + 1 . tan '2 (8) 

( -tl -1 a) a 
where tan-I _ tl + 1 tan '2 ranges from zero to '2 as tl ranges from 

- 1 to - co . Also 

(9) 

The surface density of electricity, IT, at a value tl corresponding to 
the value x is given by 

This gives 

411'IT = av = aU = du/dx = dw/~~ 
ay ox dt l dil dt I dt l 

Vo (tl - eia) (tl - e-ia) Vo tI 2-2il cosa+ 1 
IT = 47T'b tl2 - 1 47T'b t12- 1 

and by (8), (9), and (10) 
1 

ITdx= 411' du 

Similarly one finds from (8), (9), and (10) that 

dx 
211'IT2 dx = 211'IT2 dt· dt 

(10) 

(11) 
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\. Hence, the above relation becomes 

from which it follows by integration that 

(14) 

By elimination of the term log : ~ J:\ between this equation and (8) 

there results the equation 

211" i X
<T2 (x\)dx\ = 211" (4V;cy{x +c2.;bb2log (-t\) · 

(15) 

+ :a tan-~ c=;: ~ ~ tan ~) } 

The parametric equations (8) and (10) with parameter t\ define the 
surface density <T as a function of x. They show that <T becomes 
infinite when x approaches zero, and in such a manner that the prin­
cipal part of <T is proportional to x-!. In fact, when x is small one 
obtains the eXpression 

Vo j( a)~ 1 +(~Y) 
<T = 411"b (1 + cos a) hx +2 + (:xy (16) 

in which terms of the order of X 4/3 are neglected. The positive quan­
tity h occurring in this formula is defined by 

h = 311" (1 + cos a) {sin a + E (1 + cos a)} (17) 

The equations (16) and (17) may be obtained by noting that accord­
ing to (8) and (10) the positive quantities x and 7= -1- t\ vanish 
together. The equation (8) may be put in the form 

.t:< 

1I"x=b log (1 +7) +C log (1 +1;)-ia log 1 \'~~'~ 
l+ iJ +l 1+~ 

(18) 

1 
. na) }J'" ( 1)0 0 {3n-\ SIn -2 

=b - 7 - 1+£ -1-2 ~---n b (iJ + 1) 0' b 20 na 
n=l cos 2 

111895°-28--2 
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This series converges if 0 < T < 2 cos~. The coefficient of Tn vanishes 

identically for n=1 and for n=2 since it is found from (2) and (3) 
that 

-1 +£ {3 -1 +~ sin ex 0 
b {3 + 1 b 1 + cos ex (19) 

Consequently, the series (18) begins with the term n = 3 so that 
if r4 be neglected (that is, x413 ) one may write 

h: =r3 or r=(h:y (20) 

where h is defined by (17). 
The equation (10) becomes in terms of r 

1 1 + r 1 = ~ (1 + )1. + 1 + cos ex 
u 47rb cos ex T 2 + r (21) 

so that if the value of T from (20) be used in (21) the result is equa­
tion (16). 

When a and c - b are both small compared to b, the equations (8) 
and (10) show that the density (j very rapidly approaches its final 

value 4~b when x takes on an appreciable value. 

Returning again to the consideration of (15) it is evident that when 
a and c- b are both small compared to b and to x (although the ratio 

E may have any value) those terms in which tl appears in the second 

member of (15) are small correction terms. In the latter, tl may, 
therefore, be replaced by an approJ.-imate expression in terms of x thus 
leading to an explicit expression in x in place of the second member of 
(15). To obtain such an approximate expression we may note that, 

according to (2), } is a small positive value, namely, 

1 p p 
{i= ..j(b+C)2+ a2 2c (to the first order) (22) 

where 
p = ..j(c-b)2+a2 

If (8) be rewritten in the form 

7rX + 1 R _ 1 ({3 - t1)( - t1) c - b 1 ( t ) c og tJ - og 1 - - c- og - 1 

{i-t l 

- - tan - --- tan -2a 1 (-t1-1 ex) 
c - t l +1 2 

(23) 

(24) 
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then it is evident that the last two terms, which contain the small 

factors c - b and ~, may be neglected and this leads to the approximate 
c c 

equation (when neither x nor tl + 1 are small) 

7rX + log /3 = log (/3 - t1)( - t 1) 

c 1 
73- t1 

or 

which upon being solved for tl gives 

or 

/3 (...-x ) 1/32 (...-x )2 ".X 
- tl = 2" e C - 1 +""4 e e -1 + e C 

( ...-x ) = /3 e- c-- 1 

(very approximately) 

2b ( ...-x ) 
-tl = - e C -l 

p 
(25) 

This approximate value of tl is valid whatever value the ratio ~ . 
may have so long as both x and c are large compared to a and to c- b, 
which is always the condition in the applications to be made. 

Replacing - tt in the second member of (15) by the value (25) gives 

(26) 

The last term may be replaced by aa for all cases that arise in practice. 
7r 

This is evident since ± p is negligible compared to 2c(e ¥ -1). Its 
retention would simply give a correction to the small correction term 
and perhaps would not be justifiable considering the approximations 

already made. It is easy to see that the term 2c( e ¥ -1) is large 

compared to p even in the most unfavorable case where ~ is very small c 
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(although x is large compared to a or c-b). In this case it reduces to 

2C{1-1+7l'cX+~(7l'cxy + ... }=27rX (approximately) 

Consequently, 

(2C(/~ -1)- a) a . 
2 tan-1 (~ ) p tan 2" = a = tan- I c _ b (approxImately) 

2c e C -1 +p 

The equation (26) may finally be written in the following form 

where 
a 

0< tan- l -- < 7l' c- b 

The physical meaning of (27) is to be found in the fact that the 
force which acts downward upon unit area of the conductor is 2 7l'U2• 

Hence, the force acting upon a rectangle of length Z (perpendicular 
. to the paper in fig. 1) and breadth x, whose area is S = lx, is therefore 

The principal term in the second member of (28) is 27r(4~J2 S; 

that is, the force, computed upon the assumption of a constant 

density (4~J' The remaining terms, which are multiplied by l, 

represent the small correction due to the nonuniformity of density 
along the edge x=O, whose length is l. 

With this interpretation in mind, we may now make application 
to the case of a circular attracted disk which is separated from its 
guard plane by a small horizontal distance a and displaced downward 
a small distance c - b where c is the separation between the guard 
plane and the plate at zero potential. 

If the radius of the disk be x then its area S is 7rX2 and its perimeter 
Z is 27rX, and if this is large compared to a and to b - c the edge correction 
will be that represented by terms containing the factor Z in the above 

t 
I 
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equation . Using '1' for x (the radius of the disk) we obtain, therefore, 
the following approximate expression for the force upon the attracted 
disk : 

Vo2'1'2 { a 2[a c-b c-b J F j = - l +--- - tan-1--+ - - lop" ((c-b)2+a2) 
802 '1' 7r '1' a '1' '" 

(29) 
4 (c-b) (".r)} 

+ 7r'l' log 2c e C - 1 

provided a and 0 - b are each small compared tor or to c. (The ratio 
of'1' to c may then have any value.) In this formula 

_~< tan-I (C~ b)< ~ 
and the radius of the attrac~ed disk is '1', its height above the zero­
potential plate is b, its clearance from its guard plate is a, and the 
height of the latter above the plate of zero potential is c. The 
second member involves only the ratios of these lengths and will, 
therefore, be unaffected by the choice of unit of length. The poten­
tial of the attracted disk and its guard plane is Vo electrostatic c. g. s . 
units, and the total downward force Fl which acts 'upon the attracted 
disk is measured in dynes. The distribution of electricity upon the 
sides of the attracted disk contributes nothing to the downward 
force since the field is horizontal at these sides. The disk and its 
guard plate have been assumed to be infinitely thick, which means 
that they are so thick that no appreciable electrification appears 
upon their upper sides. This is evidently a good approxinlation for 
a disk 5 em in radius and 1 em in thickness when the aperture a is 
less than 1/20 em, which is approximately the case for the absolute 
electrometer under construction at this bureau. 

SinGe the equation (24) showing how the force F acting upon the 
attracted disk depends upon the clearance a between it and its guard 
plane and upon its displacement c- b below the plane of the latter has 
been obtained on the assumption that these distances are each small 
compared to the radius of the disk, or to the separation of the planes 
o or b, it is evident this equation still holds (and with increasing 
precision) when this separation is made very large. A separation in 
fact of 110 em is contemplated in the use of the absolute electrometer. 
It may be noted that the value of the first correction terms in (29), 
namely, 

a 2 [a I(C- b) c-b 1 (( b) 2 2)J - - - - tan- -- +-- og c- +a 
'l' 7r '1' a 'l' 

is not dependent upon this separation since (c- b)2 + a2 is the square 
of the length of the line from the edge of the disk to the edge of the 

guard ring and tan-1 (c ~ b) is the angle which this line makes with 
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the horizontal. In case the disk is accurately adjusted to the plane 

of its guard ring this t erm reduces to !!.. 
r 

The last correction t erm is only important when the disk is dis­
placed. This term depends . upon the displacement c - b and also 
upon the distance c of the lower plate, and if the latter is fairly close 

".r 

(say 1 ern while r= 5 cm) then e +0 = e+15 which is large compared 

to 1 so that this correction term reduces to 4 (c - b )(7rr + log 2C). 
7rr c 

On the other hand, when the lower plate of zero potential is lowered 

to a great depth /t: - 1 becomes very small and 2C( e ¥ -1) approaches 

[ 7rr 1(7rr)2 ] 2c 1-1+c + 2 c + ... 

or 27rr so that this. correction term then becomes (for large values of 
c compared to 7rr) 

4(c-b) 1 2 
7rr og 7rr 

If it is possible to adjust the position of the disk so accurately that 
the correction terms due to its displacement (c - b) are negligible then 
the force upon it may be computed by the formula 

( a)2 
2 2 V o2 r+-

F =vo r(l +!!.) = 2 
1 8b2 r 8b2 

which shows that for this case the effective radius of the disk is the 
arithmetic mean of the inner and outer radii of the gap. However, 
it must be noted that this assumes that c-b may be made very small 
indeed, for the principal correction term is 

4 c-b l 2c(e~-1) 
:;;: ' - r - og ..j(c-b)2+a2 

Even if c - b is small compared to a this becomes 

4 c-b 2C(~ ) - . -- 100' - e C -1 
7r r b a 

which may be rather large and which has the sarne algebraic sign as 
c- b. This means that when the disk is displaced dowuward the 
downward force increases. Consequently, this term is to be con­
sidered in estimating the amount by which the application of the 
potential decreases the stability of the system when the disk is hung 
from one arm of a balance. 
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III. EFFECT OF THE CIRCULAR CONDUCTING HOOPS WHICH 
ARE USED TO INCREASE THE UNIFORMITY OF FIELD AT 
THE DISK 

Since it is desired to work with separation of the plates b, which is 
of the same order of magnitude as their diameter 2R, a number, N, 
of conducting hoops of radius approximately equal to R are used to 
increase the uniformity of field in the neighborhood or the disk, 
which is situated centrally in the upper plate and has a radius r of 
about 5 cm, whereas R is about 50 cm. A hoop whose height is y 

above the lower plate, is kept at a potential v =t Vo above that 

¥ 

{n+l)ur 

nur 

(n-l)w-

r 

plate, where Vo is the amount by which the upper plate exceeds the 
lower in potential. To find the effect of these hoops upon the force 
acting upon the attracted disk, the conditions may be idealized as 
follows: .... 

Instead of hoops, it will be assumed tha,t the cylindrical 'surface 
r = R, between y = O and y=b, is divided into N equal bands each 
of width 2w over which the potential is constant. Thus if n is an 
odd integer, 1,3,5, ..... the band for which (n-l)w<y< (n+l)w 

has the constant potential nw ~. The potential function is 

(1) Harmonic within the cylinder O<r<R, O<y<b, 
(2) Vanishes for y = O, 
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(3) is equal to the constant Vo for y = b, and, 
(4) reduces on the convex surface T=R, to the discontinuous func­

tion of y described above. 
It may be constructed by ordinary methods and is found to be 

1 C) sin hy J (i7c7rT») 
Vo 2w~ w 0 w 

V= b y +-:;- i..J - 7c- (ih R) 
k=l J o -----w-

(30) 

where J o is the Bessel's function of zero order. This gives for the 
density of electricity on the upper plate, y = b, the value 

(31) 

Since h R is large, even for 7c = 1, the asympototic expansion of the 
u' 

Bessel function in the denominator may be used with good approxi­
mation. It gives 

Jo(¥!) h(2!)' ,J7ie _':R (32) 

which shows that all but the first term (7c= 1) of the series in (31) will 
be negligible so that 

(]'= _ o 1+47r - e wJ -v { (R)t _"R (i7rT) 
47rb 2w 0 w (33) 

and 

(34) 

The total downward force upon 'a circular area in the plate y = b, 
whose center is on the axis of the cylinder and whose radius is T, is 

where J 1 is the Bessel function of order one and may be written 

( 7TT)28 
J (i7rT) _ i7rT ~ 2b 

1 W -2w i..J s!(s+1)! 
(36) 

8=0 
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The equation (35), therefore, gives the correction term to the 
force on the attracted disk of radius r due to the effect of the 2N 
rings which are maintained at appropriate potentials. As a matter 

of fact r is about 5 cm so that 7rr is usually so large that one may 
w 

also use the asymptotic expansion for Ji in this equation. This 
gIves 

(37) 

where 2w is the distance between the hoops. Since the first term 
2 2 

VSb; is the force on a circular area of radius a when both the planes 

y = 0 and y = b are infinite in extent, the correction terms t::,.F due 
to their finiteness when shielded as des<;\ribed is just 

(38) 

IV. SUMMARY 

The equations (29) of Section I and (38) of Section II may now 
be assembled to give in a single equation the corrections to the 
force, which are due to all the circumstances that have been con­
sidered. This gives for the downward force (in dynes) upon the 
attracted disk F = Fl + t::,. F or 

F _VQ2r2\1+a 2at -1 (C - b)+4 (c-b) ' l 1_-- -- - an -- ocr 
8c2 r trr a trr b 

+8(~)"M) 

.-r 

2c (ec -1) 
(c-b)2+a2 

(38) 

where 
Vo = the difference of potential in electrostatic c. g. s. units, 
r = radius of the attracted disk, 
b = its height above the adjustable plate, 
c = the height of the guard plane above the plate, 
a = clearance between disk and guard plane, 
R = radius of adjustable plate and of guard plane, 

2w = the distance between adj acent hoops of radius R which 
are equally spaced between the plates and kept at 
potentials proportional to their distance from the 
lower plate. 
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In deriving this formula it has been assumed that a and c _. bare 

each small compared either to r or c, although the ratio'!.. may have c 
uny value. 

It has also been assumed in obtaining the last term in (38), 
namely, 

--,r (R-r) 

8 C¥)" Ci) 
that 7rr is so large that the first term of the asymptotic expansion of 

w 
the Bessel's function in (35) is a sufficient approximation to that 
function. If this is not the case the general expression involving J 1 

must be retained. However, this will never be necessary for the 
application here contemplated, for the asymptotic expansion here 
used for J 0 (ix) is in error by less then one-third of 1 per cent even 
for values of x as small as 10, as may be seen by reference to Jahnke 
und Emde's "Funktionentafeln Mit Formeln und Kurven," page 130. 

The smallest argument occurring here is in the case of J o C7:r) 
or Joe:) when 7c= 1. With r=5 cm and w = l cm, ::; is 57r 

or 15.7. For this and all higher values of the argument, the asymp­
totic expansions here used have a precision far beyond that attain­
able by experiment. A high order of precision in the last term with 
the bracket of equation (38) is . not needed since this term is itself 
a very small correction term. In fact, if w = 1 cm, r = 5 cm, and 
R = 50 cm, it reduces to 1.61 e-45"., which shows that the arrange­
ment of hoops will produce practically perfect compensation if they 
can be maintained at the desired potentials. 

WASHINGTON, December 7, 1926. 
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