# WAVE LENGTHS AND ZEEMAN EFFECTS IN YTTRIUM SPECTRA

#### By William F. Meggers

#### ABSTRACT

The wave lengths corresponding to approximately 1,000 lines photographed in the arc and spark spectra of yttrium were measured relative to secondary standards in the iron spectrum. The values extend from 2127.99A in the ultra-violet to 9494.81A in the infra-red. Comparison of relative intensities and other characteristics of lines in the different sources permitted a sharp discrimination between four classes of lines; about 500 are ascribed to neutral atoms (constituting the YtI spectrum), 240 originate with singly ionized atoms (YtII spectrum), 10 belong to doubly ionized atoms (YtIII spectrum), and most of the remainder describe the band spectrum characteristic of molecular compounds, presumably yttrium oxide. Measurements of Zeeman effects (photographed by Moore) for 220 yttrium lines ranging in wave length from 3173A to 6896A are included.

#### CONTENTS

| I.   | Introduction      | 319 |
|------|-------------------|-----|
| II.  | Experimental      | 320 |
|      | 1. Wave lengths   | 320 |
|      | 2. Zeeman effects | 321 |
| III. | Results           | 321 |

#### I. INTRODUCTION

Wave-length measurements in the arc spectrum of scandium (Z=21) were published last year.<sup>1</sup> Many lines due to ionized atoms were observed in the arc, and on the basis of these measurements a fairly complete analysis of the ScI and ScII spectra was made.<sup>2</sup> Yttrium (Z=39) is a chemical analogue of scandium and should exhibit similar spectral characteristics, but attempts to analyze the structures of its spectra were only partially successful, and it was deemed essential to obtain new observational data. The observations reported in this paper consist of wave-length measurements and line intensity estimates in the ordinary arc and spark spectra of yttrium and additional data on the magnetic resolutions of the stronger lines.

319

Dago

<sup>&</sup>lt;sup>1</sup> Meggers, B. S. Sci. Paper No. 549, 22, p. 61; 1927.

<sup>&</sup>lt;sup>2</sup> Russell and Meggers, B. S. Sci. Paper No. 558, 22, p. 330; 1927. 109427-28

#### **II. EXPERIMENTAL**

#### 1. WAVE LENGTHS

Yttrium (Yt=89.33; Z=39), like scandium, is usually associated with some of the "rare earth" family of elements and is extremely difficult to obtain absolutely free from traces of the latter. This may account for a considerable number of the differences, especially among fainter lines, noted in various descriptions of yttrium spectra. The material used in the present investigation was purified with great care and patience by J. F. T. Berliner, of the Bureau of Chemistry, Department of Agriculture. Several grams of very pure yttrium oxalate kindly supplied for spectroscopic studies sufficed for numerous exposures for descriptions of arc and spark spectra and for the long exposures required in extending the observations of Zeeman effects. A portion of the same material was used by Doctor King and Miss Carter <sup>3</sup> for their study of the electric furnace spectra of yttrium.

The spectrograms from which the new wave-length values are derived were obtained by the same procedure which has been successfully used in other cases <sup>4</sup> where only small amounts of salts are available. Rods of pure silver were used as electrodes, yttrium salt was placed upon the lower electrode for the production of the arc spectrum, and the same rods were then used for the spark exposures. Sufficient yttrium was thus fused on the ends of the rods in the first case to give excellent spectra also in the second. Comparison arc and spark spectra of pure silver were photographed adjacent to those of yttrium and silver, so that lines due to the electrodes or to the atmospheric gases could be recognized at once, thus avoiding the necessity of measuring and subsequently eliminating these lines.

For the excitation of the arc spectrum an electric arc of 4 to 6 amperes direct current from a circuit with 220 volts potential difference was used. The spark spectra were produced by a 40,000-volt transformer consuming about a kilowatt, condensers of 0.006 microfarads capacity being placed in the secondary circuit in parallel with the spark.

The wave-length interval from 2500A in the ultra-violet into the infra-red (9500A) was investigated with large diffraction gratings. while the shorter wave portion to 2100A was photographed with a large quartz spectrograph. The concave gratings were mounted in parallel light as described in earlier publications.<sup>5</sup> For the red and infra-red regions a 6-inch grating rules by Anderson with 7,500 lines per inch, giving a scale of 10A per millimeter was employed, while the remainder of the range was recorded for the most part with a similar

<sup>&</sup>lt;sup>3</sup> King and Carter, Astrophys. J., 65, p. 86; 1927.

<sup>&</sup>lt;sup>4</sup> Meggers, B. S. Sci. Paper, No. 499, 20, p. 19; 1925.

<sup>&</sup>lt;sup>5</sup> Meggers and Burns, B. S. Sci. Paper, No. 441, 18, p. 191; 1922.

grating ruled by Rowland, with 20,000 lines per inch, which gave a dispersion of about 3.6A per millimeter in the first-order spectrum. The stronger lines between 3000 and 6000A were measured in the second-order spectrum of the latter grating, but many of the fainter lines, especially the somewhat hazy spark lines between 2500 and 3800A appeared only on spectrograms made with the first grating. The quartz spectrograph is one of the autocollimating type  $(E_1)$  made by Adam Hilger; its scale ranges from about 1.5A to 2.7A per millimeter in the interval of wave lengths for which it was used. The arc spectrum of iron was recorded with each yttrium spectrogram to supply the standard wave lengths from which the values for yttrium lines were derived by interpolation.

All the spectrograms were made on photographic plates of thin glass which could be bent to fit the focal curves of the spectrographs. The plates were sensitized <sup>6</sup> with pinaverdol, pinacyanol, dicyanin, or neocyanin to photograph the longer wave portions. Whereas previous attempts to photograph the arc spectrum of yttrium in the infra-red failed to record any lines of wave length exceeding 7881A, the use of neocyanin in the present case extended the wave-length data to 9495A. The exposure times ranged from a few minutes for the ultra-violet to an hour for the intra-red.

#### 2. ZEEMAN EFFECTS

The spectrograms for the study of Zeeman-effects of yttrium lines were all made in 1924 at the Brace Laboratory of Physics, University of Nebraska, by the late Prof. B. E. Moore. The exposures were made on long strips of Eastman film adjusted to the focal curve of a concave grating spectrograph giving a scale of about 2.5A per millimeter in the first order. A 5,000-volt transformer was employed by Moore for producing sparks between carbon plates impregnated with yttrium solutions and inserted between the pole pieces of the electromagnet. The magnetic field strength was of the order of 28,000 gausses per square centimeter; it was determined from the separations of the magnetic components of sodium lines  $(D_1 \text{ and } D_2)$  or of calcium lines (H and K) which were present as impurities. Separate exposures were made for the parallel and for the perpendicular components; all of the measurements and calculations were made at this bureau.

#### **III. RESULTS**

Various observers have already described limited portions of the arc and spark spectra of yttrium. The most reliable results up to the year 1911 are quoted by Kayser in his Handbuch der Spectroscopic, Volume VI; they are by Kayser<sup>7</sup> (arc spectrum 2227.849 to

#### Meggers]

<sup>&</sup>lt;sup>6</sup> Walters and Davis, B. S. Sci. Paper, No. 422, 17, p. 353; 1921.

<sup>&</sup>lt;sup>7</sup> Kayser, Abhandl. Berlin Akad., 30, p. 633; 1903.

6701.188A), by Eberhard <sup>8</sup> (arc spectrum 2760.17 to 4527.95A), by Eder and Valenta <sup>9</sup> (arc spectrum 5466.669 to 6815.6A), and by Exner and Haschek <sup>10</sup> (arc spectrum 2422.30 to 6795.71A and spark spectrum 2191.35 to 6795.70A). These values are all based on Rowland's system of standard wave lengths.

More recent measurements have been made on the international scale of wave lengths by Eder<sup>11</sup> (arc spectrum 2231.55 to 7881.69A), by Kiess<sup>12</sup> (arc spectrum 5503.474 to 7881.868A), and by Yntema and Hopkins<sup>13</sup> (arc spectrum 2243.02 to 4199.26A). Admitting that these observations are superior in many respects to the earlier ones, it is, nevertheless, obvious that they have certain shortcomings as descriptions suitable for a complete analysis of arc and spark spectra. They all refer to the arc spectrum without any indication as to which lines belong to ionized atoms, and, furthermore, they cover their respective wave-length intervals with somewhat different scales of intensities and with many disagreements as to the fainter lines.

The only extensive data on Zeeman effects of yttrium lines are those published by Moore<sup>14</sup> in 1908. These give complex patterns for 12 lines; 14 lines were observed as quartets in the magnetic field and 74 as triplets. The lines range from 3130A to 5663A. A few additional observations were published by Meggers and Moore<sup>15</sup> in 1925.

The results of our determinations of approximately 1,000 wave lengths in the arc and spark spectra of yttrium and of Zeeman effects for 220 lines are presented in Table 1. Wave lengths on the international angstrom scale appear in the first column, and the estimated relative intensities of the lines in the arc and spark are given in the second. Certain other symbols appearing in the intensity column are explained below.

The probable errors of my wave-length determinations are usually less than 0.01A for the stronger lines between 3000 and 6000A, but the errors for the remaining lines are somewhat larger, since they were measured for the most part on smaller scale spectrograms. It was especially difficult to obtain accurate values for lines marked h, l, hl, or nl; because of their broad and unsymmetrical character the measured effective wave length depends somewhat on the exposure; that is, lines shaded toward the red were invariably measured as having longer wave lengths in stronger exposures. The probable error for such lines averages about 0.05A.

ample / Sigons

<sup>&</sup>lt;sup>8</sup> Eberhard, Zeitschr. wiss. Phot., 7, p. 245; 1909.

<sup>&</sup>lt;sup>9</sup> Eder and Valenta, Kaiser, Akad. wiss. Wien. Berlin, 199, p. 9 and p. 519; 1910.

<sup>&</sup>lt;sup>10</sup> Exner and Haschek, Die Spectren der Elemente, Deuticke, Leipzig; 1911 and 1912.

<sup>&</sup>lt;sup>11</sup> Eder, Kaiser, Akad. Wiss., Wien, Ber., 125, p. 383; 1916.

<sup>&</sup>lt;sup>12</sup> Kiess, B. S. Sci. Paper, No. 421, 17, p. 318; 1921.

<sup>13</sup> Yntema and Hopkins, J. Opt. Soc. Am., 6, p. 121; 1922.

<sup>&</sup>lt;sup>14</sup> Moore, Astrophys, J., 28, p. 1; 1908.

<sup>&</sup>lt;sup>15</sup> Meggers and Moore, J. Wash. Acad. Sci., 15, p. 207; 1925.

My intensity estimates were made on an expanded scale more or less like that developed by King. Experience in classifying the lines in complex spectra has shown that such large-scale intensities are helpful in detecting multiplet structures, while the 1 to 10 scale which most spectroscopists have used is not very instructive. Comparison of estimated intensities in arc and spark spectra, especially when these are photographed side by side as in the present case, enables one to decide if the line belongs to spectrum I of neutral atoms, to spectrum II of singly ionized atoms, or to spectrum III of doubly ionized atoms. Lines of the YtII spectrum may be divided roughly into two classes-those which are nearly as strong in the arc as in the spark and those which appear weak in the arc but greatly enhanced in the spark. The latter are usually hazy and unsymmetrical in the spark. Lines belonging to doubly ionized atoms, YtIII are distinguished by being very strong in the spark, but either absent or extremely weak in the arc.

A small number of lines observed by Exner and Haschek and confirmed by King are included in column 1.

For purposes of comparison and to illustrate certain points of interest Eder's wave lengths and intensities for lines observed in the arc spectrum are given in the next two columns. After correcting some obvious typographical errors in Eder's wave lengths (4039, 4077, 4124 instead of 4030, 4076, 4025) there is, in general, good agreement between his values and mine for the stronger lines, but there are some unaccountable omissions in his list; for example, 3045, 3776, 4487 and a considerable number of faint lines present in his but absent from mine. Similar discrepancies as to the faint lines are noted in comparing any list of vttrium lines with any other of those mentioned above. Some of them may arise from differences in judgment in picking lines out of superposed band structures and certain others may represent unidentified impurities. Special attention is called to the systematic wave-length differences for lines which are shown by my intensity estimates to be hazy, unsymmetrical enhanced lines. For these the effective wave length as measured in the spark is usually from 0.1 to 0.2A greater than the value obtained from arc spectra in which most of the lines appear also but with relatively low intensity. A similar displacement of these enhanced lines was noted much earlier by Exner and Haschek<sup>16</sup> in their first description of the arc and spark spectra.

In column 5 of Table 1 the arc intensity estimates and furnace temperature classes published for yttrium lines by King and Carter<sup>17</sup> are quoted. Lines in Classes I and II appear at low temperature, 2,000° C. Those of Class I show a slower change from low to high

Meggers]

<sup>&</sup>lt;sup>16</sup> Exner and Haschek, Wellenlangentabellen, Deuticke, Leipzig; 1902.

<sup>17</sup> King and Carter, Astrophys. J., 65, p. 86; 1927.

temperature than those of Class II and as a rule are less conspicuous in the arc. Lines of Class III are usually well developed at medium temperatures, 2,200 to 2,300°, while lines clearly associated with high temperatures, 2,600 to 2,800°, are placed in Classes IV and V, those of Class V being absent or very faint in furnace spectra. The other symbols in column 5 have significance as follows: d, unresolved doublet; n, diffuse arc line; A, relatively stronger in the furnace than in the arc; E, enhanced line.

The vacuum wave numbers corresponding to the observed yttrium wave lengths are presented in column 6 of Table 1. They were taken from Kayser's Tabelle der Schwingungszahlen, and usually represent the mean wave length from columns 1 and 3, but in a few cases where considerable divergence exists the value in column 1 has been preferred.

Zeeman effects for 220 yttrium lines are found in column 7. These represent the more recent observations. They are not only more extensive, but also somewhat better quality than those published earlier. The patterns are presented in the standard notation for Zeeman effects; that is, the separations are expressed in decimal parts of a, the separation of a normal triplet, components polarized parallel to the magnetic field being inclosed in parentheses and followed by the perpendicular components. In complex patterns the strongest component of the group is printed in **boldface** type. A few lines for which the focus and exposure were best were just barely resolved when the neighboring components were separated by about 1/5a, but many strong lines were regularly overexposed, so that the components could not be resolved even when separated by 1/4a or 1/3a. For unresolved patterns an effort was made to measure the center of gravity of the unresolved group and to give some indication of the intensity distribution among the fused components. For this purpose, the notation used by Back <sup>18</sup> for distinguishing various types of intensity gradients is employed here. The letters A or B after a Zeeman effect mean that the pattern is complex but unresolved, and A indicates that the maximum intensity for perpendicular components is at the edge of a group, while B signifies that it is in the middle of the group. The distinction between strongest component inside or outside of the group is shown by  $A^1$  and  $A^2$ , respectively. The complete interpretation of these Zeeman effects will be given in another paper <sup>19</sup> dealing with the spectral-series classification of yttrium lines.

In the last column an attempt is made to assign each observed wave length to its proper atomic or molecular source. This separation of lines into YtI, YtII, YtIII spectra, and assignment of bands to molecular orgin, is based primarily upon the relative intensities and

<sup>19</sup> Meggers and Russell, forth coming paper in B. S. Journal of Research.

324

<sup>&</sup>lt;sup>18</sup> Back, Zeitschr. fur Phys., 15, p. 212; 1923.

other characteristics reported in column 2. It is supported by the temperature classification and further description in column 5 and by the Zeeman effects describing combinations of spectral terms having even multiplicity for YtI lines and odd multiplicity for YtII lines. The detailed correlation of all the descriptive data on yttrium lines presented above is reserved for a subsequent paper on the analysis of the arc and spark spectra of yttrium. The meaning of the symbols and abbreviations used in Table 1 is summarized as follows:

h = hazy (= n in King's column).

l = shaded to long wave lengths.

n = B. H. = band head.

p = part of band structure.

d =double.

c = complex.

E = enhanced line.

A = stronger in furnace than in arc.

A<sup>1</sup>=strongest s-components of Zeeman effect inside.

 $A^2 = strongest s$ -components of Zeeman effect outside.

B =strongest s-components of Zeeman effect in center.

w = wide.

E + H = Exner and Haschek.

| TABLE | 1W | ave | lengths | and | Zeeman | effects | in | yttrium | spectra |
|-------|----|-----|---------|-----|--------|---------|----|---------|---------|
|-------|----|-----|---------|-----|--------|---------|----|---------|---------|

|                                                                                  | Megger      | s                                                                                                  | I                               | Eder                                              | King and Carter |                                                                                       |               |                       |
|----------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------|-----------------|---------------------------------------------------------------------------------------|---------------|-----------------------|
|                                                                                  | Intensity   |                                                                                                    |                                 | Inten-                                            | Arc intensity   | ν                                                                                     | Zeeman effect | Spectrum              |
| ^                                                                                | Arc         | Spark                                                                                              | ^                               | sity arc                                          | ture class      |                                                                                       |               |                       |
| $\begin{array}{c} 2127.\ 99\\ 2191.\ 22\\ 2200.\ 80\\ 06.\ 22\\ 31. \end{array}$ | =           | $     \begin{array}{r}       100 \\       200 \\       50 \\       30 \\       -     \end{array} $ | . 55                            | 1                                                 |                 | $\begin{array}{r} 46977.\ 8\\ 45622.\ 4\\ 423.\ 8\\ 45312.\ 2\\ 44797.\ 9\end{array}$ |               |                       |
| $\begin{array}{r} 43.\ 06\\ 68.\ 14\\ 2284.\ 5\\ 2327.\ 30\\ 28.\end{array}$     | 25<br>      | 50<br>2h<br>100hl<br>20<br>—                                                                       | . 03                            | 2                                                 |                 | $\begin{array}{c} 568.\ 4\\ 44075.\ 8\\ 43759.\ 7\\ 42955.\ 0\\ 924.\ 6\end{array}$   |               |                       |
| 31.<br>32.<br>40. 8<br>49.<br>54.                                                | -<br>-<br>- | <br>10h<br>                                                                                        | .63<br>.58<br>.79<br>.69<br>.20 | 1<br>2<br>1<br>1<br>3                             |                 | $\begin{array}{c} 875.\ 3\\ 857.\ 8\\ 707.\ 4\\ 545.\ 8\\ 464.\ 3\end{array}$         | ,             | п                     |
| 55.<br>58.<br>61.<br>67. 25<br>85.                                               |             |                                                                                                    | . 40<br>. 70<br>. 81<br>. 24    | $\begin{vmatrix} 1\\ 2\\ 2\\ 2\\ 2 \end{vmatrix}$ |                 | $\begin{array}{r} 442.\ 6\\ 383.\ 3\\ 327.\ 5\\ 42230.\ 2\\ 41911.\ 7\end{array}$     |               | ш                     |
| 2398.142404.13.9214.6817.4                                                       | 1<br>       | 10hl<br>3h<br>100<br>5h                                                                            | .06<br>.11<br>.94<br>.29        | 2<br>1<br>1<br>1                                  |                 | $\begin{array}{c} 686. \ 8\\ 582. \ 8\\ 413. \ 6\\ 400. \ 8\\ 355. \ 0\end{array}$    |               | II<br>II<br>III<br>II |
| $\begin{array}{c} 22.\ 22\\ 57.\\ 60.\\ 60.\ 62\\ 2465.\ 90 \end{array}$         | 20<br>_2    | 50<br>20<br>5h                                                                                     | . 20<br>. 93<br>. 11<br>. 60    | $\begin{array}{c}4\\1/2\\1\\2\end{array}$         |                 | 41272. 1<br>40672. 3<br>636. 3<br>628. 0<br>40540. 9                                  |               |                       |

# Bureau of Standards Journal of Research

#### [ Vol. 1

TABLE 1.-Wave lengths and Zeeman effects in yttrium spectra-Continued

|                                                                     | Meggers                 | 1 LOD IL                        | Eder King and Carte                                                                                    |                                                                                                                               | a monante.<br>A manante                      |                                                                                    | the Zoel                                  |                                                             |
|---------------------------------------------------------------------|-------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|
| λ                                                                   | Inte                    | nsity                           | λ                                                                                                      | Inten-                                                                                                                        | Arc intensity<br>and tempera-                | ν                                                                                  | Zeeman effect                             | Spectrum                                                    |
|                                                                     | Arc                     | Spark                           | an in t                                                                                                | Sityare                                                                                                                       | ture class                                   | however                                                                            |                                           | tureent                                                     |
| 2479.<br>79.<br>2490. 4<br>2529.<br>40.                             | 1                       | ling of<br>off <del>-</del> i s | .09<br>.80<br>.14<br>.28                                                                               | 1<br>1<br>1<br>1                                                                                                              | if yıtritmi.<br>ada 1-in-<br>olanıj.         | 40325. 2<br>313. 7<br>40142. 1<br>39527. 3<br>353. 9                               | and sparks<br>reviations a<br>have (====h | na edi<br>du <b>i</b> sta<br>a                              |
| $\begin{array}{c} 47.\\ 50.\\ 54.\\ 64.3\\ 70.72 \end{array}$       | -                       | 1                               | .56<br>.35<br>.87<br>.72                                                                               | 1<br>1<br>1                                                                                                                   | ed have                                      | $\begin{array}{c} 241.5\\ 198.5\\ 39129.2\\ 38985.3\\ 888.0 \end{array}$           |                                           | II                                                          |
| 79.<br>93.<br>2594.<br>2612.<br>19.                                 |                         |                                 | .36<br>.76<br>.88<br>.38<br>.38<br>.46                                                                 | 1<br>1<br>1<br>1<br>1                                                                                                         | .ong ni aa                                   | 757.7542.5525.9267.938164.4                                                        |                                           | 3                                                           |
| 34.<br>47.<br>71.<br>72.<br>81.                                     |                         |                                 | .32<br>.74<br>.20<br>.08<br>.65                                                                        | $ \begin{array}{c c} 1 \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 1 \\ 1 \end{array} $                                             | ts of Zeenna<br>us of Zeenna<br>is of Zeenna | $\begin{array}{r} 37949.\ 2\\756.\ 8\\425.\ 2\\412.\ 9\\279.\ 4\end{array}$        |                                           | I                                                           |
| 84.<br>94.<br>2695.<br>2705.<br>10.                                 |                         | d's tany.                       | .20<br>.21<br>.40<br>.85<br>.15                                                                        |                                                                                                                               | ek.<br>a.uf Zaenn                            | $\begin{array}{c} 244.\ 0\\ 105.\ 6\\ 37089.\ 2\\ 36946.\ 0\\ 887.\ 4\end{array}$  |                                           | I                                                           |
| 19.<br>23.<br>30.<br>33.<br>34. 98                                  |                         | 4h                              | .99<br>.00<br>.06<br>.93<br>.85                                                                        | $\begin{array}{c}1\\3\\1\\1\\2\end{array}$                                                                                    | t an stille                                  | $\begin{array}{c} 754.\ 0\\ 713.\ 3\\ 618.\ 4\\ 566.\ 6\\ 553.\ 3\end{array}$      |                                           | 1<br>I<br>II                                                |
| 42.<br>49. 4<br>50. 40<br>55.<br>56.                                | Ξ                       | 1<br>3h                         | $     \begin{array}{r}       .55 \\       .23 \\       .20 \\       .79 \\       .33     \end{array} $ | $     \begin{array}{c}       3 \\       1 \\       2 \\       1 \\       1     \end{array} $                                  |                                              | $\begin{array}{r} 451.\ 7\\ 361.\ 9\\ 348.\ 9\\ 276.\ 5\\ 269.\ 4\end{array}$      |                                           |                                                             |
| $\begin{array}{r} 60.\\ 85.23\\ 85.60\\ 2791.\\ 2800.11\end{array}$ | Ξ                       | 3<br>2<br>4                     | .10<br>.19<br>.58<br>.20<br>.12                                                                        | $\begin{vmatrix} 3\\2\\2\\1\\2 \end{vmatrix}$                                                                                 |                                              | $\begin{array}{r} 36219.\ 9\\ 35893.\ 4\\ 888.\ 5\\ 816.\ 3\\ 702.\ 3 \end{array}$ |                                           |                                                             |
| 07.<br>13. 61<br>17. 01<br>18.<br>22.                               | 5                       | 4h<br>200                       | .66<br>.66<br>.87<br>.56                                                                               | $\begin{array}{c}1\\1\\-\\1\\1\end{array}$                                                                                    | 1 III A<br>8 III<br>3 IV<br>10 IV            | $\begin{array}{c} 606.\ 4\\ 531.\ 1\\ 488.\ 2\\ 464.\ 8\\ 418.\ 4\end{array}$      |                                           | $\begin{vmatrix} I\\I+II\\III\\I\\I\\I\\I\\I \end{vmatrix}$ |
| $\begin{array}{c} 23.\\ 24.\\ 25.37\\ 26.38\\ 34.57\end{array}$     | <br>                    | $^{3h}_{5}_{5h}$                |                                                                                                        |                                                                                                                               | 1 IV A                                       | 406. 0<br>394. 3<br>383. 2<br>370. 6<br>269. 5                                     |                                           | II<br>II<br>II                                              |
| $\begin{array}{r} 40.98\\ 42.5\\ 50.7\\ 54.45\\ 56.32 \end{array}$  | $\frac{1}{\frac{2}{1}}$ | $5h \\ 1 \\ 2 \\ 15 \\ 6$       | $     .84 \\     .42 \\     .30   $                                                                    | $\begin{vmatrix} 1\\ -\\ 2\\ 2 \end{vmatrix}$                                                                                 | 3 V E<br>1 V                                 | $189.7 \\ 170.0 \\ 068.8 \\ 022.9 \\ 35000.0$                                      |                                           |                                                             |
| $57. \\ 58.06 \\ 71.4 \\ 78.92 \\ 83.85$                            | 1                       | ${}^{4h}_{1h}\\{}^{1}_{2}$      | .87<br>.20<br>                                                                                         |                                                                                                                               |                                              | $\begin{array}{r} 34980.\ 8\\978.\ 5\\817.\ 2\\725.\ 1\\665.\ 7\end{array}$        |                                           | Ш                                                           |
| 86.<br>90.<br>91.<br>[97.70<br>2898.93                              | 1<br>1                  | 53                              | .49<br>.40<br>.32<br>.68<br>.82                                                                        | $     \begin{array}{c}       2 \\       1 \\       1 \\       1 \\       1 \\       1       1       1       1       1       $ | 15 III<br>3 IV<br>1 V<br>tr V                | $\begin{array}{c} 634.\ 0\\ 587.\ 2\\ 576.\ 2\\ 500.\ 2\\ 34486.\ 0\end{array}$    |                                           | I<br>I<br>II<br>II                                          |

.

# Meggers] Yttrium Spectra

TABLE 1.—Wave lengths and Zeeman effects in yttrium spectra—Continued

|                                                                                   | Megger                                                      | 8                                                   | F                                                                                                         | Eder                                                                                         | King and Carter                             | ust in the                                                                              |               |                            |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------|---------------|----------------------------|
| λ                                                                                 | Inte                                                        | ensity                                              | λ                                                                                                         | Inten-<br>sity arc                                                                           | Arc intensity<br>and tempera-<br>ture class | ν                                                                                       | Zeeman effect | Spectrum                   |
| 2901.<br>07. 18                                                                   | Arc                                                         | Spark<br>2                                          | . 48                                                                                                      | 1                                                                                            | 6 III                                       | 34455.1<br>387.5                                                                        |               | <br>I<br>II                |
| 19. 05<br>29.<br>30. 15                                                           | 3<br>1                                                      | 6h                                                  | .06<br>.00<br>.03                                                                                         | $\begin{vmatrix} 3\\1\\2 \end{vmatrix}$                                                      | 20 II                                       | 247. 7<br>131. 4<br>118. 7                                                              |               | I<br>I<br>II               |
| 30. 8<br>35.<br>43.<br>45. 92<br>48. 39                                           |                                                             | 2h<br>150<br>1                                      | .77<br>.91<br>.58<br>-<br>.40                                                                             | $\begin{array}{c}1\\1\\-\\-\\4\end{array}$                                                   | 30 II                                       | $\begin{array}{c} 110.\ 7\\ 34051.\ 1\\ 33962.\ 3\\ 935.\ 4\\ 906.\ 9\end{array}$       |               |                            |
| 48. 98<br>50. 33<br>53. 28<br>56. 04<br>57. 39                                    | <br>1                                                       | 3h<br>1h<br>3h<br>5h<br>2h                          | .78<br>.14<br>5.86                                                                                        | $\frac{1}{1}$                                                                                |                                             | $\begin{array}{c} 901.\ 3\\ 884.\ 6\\ 851.\ 6\\ 820.\ 2\\ 803.\ 7\end{array}$           |               | II<br>II<br>II<br>II<br>II |
| 64. 96<br>74. 02<br>74. 59<br>78. 18<br>80. 7                                     |                                                             | 1<br>5h<br>1<br>3h<br>20hl                          | .95<br>3.91<br>.60<br>7.99<br>.55                                                                         | $     \begin{array}{c}       3 \\       1 \\       4 \\       1 \\       2     \end{array} $ | 30 II<br>35 II<br>2 VE                      | $\begin{array}{c} 717.\ 5\\ 615.\ 4\\ 608.\ 2\\ 568.\ 6\\ 540.\ 3 \end{array}$          |               | I<br>I<br>I<br>II<br>II    |
| $\begin{array}{r} 82.\ 20\\ 84.\ 25\\ 95.\ 26\\ 2996.\ 94\\ 3001.\ 42\end{array}$ | $ \begin{array}{c} \hline 10\\ 1\\ 2\\ \hline \end{array} $ | $\begin{array}{c} 2\\ 2\\ -\\ -\\ 2\\ 2\end{array}$ | . 25<br>. 25<br>. 94<br>                                                                                  | $\begin{bmatrix} - \\ 4 \\ 2 \\ 3 \\ - \end{bmatrix}$                                        | 50 II<br>10 III<br>20 III                   | 522. 5499. 5376. 4357. 7307. 9                                                          |               | II<br>I<br>I<br>II         |
| $\begin{array}{c} 05.\ 26\\ 06.\ 0\\ 09.\\ 18.\\ 21.\ 76 \end{array}$             | 1<br>1<br>2                                                 | 2h                                                  | $.\frac{25}{.51}$<br>.95<br>.73                                                                           | $\begin{array}{c} 2\\ -1\\ 2\\ 3 \end{array}$                                                | 12 III<br>6? III<br>15 II                   | $\begin{array}{c} 265.\ 4\\ 257.\ 1\\ 218.\ 4\\ 114.\ 5\\ 083.\ 9 \end{array}$          |               | I<br>I<br>I<br>I           |
| 22. 30<br>23. 50<br>23.<br>23.<br>26. 5                                           | 2<br>2                                                      | 2h<br>10hl                                          | $     \begin{array}{r}             27 \\             .70 \\             .99 \\              \end{array} $ | $\begin{array}{c} 3\\ -1\\ 1\\ -\end{array}$                                                 | 12 II                                       | $\begin{array}{c} 077. \ 9 \\ 064. \ 7 \\ 062. \ 5 \\ 059. \ 3 \\ 031. \ 9 \end{array}$ |               | п                          |
| $\begin{array}{c} 27.\ 75\\ 30.\ 2\\ 36.\ 7\\ 37.\\ 38. \end{array}$              | $\frac{1}{3}$                                               | 3<br>4h<br>25hl                                     | .68<br>.08<br>.59<br>.82<br>.46                                                                           | $     \begin{array}{c}       1 \\       1 \\       3 \\       1 \\       1     \end{array} $ | 4 III A                                     | 33018. 6<br>32992. 2<br>921. 5<br>908. 8<br>901. 9                                      |               | II<br>II<br>II<br>I        |
| 39.<br>44.<br>45. 36<br>47.<br>47.                                                | 4                                                           | 1                                                   | .98<br>.84<br>-<br>.11<br>.41                                                                             | $\begin{array}{c}1\\2\\-\\1\\1\end{array}$                                                   | 5 III<br>20 II<br>3 III<br>3 III            | 885. 4<br>832. 9<br>827. 3<br>808. 5<br>805. 2                                          |               | I<br>I<br>I<br>I           |
| 49.<br>50. 5<br>51.<br>53. 3<br>54.                                               | 2                                                           | 1h<br>15hl                                          | $     . \frac{86}{.52}     . 26     . 41 $                                                                | $\begin{array}{c c} 1 \\ -1 \\ 2 \\ 1 \end{array}$                                           |                                             | 778. 9<br>772. 0<br>761. 0<br>742. 2<br>730. 1                                          |               | п                          |
| 55. 3<br>56.<br>59.<br>66. 02<br>67.                                              | 4                                                           | 50hl<br>4h                                          | $\begin{array}{r} .21 \\ .33 \\ .50 \\ 5.83 \\ .27 \end{array}$                                           | 3<br>1<br>2Dy<br>1<br>1                                                                      | 2? III ?<br>4 III                           | $\begin{array}{c} 721.\ 0\\ 709.\ 5\\ 675.\ 6\\ 607.\ 2\\ 592.\ 8\end{array}$           |               |                            |
| $\begin{array}{c} 69.\ 26\\ 72.\\ 76.\\ 77.\ 14\\ 78.\ 64 \end{array}$            | -                                                           | 5h<br>4h<br>4h                                      | $\begin{array}{c} . 04 \\ . 32 \\ . 49 \\ 6.95 \\ . 57 \end{array}$                                       | $     \begin{array}{c}       1 \\       2 \\       2 \\       1 \\       1     \end{array} $ | 5 III<br>5 III<br>2 VE                      | 572.9539.3495.2489.3472.9                                                               |               | II<br>I<br>II<br>II        |
| 81. 6<br>82. 16<br>86. 9<br>91.<br>3093. 76                                       |                                                             | 2h<br>3h<br>30hl<br>10h                             | . 16<br>. 84<br>. 70<br>. 75                                                                              | 1Al<br>4<br>3<br>3                                                                           | 7 V<br>15 III                               | $\begin{array}{r} 441.\ 3\\ 435.\ 4\\ 385.\ 9\\ 335.\ 3\\ 32313.\ 8\end{array}$         |               |                            |

109427°-28-2

|                                                | Megger          | S                    | I                                                                    | Eder                                                                                         | King and Carter                             |                                                                                |                                         |  | 1                    |
|------------------------------------------------|-----------------|----------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|--|----------------------|
| λ                                              | Inte            | ensity<br>Spark      | λ                                                                    | Inten-<br>sity arc                                                                           | Arc intensity<br>and tempera-<br>ture class | ν                                                                              | Zeeman effect                           |  | Spectrum             |
| 3095.<br>95.88<br>3096.<br>3103.3<br>03.       | 3               | 4<br>2h              | .49<br>.88<br>.57<br>.25<br>.69                                      | 1<br>4<br>1<br>1Dy?<br>2                                                                     | 25 V E<br>3 III<br>4 IV                     | 32295.7291.6284.5214.7210.4                                                    |                                         |  | II<br>I<br>II<br>I   |
| 04. 82<br>08.<br>09. 3<br>09.<br>10. 65        |                 | 4h<br>1<br>2h        | $ \begin{array}{c c} . 69 \\ . 86 \\ - \\ . 77 \\ . 50 \end{array} $ | 2<br>2<br>1Dy?<br>1                                                                          | 5 III                                       | $199. 3 \\ 156. 8 \\ 152. 3 \\ 147. 4 \\ 139. 0$                               | 20.<br>19<br>19                         |  | П<br>І<br>П<br>П     |
| $11.80 \\ 12.05 \\ 14. \\ 14.45 \\ 18.$        | 1<br>2<br>—     |                      | . 80<br>. 03<br>. 27<br>. 50                                         | 3<br>3<br>3<br>1Ho?                                                                          | 15 III<br>18 V E<br>2 III                   | 126. 5<br>124. 0<br>101. 0<br>099. 1<br>057. 4                                 |                                         |  | I<br>I<br>I<br>I     |
| $22. \\ 26. 16 \\ 28. 8 \\ 30. 0 \\ 33.$       |                 | 4h<br>20hl<br>40hl   | $\begin{array}{c} .60\\ .00\\ .74\\ 29.93\\ .15\end{array}$          | 1<br>1<br>3<br>4<br>1                                                                        | 5 V E<br>5 V E<br>10 V E                    | 32015.3<br>31979.7<br>952.2<br>940.0<br>907.6                                  |                                         |  | II<br>II<br>II       |
| 35.17<br>40.<br>41.<br>44.37<br>52.            | 4<br>           | 5<br>2h              | .16<br>.63<br>.16<br>.20<br>.67                                      | 4<br>1Dy?<br>1Ny?<br>1<br>2                                                                  | 25 VE<br>15n III                            | $\begin{array}{c} 887.\ 0\\ 831.\ 6\\ 826.\ 2\\ 794.\ 6\\ 710.\ 0\end{array}$  |                                         |  | II<br>II<br>I        |
| 55. 62<br>57.<br>58.<br>59.<br>60. 60          | (1)             | E+H<br>1h            | -50<br>. 36<br>. 47<br>. 54                                          | 1<br>1<br>1<br>1Dy?                                                                          | 3 III A                                     | $\begin{array}{c} 680.\ 4\\ 661.\ 5\\ 652.\ 9\\ 641.\ 7\\ 630.\ 7\end{array}$  |                                         |  | I                    |
| 62.<br>64.<br>70.<br>71.<br>72.85              | (1)             | E+H                  | . 83     . 76     . 00     . 69                                      | 1Dy?<br>1<br>1Dy?<br>2<br>—                                                                  | 4 III A<br>4 III A                          | $\begin{array}{c} 608.\ 1\\ 588.\ 9\\ 536.\ 6\\ 519.\ 8\\ 508.\ 3 \end{array}$ | ee<br>Adot                              |  | I                    |
| 73. 07<br>73.<br>74.<br>79. 42<br>82. 42       | 6 ·             | 100hl<br>10<br>.3hl  | .05<br>.72<br>.36<br>.40<br>.23                                      | $\begin{vmatrix} 4\\1\\1\\4\\2 \end{vmatrix}$                                                | 10 VE<br>, 40 VE                            | 506. 2499. 7493. 3443. 3414. 6                                                 | (0.00)—<br>(0.00)—                      |  |                      |
| 85.<br>88.<br>91. 34<br>93. 48<br>94.          | 2               | 2hl                  | .93<br>.75<br>.29<br>.29<br>.37                                      | $\begin{array}{c}1\\1\\3\\2\\2\end{array}$                                                   | 2 III A<br>15 III<br>6 III                  | $\begin{array}{c} 379.\ 0\\ 351.\ 2\\ 326.\ 0\\ 305.\ 4\\ 296.\ 3\end{array}$  |                                         |  | I<br>I<br>II<br>I    |
| 95. 62<br>97.<br>3198. 5<br>3200. 28<br>03. 33 | $\frac{25}{25}$ | 50<br>2h<br>50<br>60 | .61<br>.69<br>.41<br>.25<br>.32                                      |                                                                                              | 100 III E<br>100 III E<br>100 III E         | $\begin{array}{c} 283.8\\ 263.6\\ 256.0\\ 238.4\\ 208.6 \end{array}$           | (0.95) 1.40<br>(w) 1.26B<br>(0.00) 0.46 |  | II<br>II<br>II<br>II |
| 03.06.09.11.12.40                              | 1               | 5hl                  | $     . 82 \\     . 22 \\     . 35 \\     . 26 \\     . 28   $       | $     \begin{array}{c}       1 \\       1 \\       2 \\       1 \\       2     \end{array} $ | 3 III A                                     | $\begin{array}{c} 203.\ 7\\ 180.\ 4\\ 150.\ 0\\ 131.\ 5\\ 121.\ 0 \end{array}$ | .300<br>.dt                             |  | I<br>II              |
| $14. \\ 15. \\ 16. 70 \\ 17. \\ 20.$           | 50              | 100                  | .04<br>.20<br>.67<br>.80<br>.72                                      | 1<br>1Dy?<br>10<br>1<br>1                                                                    | 150 III E                                   | $\begin{array}{c} 104.5\\ 093.3\\ 079.0\\ 068.2\\ 040.0 \end{array}$           | (0.00) 0.98                             |  | п                    |
| $21. \\ 22. \\ 23. \\ 25. 17 \\ 3227.$         | 1               | 5hl                  | $\begin{array}{c c} .50\\ .02\\ .28\\ .03\\ .08\end{array}$          | 1Dy?<br>1<br>1Dy?<br>3<br>1                                                                  | 16                                          | 032.5<br>027.5<br>31015.4<br>30997.9<br>30978.9                                |                                         |  | п                    |

#### Meggers]

# 329

| IADIE I. HUGe telefille and Element ences in autoune spectra Contin | TABLE 1 | Wave | lengths and | Zeeman er | fects in | uttrium s | pectra-Cont | inued | 1 |
|---------------------------------------------------------------------|---------|------|-------------|-----------|----------|-----------|-------------|-------|---|
|---------------------------------------------------------------------|---------|------|-------------|-----------|----------|-----------|-------------|-------|---|

|                                          | Meggers      | 3           | I                                                                                                      | Eder                                                                                                                         | King and Carter                 | nat.a                                                                           | in the second        |       |              |
|------------------------------------------|--------------|-------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------|----------------------|-------|--------------|
| λ.                                       | Inte         | ensity      | λ                                                                                                      | Inten-                                                                                                                       | Arc intensity<br>and tempera-   | ν                                                                               | Zeeman e             | ffect | Spectrum     |
|                                          | Arc          | Spark       |                                                                                                        | Sity are                                                                                                                     | ture class                      |                                                                                 | i anny chi           |       |              |
| 3227.<br>31. 20<br>31.<br>32. 00<br>37.  |              | 2h<br>3h    | $.\frac{69}{.32}$<br>1.80<br>.93                                                                       | $\begin{array}{c} 1\\ -1\\ 2\\ 1\\ 1 \end{array}$                                                                            | 64                              | $\begin{array}{c} 30973.\ 0\\ 939.\ 4\\ 938.\ 2\\ 932.\ 6\\ 875.\ 0\end{array}$ | filir.<br>ili<br>Lui |       | п            |
| 39.<br>42. 30<br>47.<br>51.<br>52. 28    | 60<br>1      | 150         | .29<br>.28<br>.02<br>.29<br>.27                                                                        | 1<br>15<br>1<br>2Dy?<br>3                                                                                                    | 200 III E<br>8 III              | 862, 1<br>833, 5<br>788, 6<br>748, 2<br>738, 8                                  | (0.00) 1.18          |       | II<br>I<br>I |
| 55.<br>56.<br>57.<br>61.<br>63.          |              |             | $     . 82 \\     . 20 \\     . 52 \\     . 23 \\     . 22   $                                         | 1<br>1<br>1<br>1<br>1                                                                                                        | 24<br>2 <sup>4</sup><br>1 * 2 m | 705. 4701. 8689. 4654. 5635. 8                                                  | H . I                |       |              |
| 64.<br>67.<br>67.<br>69.<br>69.          |              | 01 ( 100 0) | .77<br>.24<br>.81<br>.11<br>.40                                                                        | 3Ho?<br>1<br>1<br>1<br>1                                                                                                     | 1                               | $\begin{array}{c} 621.\ 2\\ 598.\ 1\\ 592.\ 7\\ 580.\ 6\\ 577.\ 9\end{array}$   |                      |       |              |
| 70.<br>71.<br>73.<br>75.<br>78.          |              |             | .94<br>.13<br>.04<br>.56<br>.43                                                                        | $\begin{array}{c c}1\\1\\1\\2\\2\end{array}$                                                                                 | 2 IV<br>5 III A                 | 563. 5561. 7543. 8520. 4493. 6                                                  |                      |       | I<br>I       |
| 79.<br>80.<br>80.<br>81.<br>82. 51       | ?Ag<br>—     | ?Ag<br>2    | $     \begin{array}{r}       .35 \\       .13 \\       .91 \\       .98 \\       .45     \end{array} $ | 1Er?<br>2Dy?<br>4<br>1Ho?<br>3                                                                                               | 10 V E                          | $\begin{array}{r} 485.1\\ 477.8\\ 470.6\\ 460.7\\ 456.0\end{array}$             | 16.<br>141           |       | п            |
| 82.<br>83.<br>83.<br>86. 71<br>87.       | -            | 3h          | .77<br>.21<br>.85<br>.68<br>.21                                                                        | $     \begin{array}{c}       1 \\       2 \\       1 \\       3 \\       3 \\       3 \\       -     \end{array} $           | 4 III                           | $\begin{array}{r} 453.\ 3\\ 449.\ 2\\ 443.\ 3\\ 416.\ 9\\ 412.\ 2\end{array}$   |                      | 0.00  | II<br>I      |
| 87.<br>90.<br>90.<br>90.<br>91.          |              | E. C.       | .93<br>.11<br>.56<br>.96<br>.44                                                                        | 1Dy?<br>1<br>3<br>1Ho?<br>1Dy?                                                                                               |                                 | $\begin{array}{r} 405.\ 5\\ 385.\ 4\\ 381.\ 2\\ 377.\ 5\\ 373.\ 1\end{array}$   | 0P                   |       |              |
| 93.<br>93. 9<br>94.<br>3298.<br>3302.    | -            | 3h          | .44<br>.68<br>.55<br>.26<br>.17                                                                        | $\begin{vmatrix} 2\\ 2\\ 1\\ 1\\ 2 \end{vmatrix}$                                                                            |                                 | $\begin{array}{c} 354.\ 7\\ 351.\ 4\\ 344.\ 4\\ 310.\ 3\\ 274.\ 4\end{array}$   | 141<br>1402<br>14    |       | п            |
| 02.<br>04. 0<br>04.<br>05.<br>05.        | -            | 2h          | .56<br>3.86<br>.32<br>.49<br>.90                                                                       | $ \begin{array}{c} \frac{1}{2} \\ 1 \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{array} $ |                                 | $\begin{array}{c} 270.\ 8\\ 258.\ 3\\ 254.\ 7\\ 243.\ 8\\ 240.\ 3\end{array}$   | 0.                   |       | п            |
| 06.<br>07.<br>08. 5<br>08.<br>10.        | 2            | 20h1        | .27<br>.61<br>.47<br>.84<br>.13                                                                        | $ \begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ 3 \\ 1 \\ \frac{1}{2} \end{array} $                                         |                                 | $\begin{array}{c} 236.\ 9\\ 224.\ 6\\ 216.\ 7\\ 213.\ 4\\ 201.\ 6\end{array}$   |                      |       | п            |
| 12. 5<br>12.<br>15.<br>16.<br>17.        | -            | 4hl         | . 40<br>. 67<br>. 40<br>. 32<br>. 03                                                                   | $\begin{array}{c c} 1 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{array}$                                          |                                 | $180. 5 \\ 178. 5 \\ 153. 6 \\ 145. 3 \\ 138. 8$                                |                      |       | п            |
| 18. 6<br>19. 8<br>20.<br>23.<br>3327, 89 | 1<br>1<br>50 | 4hl<br>15hl | .52<br>.76<br>.60<br>.18<br>.89                                                                        | $     \begin{array}{c}       2 \\       3 \\       1 \\       1 \\       15     \end{array} $                                | 150 III E                       | $124.9 \\113.8 \\106.4 \\083.0 \\30040.4$                                       | (0.00) 1.00          |       | ш            |

|                                                                                   | Meggers                                                                                        |                         | I                               | Eder                                                                                                   | King and Carter                                                                          | ALS .                                                                             | 1                          |                          |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------|--------------------------|
| λ                                                                                 | Inter                                                                                          | nsity                   | λ                               | Inten-<br>sity arc                                                                                     | Arc intensity<br>and tempera-                                                            | ν                                                                                 | Zeeman effect              | Spectrum                 |
|                                                                                   | Arc                                                                                            | Spark                   |                                 |                                                                                                        | ture class                                                                               |                                                                                   | 100 - 01)<br>              |                          |
| 3330. 9<br>33. 6<br>35.<br>36. 3<br>37. 85                                        | $\frac{2}{-}$                                                                                  | 20hl<br>2h<br>4hl       | .88<br>.42<br>.20<br>.18<br>.82 | $\begin{array}{c c}2\\1\\2\\1\\2\\1\\2\end{array}$                                                     | 3 V E<br>8n V                                                                            | $\begin{array}{c} 30013.\ 4\\ 29989.\ 8\\ 974.\ 6\\ 965.\ 3\\ 950.\ 9\end{array}$ |                            | II<br>II<br>I<br>II<br>I |
| 38.<br>40.<br>40.<br>41.<br>44.                                                   |                                                                                                |                         | .76<br>.37<br>.98<br>.85<br>.53 | $     \begin{array}{c}       1 \\       3 \\       \frac{1}{2} \\       1 \\       2     \end{array} $ | 7 III<br>4n V                                                                            | 943. 7<br>928. 2<br>922. 8<br>915. 0<br>891. 0                                    |                            | I                        |
| 49.<br>52.<br>53.<br>54.<br>54. 81                                                | (1)                                                                                            | E+H                     | .26<br>.64<br>.56<br>.57        | $ \begin{array}{c} 1 \\ \frac{1}{2} \\ \frac{1}{2} \\ - \end{array} $                                  | } 10d? III {                                                                             | 848. 8<br>818. 7<br>810. 5<br>801. 5<br>799. 4                                    |                            | I                        |
| 58.<br>62.00<br>64.77<br>77.<br>80.1                                              | 4<br>1<br>—                                                                                    | 30hl<br>—<br>5hl        | .94<br>1.99<br>.79<br>.72       | 2<br>5<br>2<br>2                                                                                       | $\begin{array}{c}5 \text{ III}\\20 \text{ V E}\\7 \text{ III}\\6 \text{ III}\end{array}$ | 762. 8<br>735. 7<br>711. 1<br>597. 3<br>576. 5                                    | (0.00) 1.10                | I<br>II<br>I<br>I<br>II  |
| 82.<br>83.<br>88. 59<br>89. 81<br>94. 97                                          | 1<br>(2)<br>(2)                                                                                |                         | . 83<br>. 06<br>. 58<br>        | $\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ - \\ - \end{array}$                                    | 5 V7 V15 III5 IV ?4 III                                                                  | $552. \ 6 \\ 550. \ 6 \\ 502. \ 3 \\ 491. \ 7 \\ 446. \ 9$                        |                            | I<br>I<br>I<br>I<br>I    |
| $\begin{array}{r} 3397.05\\ 3407.7\\ 07.82\\ 09.9\\ 12.47\end{array}$             | $\frac{2}{2}$ $\frac{1}{2}$                                                                    | 3h<br>                  | .03<br>                         | $\begin{vmatrix} 3\\ -\\ -\\ 2 \end{vmatrix}$                                                          | 15 III<br>12 III                                                                         | 429. 0<br>336. 9<br>335. 9<br>318. 0<br>295. 9                                    | 5.4 - 2.5                  | I<br>II<br>II<br>I       |
| 14.529.431.0131.6733.                                                             | (2)<br>(2)<br>(2)<br>(2)                                                                       | E+H<br>3h<br>E+H<br>E+H | <br><br>. 02                    |                                                                                                        | $\begin{array}{c} 8n \text{ III} \\ 6 \text{ V}^{*} \\ 5 \text{ III} \end{array}$        | $\begin{array}{c} 278.\ 5\\ 151.\ 3\\ 137.\ 6\\ 132.\ 0\\ 120.\ 6\end{array}$     | 62 -                       | I<br>II<br>I<br>I        |
| 33. 79<br>37. 95<br>48. 82<br>50. 95<br>55. 94                                    | (2)<br>1<br>8<br>2                                                                             | E+H<br>10<br>-          |                                 | $\begin{bmatrix} -\\ -\\ 4\\ 2\\ - \end{bmatrix}$                                                      |                                                                                          | 114. 0<br>29078. 8<br>28987. 2<br>969. 2<br>927. 4                                | (0.72) 1.20 Bw             | I<br>I<br>II<br>I        |
| $56.\ 10 \\ 57.\ 1 \\ 61.\ 0 \\ 67.\ 88 \\ 70.\ 3$                                | $\begin{cases} 4c \\ 1 \\ 2 \\ 4 \\ - \end{cases}$                                             | 1<br>20hl<br>5<br>5hl   | {<br>.88                        |                                                                                                        | 4 V?<br>20 VE                                                                            | 926. 1<br>917. 7<br>885. 1<br>827. 8<br>807. 7                                    |                            |                          |
| 71. 773. 1884. 0684. 8985. 73                                                     | $     \begin{array}{c}       1 \\       (2) \\       2 \\       2 \\       4     \end{array} $ | E+H<br>1                | .06                             | $\frac{-}{2}$                                                                                          | 10n V ?<br>5 III<br>10 III<br>40 III                                                     | 796. 1783. 8694. 0687. 1680. 2                                                    | (0.00) 1.15                | I<br>I<br>I              |
| $\begin{array}{r} 96.\ 08\\ 3498.\ 94\\ 3500.\ 60\\ 01.\ 95\\ 06.\ 47\end{array}$ | 40<br>2<br>1<br>2<br>(2)                                                                       | 80<br><br>E+H           | .09                             | 8<br>                                                                                                  | 150 III E<br>10n III<br>7 III<br>2 IV<br>6 III                                           | 595. 3<br>571. 9<br>558. 4<br>547. 4<br>510. 6                                    | (0.00) 0.62                | II<br>I<br>I<br>I<br>I   |
| $\begin{array}{c} 08.\ 0\\ 10.\ 54\\ 11.\ 19\\ 12.\ 88\\ 21.\ 54 \end{array}$     | 2 $1$ $2$ $3$ $1$                                                                              | 8hl<br>                 | <br>.20<br>.90<br>              | $\frac{-}{3}$                                                                                          | 8 III<br>15 III<br>20 III<br>6 III                                                       | 498. 2<br>477. 5<br>472. 2<br>458. 5<br>388. 6                                    | (—) 1.50 A <sup>2</sup>    | II<br>I<br>I<br>I<br>I   |
| 31.7144.044.46.03549.02                                                           | 3 Dy?<br>1<br>2<br>50                                                                          | 3hl<br>5hl<br>100       | .65<br>.03<br>.93<br>8.99       | $\begin{bmatrix} 2\\ 4\\ 3\\ - \\ 6 \end{bmatrix}$                                                     | 150 III E                                                                                | $\begin{array}{r} 307.\ 1\\ 208.\ 5\\ 201.\ 3\\ 192.\ 8\\ 28168.\ 9\end{array}$   | (0.00) 1.52 A <sup>2</sup> |                          |

|                                                                                   | Meggers                                     |                                                             | H                                                                                                                                                                         | Eder                                                            | King and Carter                 | neb?                                                                              | - Energiated                                                                               |                  |
|-----------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|
| λ                                                                                 | Inte<br>Arc                                 | ensity<br>Spark                                             | $\lambda \qquad \begin{array}{c} \text{Inten-}\\ \text{sity are} \end{array} \begin{array}{c} \text{Are intensity}\\ \text{and tempera-}\\ \text{ture class} \end{array}$ |                                                                 | ν                               | Zeeman effect                                                                     | Spectrum                                                                                   |                  |
| 3551. 80<br>52. 70                                                                | 2<br>10                                     | 2                                                           | . 69                                                                                                                                                                      |                                                                 | 8 III ?<br>40 I                 | 28146.7<br>139.6                                                                  | (0.80) 0.45, 1.00,                                                                         | I                |
| 56. 1<br>58. 76<br>59. 65                                                         | $1 \\ 2 \\ 1$                               | 5hl<br>1<br>1 •                                             | Ē                                                                                                                                                                         |                                                                 | 5 II                            | $112.7 \\091.7 \\28084.7$                                                         | 1.54                                                                                       | II<br>I          |
| $71. 43 \\73. 77 \\76. 06 \\84. 53$                                               | 4<br>2<br>5<br>60                           | $\begin{array}{c}2\\2\\2\\100\end{array}$                   | $\begin{array}{c} \cdot \begin{array}{c} 44 \\ - \\ \cdot \begin{array}{c} 04 \\ \cdot \begin{array}{c} 51 \end{array} \end{array}$                                       | $\begin{array}{c} 1\\ -2\\ 4 \end{array}$                       | 10 II<br>12 III<br>150 III ? E  | 27992. 0<br>973. 7<br>955. 8<br>889. 8                                            | () 1.22<br>() 1.30<br>(0.00, 0.60) 0.54,                                                   | I<br>I<br>II     |
| 87.75                                                                             | 5                                           | 2                                                           | . 75                                                                                                                                                                      | 1                                                               | 20 III                          | 864.7                                                                             | 1.15, <b>1.74</b><br>(0.00) 0.95                                                           | I                |
| 89.68<br>89.91<br>90.30<br>3592.93<br>3600.74                                     | $2 \\ 3 \\ 2 \\ 25 \\ 100$                  | $\begin{array}{c} - \\ - \\ 2 \\ - \\ 5 \\ 300 \end{array}$ | <br>.91<br>.72                                                                                                                                                            | $\frac{-}{4}$                                                   | 5? III ?<br>200 II<br>500 III E | 849.7<br>847.9<br>844.9<br>824.6<br>764.2                                         | (0.00) 0.84<br>(0.00) 1.31                                                                 | I<br>I<br>II     |
| 01. 93<br>05. 4<br>08.<br>11. 06                                                  | 75<br>2<br>100                              | 100<br>10h1<br>200                                          | $\begin{array}{c} . \begin{array}{c} 91 \\ \hline \\ . \begin{array}{c} 84 \\ . \begin{array}{c} 05 \end{array} \end{array}$                                              | $\frac{5}{1}$ 10                                                | 200 III E<br>400 III E          | 755.1728.3701.9 $684.9$                                                           | (0.00) 0.55<br>(0.00) 1.16                                                                 | и<br>п           |
| 12. 34<br>12. 70<br>18. 8<br>20. 95<br>21. 86<br>22. 19                           | $2 \\ 2 \\ 1 \\ 50 \\ 2 \\ 2 \\ 2$          |                                                             |                                                                                                                                                                           |                                                                 | 400 II                          | 675.0<br>672.3<br>625.8<br>609.3<br>602.3<br>599.8                                | (0.00) 1.10 A <sup>1</sup>                                                                 | I                |
| 28.71                                                                             | 50                                          | 100                                                         | . 70                                                                                                                                                                      | 5                                                               | 150 III E                       | 550. 2                                                                            | (0.00, 0.59) 0.58,                                                                         | п                |
| $\begin{array}{c} 33.13\\ 35.4\\ 39.28\\ 40.34\end{array}$                        | $100 \\ 3 \\ 1 \\ 1$                        | $\begin{array}{c} 200\\ 20h1\\ -\\ 1\end{array}$            | .11<br>.32<br>.27                                                                                                                                                         | 8<br>1<br>3<br>—                                                | 300 III E                       | $516.7 \\ 499.8 \\ 470.2 \\ 462.2$                                                | $\begin{array}{c} 1.16, 1.72 \\ (0.00) \ 0.91 \\ (w \ ?) \ 1.03 \\ (-) \ 1.39 \end{array}$ | II<br>II<br>I    |
| $\begin{array}{r} 43.\ 4\\ 45.\ 40\\ 50.\ 45\\ 53.\ 60\\ 64.\ 62\end{array}$      | $     \frac{1}{2}     \frac{1}{2}     100 $ | 3hl<br>1<br>2h<br>2<br>150                                  | <br><br>. 59                                                                                                                                                              |                                                                 | 200 III E                       | $\begin{array}{r} 439.1\\ 424.0\\ 386.1\\ 362.5\\ 280.3 \end{array}$              | () 1.32<br>(0.00) 1.50 A <sup>2</sup>                                                      |                  |
| 65.75<br>68.5<br>75.6<br>84.9<br>89.2                                             |                                             |                                                             | .48                                                                                                                                                                       |                                                                 | 3 V E                           | $\begin{array}{c} 271.\ 8\\ 251.\ 4\\ 198.\ 7\\ 130.\ 1\\ 098.\ 5\end{array}$     | (0.00) 1.07                                                                                |                  |
| $\begin{array}{r} 92.\ 52\\ 94.\ 80\\ 96.\ 6\\ 3699.\ 14\\ 3702.\ 84 \end{array}$ | 3<br>1<br>3<br>3<br>2                       | $ \begin{array}{c} 1\\ -25hl\\ 3\\ 1 \end{array} $          | . 54                                                                                                                                                                      | 6<br>                                                           | 8 III                           | $\begin{array}{r} 074.\ 0\\ 057.\ 4\\ 044.\ 2\\ 27025.\ 6\\ 26998.\ 6\end{array}$ | () 1.12                                                                                    | I<br>II<br>II    |
| 03. 3<br>10. 30<br>14. 3<br>17. 0<br>18. 09                                       | $1 \\ 200 \\ 1 \\ 1 \\ 2$                   | 5hl<br>500<br>5hl<br>7hl<br>—                               | $.\overline{30}$ $6.\overline{94}$ $.14$                                                                                                                                  | $\begin{array}{c} \frac{1}{15} \\ \frac{1}{1} \\ 3 \end{array}$ | 800 III E<br>5 IV               | 995. 3<br>944. 4<br>915. 3<br>896. 0<br>887. 7                                    | (w) 1.15 A <sup>1</sup>                                                                    |                  |
| $\begin{array}{c} 21.\ 40\\ 24.\\ 27.\ 0\\ 38.\ 61\\ 47.\ 55 \end{array}$         | 3<br>2<br>2<br>30                           | $\frac{4}{20hl}$                                            | . 76<br>. 62<br>. 55                                                                                                                                                      | $ \begin{array}{c} -2\\ -2\\ -2\\ 3 \end{array} $               | 4 III<br>20 III E               | 864. 0<br>839. 8<br>823. 6<br>740. 3<br>676. 6                                    | (0.44) 0.48, 0.94                                                                          | П<br>П<br>І<br>П |
| 49. 89<br>58. 9<br>62. 97<br>74. 33<br>3776. 56                                   | $2 \\ 1 \\ 2 \\ 150 \\ 50$                  | 3hl<br>3<br>300<br>75                                       |                                                                                                                                                                           |                                                                 | 200 III E<br>40 III E           | $\begin{array}{r} 659.\ 9\\ 596.\ 0\\ 567.\ 2\\ 487.\ 3\\ 26471.\ 6\end{array}$   | (0.00) 1.05<br>(0.00) 1.31                                                                 |                  |

# Bureau of Standards Journal of Research

|                                                                            | Meggers                                                                                         |                                                     | I                                                                            | Eder ·                                            | King and Carter                             | what has                                                                      | Part of the                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| λ                                                                          | Inter                                                                                           | nsity<br>Spark                                      | λ                                                                            | Inten-<br>sity arc                                | Arc intensity<br>and tempera-<br>ture class | ν                                                                             | Zeeman effect                                  | Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>3777.</b> 28<br>82. 3<br>85. 62<br>88. 70<br>3792. 5                    | 2<br>5<br>3<br>100<br>2                                                                         | 2<br>50hl<br>3<br>200<br>10hl                       | <br><br>. 69<br>                                                             | <br><br>5                                         | 100 III E                                   | 26466. 6<br>431. 5<br>408. 3<br>386. 8<br>360. 4                              | (0.00) 0.82                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3800.03<br>00.9<br>08.7<br>12.0<br>13.8                                    | $\frac{2}{2}$<br>                                                                               | 1<br>15hl<br>1h<br>5hl<br>2hl                       |                                                                              |                                                   |                                             | $\begin{array}{c} 308.\ 1\\ 302.\ 1\\ 248.\ 3\\ 225.\ 5\\ 213.\ 2\end{array}$ |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18.34                                                                      | 40                                                                                              | 60                                                  | . 37                                                                         | 3                                                 | 20 III E                                    | 181.9                                                                         | (0.36, 0.76) 0.40,                             | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 24. 8<br>25.<br>32. 89                                                     | 1<br>50                                                                                         | 5hl<br>100                                          | .91<br>.87                                                                   | $\begin{bmatrix} -1\\ 2 \end{bmatrix}$            | 30 III E                                    | 137.8<br>130.2<br>082.7                                                       | (0.66) 0.69, 0.90,<br><b>1.10, 1.30,</b> 1.51, | п<br>п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40.                                                                        |                                                                                                 | 71.3 (80.0                                          | . 43                                                                         | 1                                                 | 1100                                        | 26031.4                                                                       | 1.72                                           | A 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 46. 5<br>48. 2<br>72. 3<br>78. 28<br>87. 76                                | $1 \\ ? \\ ? \\ 15 \\ 2$                                                                        | 3h<br>8hl<br>5hl<br>20<br>—                         | <br>. 27<br>                                                                 |                                                   | 20 V?E<br>5 III                             | 25990. 3<br>978. 8<br>817. 2<br>777. 4<br>714. 5                              | 1961 - 19<br>1921 - 19                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 87.<br>90.<br>90. 86<br>91. 08<br>92.                                      | }4c                                                                                             | . of `` (.so.b<br>                                  | $ \begin{array}{c} .93 \\ .13 \\ \left\{ \frac{-}{-} \\ .41 \\ \end{array} $ | $\begin{vmatrix} 2\\1\\-\\-\\2 \end{vmatrix}$     | 5.0                                         | 713. 4<br>698. 8<br>694. 0<br>692. 6<br>683. 8                                |                                                | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3896. 8<br>3900.<br>04. 59<br>18. 24<br>30. 10                             | 1<br>2<br>2<br>3                                                                                | 10hl<br>                                            | . 27<br>. 59<br>                                                             |                                                   | 5 III<br>4 III                              | 654. 8<br>632. 0<br>603. 7<br>514. 5<br>437. 5                                |                                                | II<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 30. 66<br>38. 47<br>42. 48<br>44. 68<br>46. 21                             | 15<br>2<br>1<br>2Dy?<br>3                                                                       | $ \begin{array}{c} 15\\ 1\\ -\\ -\\ 2 \end{array} $ | . 65<br>                                                                     | $\begin{vmatrix} 3\\ -\\ -\\ -\\ 2 \end{vmatrix}$ | 10 V E                                      | 433. 8<br>383. 4<br>357. 6<br>343. 4<br>333. 7                                | (w) 1.06 B                                     | II<br>I<br>I<br>II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 50.35                                                                      | 150                                                                                             | 200                                                 | . 35                                                                         | 5                                                 | 50 III E                                    | 307.1                                                                         | (0.00, 0.46) 0.45,                             | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 51. 59<br>55. 08<br>62. 19<br>67. 7                                        | $     \begin{array}{c}       10 \\       3 \\       2 \\       3     \end{array}   $            | $\frac{5}{-1}$ 15hl                                 | . 60<br>. 09<br>                                                             | 3<br>3<br>—                                       | 8 V E<br>5 III                              | 299. 1276. 8231. 4196. 4                                                      | (w) 1.28 A <sup>2</sup>                        | П<br>I<br>П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} 68.\ 42\\ 70.\ 62\\ 73.\\ 74.\ 61\\ 78.\ 59 \end{array}$ | 5Dy?<br>2<br><br>1<br>2Dy?                                                                      | $\begin{array}{c}10\\1\\-\\-\\2\end{array}$         | <br>. 45<br>                                                                 | <br>                                              |                                             | 191. 8<br>177. 9<br>160. 0<br>152. 6<br>127. 4                                |                                                | 88 16<br>8 0<br>1 ( 180<br>1 ( 180) ( 180<br>1 ( 180<br>1 ( 180)) ( 180<br>1 ( 180)) ( 180)) ( 180)) ( 1 |
| 82. 59<br>87. 48<br>94. 52<br>3997. 43<br>4020 84                          | $     \begin{array}{c}       100 \\       2 \\       2 \\       1 \\       2     \end{array} $  | 150<br><br>1                                        | . 60<br>. 50<br>                                                             | 8<br>1<br>                                        | 100 III E<br>4 III                          | 102. 2<br>071. 4<br>027. 2<br>25009. 0                                        | (0.28) 1.03 B<br>() 1.00                       | П<br>І<br>П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 39. 83<br>47. 64<br>64. 99<br>77. 36<br>80. 93                             | 20<br>40<br>2<br>100<br>2                                                                       | ?<br>3<br>2<br>5                                    | . 80<br>. 83<br>. 65<br>5. 02<br>. 39<br>. 93                                | 5<br>6<br>1<br>8<br>1                             | 60 II<br>80 II<br>300 II<br>5 III           | 746. 6<br>698. 8<br>593. 3<br>518. 7<br>497. 3                                | (w) 1.40 A2 (0.00) 0.84 (0.00) 1.00            | I<br>I<br>II<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 81. 20<br>83. 71<br>4095. 39<br>4102. 38                                   | $     \begin{array}{c}       3 \\       50 \\       1 \\       150 \\       2     \end{array} $ | $\frac{-3}{10}$                                     | .23<br>.71<br>.38                                                            | $\begin{array}{c}1\\5\\-10\end{array}$            | 9 II<br>100 II<br>350 II                    | 495. 6<br>480. 6<br>410. 8<br>369. 2                                          | (0.76) 0.53, <b>1.01</b> , 1.51<br>(0.00) 1.08 | I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                                                                                   | Meggers                                                                                        |                    | I                                                                                                           | Eder                                                                                                             | King and Carter                                                                           | an al-                                                                            | ergusk.                                                                         |                         |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------|
| λ                                                                                 | Inte<br>Arc                                                                                    | nsity<br>Spark     | λ                                                                                                           | Inten-<br>sity arc                                                                                               | Arc intensity<br>and tempera-<br>ture class                                               | ν                                                                                 | Zeeman effect                                                                   | Spectrum                |
| 4106. 39<br>10. 80<br>24. 91<br>27. 57<br>28. 30                                  | 3<br>3<br>20<br>2<br>150                                                                       | -<br>15<br>2<br>10 | . 39<br>. 81<br>. 93<br>                                                                                    | $ \begin{array}{r} 1\\ 2\\ 5\\ -\\ 10 \end{array} $                                                              | 5 III<br>20 III E<br>300 II                                                               | 24345. 4<br>319. 3<br>236. 1<br>220. 5<br>216. 2                                  | (0.00) 1.14<br>(0.22) 1.15                                                      |                         |
| 42. 84<br>44. 56<br>57. 63<br>64. 98<br>67. 51                                    | $100 \\ 1 \\ 5 \\ 2 \\ 50$                                                                     | 6<br><br>1<br>3    | $\begin{array}{r} \cdot 87\\ \cdot \overline{63}\\ \overline{52}\\ \cdot 52\end{array}$                     | $\frac{\frac{10}{2}}{\frac{10}{8}}$                                                                              | 200 II<br>6 III<br>100 II                                                                 | $\begin{array}{c} 131.\ 2\\ 121.\ 2\\ 045.\ 4\\ 24003.\ 0\\ 23988.\ 4\end{array}$ | (0.00) 0.82<br>(, 0.51, <b>0.85</b> ) 0.40,<br>0.74, <b>1.08,</b> 1.40,<br>1.73 | I<br>I<br>I             |
| 73. 34<br>74. 14<br>77. 54<br>90. 06<br>91. 28                                    | $2 \\ 30 \\ 100 \\ 3 \\ 1$                                                                     | ?<br>125<br>—      | .14<br>.51<br>                                                                                              | 4<br>5<br>—                                                                                                      | $\begin{array}{ccc} 100 & \mathrm{II} \\ 125 & \mathrm{III} & \mathrm{E} \end{array}$     | 954. 9<br>950. 3<br>930. 9<br>859. 3<br>852. 4                                    | (0.00) 1.10 A <sup>1</sup><br>(0.44) 0.90 B                                     |                         |
| $\begin{array}{r} 4199.\ 27\\ 4204.\ 69\\ 13.\\ 13.\ 53\\ 17.\ 80 \end{array}$    | 10<br>20<br>2<br>5                                                                             | 5<br>10<br>—       | $     \begin{array}{r}         28 \\         .70 \\         .01 \\         .54 \\         .79 \end{array} $ | $     \begin{array}{c}       3 \\       4 \\       \frac{1}{2} \\       \frac{1}{2} \\       2     \end{array} $ | $\begin{array}{ccc} 8 & V & E \\ 20 & V & E \\ 6 & IV \\ 5 & III \\ 10 & III \end{array}$ | 806. 9<br>776. 3<br>729. 3<br>726. 4<br>702. 4                                    | (0.00) 0.63, 1.51, <b>2.41</b><br>(0.00) 1.48<br>() 1.06                        | II<br>II<br>I<br>I<br>I |
| $\begin{array}{c} 20.\ 62\\ 24.\ 25\\ 29.\ 22\\ 32.\ 53\\ 35.\ 73 \end{array}$    | $     \begin{array}{c}       10 \\       3 \\       2 \\       2 \\       40     \end{array} $ | 1<br><br><br>20    | .62<br>.23<br>.18<br>.54<br>.71                                                                             | 3<br>2<br>2<br>2<br>8                                                                                            | 30 III<br>4 III<br>2 III<br>1 III<br>40 IV E                                              | $\begin{array}{c} 686.\ 6\\ 666.\ 3\\ 638.\ 5\\ 619.\ 9\\ 602.\ 1\end{array}$     | (w?) 1.03 B<br>() 1.21                                                          | I<br>I<br>I<br>II       |
| 35. 94<br>37. 12<br>49. 87<br>50. 37<br>51. 20                                    | 20 (1) 1 1 1 10                                                                                |                    |                                                                                                             |                                                                                                                  | 100 II<br>1 III<br>1 III<br>40 III                                                        | $\begin{array}{c} 600.\ 9\\ 594.\ 3\\ 523.\ 5\\ 520.\ 8\\ 516.\ 2\end{array}$     | (0.00) 0.96                                                                     | I<br>I<br>I<br>I<br>I   |
| <b>54.</b> 35<br>56. 43<br>64. 88<br>66. 89<br>72. 12                             | $\begin{array}{c}1\\-\\1\\-\\2\end{array}$                                                     |                    | <br>                                                                                                        |                                                                                                                  | 1 III<br>2 III                                                                            | 498. 8<br>487. 3<br>440. 7<br>429. 7<br>401. 0                                    | (0.00) 1.14                                                                     | I<br>II<br>I<br>I       |
| $\begin{array}{c} 74.\ 16\\ 79.\ 3\\ 91.\ 03\\ 4296.\ 66\\ 4300.\ 34 \end{array}$ | 1<br>2<br>2<br>2Ce?<br>2                                                                       | 5hl<br>            | $\begin{array}{r} \cdot 20\\ \cdot 05\\ \cdot \overline{05}\\ \cdot \overline{37}\end{array}$               | $\begin{array}{c} 1\\ -3\\ -1\\ 1 \end{array}$                                                                   | 1 III A<br>2 III<br>2 III                                                                 | $\begin{array}{c} 389.\ 7\\ 361.\ 8\\ 297.\ 8\\ 267.\ 4\\ 247.\ 4 \end{array}$    | (—) 0.85<br>(—) 0.82                                                            | I<br>I<br>I<br>I        |
| $\begin{array}{c} 02.\ 30\\ 07.\ 70\\ 09.\ 62\\ 15.\ 47\\ 16.\ 30 \end{array}$    | 20<br>1<br>70<br>2<br>2                                                                        | 2<br>50<br>—       | .30<br>.61<br>.49<br>.30                                                                                    | $\begin{array}{c} 6\\ -8\\ 3\\ 3\\ 3 \end{array}$                                                                | 50 III<br>125 III E<br>2 III<br>3 III                                                     | $\begin{array}{c} 236.\ 9\\ 207.\ 7\\ 197.\ 4\\ 165.\ 9\\ 161.\ 5\end{array}$     | (0.52 w) 1.04 A <sup>2</sup><br>(w) 1.15 A <sup>1</sup><br>(-) 1.43?            | I<br>II<br>I<br>I       |
| $\begin{array}{c} 17.\ 87\\ 18.\ 21\\ 22.\ 29\\ 22.\ 54\\ 24.\ 57\end{array}$     | 1<br>1<br>1<br>2<br>1                                                                          |                    | $\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ 61 \end{array}$                                        | $\frac{-}{1}$                                                                                                    | 2 III                                                                                     | 153. 1151. 2129. 3128. 1117. 1                                                    | (0.00) 1.22                                                                     | I<br>I<br>I             |
| $\begin{array}{c} 29.\ 89\\ 30.\ 78\\ 37.\ 28\\ 44.\ 64\\ 45.\ 60\\ \end{array}$  | $     \begin{array}{c}       1 \\       5 \\       2 \\       3 \\       1     \end{array} $   |                    | .78<br>.32<br>.65                                                                                           | $\begin{bmatrix} - & & \\ 3 & & \\ 1 & & \\ - & & \end{bmatrix}$                                                 | 1 III<br>10 III<br>2 III<br>4 III                                                         | 088. 8<br>084. 1<br>049. 4<br>010. 4<br>005. 3                                    | (0.00) 0.73<br>() 1.13 B<br>() 0.83 A <sup>2</sup>                              | I<br>I<br>I<br>I        |
| 46. 13<br>48. 78<br>52. 33<br>52. 71<br>4353 63                                   | $     \begin{array}{c}       1 \\       25 \\       2 \\       4 \\       2     \end{array} $  | ?                  | .16<br>.79<br>.34<br>.65                                                                                    | 1<br>6<br>2<br>2                                                                                                 | 1 III<br>60 III<br>5 III<br>4 III                                                         | 23002.5<br>22988.5<br>969.8<br>967.9<br>22962.9                                   | $\begin{array}{c} (0.00) \ 1.10 \\ () \ 1.27 \\ () \ 0.96 \end{array}$          | I<br>I<br>I<br>I        |

[ Vol. 1

| Meggers                                                                            |                                                                                               | I              | Eder                                                                                 | King and Carter                               | el a                                        | - Menzor                                                                             |                                                                                                                        |                        |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------|
| λ                                                                                  | Inte:<br>Arc                                                                                  | nsity<br>Spark | λ                                                                                    | Inten-<br>sity arc                            | Arc intensity<br>and tempera-<br>ture class | ν                                                                                    | Zeeman effect                                                                                                          | Spectrum               |
| <b>4354.</b> 35<br>54. 98<br>57. 73<br>58. 73<br>61. 18                            | 2<br>1<br>6<br>40<br>1                                                                        | <br><br><br>   |                                                                                      |                                               | 10 III<br>50 III E                          | 22959. 1<br>955. 8<br>941. 3<br>936. 1<br>923. 2                                     | (—) 0.98<br>(0.94) 0.48 <b>, 1.46</b>                                                                                  | I<br>II<br>I           |
| $\begin{array}{c} 64.\ 01 \\ 64.\ 17 \\ 64.\ 41 \\ 66.\ 03 \\ 70.\ 96 \end{array}$ | $\frac{2}{1}$ $\frac{5}{1}$                                                                   | ?<br>2h<br>    |                                                                                      |                                               | 10 III<br>1 III                             | 908. 3<br>907. 4<br>906. 2<br>897. 7<br>871. 8                                       | (0.00) 1.18<br>(—) 0.98                                                                                                | II<br>II<br>I<br>I     |
| $71. 44 \\71. 78 \\74. 94 \\75. 61 \\78. 59$                                       | $     \begin{array}{c}       1 \\       200 \\       3 \\       1     \end{array} $           |                |                                                                                      |                                               | 300 III E<br>8 III                          | 869.4<br>867.6<br>851.0<br>847.6<br>832.0                                            | (0.15) 0.95                                                                                                            | II<br>I                |
| 79. 33<br>84. 80<br>85. 48<br>87. 74<br>94. 01                                     | $egin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 2 \end{array}$                                            |                | .35<br>.48<br>.75<br>.02                                                             | $\begin{array}{c} 2\\ -1\\ 3\\ 2 \end{array}$ | 6 III<br>3 III<br>8 III<br>3 III            | 828. 1<br>799. 7<br>796. 1<br>784. 4<br>751. 9                                       | () 1.19 A <sup>2</sup><br>() 1.36<br>() 0.63 A <sup>1</sup><br>() 1.17 B                                               |                        |
| 94.66<br>97.79<br>4398.02                                                          | 2<br>(2)<br>75                                                                                | E+H<br>50      | . <u>68</u><br>. <u>03</u>                                                           | $\frac{2}{6}$                                 | 2 III<br>3 III<br>100 III E                 | 748. 5<br>732. 3<br>731. 1                                                           | ( <b>0.00</b> , 0.32) <b>0.79</b> , 1 10, 1 41                                                                         | I<br>I<br>II           |
| 4401. 13<br>04. 85                                                                 | $\frac{2}{3}$                                                                                 | =              | =                                                                                    | =                                             |                                             | 715. 1<br>695. 9                                                                     |                                                                                                                        | I                      |
| 09.3<br>09.7<br>11.20<br>15.37<br>17.44                                            | $     \begin{array}{c}       1 \\       1 \\       2 \\       2     \end{array} $             |                |                                                                                      | $\begin{vmatrix} -\\ -\\ 2\\ 1 \end{vmatrix}$ | 3 III<br>2 III                              | $\begin{array}{c} 673.\ 0\\ 670.\ 9\\ 663.\ 2\\ \cdot\ 641.\ 8\\ 631.\ 2\end{array}$ | (w) 1.23 Bw<br>(                                                                                                       | I<br>I<br>I            |
| $\begin{array}{c} 21.\ 74\\ 22.\ 59\\ 32.\ 92\\ 36.\ 13\\ 37.\ 35 \end{array}$     | $     \begin{array}{c}       1 \\       50 \\       1 \\       1 \\       5     \end{array} $ | 30<br>—<br>—   | $\begin{array}{c} - \overline{60} \\ - \overline{14} \\ - \overline{33} \end{array}$ | $\frac{-8}{1}$                                | 1 IV<br>80 III E<br>1 IV<br>10 III          | 609. 2<br>604. 8<br>552. 2<br>535. 8<br>529. 7                                       | (0.00) 0.51<br>(—) 0.90                                                                                                | I<br>II<br>I<br>I<br>I |
| $\begin{array}{r} 43.\ 66\\ 45.\ 31\\ 46.\ 63\\ 59.\ 01\\ 65.\ 27\end{array}$      | 7<br>3<br>8<br>1<br>3                                                                         |                | .65<br>.30<br>.64<br>.26                                                             | $\begin{vmatrix} 3\\1\\3\\-3\\3\end{vmatrix}$ | 15 III<br>3 IV<br>15 III<br>1 IV            | 497. 7<br>489. 3<br>482. 6<br>420. 2<br>388. 8                                       | () 1.70 A <sup>2</sup><br>() 0.62<br>(0.00) 1.32<br>(0.00) 0.92                                                        | I<br>I<br>I<br>I<br>I  |
| $\begin{array}{c} 65.\ 4\\ 72.\ 79\\ 73.\ 88\\ 75.\ 73\\ 76.\ 37\end{array}$       |                                                                                               | 10h<br>        | .77<br>.89<br>.71                                                                    |                                               | 2n IV<br>7 III<br>20 III                    | $\begin{array}{c} 388.\ 1\\ 351.\ 2\\ 345.\ 7\\ 336.\ 5\\ 333.\ 3\end{array}$        | (—) 1.05<br>(0.50) 1.29 Bw                                                                                             | II<br>I<br>I<br>I      |
| 76. 95<br>77. 45<br>78. 99<br>84. 44                                               | $     \begin{array}{c}       10 \\       10 \\       1 \\       2     \end{array} $           | 1<br>1<br>     | .97<br>.46<br>                                                                       | 4<br>3<br>—                                   | 25 III<br>25 III<br>2 IV<br>5 II ?          | $\begin{array}{c} 330.\ 3\\ 327.\ 9\\ 320.\ 2\\ 293.\ 1 \end{array}$                 | () 1.66 A <sup>2</sup><br>() 0.00, 0.78, 1.54<br>() 1.06                                                               | I<br>I<br>I<br>I       |
| 87. 28<br>87. 47<br>88. 90<br>91. 75<br>4492. 42                                   |                                                                                               |                |                                                                                      |                                               | 20 III<br>40 III<br>5 III<br>4 III          | $\begin{array}{c} 279.\ 0\\ 278.\ 0\\ 270.\ 9\\ 256.\ 8\\ 253.\ 5\end{array}$        | (w) 1.20 Bw<br>(−) 0.60                                                                                                | IIIII                  |
| $\begin{array}{r} 4505.\ 95\\ 13.\ 58\\ 14.\ 02\\ 22.\ 05\\ 27.\ 24 \end{array}$   | $25 \\ 3 \\ 5 \\ 2 \\ 40$                                                                     | 2<br><br>2     | .96<br>.58<br>.01<br>.05<br>.26                                                      |                                               | 50 II<br>4 III<br>8 III<br>3 III<br>80 II   | 186. 7<br>149. 3<br>147. 0<br>107. 7<br>082. 3                                       | $\begin{array}{c} (0.00) \ 0.90 \\ (-) \ 1.24 \\ (-) \ 1.31 \\ (-) \ 1.79 \\ (0.00) \ 1.15 \ \mathrm{A^1} \end{array}$ | I<br>I<br>I<br>I<br>I  |
| $\begin{array}{r} 27.\ 79\\ 28.\ 10\\ 33.\ 50\\ 34.\ 09\\ 4536.\ 31\end{array}$    | $     \begin{array}{c}       30 \\       2 \\       1 \\       3 \\       1     \end{array} $ | 2<br>          | .81                                                                                  | 3                                             | 50 II<br>3 III<br>1 IV<br>3 III             | 079. 6<br>078. 1<br>051. 8<br>049. 0<br>22038. 2                                     | (0.00) 1.05 A <sup>1</sup>                                                                                             |                        |

#### Meggers]

# Yttrium Spectra

|                                                                                 | Meggers                                                                                                            |                              | F                                                                                                                                           | Eder                                                                                         | King and Carter                                                                                                   |                                                                                      |                                                                                                             |                               |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| λ                                                                               | Inter                                                                                                              | nsity<br>Spark               | λ                                                                                                                                           | Inten-<br>sity are                                                                           | Arc intensity<br>and tempera-<br>ture class                                                                       | ν                                                                                    | Zeeman effect                                                                                               | Spectrum                      |  |
| $\begin{array}{r} 4537.16\\ 39.60\\ 42.03\\ 44.31\\ 54.46\end{array}$           | $\begin{array}{c}2\\1\\3\\6\\2\end{array}$                                                                         |                              | <br>.04<br>.32<br>                                                                                                                          |                                                                                              | 2 III<br>1 III<br>10 III<br>2 III                                                                                 | $\begin{array}{c} 22034.\ 0\\ 022.\ 2\\ 22010.\ 4\\ 21999.\ 4\\ 950.\ 4 \end{array}$ | (—) 0.93                                                                                                    |                               |  |
| $55. 29 \\ 59. 37 \\ 61. 8 \\ 64. 37 \\ 64. 93$                                 | $27 \\ 72n? \\ 22 \\ 2$                                                                                            |                              | $     \begin{array}{r}             .32 \\             .37 \\             .41 \\             .95 \end{array}     $                           | $\begin{array}{c}2\\-\\-\\1\\2\end{array}$                                                   | 10 III<br>4 III<br>2 IV ?                                                                                         | $\begin{array}{c} 946.3\\ 926.7\\ 915.0\\ 902.6\\ 900.0\end{array}$                  | () <b>1.03</b> , 2.04<br>() 0.91                                                                            | I<br>I<br>I<br>I<br>I         |  |
| $\begin{array}{c} 70.\ 65\\ 73.\ 55\\ 78.\ 87\\ 81.\ 32\\ 81.\ 77\end{array}$   | $2 \\ 6 \\ 1 \\ 2 \\ 1 \\ 1$                                                                                       | EELI II.                     | $     \begin{array}{r}             .69 \\             .58 \\             .32 \\             .77 \\             .77 \\         \end{array} $ | $\begin{array}{c}2\\-\\-\\1\\1\end{array}$                                                   | 3n III<br>10 III<br>1 III<br>6 II A<br>3 III A                                                                    | $\begin{array}{r} 872.5\\ 858.7\\ 833.3\\ 821.7\\ 819.5\end{array}$                  | () 1.20                                                                                                     | I<br>I<br>I<br>I              |  |
| $\begin{array}{r} 82.\ 15\\ 85.\\ 90.\\ 94.\\ 4596.\ 54\end{array}$             | 1<br>10                                                                                                            |                              | $     \begin{array}{r}         .18 \\         .33 \\         .80 \\         .00 \\         .56     \end{array} $                            | $     \begin{array}{c}       1 \\       1 \\       3 \\       1 \\       5     \end{array} $ | $\begin{array}{c} 2 \text{ III} \\ 1 \text{ V} \\ 15 \text{ II} \text{ ?} \\ 12 \text{ III} \end{array}$          | $\begin{array}{c} 817.7\\ 802.6\\ 776.6\\ 761.4\\ 749.4\end{array}$                  | ·<br>(—) 1.34                                                                                               | I<br>I<br>I<br>I              |  |
| $\begin{array}{r} 4601.\ 27\\ 03.\ 7\\ 04.\ 79\\ 07.\ 94\\ 13.\ 00 \end{array}$ | $1 \\ 2nl? \\ 6 \\ 3 \\ 2$                                                                                         | 1111                         | $\begin{array}{r} \cdot \frac{30}{81} \\ \cdot \frac{30}{81} \end{array}$                                                                   | $\frac{1}{3}$                                                                                | 2 III<br>10 III<br>4 III                                                                                          | $\begin{array}{c} 727.\ 0\\ 715.\ 6\\ 710.\ 4\\ 695.\ 6\\ 671.\ 8\end{array}$        | (—) 1.26                                                                                                    | I<br>I<br>I                   |  |
| $\begin{array}{c} 36.\ 50\\ 43.\ 69\\ 49.\ 5\\ 50.\ 1\\ 52.\ 13 \end{array}$    | $(1) \\ 50 \\ 3nl \\ 5nl \\ 1$                                                                                     | E+H<br>5<br>—<br>—           | .70                                                                                                                                         | 5                                                                                            | 1 IV<br>150 I                                                                                                     | $562. 0 \\ 528. 6 \\ 501. 7 \\ 498. 9 \\ 489. 5$                                     | (0.00) 0.89                                                                                                 | I<br>I<br>Mol<br>Mol<br>I     |  |
| $53.\ 78\\58.\ 32\\58.\ 88\\66.\ 38\\66.\ 84$                                   | $2 \\ 10 \\ 3 \\ 1 \\ 2$                                                                                           | HILE                         | . <u>32</u><br>                                                                                                                             |                                                                                              | $\begin{array}{c} 4 \text{ III} \\ 12 \text{ III} \\ 6 \text{ III} \\ 3 \text{ III} \\ 3 \text{ III} \end{array}$ | $\begin{array}{r} 481.9\\ 461.0\\ 458.4\\ 423.9\\ 421.8\end{array}$                  | (0.00) 0.94<br>(—) 1.00                                                                                     | I<br>I<br>I<br>I<br>I         |  |
| $\begin{array}{c} 67.\ 47\\ 70.\ 82\\ 74.\ 84\\ 78.\ 36\\ 82.\ 32 \end{array}$  | $     \begin{array}{c}       4 \\       2 \\       45 \\       2 \\       30 \\       30 \\                      $ | $\frac{-}{5}$ $\frac{5}{20}$ |                                                                                                                                             |                                                                                              | $\begin{array}{c} 8 \\ 4 \\ 111 \\ 125 \\ 3 \\ 20 \\ V \\ E \end{array}$                                          | $\begin{array}{c} 418.9\\ 403.5\\ 381.5\\ 369.1\\ 351.0 \end{array}$                 | (−) 0.84<br>(−) 0.87<br>(0.00) 1.06<br>(0.89) 0.52, 0.95,<br>1.40, 1.84                                     | I<br>I<br>I<br>I<br>II        |  |
| $\begin{array}{r} 89.\ 77\\ 91.\\ 96.\ 81\\ 4699.\\ 4701.\ 00 \end{array}$      | 3<br>6<br>1                                                                                                        | 00.0 (0<br>                  | .76<br>.97<br>.80<br>.24<br>.98                                                                                                             | $\begin{array}{c}1\\1\\2\\2\\2\end{array}$                                                   | 4 III<br>1 III A<br>8 III<br>1 III ?<br>2 III                                                                     | $\begin{array}{c} 317.1\\ 307.1\\ 285.1\\ 274.1\\ 266.2 \end{array}$                 | (0.00) 0.97                                                                                                 | I<br>I<br>I<br>I<br>I         |  |
| $\begin{array}{c} 04.\\ 08.\ 84\\ 25.\ 84\\ 28.\ 52\\ 32.\ 35 \end{array}$      | 1+p<br>2<br>10<br>3                                                                                                |                              | • <u>64</u><br><br>• <u>53</u><br>• <u>39</u>                                                                                               | $\begin{array}{c c} 1 \\ - \\ 4 \\ 2 \end{array}$                                            | 3 III ?<br>3 III<br>20 III ?<br>3 III ?                                                                           | $\begin{array}{c} 249.\ 7\\ 230.\ 7\\ 154.\ 4\\ 142.\ 4\\ 125.\ 2\end{array}$        | (0.67) 1.29                                                                                                 | I<br>I<br>I<br>I              |  |
| $\begin{array}{c} 34.\ 52\\ 41.\ 40\\ 44.\ 6\\ 52.\ 79\\ 60.\ 98 \end{array}$   | 5<br>2nl<br>10<br>30                                                                                               | 5h<br>—<br>1<br>3            | . 41<br>. 78<br>. 99                                                                                                                        | 3<br>3<br>5                                                                                  | 8 III<br>12 III<br>40 I                                                                                           | $115. \ 6 \\ 084. \ 9 \\ 070. \ 7 \\ 21034. \ 4 \\ 20998. \ 2$                       | (0.00) 1.04<br>(0.00) 1.90 A <sup>2</sup> w<br>(0.50, <b>0.80</b> ) 0.40, 0.72,<br><b>1.04</b> , 1.36, 1.69 | II<br>I<br>Mol<br>I<br>I<br>I |  |
| 80.<br>81. 04<br>86. 58<br>86. 88<br>4799. 30                                   | 10<br>30<br>10<br>15                                                                                               | $\frac{1}{20}$               | .18<br>.04<br>.57<br>.90<br>.31                                                                                                             | $\begin{vmatrix} 2\\ 3\\ 4\\ 2\\ 4 \end{vmatrix}$                                            | 1 III<br>10 III<br>10 IV E<br>10 III<br>15 III                                                                    | 913. 9<br>910. 1<br>885. 9<br>884. 6<br>20830. 5                                     | (0.00) 1.45 A <sup>2</sup><br>(0.65w) 1.20 Bw<br>(w) 1.52 A <sup>2</sup>                                    | I<br>I<br>II<br>I<br>I        |  |

# Bureau of Standards Journal of Research

| Meggers                                                                        |                                 | F                                   | der                                                                                                                                                 | King and Carter                                            | Solo S                                                                         |                                                                               | 1                                                                                           |                          |
|--------------------------------------------------------------------------------|---------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|
| λ                                                                              | Inte<br>Arc                     | nsity<br>Spark                      | λ                                                                                                                                                   | Inten-<br>sity arc                                         | Arc intensity<br>and tempera-<br>ture class                                    | ν                                                                             | Zeeman effect                                                                               | Spectrum                 |
| 4804. 31<br>04. 81<br>17. 38<br>18. 18<br>19. 64                               | 3<br>5<br>5nl<br>10nl<br>7      |                                     | $ \begin{array}{r}    31 \\     .81 \\     .41 \\     .20 \\     .64 \end{array} $                                                                  | $\begin{bmatrix} 3\\3\\1\\1\\3\end{bmatrix}$ BH            | 4 III<br>6 III<br>10 III                                                       | 20808. 8<br>806. 7<br>752. 3<br>748. 9<br>742. 7                              | ( <b>0.31,</b> 0.95) 0.64, 1.28, <b>1.93</b>                                                | I<br>I<br>Mol<br>I<br>I  |
| $\begin{array}{c} 21.\ 62\\ 22.\ 12\\ 23.\ 31 \end{array}$                     | 1<br>6<br>40                    | $-\frac{1}{30}$                     | $.62 \\ .12 \\ .32$                                                                                                                                 | $1 \\ 2 \\ 4$                                              | $\begin{array}{c} 2 \text{ IV} \\ 8 \text{ III} \\ 12 \text{ V E} \end{array}$ | 734. 1<br>732. 0<br>726. 9                                                    | (w) 0.90<br>(0.46, <b>0.99</b> ) 0.17,<br><b>0.64</b> , <b>1.13</b> , 1.62                  | I<br>I<br>II             |
| 26.<br>29. 36                                                                  | _                               | 10h                                 | . 25                                                                                                                                                | _1/2                                                       |                                                                                | 714.3<br>700.9                                                                |                                                                                             | п                        |
| 39. 13<br>39. 87<br>42. 03<br>42. 84<br>45. 67                                 | 2<br>60<br>2nl ?<br>5nc ?<br>50 | 6<br>                               |                                                                                                                                                     | $\begin{array}{c}1\\-\\-\\-\\4\end{array}$                 | 3 III<br>60 II<br>50 II                                                        | 659. 3<br>656. 0<br>646. 7<br>643. 3<br>631. 2                                | ( <b>0.34,</b> 0.96)—<br>(0.00) 1.30<br>(0.00) 1.20                                         | I<br>I<br>Mol<br>I       |
| 52. 69<br>54. 26<br>54. 87<br>56. 70<br>59. 85                                 | 40<br>1<br>100<br>2<br>25       | $\frac{\frac{4}{150}}{\frac{2}{2}}$ | . 69<br>. 88<br>. 70<br>. 83                                                                                                                        | $\begin{array}{c} \frac{4}{10} \\ \frac{2}{4} \end{array}$ | 50 II<br>4 III<br>70 V E<br>3 III<br>40 II                                     | $\begin{array}{c} 601.\ 4\\ 594.\ 6\\ 592.\ 1\\ 584.\ 4\\ 571.\ 1\end{array}$ | (0.00) 1.01<br>(0.00) 0.72<br>(w?) 1.28<br>(0.00) 0.40                                      | I<br>I<br>II<br>I<br>I   |
| 63.<br>64.<br>79.<br>81. 44<br>83. 69                                          | 2<br>150                        | 2<br>200                            | .11<br>.71<br>.64<br>.44<br>.69                                                                                                                     | 2<br>1<br>2<br>2<br>8                                      | 1 III<br>4 III<br>80 V E                                                       | 557. 2550. 5487. 6480. 0470. 6                                                | () 0.80<br>(0.70) 2.28<br>(0.00) 1.11 A <sup>1</sup>                                        | I<br>I<br>II<br>II       |
| 86. 29<br>86. 65<br>4893. 44                                                   | 3<br>3<br>8                     | $\frac{-}{2}$                       | .26<br>.64<br>.44                                                                                                                                   | 2<br>2<br>3                                                | 4 III<br>3 III<br>6 III A                                                      | $\begin{array}{r} 459.\ 8\\ 458.\ 2\\ 429.\ 8\end{array}$                     | (0.00) 1.24<br>(0.00) 0.84<br>(0.32, 0.95) 0.70,<br>1.30 1.90                               | I<br>I<br>I              |
| 4900. 13<br>06. 11                                                             | 125<br>8                        | 150<br>1                            | $\begin{array}{c} .11\\ .10\end{array}$                                                                                                             | 8<br>3                                                     | 80 III E<br>6 III A                                                            | 402. 0<br>377. 1                                                              | $\begin{array}{c} (0.00) \ 0.97 \ \mathrm{A^1} \\ (0.00) \ 1.50 \ \mathrm{A^2} \end{array}$ | II<br>I                  |
| $\begin{array}{c} 09.\ 00\\ 12.\ 03\\ 14.\ 81\\ 21.\ 88\\ 26.\ 32 \end{array}$ | 2<br>1<br>1<br>10<br>1          |                                     | $     \begin{array}{r}       .00 \\       .07 \\       .85 \\       .30 \\     \end{array} $                                                        | $\begin{array}{c}2\\2\\-\\3\\1\end{array}$                 | 2 III<br>tr III A ?<br>10 III A<br>tr III A                                    | $\begin{array}{c} 365.\ 1\\ 352.\ 4\\ 341.\ 0\\ 311.\ 8\\ 293.\ 5\end{array}$ | (0.00) 1.18<br>(0.35) <b>0.95,</b> 1.66                                                     | I<br>I<br>I<br>I         |
| 28. 21<br>30. 93<br>36.<br>48. 54<br>50. 66                                    | 2<br>3<br>1<br>3                |                                     | $     \begin{array}{r}             .24 \\             .95 \\             .70 \\             \overline{} \\             .63 \\         \end{array} $ | $\begin{bmatrix} 2\\ 2\\ 1\\ -\\ 2 \end{bmatrix}$          | 1 III<br>2 III<br>tr IV<br>2 III                                               | 285. 6<br>274. 5<br>250. 8<br>202. 4<br>193. 8                                | (0.00) 0.83                                                                                 | I<br>I<br>I<br>I         |
| 70.<br>74. 30<br>79.<br>4982. 13<br>5006. 96                                   | 5<br>15<br>6                    | 1<br>151                            | .10<br>.31<br>.24<br>.12<br>.97                                                                                                                     | 1<br>3<br>1<br>5<br>3                                      | 10 III ?<br>8 V E<br>10 IV                                                     | 114. 7<br>097. 7<br>077. 8<br>20066. 2<br>19966. 6                            | (0.00) 1.08<br>(w) 1.56 A <sup>2</sup><br>(0.00) 0.87                                       | I<br>II<br>I             |
| 24. 3<br>25. 2<br>49. 7<br>50. 6<br>68.                                        | 2nl<br>3nl<br>2nl<br>2nl        |                                     | <br>                                                                                                                                                | <br><br>1<br>2                                             |                                                                                | 897. 7<br>894. 2<br>797. 7<br>794. 1<br>723. 0                                |                                                                                             | Mol<br>Mol<br>Mol<br>Mol |
| 70. 21<br>72. 19<br>87. 42<br>5088. 18<br>5103. 70                             | 2<br>3<br>50<br>1<br>1          |                                     | .18<br>.19<br>.42<br>                                                                                                                               |                                                            | 5 V<br>5 IV<br>150 V E<br>3 V                                                  | 717. 6709. 9650. 9647. 9588. 2                                                | (0.00) 1.22                                                                                 | I<br>I<br>I<br>I<br>I    |
| 19. 12                                                                         | 10                              | 201                                 | .10                                                                                                                                                 | 5                                                          | 15 V E                                                                         | 529. 2                                                                        | (0.00, 0.40) 1.39,<br>1.92                                                                  | п                        |
| $\begin{array}{c} 23.\ 21\\ 28.\ 42\\ 35.\ 20\\ 5196.\ 43\end{array}$          | 30<br>1<br>4<br>5               | 501<br>2<br>101                     | .21<br>.20<br>.43                                                                                                                                   | $\frac{6}{3}$                                              | 40 V E<br>25 III<br>2 V E                                                      | $513. \ 6 \\ 493. \ 8 \\ 468. \ 0 \\ 19238. \ 6$                              | (0. 00) 0.52 A <sup>1</sup><br>(0.00) 1.02                                                  | II<br>I<br>I<br>II       |

#### Meggers]

# TABLE 1.-Wave lengths and Zeeman effects in yttrium spectra-Continued

| Meggers                                                                        |                                                      | 1                                                                 | Eder                                                                                                              | King and Carter                                                                                |                                                                                                               |                                                                                 | 1                                                                                        |                            |
|--------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------|
| λ                                                                              | Inte                                                 | ensity<br>Spark                                                   | λ                                                                                                                 | Inten-<br>sity arc                                                                             | Arc intensity<br>and tempera-<br>ture class                                                                   | ν                                                                               | Zeeman effect                                                                            | Spectrum                   |
| $5200. 42 \\ 05. 73 \\ 28. 56 \\ 40. 80 \\ 83. 69$                             | $40 \\ 50 \\ 2 \\ 4 \\ 2$                            | $\begin{array}{c} 60\\ 80\\ -2\\ -\end{array}$                    | $ \begin{array}{r}    $                                                                                           | $     \begin{array}{c}       10 \\       10 \\       1 \\       3 \\       1     \end{array} $ | 60 VE<br>80 VE<br>15 IV                                                                                       | 19223. 9<br>204. 3<br>120. 5<br>19075. 8<br>18921. 0                            | (0. 00) 0. 72<br>(0. 00) 1. 07<br>(0. 00) 0. 94                                          | II<br>II<br>I<br>I         |
| $5289.82 \\ 5320.78 \\ 25.84 \\ 27.12 \\ 75.87 $                               | 4<br>2<br>1<br>1<br>1                                |                                                                   | .81<br>.77<br>                                                                                                    |                                                                                                | 4 V E                                                                                                         | 899. 0<br>789. 0<br>771. 2<br>766. 7<br>596. 5                                  | (w) 1.73 A <sup>2</sup>                                                                  | II<br>I<br>I<br>I          |
| $\begin{array}{r} 80.63\\ 88.40\\ 5390.82\\ 5402.78\\ 17.02\end{array}$        | $5 \\ 1 \\ 2 \\ 20 \\ 2$                             |                                                                   | .61<br>.42<br>.79<br>.78<br>.03                                                                                   | $     \begin{array}{c}       3 \\       1 \\       1 \\       6 \\       2     \end{array} $   | 15 III<br>20 V E<br>3 IV ?                                                                                    | $580.\ 1$<br>$553.\ 2$<br>$545.\ 0$<br>$503.\ 9$<br>$455.\ 2$                   | (0. 00) 0. 89                                                                            | I<br>I<br>I<br>I<br>I<br>I |
| $\begin{array}{c} 24.36\\ 38.24\\ 66.46\\ 68.47\\ 69.19 \end{array}$           | $5 \\ 20 \\ 50 \\ 10 \\ 1$                           | $ \begin{array}{c c} 1 \\ 2 \\ 10 \\ 1 \\ - \\ \end{array} $      | .37<br>.24<br>.45<br>.46<br>                                                                                      | $\begin{vmatrix} 3\\5\\10\\4\\-\end{vmatrix}$                                                  | 20 III<br>50 II<br>300 II<br>40 III                                                                           | $\begin{array}{r} 430.\ 2\\ 383.\ 2\\ 288.\ 3\\ 281.\ 6\\ 279.\ 2\end{array}$   | ( <b>0.22,</b> 0.66) 1.78 A <sup>2</sup><br>(0.00) 1.09 B?<br>(0.00) 1.10<br>(0.39) 1.04 | I<br>I<br>I<br>I<br>I      |
| $\begin{array}{c} 73.\ 40\\ 80.\ 75\\ 91.\ 46\\ 93.\ 18\\ 95.\ 61 \end{array}$ | $ \begin{array}{c} 10\\ 10\\ -\\ 5\\ 2 \end{array} $ | 201<br>151<br>2h<br>1<br>—                                        | .38<br>.72<br>.44<br>.15<br>.57                                                                                   | 5<br>5<br>3<br>3<br>3                                                                          | 10 VE<br>8 VE<br>1 V<br>15 III<br>8 III                                                                       | $\begin{array}{c} 265.\ 2\\ 240.\ 7\\ 205.\ 1\\ 199.\ 4\\ 191.\ 4 \end{array}$  | (0, 00) 1, 48<br>(0, 00) 1, 48<br>(0, 22) 0, 62                                          | II<br>II<br>I<br>I<br>I    |
| 5497.42<br>5501.                                                               | 20                                                   | 50                                                                | . 41<br>. 52                                                                                                      | 5<br>1                                                                                         | 25 V E                                                                                                        | $185.\ 3\\171.\ 8$                                                              | (0.00) 1.43                                                                              | п                          |
| 03.34<br>03.47<br>09.91                                                        | 2<br>10<br>30                                        | 2<br>301                                                          |                                                                                                                   | 56                                                                                             | $100\left\{\begin{array}{c} 3 & 111\\ 25 & 11\end{array}\right\}$<br>40 V E                                   | $165.8 \\ 165.4 \\ 144.1$                                                       | (0. 00) 1. 15<br>(0. 45) 0. 76 Bw                                                        | I                          |
| $\begin{array}{c} 13.\ 66\\ 21.\ 59\\ 21.\ 70\\ 26.\ 75\\ 27.\ 56\end{array}$  | $5 \\ 10 \\ 2 \\ 2 \\ 40$                            | $\begin{array}{c c} 1\\ -\frac{1}{20}\\ -\frac{1}{4} \end{array}$ | $     \begin{array}{r}             .65 \\             .60 \\             .72 \\             .53 \end{array}     $ | $\begin{vmatrix} 2\\5\\-2\\8 \end{vmatrix}$                                                    | $ \begin{cases} 20 & \text{II} \\ 30 & \text{II} + \text{E} \\ 2 & \text{IV} \\ 250 & \text{II} \end{cases} $ | $131.8 \\ 105.7 \\ 105.3 \\ 088.8 \\ 086.2$                                     | (0. 65)—<br>(0. 00) 1. 46<br>(0. 00) 1. 03 A <sup>1</sup>                                | I<br>I<br>II<br>I<br>I     |
| $\begin{array}{c} 27.\ 75\\ 40.\\ 41.\ 64\\ 44.\ 61\\ 46.\ 02 \end{array}$     | 10<br>2<br>15<br>8                                   |                                                                   | .61<br>.63<br>.60<br>.02                                                                                          | $ \begin{array}{c} -1\\ 2\\ 5\\ 4 \end{array} $                                                | $3 \operatorname{III}_{25 \operatorname{III} + \mathrm{E}}_{3 \mathrm{V} \mathrm{E}}$                         | $\begin{array}{c} 085.\ 5\\ 043.\ 6\\ 040.\ 2\\ 030.\ 5\\ 18026.\ 0\end{array}$ | (0. 00) 1. 50<br>(0. 00) 1. 46                                                           | I<br>I<br>II<br>II         |
| $56: 44 \\ 67. 76 \\ 77. 43 \\ 81. 08 \\ 81. 88$                               | 5<br>5<br>10<br>2<br>30                              | $\begin{array}{c c} 1\\ 1\\ 2\\ -\\ 4 \end{array}$                | .42<br>.74<br>.42<br>.07<br>.86                                                                                   | $5 \\ 2 \\ 3 \\ 1 \\ 5$                                                                        | 20 I A<br>15 II<br>30 II<br>3 IV<br>150 II                                                                    | $\begin{array}{c} 17992.\ 2\\ 955.\ 6\\ 924.\ 5\\ 912.\ 7\\ 910.\ 2\end{array}$ | (0. 00) 0. 90<br>(0. 00) 1. 06<br>(0. 00) 0. 92                                          | I<br>I<br>I<br>I<br>I      |
| 90. 96<br>5594. 12<br>5603.<br>06. 34<br>10. 36                                | 2<br>2<br>10<br>1                                    | 1<br>2                                                            | .95<br>.26<br>.32<br>.34                                                                                          | $\begin{vmatrix} 2\\ -\\ 1\\ 3\\ 1 \end{vmatrix}$                                              | 2 IV<br>2 IV<br>20 II                                                                                         | 881. 1<br>871. 0<br>841. 8<br>832. 0<br>819. 3                                  | (0. 62) 1. 20 Bw                                                                         | I<br>I<br>I<br>II          |
| 19. 98<br>23. 89<br>30. 15<br>32. 25<br>32. 92                                 | $1 \\ 2 \\ 20 \\ 2 \\ 1$                             |                                                                   | -90<br>. 12<br>. 23<br>. 86                                                                                       | $\begin{bmatrix} -1 \\ 6 \\ 1 \\ 1 \end{bmatrix}$                                              | 100 II<br>3 I A                                                                                               | 788.7<br>776.3<br>756.6<br>750.0<br>748.0                                       | (0.00) 0.71 A <sup>2</sup>                                                               | I<br>I<br>I<br>I<br>I      |
| $\begin{array}{r} 44.\ 70\\ 46.\ 70\\ 48.\ 48\\ 60.\\ 5662.\ 95\end{array}$    | 10<br>1<br>10<br>50                                  | $\frac{1}{1}$ 200                                                 | .68<br>.66<br>.45<br>.90<br>.95                                                                                   | 4<br>1<br>4<br>1<br>8                                                                          | 20 II<br>20 II<br>50 V F                                                                                      | 710. 9<br>704. 6<br>699. 0<br>660. 1<br>17653 8                                 | (0. 85) 1. 10 Bw<br>(0. 00) 1. 06                                                        | I<br>I<br>I<br>I           |

337

| ÷. | T7.7 | 4 |
|----|------|---|
|    | VOL. | 1 |
|    |      |   |

| Meggers                                                                    |                             | E              | der                                                                                                                                      | King and Carter                                                                                                 |                                                                                                                                 |                                                                                   |                                                                               |                                 |
|----------------------------------------------------------------------------|-----------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------|
| λ                                                                          | Inte                        | nsity          | λ                                                                                                                                        | Inten-<br>sity arc                                                                                              | Arc intensity<br>and tempera-<br>ture class                                                                                     | γ 1                                                                               | Zeeman effect                                                                 | Spectrum                        |
| 5669.24<br>75.29<br>75.63<br>86.<br>5693.63                                | Arc<br>1<br>5<br>1<br>2     | Spark          | .19<br>.26<br>.62<br>.62                                                                                                                 | $\frac{1}{3}$<br>$\frac{1}{1}$                                                                                  | 1 IV<br>15 II<br>1 V<br>1 IV ?<br>2 II A                                                                                        | $17634.2 \\ 615.4 \\ 614.3 \\ 580.3 \\ 558.6$                                     | (1. 14) 0. 82 Bw                                                              |                                 |
| 5706.75<br>13.81<br>14.91<br>20.62<br>23.46                                | $15 \\ 1h \\ 1h \\ 2 \\ 1$  | 1              | .72<br>                                                                                                                                  | $\frac{4}{-}$                                                                                                   | 30 II<br>3n IV<br>3n IV<br>3 IV<br>1 IV                                                                                         | $518.3 \\ 496.6 \\ 493.2 \\ 475.8 \\ 467.2$                                       | (0. 00) 1. 12<br>(1. 23) 1. 32                                                | I<br>I<br>I<br>I<br>I<br>I<br>I |
| $\begin{array}{c} 28.91\\ 32.10\\ 40.22\\ 43.87\\ 63.58\end{array}$        | $10 \\ 2 \\ 1 \\ 6 \\ 1$    | 101<br>—<br>1  | . 89<br>. 08<br>. 85<br>. 85                                                                                                             | $\frac{4}{1}$                                                                                                   | $\begin{array}{c} 3  \mathrm{V} \ \mathrm{E} \\ 3  \mathrm{II} \\ 1  \mathrm{III} \ \mathrm{A} \\ 15  \mathrm{III} \end{array}$ | $\begin{array}{c} 450.\ 5\\ 440.\ 8\\ 416.\ 1\\ 405.\ 1\\ 345.\ 5\end{array}$     | (0. 80w) 1. 27 Bw<br>(−) 1.35<br>(0. 00) 1. 28                                | II<br>I<br>I<br>I<br>I          |
| $\begin{array}{c} 64.22\\ 65.67\\ 73.95\\ 81.69\\ 82.68\end{array}$        | $1 \\ 5 \\ 2 \\ 5 \\ 1$     |                | $.\frac{-63}{.93}$<br>.68                                                                                                                | $\frac{-}{3}$<br>$\frac{1}{4}$                                                                                  | $\begin{array}{c} 12 \amalg \\ 4 \amalg \\ 2 \lor V \end{smallmatrix}$                                                          | $\begin{array}{r} 343.\ 6\\ 339.\ 3\\ 314.\ 4\\ 291.\ 2\\ 288.\ 2\end{array}$     | (0, 00) 1, 18<br>(0, 62) 0, 48<br>( <b>0, 00,</b> 0, 41) 0, 73 A <sup>1</sup> | I<br>I<br>II                    |
| $\begin{array}{r} 87.70\\ 5797.15\\ 5812.64\\ 18.58\\ 21.87\end{array}$    | $1 \\ 1 \\ 2 \\ 2 \\ 3$     | 1111           | .72<br>.16<br>.692<br>.891                                                                                                               | $\begin{array}{c}1\\1\\-\\-\\2\end{array}$                                                                      | 1 IV<br>1 IV A<br>4 III                                                                                                         | $\begin{array}{c} 273.\ 2\\ 245.\ 2\\ 199.\ 1\\ 181.\ 6\\ 171.\ 8\end{array}$     |                                                                               | I<br>I<br>I                     |
| $\begin{array}{c} 32.25\\ 44.\\ 58.82\\ 71.80\\ 76.13\end{array}$          | 2<br>1n?l<br>2<br>1         |                | $     \begin{array}{r}             .275 \\             .60 \\             \\             .851 \\             \\             \\         $ | $\frac{2}{1}$<br>$\frac{1}{-}$                                                                                  | 3 IV<br>2 IV                                                                                                                    | $141.\ 3\\105.\ 1\\063.\ 6\\025.\ 8\\013.\ 3$                                     |                                                                               | I<br>I                          |
| 79.94<br>93.94<br>5895.<br>5902.93<br>12.18                                | 2 1h $4$ 1hn?               |                | .971<br>4.043<br>.89<br>.979<br>.20                                                                                                      | $2 \\ 1u \\ 1 \\ 3 \\ 1BH$                                                                                      | 3 IV<br>7 IV                                                                                                                    | $\begin{array}{c} 17002.\ 2\\ 16961.\ 8\\ 956.\ 3\\ 936.\ 0\\ 909.\ 5\end{array}$ | (—)1.50                                                                       | I<br>I<br>Mol                   |
| $\begin{array}{c} 31.\ 09\\ 39.\ 06\\ 44.\\ 45.\ 71\\ 50.\ 00 \end{array}$ | 1nl<br>5nl<br>4<br>3        | ·              | .12<br>.035<br>.871<br>.729<br>.036                                                                                                      | $1BH \\ 2BH \\ 2 \\ 4 \\ 3$                                                                                     | 6 IV<br>5 IV                                                                                                                    | $\begin{array}{c} 855.\ 6\\ 833.\ 1\\ 816.\ 6\\ 814.\ 2\\ 802.\ 0\end{array}$     | (0.00) 1.52 B?<br>(0.64)—                                                     | Mol<br>Mol<br>I<br>I<br>I       |
| $56.40 \\ 66. \\ 72.1 \\ 81.86 \\ 87.6$                                    | 4nl<br>100nl<br>3<br>80nl   |                | $\begin{array}{r} . \ 383 \\ . \ 642 \\ . \ 05 \\ . \ 920 \\ . \ 640 \end{array}$                                                        | $1BH \\ 2 \\ 6BH \\ 3BH \\ 5BH$                                                                                 |                                                                                                                                 | 784. 1755. 2740. 0712. 5696. 5                                                    |                                                                               | Mol<br>I<br>Mol                 |
| $5992.12 \\ 6003.6 \\ 04.65 \\ 07.64 \\ 09.16$                             | $2 \\ 60 nl \\ 5 \\ 2 \\ 8$ | 3nl<br>—<br>1  | . 583<br>. 742<br>. 227                                                                                                                  | 4BH<br>                                                                                                         | 10? IV                                                                                                                          | $\begin{array}{c} 684.\ 0\\ 652.\ 1\\ 649.\ 2\\ 640.\ 7\\ 636.\ 6\end{array}$     | (0.00) 1.24<br>(0.00) 1.40                                                    | Mol<br>I<br>I                   |
| $19.9 \\ 23.40 \\ 24.26 \\ 36.6 \\ 40.$                                    | 40nl<br>4<br>1p?<br>30nl    | 2nl<br><br>2nl | .87<br>.426<br>.330<br>.600<br>.283                                                                                                      | 4BH<br>3<br>2u<br>3BH<br>1                                                                                      | 20? I A<br>? III                                                                                                                | $\begin{array}{c} 607.\ 0\\ 597.\ 3\\ 594.\ 9\\ 561.\ 0\\ 550.\ 9\end{array}$     | (—) 0.60, 0.98, 1.36                                                          | Mol<br>I<br>Mol<br>I            |
| 53. 8<br>60.<br>72. 8<br>81.<br>87. 99                                     | 20nl<br>5nl<br>2            | Inl<br>        | .785<br>.34<br>.84<br>.221<br>8.010                                                                                                      | ${3BH} 1 2BH 1 3$                                                                                               |                                                                                                                                 | 514. 0496. 2462. 3439. 5412. 2                                                    | (0.00) 1.52                                                                   | Mol<br>Mol<br>I                 |
| 89.4<br>6096.8<br>6107.8<br>14.7<br>6122,                                  | 10nl<br>8nl<br>5nl<br>6nl   |                | .37<br>.77<br>.85<br>.760<br>.192                                                                                                        | $\begin{array}{c} 2\mathrm{BH} \\ 2\mathrm{BH} \\ 2\mathrm{BH} \\ 2\mathrm{BH} \\ 2\mathrm{BH} \\ 2\end{array}$ | ry as 1                                                                                                                         | $\begin{array}{r} 417.\ 5\\ 397.\ 5\\ 367.\ 9\\ 349.\ 4\\ 16329.\ 5\end{array}$   |                                                                               | Mol<br>Mol<br>Mol<br>Mol        |

|                                                                                        | Meggers                                     |                                                           | E                                                                                                            | der                                                                                          | King and Carter                                                |                                                                                   | . Anna M                                               |                             |
|----------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|
| λ                                                                                      | Inte                                        | nsity                                                     | λ                                                                                                            | Inten-<br>sity arc                                                                           | Arc intensity<br>and tempera-<br>ture class                    | ν                                                                                 | Zeeman effect                                          | Spectrum                    |
| $\begin{array}{r} \hline \\ 6127.39\\ 32.1\\ 35.04\\ 38.42\\ 48.4 \end{array}$         | 2p<br>80nl<br>2<br>5<br>70nl                | 6nl<br>5nl                                                | $\begin{array}{r} .43 \\ .08 \\ .056 \\ .456 \\ .38 \end{array}$                                             | 1BH<br>5BH<br>2<br>3<br>4BH                                                                  | ? III<br>15? I A                                               | 16315. 6<br>303. 2<br>295. 3<br>286. 3<br>259. 9                                  | (0.00) 1.50<br>(0.39) 1.28B                            | Mol<br>Mol<br>I<br>I<br>Mol |
| 51.7262.65.182.291.73                                                                  | 2<br>60nl<br>50nl<br>50                     | $\begin{array}{c}\\ 4nl\\ 3nl\\ 5\end{array}$             | 203<br>. 059<br>. 233<br>. 726                                                                               | $\begin{array}{c} - \\ 1 \\ 4BH \\ 4BH \\ 6 \end{array}$                                     | 100? IA                                                        | $\begin{array}{c} 251.\ 1\\ 223.\ 5\\ 216.\ 0\\ 171.\ 2\\ 146.\ 1\end{array}$     | (0.00) 0.78                                            | Mol<br>Mol<br>I             |
| $\begin{array}{c} 6199.\ 8\\ 6217.\ 9\\ 22.\ 59\\ 36.\ 7\\ 51.\ 06 \end{array}$        | 40nl<br>20nl<br>10<br>10nl<br>3             | $\begin{array}{c} 2nl\\ 1nl\\ 2\\\\\end{array}$           | .818<br>.929<br>.585<br>.690<br>.045                                                                         | $\begin{array}{c} 3BH\\ 3BH\\ 5\\ 2BH\\ 2\end{array}$                                        | 50? IA                                                         | $125.\ 1\\078.\ 1\\066.\ 0\\16029.\ 7\\15992.\ 9$                                 | ( <b>0.19,</b> 0.58) 1.75A <sup>2</sup>                | Mol<br>Mol<br>I<br>Mol<br>I |
| $\begin{array}{r} 65.\\75.\ 01\\6295.\ 46\\6316.\ 20\\32.\end{array}$                  | 5nl<br>3nl<br>2nl                           | =                                                         | .08<br>.060<br>.447<br>.367<br>.23                                                                           | $1 \\ 2BH \\ 1BH \\ 1BH \\ 1$                                                                |                                                                | $957.\ 1 \\931.\ 8 \\880.\ 1 \\827.\ 7 \\787.\ 9$                                 |                                                        | Mol<br>Mol<br>Mol           |
| 38. 12<br>45.<br>57. 38<br>69. 87<br>87. 08                                            | $\begin{array}{c} 3\\1\\1\\2\end{array}$    |                                                           | . 150<br>. 98<br>                                                                                            |                                                                                              | 5 I                                                            | $\begin{array}{c} 773.\ 1\\ 753.\ 7\\ 725.\ 4\\ 694.\ 6\\ 652.\ 3\end{array}$     |                                                        | I                           |
| $\begin{array}{c} 6396. \\ 6402. \ 01 \\ 05. \ 59 \\ 35. \ 02 \\ 37. \ 17 \end{array}$ | $10 \\ 1 \\ 100 \\ 3$                       | $\frac{2}{20}$                                            | .36<br>.025<br><br>.030<br>.200                                                                              | $\begin{array}{c c}1\\-\\-\\7\\2\end{array}$                                                 | 50 IA<br>500 IA<br>5 IV ?                                      | $\begin{array}{c} 629.\ 6\\ 615.\ 8\\ 607.\ 1\\ 535.\ 7\\ 530.\ 5\end{array}$     | ( <b>0.21,</b> 0.60) 1.76Å <sup>2</sup><br>(0.00) 1.16 | I<br>I<br>I                 |
| $\begin{array}{c} 62.\ 59\\ 82.\ 6\\ 6493.\ 8\\ 6501.\ 3\\ 05. \end{array}$            | $\begin{array}{c}2\\1\\1\\2\end{array}$     |                                                           | . 58<br>. 77<br>. 44                                                                                         | $\frac{1}{1}$                                                                                | 8 III<br>4 V                                                   | $\begin{array}{r} 469.\ 4\\ 421.\ 7\\ 395.\ 1\\ 377.\ 3\\ 367.\ 5\end{array}$     |                                                        | I<br>I<br>I                 |
| $\begin{array}{c} 18.\ 35\\ 35.\ 88\\ 38.\ 59\\ 53.\ 88\\ 57.\ 38\end{array}$          | $2 \\ 2 \\ 15 \\ 2 \\ 10$                   | $\begin{array}{c} - \\ - \\ - \\ 4 \\ - \\ 2 \end{array}$ | <br>. 599<br>. 435                                                                                           | $\left  \begin{array}{c} - \\ - \\ 4 \\ - \\ 3 \end{array} \right $                          | 35 III<br>30 IA                                                | $\begin{array}{c} 337.\ 1\\ 295.\ 9\\ 289.\ 6\\ 253.\ 9\\ 245.\ 7\end{array}$     | (0.00) 1.12<br>(0.00) 1.37A <sup>2</sup> -             | I                           |
| $\begin{array}{c} 72.\ 6\\ 76.\ 86\\ 84.\ 88\\ 6595.\ 04\\ 6602. \end{array}$          | $\begin{array}{c}2\\5\\2\\1\end{array}$     |                                                           | . 889<br>. 898<br>. 40                                                                                       | $ \begin{array}{c} -2\\ 1\\ -1\\ 1 \end{array} $                                             | 6 III<br>5 II A                                                | $\begin{array}{c} 210.\ 5\\ 200.\ 6\\ 182.\ 1\\ 158.\ 7\\ 141.\ 8\end{array}$     | () 1.40                                                | I                           |
| $\begin{array}{c} 03.\\ 13.\ 74\\ 16.\\ 22.\ 5\\ 36.\ 48 \end{array}$                  | 25<br>1<br>2                                | 20                                                        | $     \begin{array}{r}         .35\\         .76\\         .59\\         .50\\         .49     \end{array} $ | $     \begin{array}{c}       1 \\       6 \\       1 \\       1 \\       3     \end{array} $ | 15 VE<br>2 IV ?<br>2 IV ?                                      | $139.7 \\ 115.8 \\ 109.4 \\ 095.9 \\ 064.1$                                       | (0.00) 1.24W                                           | II<br>I<br>I<br>I           |
| 50. 60<br>64. 40<br>83.<br>87. 57<br>91. 84                                            | $\begin{array}{c}2\\2\\25\\2\end{array}$    |                                                           | .60<br>.37<br>.26<br>.57<br>.81                                                                              | $\begin{array}{c}2\\4\\1\\6\\1\end{array}$                                                   | 8 IV<br>3 IV ?<br>80 I<br>2 V                                  | $\begin{array}{c} 032.\ 1\\ 15001.\ 0\\ 14958.\ 6\\ 949.\ 0\\ 939.\ 5\end{array}$ | (0. 20) 1. 04<br>(0. 52) 0. 63B                        | I<br>I<br>I<br>I            |
| 94.75<br>6699.26<br>6700.71<br>13.19<br>35.98                                          | $\begin{array}{c}1\\2\\15\\4\\5\end{array}$ | $\begin{array}{c} - \\ 1 \\ 4 \\ 2 \\ 2 \\ 2 \end{array}$ | .32<br>.71<br>.21<br>.99                                                                                     |                                                                                              | $\begin{array}{ccc}1&V\\3&IV\\20&III\\6&III\\7&III\end{array}$ | 933. 0<br>922. 8<br>919. 7<br>891. 9<br>841. 6                                    | (0. 00) 0. 89                                          | I<br>I<br>I<br>I<br>I       |
| 50.<br>54.<br>61.<br>62.<br>6777.                                                      |                                             |                                                           | $     \begin{array}{r}         26 \\         .96 \\         .50 \\         .16 \\         .19 \end{array} $  | $\begin{array}{c}1\\2\\1\\3\\1\end{array}$                                                   |                                                                | 810. 2<br>799. 9<br>785. 5<br>784. 1<br>14751. 3                                  |                                                        |                             |

# Bureau of Standards Journal of Research

[ Vol. 1

| Meggers                                                                 |                               | I                                                                                            | Eder                                                    | King and Carter                                                                              |                                                                  |                                                                                   |                                  |                           |
|-------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------|---------------------------|
| λ                                                                       | Inte                          | nsity                                                                                        | λ                                                       | Inten-<br>sity arc                                                                           | Arc intensity<br>and tempera-<br>ture class                      | γ                                                                                 | Zeeman effect                    | Spectrum                  |
| 6785.<br>93.71<br>6795.41<br>6803.16<br>15.16                           | 25<br>20<br>1<br>2            | $\frac{6}{30}$                                                                               | $ \begin{array}{c} .19\\.72\\.41\\.12\\.18\end{array} $ | $\begin{array}{c} 2\\ 4\\ 5\\ 1\\ 2 \end{array}$                                             | 80 I<br>15 V E<br>1 V<br>5 IV                                    | 14733. 9<br>715. 4<br>711. 8<br>695. 0<br>669. 1                                  | () 1.10B<br>() 0.83              |                           |
| 32. 49<br>45. 24<br>58. 25<br>87. 22<br>6896. 00                        | 3<br>5<br>3<br>2<br>5         | 4<br>2<br>5<br>4<br>10                                                                       | .51<br>.24<br>.22<br>.24<br>.00                         | $\begin{vmatrix} 3\\4\\1\\4\\2 \end{vmatrix}$                                                | 1 V E $10 III$ $1 V E$ $8 IV$ $3 V E$                            | $\begin{array}{c} 631.\ 9\\ 604.\ 7\\ 577.\ 0\\ 515.\ 6\\ 497.\ 2\end{array}$     | () 1. 18<br>() 0. 99<br>() 2. 21 |                           |
| 6906.<br>08. 26<br>29.<br>33. 55<br>50. 30                              | 2<br>2<br>4                   | 2<br>2                                                                                       | .34<br>.36<br>.17<br>.56<br>.34                         | $     \begin{array}{c}       2 \\       2 \\       2 \\       3 \\       4     \end{array} $ | 2 III<br>6 II A<br>8 IV                                          | 475. 5<br>471. 3<br>427. 8<br>418. 7<br>383. 9                                    |                                  | I                         |
| 51. 68<br>53.<br>58. 04<br>6979. 88<br>7008. 95                         | 1<br>2<br>4<br>3              | 3<br>1<br>2<br>2                                                                             | .69<br>.37<br>.11<br>.89<br>.99                         | $\left \begin{array}{c}4\\3\\2\\4\\3\end{array}\right $                                      | 1 V E<br>4 I A<br>8 V ?<br>5 V                                   | $\begin{array}{c} 381.\ 1\\ 377.\ 6\\ 367.\ 8\\ 323.\ 0\\ 263.\ 5\end{array}$     |                                  | II<br>I<br>I<br>I         |
| 09. 93<br>35. 18<br>52. 95<br>54. 28<br>7075. 17                        | $2 \\ 3 \\ 4 \\ 3 \\ 2$       | $     \begin{array}{c}       2 \\       2 \\       3 \\       1 \\       1     \end{array} $ | . 93<br>. 18<br>. 93<br>                                |                                                                                              | 4 V<br>5 IV<br>10 III<br>4 V                                     | $\begin{array}{c} 261.\ 6\\ 210.\ 3\\ 174.\ 6\\ 171.\ 9\\ 130.\ 0 \end{array}$    | •                                | I<br>I<br>I<br>I<br>I     |
| 7127.92<br>39.<br>55.<br>91.65<br>93.74                                 | 3h?<br>5<br>1                 | 1<br>2<br>1                                                                                  | $8.10 \\ .74 \\ .40 \\ .68 \\$                          | $\begin{vmatrix} 2\\ 2\\ 1\\ 4\\ - \end{vmatrix}$                                            | 2 III ?<br>10 III                                                | $\begin{array}{c} 025.\ 5\\ 14002.\ 4\\ 13971.\ 6\\ 901.\ 2\\ 897.\ 2\end{array}$ |                                  | I<br>I<br>II              |
| 7195.95<br>7264.19<br>7293.10<br>7303.2<br>30.62                        | 2<br>7<br>2<br>1<br>2         |                                                                                              | .94<br>.14<br>                                          |                                                                                              | 8 IV E                                                           | 892. 9<br>762. 4<br>707. 8<br>688. 9<br>637. 3                                    |                                  | I<br>II<br>I<br>I         |
| $\begin{array}{r} 32.97\\ 46.47\\ 88.46\\ 7398.80\\ 7406.23\end{array}$ | $1 \\ 10 \\ 1 \\ 4 \\ 1 \\ 1$ | $\begin{vmatrix} 2\\ 2\\ 1\\ 1\\ 2 \end{vmatrix}$                                            | . <u>28</u><br>                                         |                                                                                              | 10 111                                                           | $\begin{array}{c} 633.\ 3\\ 608.\ 2\\ 530.\ 9\\ 512.\ 0\\ 498.\ 4\end{array}$     |                                  | II<br>I<br>II<br>II<br>II |
| $50.32 \\ 55.20 \\ 72.2 \\ 78.8 \\ 86.4$                                | 5<br>2<br>2<br>2<br>1         | 5<br>                                                                                        | .21                                                     | 5<br>                                                                                        | 5 III ?E                                                         | $\begin{array}{r} 418.\ 5\\ 409.\ 8\\ 379.\ 3\\ 367.\ 5\\ 353.\ 9\end{array}$     |                                  | II<br>I<br>I<br>I<br>I    |
| 7494.907526.036.7353.287563.13                                          | 5<br>1d<br>3<br>1<br>10       | $\begin{array}{c c} 1\\ -1\\ -4 \end{array}$                                                 |                                                         |                                                                                              | 5 V                                                              | $\begin{array}{c} 338.\ 7\\ 283.\ 6\\ 264.\ 2\\ 235.\ 6\\ 218.\ 4\end{array}$     |                                  | I<br>I<br>I               |
| $7617.72 \\ 22.94 \\ 52.89 \\ 89.49 \\ 7698.00$                         | 4<br>5<br>3<br>2<br>4         |                                                                                              | - 1111                                                  |                                                                                              |                                                                  | $123.7 \\ 114.7 \\ 063.4 \\ 13001.2 \\ 12986.8$                                   |                                  | I<br>I<br>I<br>I<br>I     |
| 7719. 89<br>24. 08<br>88. 42<br>7796. 32<br>7802. 52                    | 6<br>5<br>3<br>4<br>2         |                                                                                              |                                                         |                                                                                              | $\begin{array}{c} 2 & \mathrm{V} \\ 2 & \mathrm{IV} \end{array}$ | $\begin{array}{c} 950.\ 0\\ 943.\ 0\\ 836.\ 1\\ 823.\ 1\\ 812.\ 9\end{array}$     |                                  | I<br>I<br>I<br>I<br>I     |
| 12.1623.9455.5270.047881.90                                             | 5<br>1<br>7<br>2<br>20        | $\left \begin{array}{c} \frac{1}{-1} \\ \frac{1}{10} \end{array}\right $                     | .69                                                     |                                                                                              | 10 V E                                                           | 797. 0<br>777. 8<br>726. 4<br>702. 9<br>12683. 8                                  |                                  |                           |

# TABLE 1.-Wave lengths and Zeeman effects in yttrium spectra-Continued

| Meggers                                                                           |                          | F     | Eder | King and Carter |               |                                                                                   |               |                   |
|-----------------------------------------------------------------------------------|--------------------------|-------|------|-----------------|---------------|-----------------------------------------------------------------------------------|---------------|-------------------|
| >                                                                                 | Inter                    | nsity | >    | Inten-          | Arc intensity | ν                                                                                 | Zeeman effect | Spectrum          |
|                                                                                   | Arc                      | Spark |      | sity arc        | ture class    |                                                                                   |               |                   |
| 7887. 51<br>7984. 8<br>7999. 33<br>8025. 60<br>8066. 20                           | 2<br>1<br>3<br>3<br>3    |       |      |                 |               | $\begin{array}{c} 12675.\ 0\\ 520.\ 4\\ 497.\ 6\\ 456.\ 7\\ 394.\ 0\end{array}$   |               | I<br>I<br>I<br>II |
| $8134.9 \\ 65.5 \\ 8194.8 \\ 8211.71 \\ 31.23$                                    | 3<br>2<br>3Na?<br>4<br>2 |       |      |                 |               | $\begin{array}{c} 289.\ 3\\ 243.\ 3\\ 199.\ 5\\ 174.\ 4\\ 145.\ 5\end{array}$     |               | I                 |
| 47. 4<br>58. 5<br>8297. 07<br>8326. 40<br>29. 61                                  | $1 \\ 2 \\ 2 \\ 1 \\ 5$  |       |      |                 | -             | $121.7 \\ 105.4 \\ 049.2 \\ 006.7 \\ 002.1$                                       |               | I<br>I<br>I<br>I  |
| $\begin{array}{r} 30.\ 92\\ 44.\ 43\\ 8365.\ 64\\ 8443.\ 28\\ 50.\ 36\end{array}$ | 1<br>10<br>4<br>1<br>8   |       |      |                 |               | $\begin{array}{c} 12000.\ 2\\ 11980.\ 8\\ 950.\ 4\\ 840.\ 5\\ 830.\ 6\end{array}$ |               | I<br>I<br>I<br>I  |
| 8475. 64<br>8528. 94<br>52. 42<br>56. 04<br>75. 77                                | 3<br>4<br>1<br>2d?<br>2  |       |      |                 |               | $\begin{array}{c} 795.\ 3\\ 721.\ 6\\ 689.\ 4\\ 679.\ 0\\ 657.\ 6\end{array}$     |               | I<br>I<br>I       |
| 8595. 8<br>8627. 9<br>8658. 4<br>8702. 1                                          | 1<br>1<br>1<br>1?        |       |      |                 |               | 630. 4<br>587. 2<br>546. 3<br>488. 3                                              |               | I                 |
| 8759. 24<br>8800. 62<br>31. 2<br>35. 85                                           | $1 \\ 10 \\ 1 \\ 2$      |       |      |                 |               | $\begin{array}{c} 413.\ 4\\ 359.\ 7\\ 320.\ 4\\ 314.\ 4\end{array}$               |               | I<br>I<br>I<br>II |
| 8876. 6<br>9231. 58<br>9392. 7<br>9494. 81                                        | 1?<br>8<br>1<br>2        |       |      |                 |               | $11262.5 \\ 10829.4 \\ 643.6 \\ 10529.2$                                          |               | I<br>I<br>I       |

\*

WASHINGTON, May 25, 1928.

341



A ASHINGTON, May 25, 1928.