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1.    Ititroduction 

Measurements of many environmental variables 
such as wind speeds, rainfall and the concentra- 
tions of atmospheric and aquatic pollutants are 
generally duration-specific: the actual quantities 
measured are averages over a specific time interval 
rather than instantaneous values. Thus concentra- 
tions of ozone are typically measured as parts per 
100 million averaged over an hour, and wind 
speeds are routinely recorded as hourly or daily 
mean speeds. In practice however, the scientists 
wishing to understand the environmental processes 
which lie behind such measurements, and the reg- 
ulatory body which monitors pollution, often wish 
to deal with characteristics measured over some 
other time interval: peak concentrations over a day. 
for example, or high wind gust values, which in 
practice correspond to peak 3-5 s averages. There 
is therefore a need to understand the relationship 
between the statistics of environmental measure- 
ments averaged over different time scales, and to 
relate these statistics to extreme levels of the vari- 
ables. In this paper, results on the asymptotic joint 

distributions of extreme averages over different 
time periods will be treated. These results will 
make it possible, for example, to link long historical 
data series containing information about extremes 
of daily rainfall (sometimes extending back to the 
early years of the century) to the shorter series of 
extreme hourly rainfall which have been recorded 
only in the past 20 or 30 years. Thus important his- 
torical information could properly be taken ac- 
count of in the estimation of floods, something 
recognised as higly desirable by hydrologists. An- 
other area of application of the results is in the 
study of the di.spersal of airborne pollutants. Here, 
it is known (see, for example Fakrcll and Robins 
[9]) that instruments used to measure the concen- 
tration of pollutants dispersing in a turbulent flow 
cannot resolve the finest scales present in such 
flows. Measurements of concentration are there- 
fore invariably obtained only as averages of the 
characteristics of primary physical interest, and so 
a statistical theory which links extremes of averages 
over different  ranges would  be  of great value 
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to scientists working in the area (Mole [10]). One 
related area is the study of joint distributions of av- 
erages and maxima of random sequences. Interest 
in such distributions is motivated by analysis of ex- 
treme winds. For purposes of building design or 
public safety, it is often im|X)rtant to estimate the 
speed of the most extreme wind likely to occur at a 
particular location over a period of years and to do 
this it is natural to apply the methods of extreme 
value theory to data on maximum gusts. The preci- 
sion of estimates obtained may be low due to the 
limited amount of relevant data—often no more 
than 10 or 20 years, so it is desirable to try to im- 
prove the precision by introducing into the estima- 
tion procedure other information relevant to 
extreme winds. It is natural, thefore, to ask whether 
the data on gusts could be augmented by that on 
hourly means, as gusts and means are evidently re- 
lated. One source of guidance here may be provided 
by the limit properties of the joint distribution of 
means and the maxima. 

In Sec. 2, we give a summary of the results that 
exist on the joint limiting forms of sums and maxima 
of stationary sequences and in Sec. 3 we give some 
results on the asymptotic joint distributions of 
extreme averages over different time-periods of 
sequences which have moving average representa- 
tions. Possible solutions for the general stationary 
case are also indicated. 

2.   Extremes and Averages 

Let [Xi] be a stationary sequence of random 
variables with marginal distribution function 
i'(X^jf) = F(jr)and let 

5„ = 2 ^h A/„ = max A-^ , n = 1, 2, ... 

We study here the joint limiting distributions of 

(S„,M.) = (^^,^) (1) 

as rt -»00 for suitable constants a„ >0,c„ > 0, b„ and 

Case 1:   Light Tailed Case 

Assume that Var(X.)< « and F € £) (A) or f e 
D(*„), a>2 or F E £►(*<.), a>0, where A(.), 
*„(.), "^ai) are respectively the Gumbel, Frechet 
and Weibull distributions. 

Then for the associated iid sequence (Chow and 
Teugels [5]) 

or 
(5»,A5r,)^^(Af,A), 

(5„,M„H''(^.*").a>0. 

where the limit components are independent. 
Can dependence amongst Xi modify this limiting 

independence? As the following theorem (Ander- 
son and Turkman [1]) shows, under quite weak con- 
ditions, dependence does not affect the limiting 
distribution. 

Theorem 2.1 

Assume that {X,} is strong mixing and has posi- 
tive extremal index and for some a„, c„ and d„, 

5„ = |i -*" N(0,1). 
"11 

^   _ (M„ -d„) _^i Q M. 

where G = A or G = ^a, for some a > 2 or G = ^a, 
for a > 0. Assume further that {X} satisfies the con- 
dition 

lim   /:limsup Z>'(a„,u„) = 0, 

where 
it/k 

D\a^,u.) = 2 = £:[lexp(//a„-' 2 ^/) 

I') 

- II [X(A} >«.,)] (2) 

Then 5« and M„ are asymptotically independent. 
Local dependence condition D'(a„,H„) is quite 

weak and satisfied, for example, by m-dependent 
sequences and by Gaussian sequences with 
summable covariances. 

Case 2:    Heavy Tailed Case 

Assume that 

l-F{x)=px-''Hx), 

F(-x)=qx-'' L(x) 
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where L(x) is a slowly varying function and 
0<a<2. Then for the associated iid sequence 
(Chow and Teugels [5]) 

iS„,M„)-^''{U,V). 

where 

Here xC-^) denotes the indicator function of the 
event/4, ]V„(t,p) is the characteristic function of a 
stable law of index a and parameter p, and jt is a 
constant depending on a and p. Note that for the 
heavy tailed case, U and V are dependent. Can the 
type of local dependence of the A'-sequence make a 
difference to the Chow-Teugels limit? It can! If 
large values are cancelled by large negative values, 
then sums and maxima can be asymptotically inde- 
pendent. We show this by constructing an example: 

Let {Yi} be a stationary sequence with 

l-Fy(y) = l-y-\ 

f.<l,y^l and for w>0 such that t + v< 1, let 

-A-I with probability Yi-'i 
I     with probability 1 - Y,l\ 

Let {£,} be an iid unit mean exponential se- 
quence, Fj - i E, and {5,} iid taking values + 1 and 
-1 with proljabilitiesp and q respectively. Then 

Theorem 2.2 

(i)    If 0<a<L P>0  and  conditions D(a„), 
D'{a„) of Davis [6] hold then 

where D = min {y: 8/ = 1}. 

(ii)    If lsa<2, p >0 and conditions D(a,), 
Z)'(i") and D'{a„) of Davis [6] hold then 

(S^.M,,)-"'' 

(i {5> r/''- -(p    q)E(ro'"^<'''% To"-). 
j= 1 ■ 

(iii) Under the conditions of (i) and (ii). 

E [e^''x{M» ^ x)]^" W„it,p) <P„{x}e-'"■'■'\ 

Then it can be shown that {X,} is stationary, 1- 
dependent and l-Fi-(x) = €(e + v)"'A:"', Fj(-x) = 
X"'. Hence the limit distribution of (5,, M„) for the 
associated iid sequence is the Chow-Teugels limit 
with a = e andy? =€(2e + v)"'. The components of 
this limit are dependent. However, (5„, M„) of the 
dependent {X} process can be shown to be asymp- 
totically independent due the cancellation of large 
positive values by large negative values values, thus 
showing that local dependence may make a differ- 
ence on the limit distribution. However, if we rule 
out this type of cancellation, then the limit distribu- 
tion is not affected by the dependence in {X,}, as 
the following theorem demonstrates (Anderson and 
Turkman [4]). One possible local condition which 
rules out this type of cancellation is Davis' [6] 
D'(a„) condition, which we assume in the theorem. 
This restrictive technical condition also rules out 
clustering of large and small values above and be- 
low certain thresholds. Types of processes which 
satisfy this condition (and others which we need in 
the theorem) can be seen in Davis [6]. 

where 

h{t,x)^\  [e''<"'"--'-l]d(-y-'-). 
■'i 

and 

8=p 
2-Q 

and C is a positive constant. Note that the value of 
the limit does not depend on the dependence struc- 
ture of {Xi}. 

These results seem to be discouraging for statisti- 
cal applications. For example, for sequences with 
finite variance, the independence of (t/, V) does not 
offer a basis for the use of average wind speeds in 
inferences about gusts, contrary to the evidence 
shown in data. This may be due to: 

(i) Time intervals are not long enough in prac- 
tice for asymptotic results to give adequate approx- 
imations. 
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(ii) The correlation structure of the data is not 
well represented by our mixing and local depen- 
dence conditions, 

(ill) Residual seasonality remains in the data. 
Based on these possible deviations, statistical mod- 
els establishing connection between means and ex- 
treme events are suggested in Anderson and 
Turkman [3], 

3.    Extremes of Averages Over Different 
Time Scales 

The specific problem to be adressed in this sec- 
tion is as follows: Let X represent the instantaneous 
value of the environmental variable at time t, and 
denote by XT,, a moving average of {X,} over the 
range T\ 

1 
XT,I  ~ ^   ^ Xi-i, (3) 

where 

2 «,i.,.-ijro t-^ ' 

not. 

It is known that P„ converges weakly as rt—*oo to 
a point process P, a Poisson process with mean 
measure p,on R* y.{R^ ~{^])- (Davis and Resnick 
call this Poisson measure, the Poisson random mea- 
sure PRM{\i.) and consider a more general case 
which involve the left tail of the distribution as 
much as the right tail. Here due to the special sim- 
ple form of the moving averages, we restrict 
ourselves to the space (0,<K).) 

Here 

dfju^dtv-ax'"'^ €x(0,oo)rfr 

Hence 

Then we are interested in the paired series {Xr.t, 
Xs.t} for different fixed S and Tand in particular, in 
the joint distributional properties of extremes of the 
pair {A'7-,,,^s.,}. 

We will give results only for sequences with the 
heavy tailed distributions. The light tailed case is 
more complicated, since in this case large values of 
the moving averages may occur due to the contribu- 
tion of several relatively large values of the se- 
quence in contrast to the heavy tailed case when 
large values of the moving averages are dominated 
by the largest value of the sequence. The techniques 
to be used to study these questions will be develop- 
ments of those used by Davis and Resnick [8]. 

Suppose that {^;},*i are iid random variables 
with 

P{X.>x)~'X- L{x), 

where L(jr) is slowly varying asj:^»«, that is A" E D 
(*J*<.). Take constants a„ such that 

nPiX,>a^)^x~', 

Consider a point process P„ which puts points at 
k 

(-, a» ' A'*), fc = 1, 2, .. . . Hence P„ is the random 

point measure on sets m R"^ xR 

k- I 
Z £('*Jjii {-)i 

where {{tk.jk)} /^ - \ are the points of P. 

Davis and Resnick [8] show that, correspond- 
ingly, for {Xi\i} with same normalization 

'^Xji) oO 2Ze 
t = i 1 = 1 

{ik-ikc, .) (■) 

on ;?*x(/?*-{0}), where 

C\- 
y   i = l,2>-- 

0   otherwise 

J. 

and (ft,;i) are as above. 
Results for the point process generated simulta- 

neously by {Xr.i} and {Xs,,} processes can be ob- 
tained with a straightforward generalization: 

^ '{i"oi,-'Jrf,i,».-'-(rj.4) (•) ^ Z   2* S'k.jitjjiCi)'") 

(4) 
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onR*x(R*-{0}y, where 

10   otherwise 

The joint limit distribution of A/r.n and Mi„ now 
can easily be calculated since 

*=i 

{(0.1]x((-oo,x]x(-«.y]y)=o) 

-P[ I  X €„.>^,>,,, ((0.11 X({^ «.jr] X 
t=l I-l 

(-»>}'in=o) 

=^(i €(.*.r-.j,.5-'.., ((0,l]x((-oc,jr]x 

(-«.j^ir)-o) 

=/>( i €„,,,) ({0,1 ] X (rx A TJ ,=»))-o) 

= exp[ - p. ((0,11 x(r;t A 5y,»))] 

= exp[- q{x)^\ 
JnASr 

~ to if not (5) 

Special Cases 

[1]   5 = 7. Then 

P{a,:^MT.n ^JC, a„ ' Ms.H £y)=P{a,7*MT.» ^xAy), 

so from theorem 3.1 of Davis and Resnick [8], we 
should have 

P{an-*Mr.«<x, a„-'Ms.n<y) = ~^t -r(rirA).))- 

Hence the resuh Eq. (5) is consistent with the 
existing results on this special case. 

[2] S = 1<T, soAfi,« =max,£„X, and the result 
Eq. (5) says that 

Note that the above distribution is the joint limit 
distribution of the maximum of the {X,} process and 
the maximum of a moving average of it. 

The above set up is a very simple case. The imme- 
diate question is: what if the {X,} are themselves a 
dependent sequence? 

We can get a partial answer by taking {X,} to be 
itself a moving average: 

« 

say, where Z, satisfy the same conditions as the Xi 
and a, >0 (for simplicity) 

Thus 

and 

Xr..={X}'[^, 

X = {Z}*{a}. 

Hence 

Xr.^={Z}'{a}*{^]={Z}*{d}, 

say, where 

Note that for any 1-1,2, ..., 

(-1 

As before 

Pia„-^ Mr.n ^x, a„-' Ms.„ <y) 

/    w at 

-^PUi    2    e(,..j.J..;,<i,,((0,llX 

((-cc,jr]x(-=o,y]y)^0), (6) 
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where 

Note that 

.    SM-1 

{2e<„.AJw*'',)((0,llX((- ".xlX(- cc,y])^=0} = 

for every / for which one of the components is non- 
zero. This is the case iifjkd *^xstndjkd*sy, where 
d* - max di and </* = max dt. Hence the limit of Eq. 
(6) is given by 

^(ie„(^A^.«) = 0) 
i-l 

= e-/* A-JL'rt'J^ = e 

= ( 

rf^'V' 

0 otherwise 

(7) 

Hence we see that this kind of dependence in the 
underlying process does not change the form of the 
limit distribution. It would be interesting to obtain 
similar results for general stationary sequences. 
This could be done by using characterization of the 
limit point processes for the sequence of point pro- 
cesses with points {t}n,a^' X,,l = 1,2,..., n) given 
by Davis and Hsing [7] when {X,} is a stationary se- 
quence with regularly varying tails. In their paper, 
Davis and Hsing show that when {X,} satisfies a 
proper mixing condition then 

^- = ^"(^.---'x,))() 

converges to a point process N of the form 

Z, Z, ^s,.p,) 
i-ij-i 

is PRM(v) with 

dv=dtxyax''''^dx,x>0, 

(This is slightly weaker form of Davis-Hsing limit, 
since we consider the convergence only on R* -{0} 
not involving the left tail.) They also show that un- 
der the proper mixing condition, the convergence of 
N„ to N is equivalent to; 

For r«-*«, r«/rt-*0 as /i-^», and fc, =[n/r„], 

lim k„ P( max Xi>a„x) = -yx '*, 
«-»» ICjC^a 

and 

/*(2 ^XiinMiti^r.X] G./max Xj>a„x) 
J-1 

>e(.) 

Here Q(,) is the distribution of the iid point pro- 
cesses 

|2co./(.)Lri 

From this basic result it may be possible to obtain 
the limiting form of 

^'- = t^(^La-'Xr.,.a„-'X.,.,)()^ 

where 

^Ttl—y  Zt  *• 1   h 

and 

N-z. Z. ^(s..p.Q,i), 
j    s 

Xs,, =^ 2J ^i-i- 

where 
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One would expect that if the above sequence of 
point processes converges, then the limit point pro- 
cess should be of the form 

A^; 

2J   Zi   Zt   ^lS„ciP,Q,i.elP,aj), 
,.l j-I ,-l 

where 

c- = I 7 
t n 

i = l,2....r 
otherwise 
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fl 1 

10     other 
= 1,2...,S 

otherwise 

Straightforward adjustment of Resnick's [11] 
arguments which involve consecutive application of 
the continuous mapping theorem is not possible, 
since these arguments use the convergence of 

nP{a-'Xi>S,a~'X2> 5)-»0,5>0 

which is clearly not satisfied by most sequences with 
strong local dependence. 
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