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1.    Introduction 

Multivariate extreme value distributions have been 
studied by many authors, and their contributions are 
summarized by Galambos [ 1 ] and Resnick [2]. The pur- 
pose of this paper is to obtain some necessary and suffi- 
cient conditions for domains of attraction of the mulli- 
variate extreme value distributions. The joint asymptotic 
distribution of multivariate extreme statistics is also ob- 
tained. To study multivariate extreme value distributions 
and their domains of attraction, Sibuya [3] introduces 
the notion of a dependence function which is also used 
by Galambos [1]. A dependence function or copula is a 
useful notion to construct a family of joint distributions. 

In this paper, basic arithmetical operations arc always 
meant componentwise (see Galambos (1 j, Chapt. 5). 

Let(Ariy,Xij,...,X(j),/=l,2,...,n, be a sample of size n, 
of a /:-dimensional random vector with a distribution 
function F(x). The i-dimensional distribution function 
of the components Kjj,X)^...,Xj. will be denoted 
Fj^^.JX^)^2X|^,...,XjyFJ^,ixJ^i{}. We shall also use the 
notation Fj,..,;;(jr,,....,j:^J=fy(,-,{j:/„i)=/'(Xj,>jrj, Xj^JCj,). 
ForJt-l and/je(0,l), \£l F-'{p)=\id{x:F{x)^pY 

Let   Z„={Zu Zi,),    where   Zi„-max{X,i,...,X;,}. 
i-I,2,...Jl:, and let us call Z, a multivariate extreme 
statistic. 

If there exist a,>0,fr,G/?',n=l,2,...(<i,>0 means 
a,„>0,j-l,...jt) such that (Z„t,)/a„ converges in distri- 
bution to a random vector U with a nondcgenerate distri- 
bution H (i.e., all univariate marginals of H arc nondc- 
generate), then F is said to be in the domain of attraction 
of//, F^D(H) by symbol, and H is said to be a multi- 
variate extreme value distribution. The convergence in 
distribution is equivalent to the condition 

limF"(a„jr+&,)-//(x) Cl) 

for all X, because multivariate extreme value distribu- 
tions are continuous. 

We shall iKed the following lemma to prove a propo- 
sition in Sec. 2. 

Lemma 1.1 Equation (1} is equivalent to 

Urn n[l -F(*i^-t-&,)J=-log H(x) 

for all X such that 0<//(x)<I. (See Marshall aiKl Olkin 
[4].) 
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2.    Domains of Attraction 

For any i-dimensional distribution F, 

zJfC^ )=F (FT'()',),-/■;'(y*)), :K=(yi,....3'. )€(0,l/ 

is called the dependence function of F. In this section, 
we derive necessary and sufficient conditions for do- 
mains of attraction in terms of the dependence function. 

Proposition 2.1 Lei F be a k-dimensional distribuiion 
and let H be a multivariate extreme value distribufion 
with univariate marginals H„ i- 1,... X Then the follow- 
ing statements are equivalent: 

i) FED(H). 
2) F,EDiH,), i=l,...jt, and 

Urn jfl -Drlv"')]—\ogD„ly]for ally^(0,1)'. 

3) FiGD(H.), (=1....^, and 

Up ^~^/^   '^ = - log D„(y) for all ye(0.1)\ 

4) FtED(Hi),i^y k.and 

Proof. The proof is straightforward from Lemma 1.1, 
Theorem 5.2.3 and Lemma 5.4.1 of Galambos [1]. D 

Proposition 2.2 Let F be a k-dimensional distribution 
and let H be a multivariate extreme value distribution 
with univariate marginals //,, (=1....^'. 

(A) F^D(H) if and only ifF.E.D(H,), i= 1 k. and 
the functions 

dm{ym)=y\mnbFj^,l{yjynf'') 

for each fixed vector J{i){i>\) and for all ySiO,]^ are 
finite, and the Junction 

k 

D„(y,r)=yi-ytcxp(2,(-])'     ^     (ijui(ym)} 

is a dependence function of H. 
(B) The following inequalities hold. 

for a nonnegative integer r. where 

and D„iy',r) is a dependence function of a multivariate 
extreme value distribution. 

Proof. It is easily seen that for all 5>0, 

From Theorems 5.3.1 and 5.2.4 of Galambos [1], we 
have the result, D 

Example 2.1 (Sec Examples 5.2.2 and 5.2.3 of Galam- 
bos [IJ.) For a Mardia's distribution 

F{xuXi)=l-s "'-e-'=+<e"-he''-1)-', 

and 

nD,(yl'\yi")=n 1 1 
u-<° i->r 

nc)g.vi)(iog>i) 

']- 
as «->». 

log 3'i+log yz 

Thus, by Proposition 2.2 we have F G D{H), where 

Dn(yuy2)~yryi£^p 
(logy )(log y.)] 
logyi-i 

//(x,. Jt2)-A (jf, )yi(jrj)exp{ I/(c"-K*-)}. 

and jl(j:Hexp(-e"'). 

PropositkHi 2.3 Let F and G be k-dimensional distri- 
butions and let H bea multivariate extreme value distri- 
bution, 

0 lfF.G^D{H), then 

2) IfFEOiff), G^D{H.), i~\,...X and 

''pf^^4^=l- '*'t>erel=il 1). ,T( l"D(;(y) 

then GGD{H). 
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3.   Marginally Independent or Perfect 
Dependent Multivariate Extreme Value 
Distributions 

Let /f be a multivariate extreme value distribution 
with     univariate     marginals     //,,     i-l,.„,^.     Let 
H.{x)=H,(xi)-Ht{xi)aTdH'{x)~mm{H>{x,),i=] k}, 
then it holdii 

//.(x)<//(x)s//'(jc) 

for all jr£/f'. Both bounds, H, and H\ are multivariate 
extreme value distributions. Characterizations of these 
distributions arc obtained by Takahashi [5]. 

In the bivariate case Sibuya [3] obtains necessary and 
sufficient conditions for F^D{H.) and /="££»(//'). In 
this section we generalize his results. 

PropositiiMt 3.t Let F he a k-dimensional distribution 
and let H, be a univariate extreme value distribution, 
i=\,...X Then the following statements are equivalent: 

1) F&D{H.)- 
2) FiGD {Hi), i= 1 ,...X and there exists yE.{0,1)' such 

that 

3) F,^D(Hi). i=l,...X and 

yu     1 -y 

4) F,GD{Hd. i=\,...X and 

vTi     1 -y 

Proof. The proof is straightforward from Theorems 2.2 
and 4.1 and Corollary 2.4 of Takahashi [6]. D 

Remark. If /t-2. we have the same result a.s Proposition 
3.1 by Corollary 2.2 of Takahashi [6], 

Example 3.1 (See Example 5.2.3 of Galambos [ 1 ].) For 
the Morgenstern distribution 

f(jr,,X2)=!-e-^'-c-"'+e "' '^ll+«(l-e '')(l-e-'0], 

DF(yi,yi)=y\y2['i+a{\ -y^){l -yi)] 

where -l£a<l, and 

vTi       ]-y^ 

By Proposition 3.1 4) wc have FED(//■), where 
H.{-,)-A{-)A{). 

Proposition 3.2 Let F he a k-dimensional distribution 
and let H, be a univariate extreme value distribution, 
i=l,...J:. Then the following statements are equivalent: 

1) FED(//'). 
2) F.SDiHi), i-\....Ji, and there existsyS(0.l) such 

that 

lim(D,(y""l)r=3r. 
n—*T 

3) F,^DiHi),i=\ k.and 

liml^?^^=l. 
vTi       I ~y 

Proof. The proof is straightforward from Theorem 3.1 
and Corollary 3.1 of Takahashi f61. D 

4.   Joint Asymptotic Distribution of the 
Multivariate Extreme Statistics 

In this section, we show the joint asymptotic distribu- 
tion of several multivariate extreme statistics along the 
arguments in Sec. 2.3 of Leadbctter et al. [7]. Ft>r sim- 
plicity we shall consider the bivariate case. 

l^t (Xt,Y,) {X,,i''„) be a sequence of independent 
random vectors with comn)on distribution F. The order 
statistics of the components will be denoted by 

X,„^X,.^^-sX„^; and Yu.^Y2,^-^Y,^ 

For i=0,l,...,r— 1, define 

^rj-i~V^rt   i'ntJ'n-rn) 

and let us call Z, ; an (i+l)-th multivariate extreme 
statistic. 

Proposition 4.1 Suppose that 

P{(Z„-b„ya,^x}^H{x) 

for  some  nondegenerate  distribution   H,   Then, for 

P{{Z„-b,)la,^Xu (Z, ,-*J/fl,£x2>^//;(r,;irj) 

where 

//,(x„x,)=//(JC2){I+lo£ //U,)-log Hix{) 
+nog H,{x,)~\og H,(x2)Hh{xuy2)-hix,))] 
X[Iog W2(y,)-log H2(y,)Hh{X2,y>)-h{X2})]} 
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and /i(jc)=lim„^i Fia^+b„). 

Proof. Define 

5o-#{/ |X;>ai^,+d>,„ or Yp^ai,ys+b2n,J=\,2 «.}, 
Sr=#{/|ai^2+^i™<J0^d,^,+fci„ and 

S2"'-#{/ \Xj-^ai^2+t>u and 
a2^2+b2n<Yf^a2^Vi+b2„,j-\,2,-,n.}, 

then, we have 

P{(Z,-b„)/a„^Xu (Z„-,-b„)/a„^X2} 
-p{s;-o. ^fj-o, sf^i, 5."^i> 

On the other hand, by using Theorem 5.3.1 of Galambos 
[1], we can evaluate the asymptotic probabilities of the 
evens 

for iJ,k,m-Q,\. Thus we have the result. D 

Corollary 4.1 Suppose that 

P{{Z.~b,)la„^x}^H{x) 

for some nondegenerate distribution H. Then, for fixed 
/■>! and x,>->Xr 

IP {(Z„-b„)fa,sx ,(Z„-.,i -b„)la,^x,} 

-P {{Z'„-p„)/a„^x,,....{Z"„-^i-p.)/a„^x, }\ ^0, 
as n—>M, 

where Z*_; is the {i+\)-lh multivariate extreme statistic 
from     the    distribution    H,     (=0     r-1,    and 
H\ct^+li,)=H(x),n=lX... 

Example 4.1 Let f be the bivariate normal distribution 
with the correlation coefficient less than one. Then 

IP {(Z,-b„ya„^x (Z„ ,.,-*.Va„^Xr} 

-P{(Z;-(log r)l<jr„...,(Z;_„i-(log /i)l^x,>| ->0, 

where Z„' , is Ihe (i+l)-th multivariate extreme statistic 
from the bivariate exponential distribution whose mar- 
ginals are equal to the standard exponential distribution 
and they arc independent. For the univariatc case, it is a 
well known result (sec Wcissman [8], Theorem 3). 
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