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1. Introduction
Multivariate extreme value distributions have been
studied by many authors, and their contributions are
summarized by Galambos [1] and Resnick [2]. The pur-
pose of this paper is to obtain some necessary and suffi-
cient conditions for domains of attraction of the multi-
variate extreme value distributions. The joint asymptotic
distribution of multivariate extreme statistics is also ob-
tained. To study multivariate extreme value distributions
and their domains of attraction, Sibuya [3] introduces
the notion of a dependence function which is also used
by Galambos [1]. A dependence function or copula is a
useful notion to construct a family of joint distributions.

In this paper, basic arithmetical opcrations are always
meant compenentwise (see Galambos (1], Chapt. 5).

Let (X1, X2jv, Xi;), J=1.2,...,n, be a sample of size n,
of a k-dimensional random vector with a distribution
function F(x). The i-dimensional distribution function
of the components X;.X;,..X; will be denoted
FJJ;J(-‘} L"'}z!"'!xﬁ)‘Fl(B(i"ﬁ))' We shall slso use the
notation £, (X eea X5 )=F ipfxan)=F (X; 2% 0o n Xj2x, )
For k=1 and p&(0,1), let F'{p)=inf{x:F (x)=p }.

Let Z=(Z\,....2,), where Z, =max{X;,.,X.}
i=12,...k, and let us call Z, a multivariatc cxtreme
statistic.
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If there exist a>0,b,ER'.n=12,..(a,>0 mecans
a;,>0,i=1,....k) such that (Z,~ b, a, converges in distri-
bution to a random vector U with a nondegenerate distri-
bution H (i.c., all univariate marginals of H arc nonde-
generate), then F is said to be in the domain of attraction
of H, FED{H) by symbol, and H is said to be 2 multi-
variatc extreme value distribution. The convergence in
distribution is equivalent to the condition

lij;nm FYax+b,)=H(x) (1)
for all x, because multivariate extreme value distribu-
tions are continuous.

We shall need the following lemma to prove a propo-
sition in Sec. 2.

Lemma 1.1 Equation (1) is equivalent 1o
lim n[1 —F(ax+b,)]=—log H(x)

for all x such that O<H(x)<l. (See Marshall and Olkin
(4))
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2. Domains of Attraction
For any k-dimensional distribution F,

Dr()=F (F7 (3 )rrFr KD y= iy YEO, 1

is called the dependence function of F. In this section,
we derive necessary and sufficient conditions for do-
mains of attraction in terms of the dependence function.

Proposition 2.1 Ler F be a k-dimensional distribution
and let H be a multivariate extreme value distribution

with univariate marginals H;, i=1,... k. Then the follow-
ing statements are equivalent:

1) FED(H).
2) FEDH), i=1,..k, and

lim sT1—Dr(y"*))}=—log Dy (v) for all y&(0,1)".

3) F,ED(H), i=1,..k, and

- I-x
Tim ﬁ?%—-l =—log Du(y) for all yE(0,1)

4) F.eD(H;), i=1,....k, and

= I_Df-! Z'r) = . M
lrlﬂ"l T—Da(y) 1 for all y(0,1)\

Proof. Thc preof is straightforward from Lemma 1.1,
Theorem 5.2.3 and Lemma 5.4.1 of Galambos [1]. O

Proposition 2.2 Ler F be a k-dimensional distribution
and let H be a multivariate extreme value distribution
with univariate marginals f,, i=1,... k.

(A) FED(H) ifand only if FED(H,). 1=1.....k, and
the functions

dJ(n@J(n)*ii_[E ﬂDF;(-‘J((YJm)m)

for each fixed vector J(i)(i>1) and for all y&(0,1)" are
finite, and the function

k
Dy (yir)=yi-w CKP{Z(_IY E d.'mU'.rm)}

=2 P je—<pmik

is a dependence funcrion of H.
(B) The following inequalities hold.

Da(y:2r+1)=Dna(y)=Dy(y:2r).

Jor a nonnegative integer r, where

Di(yir)=y.ye exp{ 2 (—1) 2 drif¥snd}
=2

I=j <5k

and Dy (y.r) is a dependence function of a multivariate
extreme value distribution.

Proof. It is easily scen that for all s>0,

sdsi( (P rn) m) =y (¥rin}.

From Theorems 5.3.1 and 5.2.4 of Galambos [1], we
have the result. [

Example 2.1 (Sec Examples 5.2.2 and 5.2.3 of Galam-
bos [1].) For a Mardia’s distribution

Fx,x)=1—e " —e 4(e"+e7—1)"!
112 »

1 -1
De(y y)=yi+y21— |+[___ e 1] ,

. i, U 1 1 =l
D (3" y: Y=n l—_wﬂfwﬁ:—l

oy O USEND | os
log yi+log y2

Thus, by Proposition 2.2 we have F € D(H), where

- _ (og y)(lo z)]
Da(yiy=y-y: cxp[ log yi+log y2 I’

H(x, x)=A(x)A (x)exp{}/(e"+e)},
and A (x)y=exp(—e™).
Proposition 2.3 Let F and G be k-dimensional distri-
butions and let H be a muitivariate extreme value distri-

bution,
1) If FGED(H), then

. 1-Dy() .
1‘1{(!)1 —De(y) =1 for all y&(0,1)".

2) If FED(), GED(H), i=1,...,k, and
|;1n|1 —}Eg:—g; =1, where 1=(1,...,1},

then GED(H).

552



Volume 99, Number 4, July-August 1994
Journal of Research of the National Institute of Standards and Technology

3. Marginally Independent or Perfect
Dependent Multivariate Extreme Value
Distributions

Let &4 be a multivariate cxtreme valuc distribution
with  univariate marginals H;, i=1,..k. Let
Ho(x)=H (x)-H.(x:) and H (x)=min{#H,(x,). i=1....k },
then it holds

H.(x)=H(x)<H(x)

for all xER*. Both bounds, H. and H”, are multivariate
extreme value distributions. Characterizations of these
distributions arc obtained by Takahashi [5].

In the bivariate case Sibuya [3] obtains necessary and
sufficient conditions for FED(H.) and FED(H"). In
this scction we gencralize his results.

Proposition 3,1 Let F be a k-dimensional distribution
and let H; be a univariate extreme value distribution,
i=1,....k. Then the following statements are eguivalent:
1) FED(H.).
2) FIEDH ), i=1,...k, and there exisis yE(0,1Y such
that

ii_l‘E(DrU U=y Ye.
3) F,EDH), i=1.....k, and

lim =20
»T1 l—y

4) FED(H;), i=1...k, and

e =Cer L)
yTl I —y

Proof. The proof is straightforward from Theorems 2.2
and 4.1 and Corollary 2.4 of Takahashi [6]. O

Remark. If £=2, we have the same result as Proposition
3.1 by Corollary 2.2 of Takahashi [6].

Example 3.1 (See Example 5.2.3 of Galambos [1].) For
the Morgenstern distribution

Fx,x)=1—e™ —c "4e "+ 7[l+a{l —e ") 1—e™"7)],
Dy y)=y -yl 1+a{1 —y)(1 =y

where —=a=1, and
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By Proposition 3.1 4) wc have FED(H.), wherc
Hu(- )= ACYAL).

Proposition 3.2 Let F be a k-dimensional distribution
and let H, be a univariate extreme value distribution,
i=1,...k. Then the following statements are equivalent:
1) FED(H™).
2) F.ED(H,)Y, i=1....k, und there exists y&=(0,1) such
that

lim(D (v D)=y
3) FEDH,), i=1,...k, and

1-Dr 1) _

ik l'_y -

Proof. The proof is straightforward from Theorem 3.1
and Corollary 3.1 of Tikahashi [6]. O

4. Joint Asymptotic Distribution of the
Multivariate Extreme Statistics

In this section, we show the joint asymptotic distribu-
tion of several multivariate exireme statistics along the
arguments in Sec. 2.3 of Leadbetter et al. [7]. For sim-
plicity we shall consider the bivariale case.

Let (X,,Y)),....(X..¥.) be a sequence of independent
random vectors with common distribution . The order
statistics of the components will be denoted by

XIZ}ISXZ'.RS“.SXJLR; an’d Yl;nsyz;uﬁ'"gyn:r
For i=0,1,...,r—~1, dcfine
Zn—l-(XJI i!nayn—f.'n)

and let us call Z, ; an ({+]1)-th multvariate extremc
statistic.

Proposition 4.1 Suppose that
P{Z,~bYa,<x}H(x)

Jor some nondegenerate distribution H. Then. for
=X, Yi)>x:=(xz, y2),

P{(Zn_bn)/anf—:-rh (zn lwbn)/anst}:)HJ(xlrrZ)
where
H;(xy, x)=H{x:){) +log H(x))—log H (x;)

Hlog Hi(x))~—log B1O (A (x,y:) —h(x:))]
X[log Hy(y)—log Hy{y: )+ (h(xoy)) =k (x2))]}
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and h(x)=lim, - F{ax+h,).
Proof. Define

Sa=itlj | XG5 1401, 0r Y20y +baa =120},
S;!=#{] |a1,,.xz+b|,,<X]Ea1,,x1+b|,, and
Yi=a,,yr+baa, j=1,2,..,8. }
S;=#{j | X;<ax,+b1, and
tyrtbn<Y S ay +ba,, j=1.2,....n.},
Sn=#{j | axr+b,<(X,.Y ) =a,x,+b,,j=1,2,...n.}

then, we have

P{(z,,_bﬂ)/ﬂ,,i:xh (zn—l_bn)l{an-{—:JQ}
=P {5;=0, S;;=0, ${=1, $i=1}
+P {55=0, Si=1, §7=0, $7=0}.

On the other hand, by using Theorem 5.3.1 of Galambos
[1}, we can evaluate the asymptotic probabilities of the
evens

{Sg=i, Siy=j. S7=k, $]=m }
for {,j,k,m=0,1, Thus we have the result. [J
Corollary 4.1 Suppose that

PUZ,—b.Ya,<x Yy SH(x)

for some nondegenerate distribution H. Then, for fixed
rz1 and x,>-->x,

I P {(Zn_ba );ansxhl--s(zn—nl _bn )/ausxr }

—P{Z B a=x,, Zu— BV a<x.}| -0,
s n—,

where Z,_, is the (i+1)-th multivariate extreme statistic
from  the distribution H, i=0,..., r=1, and
Hax+8,)=H{x), n=12....

Example 4.1 Let F be the bivariate normal distribution
with the correlation coefficient less than one. Then

| P4, boYaysx, . 2y r—b Ve <}

~P {(Z,~(log A =x,,.. (Z,,..—(log n)1=x,}| =0,
€05 70,

where Z, , is the ({+1)-th multivariate extreme statistic
from the bivariate exponential distribution whose mar-
ginals are equal to the standard exponential distribution
and they are independent. For the univariate casce, it is a
well known result (see Weissman {8], Theorem 3).
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