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1. Introduction

Extreme value theory for multivariate iid sequences
has been studied for quite some time now but attention
to the dependent case has been relatively recent. For
univariate sequences it is known that local dependence
causes exlreme values to occur in ¢lusters, which in turn
results in a stochastically smaller distribution for the
maximum than if the observations were independent. We
begin with a brief review of these results, which we
shall later extend to the multivariate case.

Let {£,} be a univariate stationary sequence. Write
M=max{{,....£&} and for 70, let {u,(#)} denote a
sequence  satisfying  im,_.nP {&>u,(T)}=r. Under
quite gencral mixing assumptions therc ¢xist constants
0=6'=#"=1 such that

lim sup P {M,<n,(7)}=c °" and

lim inf P {M,=<u,(r)}=e"""
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for all 7. (See Ref. [1], although the idea actually dates
back to Refs. [2-4].) Thus it P {M,=u,(7}} converges
for some 7, then #&6'=8'"(=8, say) and hence
lim,— P {M,<n.(7)}=c"* for all 0. The common
value # is then called the extremal index of {£,}. We
shall assume 6 to be positive whenever it exists, since the
case 6=0 commesponds to a degenerate limiting distribu-
tion for M,. Note that 8=1 for iid sequences. Let {§‘,, }be
an 1id sequence with =" &, called the assaciated iid
sequence ., and write A?k=max{§|,....é,, }. i {£& } has ex-
tremal index & and lim,_ . P{M,=v,.(1}}=H(r) for a
suitable family of normalizing constants {v,(t)}, then it
follows (upon identifying e % with H(r)) that lim,_.
P {M,<v.(")}=H () where

H{n=H(n". ()

The extremal index is thus a measure of the cffcet of
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dependence on the Iimiting distribution ot M, The
stochastically smaller linuting distribution of M, is in
fact a direct result of the clustering of extremes, as
explained below. See Ref. [3] for details,

For fixed 720 let the ciceedance pownt process
N.=N!" be defined by

L]
N, (B )'—‘E-1 Hesugnfinesy, BT,

where [, denotes the indicator furction of the cvent A,
Then for a broad class of weakly dependent scquences,
the limit in distribution of N, , if it exists, s a Compound
Poisson process with intensity #r and multiplicity distri-
bution 7 on {1,2,...}. The Poisson events may in fuct be
regarded as the positions of “‘exceedance clusters™
while the muliiplicitics correspomd 10 cluster sizes.
More explicitly, one may divide the # observations into
k, blocks of roughly cqual sizc and regard cxceedances
within each block as forming a single “cluster™, so that
the cluster sizes arc given by N, (J;). i=1.... k., where
J(=J.)=(" . £ For a suitable choice of £, depending
on the mixing rate of {£,}. one then has

lim PN, ()= [N, U0>0b=0 (. j21,
and
1"2 PN .)-4}}=1i_1.~.1| PN, 1]=0}
:!.'_I,'l PiM=u,(1)}=c"%,
so that in particular, lin, .. &, P {N,{/)>0}=07. Hence

lim £ N, |0 =l k. F Ny

a X

=lim K EN(J) | N 12057 (N, (>0}

=07 lim E(N, (/) | N.ih=,

while on the other hand, hm,_. LN, [0]=tim,_.
nP {&>u, (1) }=7. The cluster size distribution and the

cxtremal index are therefore related by
lim EN, () | N (7 )>0)=1/8. (2
Now let {£,=(&,),....&4), nEZ } be a multivariate sta-
tionary sequence where d=1 is a fixed integer, and
write  M,=(M,,,..M,,) where M, =max{§; ..&,}
J=1,....d. The study of multivariaic extremes began in
the early 19505, focusing mainly on the limiting behav-
sor of M, under a lincar normalization, when the obsear-
vations arc iid. The resulting class of limiting distribu-
tions was characterized in Ref. [6] and domains of
attraction criteria were given in Rell [7]. See also Ref.

[8]. Chapter 5, for an account of the literature surround-
ing this theory. For stationary scquences satisfying a
general mixing assumption, it is known (see Refs. [9,
10}, and Theurcm 1.1 below) that the class of lintiting
distributions of A, 1s the same as for iid sequences. In
this paper we explore the precise effect of dependence
on the limiting distribution by extending the univariate
theory described above to the multivariate casc. Essen-
tially, this involves studying the inter-relationship be-
tween the two dependence structures present, onc duc to
dependence over time and the other due to the depen-
dence beiween the various components of the muliivari-
alc observations. The idcas become most transparcnt
when presented in terms of so-called dependence func-
tions [8]. Here we adopt the slightly modified definition
found in Ref. [9]. A distribution function £ on {0,117 is
called a dependence function if Dy(D;(uy=D(u),
0,1}, j=1,....d, where the subscript j significs the jth
marginal. The dependence function of a distribution F
on IRY is defined by De(u)=P{F/(X)=
e WFeXa=usy,  u=(u,.u) 0,1},  where
(X1, X4) 15 a random vector with distribution F. More
generally, any dependence  funclion  sausfying
F(x)=D(F\{x1)4rF4(x5)) could be defined to be a de-
pendence function of F, although the present choice is
# natural onc.

Write T=(0,1A {1} where 1=(1...,1)EIRY, and for
t=(r,... £ )ET, let v, (D)=(va(h),.-..Vae(ts)) where v (1)
satisfics hm, . #P {&v,, (1) }=—logt. Lct H, denoic
the distribution function of M, (l.e., H, (x)=P {M,=x }),
with marginals H,;, j=1,...d. Then (sce Refs. [8, 11]),

H, (v, (1)) " H(t) 3)

if and only if
H,, (v (012" Hy(,), j=1id, and Dy (82" Dy(t).

The hmiting behavior of M, can therefore be separated
into two parts, one pertaining o the convergence of the
murginals (a univariate problem) and the other to the
convergence of the dependence functions. Here we fo-
cus attention cxclusively on the latter. It should be noted
that the choice of normalising constants does not affect
the dependence function of the limit distribution H , but
only alters the marginals {sce Ref. {9], Lemma 3.2).
Since our main interest is in the dependence function,
the present choice of normalising constants is appropri-
ate in view of the fuct that it results in Uniform]0,1]
marginals for the limit distribution when {£, } is iid, s0
thar in particular Dy=fI. According to Theorcm 3.3 of
Kef. [9], the class of all possible imits H in Eq. (3) (for
nud {& ) is precisely the class of extreme dependence
funcuons, that 15 those that satisfy
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D=0 (t.....10) C))]

for each r>1 and t=(f.....1.)E[0,11%. Theorem 1.1 below

shows that the same is truc also if {£,} is a stationary

sequence satisfying the following mixing condition.
For tET, let

Biva (=0 {(Evn (1)) ki<, j=1,..d}
and for 1==/=n—1, define
w,~sup{| P(ANB)—P(A)P(B)| : AEBI(, (1),
BERB. (v, (1), Y =k<k+l=n}.

The mixing condition A(v,(t)) is then said to hold if
a,;, —0 for some sequence {/, } satisfying {,/n—0. This
1s the multivariate version of the mixing condition uscd
in Ref, [5] and is slightly stronger than the D («,) condi-
tion in Ref. [9]. Henceforth {£,} will be assumed to
satisfy A(v, (1)), for some or all t, as required.

THEOREM 1.1. Let {&, } satisfy A(v. (1)) for ali1ET and
suppose that P{M,<v (1)}>" H(t), non-degenerate.
Then Dy, is an extreme dependence function and hence,
in particular, H(1Y=Ht) for each t€[0.1]" and >0
{(where V'=(1],-.,t5))-

Proor: The first part is an immediate consequence of
Theorem 4.2 of Ref, [9] whilc the second part follows
from the definition of extrcmc dependence functions
upon noting that (by the univariatc theory described
above), the marginals of H are of the form H (1,)=t
where 8, is the extremal index of {£,;}, the jth-compo-
nent scquence of {£}.

In the next scction we apply the cxecedance point
process approach to multivariate extremes and obtain
some weak convergence results. The multivariate ex-
tremal index is then defined (in Sec. 3). based on the
multivariate analoguc of Eq. (1). It is seen to be a func-
tion of only d—1 variables and its properties naturally
extend those of the univariate extremal index. Finally in
Sec. 4 we consider two examples of bivariatc moving
average sequences for which the computation of the
extremal index is demonstrated.

2. Exceedance Point Processes

Fix €T and let SUE[‘Q?"-J{Q”‘ i=1 pensndl .j=| ....d. and pll[
8=(8;,....0u). The multivariate exceedance point pro-
cess N,=NV is then defined by
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No(B)=Y, lumemb, BEIO,1).

=i

&)

Assume that {£ } satisfies A(v, (). If also N,—¢ N,
then it may be shown (as m the univariate casc) that the
limit N is a point process on [0,1] which is of Com-
pound Poisson type. More precisely, the Laplace Trans-
form of N, is given by

J;em.iJ;er:‘

d
(1—exp{~ 2 £ (x)Ndm(yXix.
~

d
~log E cxp{—2, | f dNy)=v

PSR AT
{6)

Here Ny denotes the jth-component of N, v is a
positive constant, 7 is a probability distribution on
Z={0,1,2...Y"{0} and f,’s are non-ncgative functions
on [0,1].

Let {k, } bc any sequence of positive integers satisfy-
ing

ko=, k1. /n—0, and k,ex,, —0, as.n—=. N

Sct r.=[a/k,] (the largest integer not excecding n/k,)
and put J,,=[0,r./n]. Define the probability distribution
7, on Z by

my)=P N, (L)=y | N (7.) #0), yEZ22.

The following theorem which gives a uscful characteri-
zation of the convergence of N, is an immediate conse-
quence of the results in Sec. 5 of Ref. [12].

THEOREM 2.1, N,—" N, if and only if m,—" = and
P {M.,=v,(t)}~> e " and in that case the Laplace Trans-
Jorm of Ny is given by Eq. (6).

Next we consider the iid case in some detail and
obtain an interesting connection with Theorem 5.3.1 of
Ref. {8].

ProvosiTion 2.2, Ler {£.} be iid and for fixed tET ler
N, be defined by Eq. (5). If N.—" Ny then the multiplic-
ity distribution m in Eq. (6) is supported on the set
$={0,1 YA{0}.

Proor: Observe that A{v,(t)) is trivially satisfied since
a,,;=0 so that we may take /,s1 and k,=n. Then
7, (¥)=P {6,=y] £,%v, (1)}, YEZL. which is clearly sup-
ported on S. The result is now immediate since S is a
closed set and w7, —" 7 by Theorem 2.1. B

Making the dependence on t explicit, we now write
N=NY N=NP, v=p™ and =", In addition we shall
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require the following notation from Ref. [8]. For
1=k=d, let j(k)=(ji.....Ji} denote a vector with integer-
valued components 1=j<j<--<ji=d, and for
X={ X100 Xg YEIR? write Xjay=(X;,1v0.,7; ). Define the **sur-
vival function’’

Gx)=P {&>x),.... 624 }

and write Gp(X)=P {&; >x; ....8>x; }. For each j(k),
let y;u; denote the element in S={0,1 {0} whosc jth
component equals 1 if and only if j=j; for some i=1,..k.
(This defines a natural 1-1 correspondcnce between §
and the j(k)'s.)

TuEOREM 2.3, Let {&,} be iid. Then N’ N for some
SJixed tET if and only if
}.I_I;l: RGi{v, (O)=hyu (t)<oo 3)

for each j(k).1=<k=d. In that case N has Laplace
Transform given by Eyg. (6) with

PO=D (=1 y(t)

9
(o] Ls fefpnd
and with = determined by the relations
=1 2, ). (19)

¥=¥jiky

ProorF: Write Sj(t)szlsjm_q‘gde(g,(t). s0 that P{§|$
v (1) }=S2 (= 1)7'S, (v, (1)). If Eq. (8) holds for each k,
then

> het=vY, (1)

VEj | €eucfysed

4
lim nP {& £ v, (t) }= 2 (— D
A% k=l

and hence Tim, P {M.<v,(t) }=¢ "
Next observe that for each j(k), 1=k=d,

Gl v ()= D, P{S=y}=P{&Ev. (1)} 2 m(y), (12)

=¥y ¥Y2Y¥i s

where m,(y)=P {6.-y|§,$_=v,,(t)}. Moreover, this rela-
tionship is invertible in the sense that each of the prob-
abilities 1, (y), YES, can be expressed as a linear com-
bination of the Gy(va(t))'s. Therctore by Eq. (8).
lim, .. (¥)=7""(y) (say) exists and satisfies Eq. {10).
Hence by Theorem 2.1 N —¢ N¥ wherc N has the
specified parameters. Converscly if NY =4 N{® then r,
and P {M.=v,(t)} converge (by Theorem 2.1 again),
and hence Eq. (8) follows by virtue of Eqgs. (11) and
(12). O
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COROLLARY 2.4. Let {£,} be iid. Then NV =" N for
each tE€T if and only if P {M,=v,(t)}>" H(t). More-
over H and {v'®, 7" Yer determine each other.

Proor: (Sketch) The first part follows from Theocrem
2.3 above and Theorcm 5.3.1 of Ref. [8] which states
that P {M,=v.(t)}—=" H(t) if and only if Eqg. (8) holds
for each tE€T. Note that H(t)=¢ " so that H and the
v"'s can be obtained from each other. Also the #™'s
can be obtaincd from the #"s by first inverting Eq. (9)
to get the Hp(t)’s and then inverting Eq. (10). (The
inversion of Eq. (9) is carried out inductively using the
fact that the weak convergence of H,{v,(t)) implies that
of all Tower dimensional margmals.) O

Analogous results for the dependent case take on a
slightly diffcrent form. Let {£ } be a stationary se-
quence satisfying A(v,(t)) for each t&T. As before let
r=fn!k,] where {k, } is any sequence satisfying Eq. (7).
and define

Grawva(t)=P M, ; >v; (4 ), M > vy, (5, )

THEOREM 2.5. Let {£, } be a stationary sequence satis-
fring A(v, () for each tET Then P {M,=<v,(t)}—" H(1)
if and only if

lim knGr,J(h(vn (t))=hj(h(t)<x

for each j(k), | =<k=d and tET, and in that case

2 hin(t)}.

15 ey =d

d
H(t=exp{2(— 1)}
A=l

ProoF: Observe that the mixing condition A(v,{t)) im-
plics that {£, y} satisfies A(v, (1)) for each j(k) (with
obvious notation). Hence it may be shown as in the
univariate case (see Lemma 2,1 of Ref. [1]) that

P {Mos6=vojeft)}— P M = va ()30, (13)
for each j(k). The rcsult may therefore be proved in
exactly the same way as Theorem 5.3.1 of Ref. [8]). [

ReEMARK: Under the hypothesis of Theorem 2.5, if
NP NP, teT, with paramcters v and 7% then
PIM. =v,(t)}—>" H(t)=c~ " as in the iid casc. However
it is not possible in general to recover the #'s from H
since the clustering of exceedances may cause the sup-
port of 7 to extend beyond S. References [9, 10] give
sufficient conditions (analogous to the D'(x,) condition
of Ref. [13]) under which clustering does not occur, so
that Corollary 2.4 can be extended to stationary se-
quences satisfying this condition.
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A distribution function F on IR? is said 10 be indepen-
dent if F(x)=lILF(x), x€IRY. If {&} 15 iid and
P{M,=v,(t}}—=" H(1). then it follows from Corollaiy
5.3.1 of Ref_ [8] that H is independent if and only if the
marginals of H are pairwise independent. The analogous
result for the dependent case is stated below. The proot
(which is omitted) is cssentially the same as for the nd
case, but uses Theorem 2.5 instcad of Theavent S 3.1 of
Ref. [8).

CorOLLARY 2.6. Ler {£, } be a stationary scquence il
isfving A(v,(0)) for each t€T and suppose ik
P{M. =v, (1)} H(t). Then H is independent it and
only if P{M, >v (), M, >v.,(h)}—0 for cach
I=j<i<d,tET ie., if and only if k.G, s (v.(1)) 20 for
each j(2) and each tET.

It is shown in Ref. [14] that H is independent of
H(t)-ﬂf_,H;(Ij) for some t&(0,1)%. Although the 1csult
in [14] only stated for iid scquences under a livear uor-
malization, the proof essentially rests on the defimng
property of extreme dependence functions, nainely Eqg.
(1). Consequently the result cxtends 1o the preseul miore
general situation allowing dependence and non-lhinca
normalizations. Corollury 2.6 can therefore be improved
as follows.

CoroLLARY 2.7. Let {£,} be as in Corollary 2.6 and
suppose that P {M ,=v () }=" H(t). Then the following
are equivalent:

(i} H is independent,

(it) HO={1L H,(1;) for some 1€(0,1)",
(fii) %G, julva(0)—0 for each j(2). for some teq(,1)”

It should be noted that Refs. [9, 10] give sonc iinter-
esting sufficient conditions for H to be independent
when {£,} is a stationary sequence. A nataral question
to ask in the prescnt context is whether A 1 independent
whenever A is. Proposition 3.4 gives a nccessary amd
sufficient condition for this in tcrms of the extremal
index, but the answer in general is negative and a coun-
ter-example can be found in [10]. It scems raore plausi-
ble that the converse may be true, i.c., that H is indepen.
dent whenever H is. In fact however, this 100 is not the
case, as shown by an interesting counter-example in
[15].

We conclude this section by stating a result wlich
extends Theorem 5.1 of {5] and is proved similarly.

TreOREM 2.8. Let {&,} be a stationary sequcace satts-
fying A(v,(t)) for each t=T and suppose that N - NV
for some tET. Then N —* NI for each >0 and fur

thermore, v =cv™® and 7= (where F=(i},....L5)).
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3. the Multivariate Extremal Index

1 ¢t {£ Fbi a sauonai'y sequence and {é,, } the associ-
ated 1d sequence. Suppose that P {M,=<v, (1)}=" H(t)
and B {M,=v,(t)) > A(t). The multivariate extremal
index ot {£,} s then defined by the relation
H{t—1""(1) (sce Eg. (1)), or more explicitly

Git)y=tog Htylog H(t), tET.

Ubserse that Git) is well defined since A has Uni-
fonin]0,1 | maiginals and hence, O<H(t)<l on T. The
following vesults describe some basic propertics of the
niultivariate extremal index.

I'Roposikn 3.1, Assume thar {£, } satisfies A(v, () for

each VET and has extremal index 0(t). Then

{i) 8)=8{t") for each t&T and ¢>0, and

(i} for cach j=1,..4d, {&;} has extremal index 8=6(1)
where tET has all coordinates equal to | excepr the
Jjrh.

{Mote that by (4}, 6(1) is constant along the contours
L={t:c20}, t<=T, and hence 8, in (if) is well-defined.)

Proor: Kecall doat (by Theorem 1.1) H(t)=H(t) and
H o y=H (1) so that (i) follows from: the definition of the
extremal index. Next, for tET with all coordinates but
the jth equal w 1, P{M,=v, (6)}=P (M, =v,(t)} and
heace

I P {M = v () Y=lim P M, <y, () }=F ()=H(1)).

Theicture by Theotens 2.2 of Ref. (1], {&,} has ex-
emal index 6 (say) so that H(f)=". Now
H ()£ 59(t) by definition of the extremal index, and for
the preseit choice of t this is the same as H(5)=1"",
whenge it follows that 8(t)=8; for all such t. O

For t&7, let N denote the one-dimensional point
process obtained from N via the map y—/y .0 from
{0.0) o {01}, ic., NO(B)=32, Iineslisnp BER.
Thus N has unit mass at i/a if and only if £<£v,(1).
Assume that {&, } satisfies A(v, (1)) and with 4, as in
See. 2, et

O (y)=P (N )=y | N0 W050) =1
PropOSITion 3.2, Assume that (€, Y satisfies A{v,. (1)) for

each tET and hay extremal index 6(t), Then
A(t)y=(lim, .2, ym ()~
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Proor. Observe that

¥ v, ' * n
Sy ER U B G 0-prde T -

y=i
knrn ’tP{glévn(t)}
n kP{M, Ev ()}
Now lim.. P{M=v,0))}=H(t) and lim. ..

P {M,=v.(t)}=H(t) (by assumption), so that lim,_-
nP {&%v,(t)}=—log A(t) and (by Eq. (13)) lim,.-
kEP{M, £v,(t))=—log H(1). Therefore lim,- X,
yED (y)=log A(tYlog H(t)=1/6(t), as required. 0O

ReMARK: Proposition 3.2 is simply the multivariate ver-
sion of Eq. (1) and shows how the extremal index is
related to the clustering of *‘exceedances.”” Indeed, ac-
cording to the present viewpoint, an excccdance occurs
at time { if &#v, (1), i.c.. if £>v,(1;) for at least one j.
Thus Propositions 3.1 and 3.2 show that while the dc-
gree of clustering may depend on t, it is constant on each
L. Note also the connection to Theorem 2.8,

The next result gives the relation between the depen-
dence functions of H and H , which is seen to involve the
extrenal index in an intricate manner.

ProrosiTion 3.3. If {&,} has exiremal index 8(t), tET,
then
DH('rl.&o----'r;‘)"[)g\"(t)-

tETs (14)

where 8; is the extremal index of {€;}, j=1...d.

PrROOF. By definition of the dependence function,
DH(t)-P {H;(X.)S-Il,...,H,;(X.;)EI,,} where (Xl.---.Xd) is
a random vector with distribution /. Therefore, since
Hj(fj)gfﬂ’.

Dy (88 3O=P (XS, XS 1, y=H ()=H (1)
‘;Di(}“ (t)'
or required, [

REMARKS

1.) Note that s=t” (for some ¢>0) if and only if log 5;/log
ss=log t;/log tm=a; (say), j=1,....d— 1. Therefore we
may write L,=L, where a=(a,,....a;-,), and hence by
the remark following Proposition 3.2, #(t)=0(a),
i.e., the extremal index 1s a function of d—1 vari-
ables only.

By Proposition 3.3, Dy (1. 12=D /" ()=Dp (t*").
Also, if tEL, then (1[',....1J)EL, where a*=(u,0)/
O4y.ennls-16,-1/6,). Thus Dy is obtained by transtat-
ing the valucs of D(=H) on L, onto La-.

2)
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3.) While the above results illustrate some of the basic
properties of the multivariate extremal index, they
are far from complete. For instance, it would be
useful to identify the set of all “‘admissible’” 8(.) for
a given #, that is the set of all &(-) such that Dy, (-)
defined by Eq. (14) is a probability distribution on
[0,1]% It would also be of interest to study the prop-
erties of 9{-)} when one or both of & and H are
independent. In this context we have the following
simple result.

ProposiioN 3.4, If H is independent, then H is inde-
pendent if and only if

4 4
9([)=29,logt,f2]ogrj, Jor some tE(0,1),
=1

1

In particular, if borh H and H are independent then 6(1)
is a convex combination of the 8’s.

Proor: If H is independent, then H(t)=H(t)*=
(T1L,)™". The conclusion follows immediately from
Corollary 2.7 (iii) upon taking logarithms ard noting
that if H is independent, then H (6)=ITL,2%.

The cxtremal index can be given the following more
general formulation. Let ji and u be the probability
measures on (0,1)? corresponding to A and H, respec-
tively. Thus for instance,

p(A)=lim P{M.Ev.(A)}

where v, (A)={v,(s) : SEA }, AC(0,1)*. We now define
6(A) via the relationship (A )=E*¥(4), or more di-
rectly 6(A)=logu (A Ylogji(A), for subsets AC(O,1)
such that g(A)>0 and w(A)>0.

Note that 8(H)=0((0,4,)%--X(0,)) for t€T. Thus if
{8(t): tET} is known along with either of H or H, then
it is possible at least in theory to obtain {6(A) -
AC(0,1)}. In practice, however, it may not be possible
to obtain 6(A) in a tractable form, but frequently one is
only intcrested in certain special sets, typically rectan-
gles of the form 11,(a,,b,), and for such sets the compu-
tation is easy.

The defimition of M, as the vector of componentwise
maxima actually comresponds to regarding & as an ex-
treme observation if £>v,,(r;) for some j. More gener-
ally, one may definc & to be an extreme value if
£Ev, (A ) for some AC(0,1), in which case 8(A ) has an
interpresation as a mcasure of the clustering of such
extremnes. Note that the original definition of extremes
corresponds to letting  A=((0,1,) X X(0,2,)). Alter-
nately onc may consider taking A={(1,1)>--X{#;.1)
which corresponds to defining £ as an cxtreme observa-
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tion if §>v.(r) for all j. Yet another choice is A=
{t:Ze>c}.

4. Examples

We conclude with two examples, both involving
bivariate stationary sequences.

ExamPLE 4.1 Let {7m,} be an iid sequcnce, and put
&i="., and £=max{n,-,. 7, }. Let F denote the distri-
bution of &=(£.. &;) with marginals F| and F;. Then
Fa(x =P {&a=x}=P{n, 1=x, n,=x}=F}(x) and

Flz(xz),
Fi{x)F(x),

if x;=
Fx, x)=" {ﬁtﬁ-fl-fnzs-\fz#{ :ti:‘::;z
If v, (1)) satisfies F;(vy(r;))—1, j=12, then lim,..
Fl(va(t:N=t;" so that v(r)=v.(1;'?). Moreover
Vo (1) Zv.a(r;) if and only if 1,217, and so

e . - n?, ifnz=g?
H (v, (1))=P {M,=v,(£)}= H(f}={fh if <1,
The marginals of H are thercfore H,(1)=t, and Hi{t)=
1} so that 8=1 and 6:=1/2, and the dependence function
of H is Dy(t)=H (1., 1}}=niar,. For the associated iid
sequence {£, } on the other hand, it is easily verified that

" » - ts, if ="
- - J
Hn(vn(:))‘P {M,—-V,,(f)}-—)H(f) {fzfzm, If I|<fz"2.
from which it follows that
if §=p)"?

|
L2
B(I)_{W—F—“ﬁ,’l,__ if r<)?,

We next consider a moving average sequence studied
in Ref. [16].

ExamrrE 4.2, Let {Z=(Z,Z1)'y, —x<k<x, be a sc-
quence of iid random vectors in JR®. We assume the
existence of a sequence of positive constants e, —, and
a measure v on IR? which is finite on sets of the form
{x : |[x[l>r }, >0 (where || - | denotes the Euclidean norm
in IR%), such that aP {a,'Z,<-}->" v(-). (Here "=
denotes vague convergence-of measures on IR’ with
respect to the metric d(x;.x;)=|r,"~— r§‘|V|9:—Gzl,
where for i=1,2,r, and 6, denote the polar coordinatcs of
X;, and a\/b=max{a,b }.) The mcasure v Is necessarily
of the form v({x:|x|>r,0(X)EA =r""5(A) for r>0
and AC[0,27), wherc S(-) is a probability measure on
[0.27) and a>0. Hence in particular [17],
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v(cA)=c""r(A) (15)
for all ¢>0 and all sets A with #(A )<oo,

Define the bivariate moving average process
X=220GZ, ;, where {Clc;iuli - Y=o is a sequence of
rcal 2X2 matrices satisfying S5, | ¢x | <o, k,1=1,2, for
some 8E(0,a). 8=1. For x=(x;,x;)EIR?, write A, =
{z: GZE((—2x ) X(—%,53))°}, where A© denotes the
complement of a set ACIR?, Then {16],

lim P {a, "M, <x}=exp{— F(x)}, and

lim P {a, 'M.<x}=exp{~y(x)}, xEIR?,

ndfis
where ¥(x)=L7,¥(Ay;) and y(xX)=v(UA,;). The ex-
tremal index is therefore 0(x)=y(x)/¥(x), xEIR". It fol-
lows from the definition of A,; and Eq. (15) that this is
in fact a function of x,/x,. Note that the extremal index
defined above diffcrs from that in Sec. 3 in that it is
defined on TR? rather than [0,17. However the two defi-
nitions arc equivalent as may be seen by means of a
suitable transformation from [R? to [0,1]%

The actual calculation of 8{x) may be quite difficult

in general, but possible to carry out under appropriate
simplifying assumptions.

Case (i). If Crc,C where C=[cy)i,, and the ¢;’s are
non-negative  constants, then  A,=c; 'B(x) and
UreAr,=~cB(x), where  B(x)={z: Cz&((—=x)X
{—%,x2)) } and c=max {c¢; : /=0}. Therefore by Eq. (15),
VA Y=c/'v(B(x)) and v(UZ A )=c"v(B(xX)) so that
B(x)=cSocs .

Case (ii}. 1f the C;’s are diagonal, i.e., C=diag[cy.cp]
with ¢,=0, i=1,2, then A, ~{Z:ciz,>x O cpz>x:)
and  UpA=((—=x/c)X(~ox/c))  where c¢=
max {c; : j=0}, i=1,2. In particular, taking x,~* and
using Eq. (15) as in Case (i), we have p{A;)=
civ({z 2203 and v(UZA =y v({Z 2 2>x}), so
that the extremal index of {X,} is &=c/"27 /).

Case ({iii). Let D denotc the support of ». 1f DC
{z: z;=0 or =0} (which is the casec if the coordinates
of Z, are indcpendent), then we may write
v((—=x )X (—=,0) =ax; a4y, ¢, x, 520, (16)
for suitable constants ¢;=0 and a,=0. Once again, as-
suming the ¢,u's to be non-negative and writing
amax{c;,, : j=0} for kl=1,2, we have (wriling
arb=min{a b }) ’

AL ND={—=x/cpunxd ¢y (=2 x /e paxden)y D
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and
UReAs D= 2 x)fennmion
X~ xdepaxade, VI,
so that using Eq. (16}

axi/cunniey) “taixfcpnnlen) T
afﬁf;;(x./c;.: inGlon) “*022;9(-1 Vepaaxfep)™™

0(x)=

Thus putting x;==, we have 0;=(a, ¢4 ax a2 00
arqecly) and similarly, Bp=(aefi+au 3 Yk
ﬂzz;)cﬁz).

If also ¢ 12=c;2=0 for cach j., (that i if the ©7r qe
diagonal), then

apy] e o
A

aR'= - RE
2}41‘.-_,1_”“*“31*2 ‘S‘:,'.n‘-’_,'_a;

o(x)=

@k

and in particular, y=c{i/2 L and G0 27 o0, Mage
that in this case the limiting distributions of A, and M,
are both independemt, and hence (in accordance with
Proposition 3.4) #(x) is a convex combination of £ aod
.

The non-negativencss of the € ussumed above e

not crucial and may be relaxed. although at the crer of

more involved calewlations.,
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