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The exceedancc poim process apprfyjich of 
Hsing ct al. is exirnded to multivariale 
stationury sequences anj some weak con- 
vergence results are obtained. It is well 
known that under general mixing assuEtip- 
liors, high level exceedanccs typically 
have a limiting Compoutid Poisson sinjcturc 
where muliiple evenli aie tauscd by the 
ciustcring ot exccedances- In this (laper we 
explore <a) the precise efTett of such 
clustering on the lintil. and (b| the relalioa 
ship between point process convergence 
and the limiting behavior of maxima. Fol- 

lowing this, the notion of multivariate ex- 
tremal index is introduced which is shown 
to have properties analogous to its uni 
variate counterpart. Two examples of 
bivariate moving average sequences are 
presented for which the exiremai index is 
calculated in some special casc&. 
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1.   Introduction 

Extreme value theory for multivariate iid sequences 
has been studied for quite some time now but attention 
to the dependent case has been relatively recent. For 
univariate sequence.^ it is known that local dcpcrKience 
causes extreme values to occur in clusters, which in turn 
results in a stocha-stically smaller distribution for the 
maximum than if the observations were indepeivdcnt. We 
begin with a brief review of these results, which we 
shall later extend to the multivariate case. 

Let {^„} be a univariate stationary .sequence. Write 
M,=max{f:,...,f„} and for 7>0, let {U„{T)} denote a 
sequence satisfying lim„^^/'{^i>M„(5-)}=T. Under 
quite general mixing assumptions there exist constants 
{)^d'-^6"-<\ such that 

for all 7. (See Ref. fl], although the idea actually dates 
back to Refs. [2-4].) Thus Vi P{M^■<:U„{ja)} converges 
for some TO, then d'-^0"{=6, say) and hence 
lim„_,xP{A/,^K„(T)}-e "^ for all T>0. The common 
value d is then called the extremal index of {^„}. We 
shall assume Sto be positive whenever it exists, since the 
case ^0 corresponds to a degenerate limiting distribu- 
tion for M„. Note that 6=] tor iid sequences. Let {^ } be 
an iid sequence with ^i-^ ^\, called the associated iid 
sequence, and write Aif„=max{^ ^„}. If {^„ } has ex 
tremal index d and lim„_,.x P{M„-^v„(l)}=H{t) for a 
suitable family of normalizing constants {t'„(r)>, then it 
follows (upon identifying e"*"^ with //(/)) that lim^^ 
P{M„^v.it)}=H(l) where 

lim sup P{Af,<H,{T)>=c "' and 

liminf/'{A/„<K„(T)}-e-''^ 

H(t)=Hitf (1) 

The extremal index is thus a measure of the effect of 
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dependence on the limiting distribution ol' A/,,. The 
slochasticully smaller limiting distribution ot A/„ is in 
fact a direct result of the clustering of extremes, as 
explained below. Sec Ref. f5| for detatls. 

For  fixed   7>0  let  the excevdance poinl process 
Ar.-AC' be defined by 

(-1 
SCLO,II, 

where I A denotes the indicator function of the event A. 
Then tor a broad class of weakly dependent sequences, 
the iiinit in distribution of N^, if it exists, is a Compouixi 
Poisson process with intensity tl-rand multiplicity distri- 
bution iron {1,2,...}, The Poisson events may in fact be 
regarded as the positions of "cxceedancc clusters" 
while the multiplicities coiTespond to cluster sizes. 
More expliciliy, one may divide the n obsei"vations into 
k„ blocks of roughly equal size and regard exccedances 
within each block as forming a single "'cluster", so that 
the cluster sizes are given by N„(J,), i=i,...Ji„. where 
■/r(^.jMT7 ' ^f ^^^ ^ suitable choice of k„ depending 
on the mixing rale of {^ >, one then has 

lim P {N„ (7,)-y | /V,(./,)>0}- n (/)-   J^ 1, 

and 

lim P'"{/V,(J,M)}=lim />{.V,[0,n=0} 

=lim/'{A/„i=«,(T))=c ■", 

SO that in particular, lim„_,„ k„ f {Af„(>/iJ>0H^7. Hence 

lim t A'„ 10.1 Him Jt./i:" N,t7,; 

=lim it.£(^,(i,) I N.iJ,)>0)P {N.U,)>^} 

while on the other hand, iini,_^ t A^„lO,r|=iini„^, 
nP{(i>u„iT)}=T. The cluster size distribution and the 
extremal index are therefore related by 

Vim E(NAJ0\!^JJ,)>O)=\/d, (2) 

Now let {^„=(^|....,£^,), nt.2 > be a mullivariatc sta 
tionary sequence where d^l is a fixed integer, and 
write A/„-(W,i,...,A/,„/) where M„j=max{^i;,...,^,}, 
j=l,...,(/. The study of multivariatc extremes began in 
the early I95(ts, ftxrusing mainly on the limiting behav- 
ior of M„ under a linear normalization, when the obser- 
vations arc iid. The resulting class of limiting distribu 
tions was characterized m Ref. (6] and domains of 
attraction criteria were given in Ref [7J. See also Ref 

[8J, Chapter 5, for an account of the literature surround- 
ing this theory, l-'or stationary sequences satisfying a 
general mi.xing assumption, it is known (see Rcfs. 19. 
101, and Theorem 1.1 below) that the class of limiting 
distributions of .M„ is the same as for iid sequences. In 
this paper we explore the precise effect of dependence 
on the limiting distribution by extending the univariatc 
theory described above to the multivariate ciLsc, Essen- 
tially, this involves studying the intcr-rclationsbip be- 
tween the two dependence structures present, one due to 
dependence over time and the otlicr due to the depen- 
dence between the various components of the multivari- 
ate observations. Tlie ideas become most transparent 
when presented in terms of so-called dependence func- 
tions [HJ. Here we adopt the slightly modified definition 
found in Ref. [9]. A distribution function D on [0,1]'' is 
called a dependence funclion if Dj(Dj(u))=D,(u), 
«£[(),! \,j=l,....d, where the subscript j signifies theyth 
marginal. The defiendcnce function of a distribution F 
on      IR'      is      defined      by      DAu)=P{F,{X,)-< 
u .Fj(Xj><«,,}.     «=(M, «rf)e      [0,1]'',      where 
(A^i,-..,.Y,/) is a random vector with distribution F. More 
generally, any dependence function satisfying 
F(A:)=D(fi(xi) FAxj)) could be defined to be a de- 
pendence function of F, alth(Mjgh the present choice is 
a natural one. 

Write 7'-{0,l)A{l} where l=(l DeiR'', and for 
t=(r tj)^T, let v„(t)=(i',.(fi), -,i'»rf(fj)) where i-,,(/j) 
satisfies lim,^^ /(f{f,p'i'„^(r,)}--log/,. Ixt //, denote 
the distribution function of M„ (i.e., H^ixy^P {M„^x », 
with marginals H„,.. j=\,...J. Then (.see Refs. [8, 11}). 

«,U*,(!))->'W(t) (3) 

if and only if 

//.,(»'viO)j->" W;('j)J=l d, and D„.(l)^" D„(t). 

'ihc limiting bcha^'iof of M„ can therefore be separated 
into two parts, one pertaining to the convergence of the 
niargmals (a univariate problem) and the other to the 
convergence of the dependence functions. Here we fo- 
cus attention cxclusiviely on the latter, ll should be noted 
thai the choice of normalising constants does not affect 
the dependence funclion of the limit distribution H, but 
only alters the marginals (sec Ref. 191, Lemma 3.2). 
Since our main interest is in the dependence function, 
the present choice of normalising con.stants is appropri- 
ate in view of the fact that it results in Uniform[0.1]' 
marginals for the limit distribution when {^, > is iid, so 
that in particular /->«=■//. According to Theorem 3..^ of 
Ref. [91, the class of all possible limits H in Eq. (3) (for 
lid {^„)} is precisely the class of extreme dependence 
functions, tlial is those that satisfy 
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D"(t)=/J(r,"....,f;) (4) 
A^„(B)=SA,„6fl,5,,    BB[OM (5) 

for each n>l andt-(( /j)£[0,11''. Theorem 1-1 below 
shows that the same is true also if {^„} is a slalionary 
sequence satisfying the following mixing tondition. 

For ter. let 

59,'(v,(t))=o-{(e;>v„;(/,)): k^i^l,j=l,...^} 

and for 1 ^l^n— 1. define 

a„.^sup{\F{AnB)-nA)P{B)\ : /4e39f(i',{t)), 

Be^;w(v„(t)), 1 ^k<M^n }. 

The mixing condition A(v„(t)) is then said to hold if 
Q(,;„—*0 for some sequence {/„} satisfying iJn^fO. This 
is the multivariate version of the mixing condition used 
in Ref. J51 and is slightly stronger than the D(u„) condi- 
tion in Ref. [91. Henceforth {^„ ) will be assumed to 
satisfy A(v„(t)), for some or all t, as required. 

THEORI-M 1.1. Let {^„} satisfy Mv,(t)) for all t^T and 
suppose that P{M„:£v„{t)}—>" H{t), non-degenerate. 
Then D„ is an extreme dependence function and hence, 
in particular, H(V)=H%t) for each tE[0.1]'' and c>() 
{where r-(/r,...,0)). 

PROOF: The first part is an immediate consequence of 
Theorem 4.2 of Ref, [91 while the second part follows 
from the definition of extreme dependence functions 
upon noting that (by the univariatc theory described 
above), the miu-ginals of fi are of the form Hj(i^)=tp 
where Oj is the extremal index of {£,j}, the jth compo- 
nent sequence of {f„}. 

In the next section we apply the cxcccdance point 
process approach to multivariate extremes and obtain 
some weak convergence results. The multivariate ex- 
tremal index is then defined (in Sec. 3). ba.scd on the 
multivariate analogue of Eq. (1). It is seen to be a func- 
tion of only d 1 variables and its properties naturally 
extend those of the univariatc extremal index. Finally in 
Sec. 4 v/Q consider two examples of bivariatc moving 
average sequences for which the computation of the 
extremal index is demonstrated. 

2.    Exceedance Point Processes 

Fix fETand let ^,f={{i,f.v„f,,)^, i=\,...ji,j=\,...d, and put 
6,=(S;i,...,Sij). The multivariate exceedance point pro- 
cess Nf~N^" is then defined by 

Assume that {f„} satisfies A(i',(t)). If als<-) //„->'' iV„, 
then it may be shown (as in the univariatc case) that the 
limit Ml is a point process on [0,1J which is of Com- 
pound Pois.son type. More precisely, the Laplace Trans- 
form of NM is given by 

-Iog£cxp{-X f   f^<>,)-v\       \ 
fi  ■'lO.M ■';i€|0.!|-'yeai' 

(l-exp{-23'/(-0»d7r(y)dv. (6) 

Here MI; denotes the jth-componcnt of Mn, t* is a 
positive constant, -n- is a probability distribution on 
2f={0,l,2,...y\{0} and^'s are non-negative functions 
on [0.11. 

Let {k„} be any sequence of positive integers satisfy- 
ing %   V    . 

/;„-*^, *X/n->0, and *^„Qf„^,->0,    z&n-^^.      (7) 

Set r„='{nlk„\ (the largest integer not exceeding nlk„) 
and put 7„i=[0,f„/n]. Define the probability distribution 
TT„ on Z:'' by 

7r,(y)=/'{Af.(i„)-y I M,(J„)^tO}, yG2Z5'. 

The following theorem which gives a useful characteri- 
zaibn of the convergence of M is an immediate conse- 
quence of the results in Sec. 5 of Ref. [12]. 

THiiOHKM 2.1. /V„—>'' Ml if and only if Tr„—>" TT and 
P {Af„:^i'„(t))—> e"", and in that case the Laplace Trans- 
form ofNn is given by Eq. (6). 

Next we consider the iid case in some detail and 
obtain an interesting connection with Theorem 5.3.1 of 
Ref. (8). 

PROI-OSITION 2.2. Let {^ } be iid and for fixed iE.T let 
N„ he defined by Eq. (5). lfl^„—>'' M> then the multiplic- 
ity distribution IT in Eq. (6) is supported on the set 
5={0.1 }'\{0}. 

PROOF: Observe that A(v„(t)) is trivially satisfied since 
a„i=0 so that we may take l„^\ and k„=n. Then 
■ff.(y)-/'{Si-y I ^i^v,(t)>, y^7Zl\ which is clearly sup- 
ported on S. The result is now immediate since S is a 
closed set and 7r„—>" TT by Theorem 2.L D 

Making the dependence on t explicit, we now write 
N„-N','\ N,i=Nl*\ v~v^" and TT-TT'-". In addition we shall 
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require the following notation from Ref. [8]. For 
l<Jt^rf, let j(Jt)=(7'i,—Jt) denote a vector with integer- 
valued components \^j,<J2<—<ji^d, and for 
\=^i,...jCd)SlR'' write Xj(i)=(jry,,...^i:ji). Define the "sur- 
vival function" 

and write Gjii,(x)=/'{f,j,>J,, fij.>Jfj,}. For each jik), 
let yj,i) denote flie element in S={0,i }\{0} whose jth 
component equals ! if and only if j-j, for some i-\,...,k. 
(This defines a natural 1-1 correspondence between S 
and the j(Jt)'s.) 

THE(JREM 2.3. Let {^ } be iid. Then N^'^^^K'^ for some 
fixed ter if and only if 

lim nGj,„(i'»Ct))=Aj,t,(t)«" (8) 

fin- each j(k),l^k:^d. In that case NQ* has Laplace 
Transform given by Eq. (6) with 

and with TT^** determined by the relations 

(9) 

ht,it)=^"' 2 'r'"(y). (10) 

PROOF: Write 5i(t)-S,^:,,<.:j.^/?j,.,(t). so that r{i,£ 
v„(t))~lU{-l)'*'St{vM). If Eq. (8) holds for each k, 
then 

d 

limn/'<f,3tv„(t)}=2(-IT'     2     Ajc*)!*)-*-"', (11) 

and hence lim,^^{M»^v„(t)}=<"""'. 
Next observe that for each j(A). 1 -^k^d, 

Gj,i,(v,(t))- X /'{^i-y}=/'<fi^v.(tj} 2 Ti--.0').{12) 

where 7r„(y)»/'{5i-y 1 ft*v„(t)}. Moreover, this rela- 
tionship is invertiblc in the sense that each of the prob- 
abilities 7T„(y), yG5, can be expressed as a linear com- 
bination of the Gj(n(v„(t))'s. Therefore by Eq. (8). 
Iim„.^7r,(y)^77-"'(y) (saiy) exists and satisfies Eq. (10). 
Hence by TTicorem 2.1 K'^'' N^" where M'" has the 
specified parameters. Conversely if Nl^^-*'' Nl," then u-, 
and P{A/„<v,(t)} converge (by Theorem 2.1 again), 
and hence Eq. (8) follows by virtue of Eqs. (11) and 
(12). D 

COROLUMW 2.4. Ut {^} be iid. Then Af^'-*'' K^ for 
each tST if and only if P {M,^v„(t)}^^ //(t). More- 
over H and {i'"\7r*"}iE7- determine each other. 

PRO(>: (Slcetch) The first part follows from "nieorem 
2.3 above and Theorem 5.3.1 of Ref. L^l which stales 
that F {A/,<v„(t)}^'' Hit) if and only if Eq. (8) holds 
for each t^T. Note that //(t)=c '"' so that f/ and the 
^''''s can be obtained from each other. Also the 7r""s 
can be obtained from the v*"'s by first inverting Eq. (9) 
to get the /ij(t)(t)"s and then inverting Eq. (iO). (The 
inversion of Eq. (9) is carried out inductively using the 
fact that the wealt convergence of W„(i'„(t)) implies that 
of all lower dimensional marginals.) D 

Analogous results for the dependent case take on a 
-slightly different form. Let {^,} be a stationary se- 
quence satisfying A(v,(t)) for each tGT. As before let 
r,=[n/A', ] where {k„} is any sequence satisfying Eq. (7), 
and define 

G,^dv,{ty)=P{Mr^,>v,j,itj,),...Mr^,>v„j,{tj,)}. 

THEOREM 2,5. Let {i„ }he a stationary sequence satis- 
fying Hv„{t))for each tGT Then P{M,^vAt)yy'H(t) 
if and only if 

lim k.Gr^„(v„m^hnt,(t)<o^ 

for each j(Jt), l^k^d and t&T. and in that case 

//(t)=exp{2(-l)*    2     V)(t)}. 
*-] !Sj,<..-«j,-:J 

PROOF: Obsei^e that the mixing condition A(Va(t)) im- 
plies that {^„jfn} satisfies A(v,j(t)(t)) for each j(/:) (with 
obvious notation). Hence it may be shown as in the 
univariate case (see Lemma 2,1 of Ref. (1]) that 

P {M„^tt^v,yM}-P'' Wj(*.:E v.j„Xt))-»0.     (13) 

for each j(t). The result may therefore be pro\«d in 
exactly the same way as Theorem 5.3.1 of Ref. (8]. D 

REMARK: Under the hypothesis of Theorem 2.5, if 
A^"'->'' K\ teZ", with parameters c*" and TT*" then 
/>{M„<i',(t)}-^" //(t)-c''"\ as in the iid ca.sc. However 
it is not possible in general to recover the 7r""s from H 
since the clustering of cxceedanccs may cause the sup- 
port of TT'" to extend beyond S. References [9, 10) give 
sufficient conditions (analogous to the D\u,) condition 
of Ref. 113J) under which clustering does not occur, so 
that Corollary 2.4 can be extended to stationary se- 
quences -satisfying this condition. 
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A distribution function F on IR'' is said lo be iiukptni- 
dent if F(x)=li^,f,(.r,), xGlR''. If {?„} is iid aiid 
/'{M„£v„(t)}^" //(t). then it foilows from Con^llbiy 
5.3,1 of Ref. [8] that H is independent if aikl only if die 
marginals of W are pairwise indepcntlent. The anai-.i^uis 
result for the dependent case Is siiited bek>w. I'hc pi.Kit 
(which is Omitted) is essentially the sanio as for the iid 
case, but uses Theorem 2.5 instead of ThcDieiil 5.3. i of 
Rcf. [8). 

3.    rhe Multivariate Extremal Index 

• «t {|„ ^bc a siaiionary sequence and {^„} the associ- 
aiiA iid setiuen^e. Suppose that P{;V/„<r„(t)}—>"' H(i) 
and /■'{.W„ii>.„{lj) -^" //(t). 'llie multivariate extremal 
indt-x ot {£j) is then defined by the relation 
H{ty-Il'*'\i) (sc< Eq (1)), or more explicitly 

f^HHtig //(t)/iog Hit),  ter. 

COROf-i,AKV 2.6. Z^f {f„} fcf a stationary seqiuiuL ;ut 
isfying A(v„(t)) ^f t«cA tET" aiiJ supposi.' ih.n 
/>{Af,^v„(t)}-+" //(t). Then H is indepenJctii ij\ma 
only if k„P{M,j>v„j{t/), M,j>v^j{t,)}-^Q fm each 
\iSj<l-<.d. i^T. i.e., if and only //*,G,j,ii(i'„(t)) *0 for 
each j(2) aiul each tGT! 

It is shown in Ref. [141 that H is independciit if 
H(t)-U%,HjUj) f(«- some tG(0,i)''. Although the lesutt 
in [141 only stated for iid sequences under a linear iiur- 
malization, the pnwf essentially rests on tiie defining 
property of extreme dependence functions, nainety Eq. 
(]). Consequently the result extends to the present more 
general situation allowing dependence and non-lineai 
normalizatbns. Corollary 2.6 can therefore be iiiiproved 
as follows. 

CatOLLARY 2.7. Let {^„} be as in CvroUary 2.6 and 
suppose that P {A/,:£v„(tJ}—*" //(t). Then the Jolluwing 
are equivalent: 

(i} H is independent, 
(it) Hit)~n%,H,{t,)for some (£(0,1)^ 

(Hi) k^GrM^.m^Ofor each j(2)./ar .^ome t£(0,i/. 

It should be noted that Refs. [9, 10) give some iiiter- 
esting sufficient conditions for H to be independent 
when {£,} is a stationary sequence. A natural question 
to ask in the present context is whether h is irxlependent 
whenever H is. Proposition 3.4 gives a necessary and 
sufficient condition for this in terms of the extremal 
index, but the answer in general is negative and a coun 
ter-examplc can be found in [10]. It seems more plausi- 
ble that the converse may be true, i.e., that H is intlepen 
dent whenever H is. In fact however, this tot> is not the 
case, as shown by an interesting counter-example in 
[15]. 

■Wfc conclude diis section by stating a result which 
extends Theorem 5.1 of [5| and is proved similarly. 

THI-ORF.M 2.S. Let {^„} be a stationary seqat/itc .<iaits- 
fying A{v.(t))for each t^T and suppose that N''*->'N"' 
for some tGT Then A'f->'* Nl-f' for each oO and fur 
thermore, v<''W«/"' and 7r"''=ir"' {y\here t^K/i.-./iJ)- 

t*bsci c Uiui Hyt) is well defined since H has Uni- 
fuiin[0,l| niaiginals and hence, 0<:W{t)<I on T. The 
following results describe some basic properties of the 
muhivaiiate exii'cmal index. 

I'KOPI")SI\Mt 3 1. Assume that {^ }satisfiesA(v„(t)) for 
each tE.Tand has extremal index d{X). Then 
ii) B{t)-^e(V) for each t^Tand oO. and 

(ii) foi each j=\^,..4, {^i) has extremal index dj-(}{\) 
where tEThus all ccfordinales equal to I except the 
jth. 

(tkiiK, that b> (i). H(t) is constant along the contours 
Lr'iV'.oO), ttir, and hence 6j in (ii) is well-defined.) 

I'ROoe. Retail that (by Theorem 1.1) H{t')-H'(t) and 
H\.t)^H'(t) so that (j) follows from the definition of die 
extiemal index Next, for tET" with all ccKirdinatcs but 
the jth equal lo 1. P{M„^vAt)}-P{M,j^v„j{tj)} and 
hence 

lini P {M.,^KiOj)Mim P {M.<v„(t)}-//(t)=//j(f,). 

Thcicfure by Theorem 2.2 of Ref. (IJ. {^„;} has ex- 
tremal index dj (say) so that Hj{t,)='tp. Now 
H(t)^H^\t) by definition of the extremal index, and for 
the present choice of t this is the same as //;(/, W/^". 
whunte it follows that 6{X)^6j for all such t. D 

For ISr, let A*^" denote the one-dimensional point 
process obtained from A^"' via the map y—>/(j,*(,> from 
{0.1}'' tw {0,1}, i.c., M"(«)-S:L, /(..ei./,^,o„ Afe39. 
'ITius /V^" has unit mass at iln if and only if §iv„(t). 
Assume that {^„} satisfies d(i'n(t)) and with Jn\ as in 
Sec. 2, let 

nf(y)~P (Ni:\J.i)-y I Nj;>(J„,)>0},   y> 1. 

pROPOSlliOi 3 2. A.ssumethat {^„}satisfies Aiv„(t))for 
each t&T and has extremal index 0{t). Then 
0{t)=(\im,..^,^j ytfi'^iy))-'. 
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PROOF: Observt; that 

>?i 

k„r„  nP{g,:£v„(t)} 
n  k„F{M,^Sv.(t)) 

Now lini„^« P{M„:^v^(t)y~H(t) and lim,^. 
A*{Af,<v>,(t)}-//(t) (by assumption), so that Um„_^ 
nP{l^v„(t)] log Hit) and (by Eq. (13)) lim,^, 
k,P{M,,£v„(t)}=-log H{t). Therefore lim,^x X,si 
yifi,"(y)-\og H(t)nog H{i)-\/d(t), as required. D 

RHMARK; Proposition 3.2 i.s simply the multivariate ver- 
sion of Eq. (i) and shows how the extremal index is 
related to the clustering of "cxceedances." Indeed, ac- 
cording to the present viewpoint, an excccdance occurs 
at time I if ^^v„{t\ i.e., if £,>>v,j(/j) for at least one j. 
Thus Propositions 3.1 and 3.2 show that while the de- 
gree of clustering may depend on t, it is constant on each 
L,. Note also the connection to Theorem 2.S. 

The next result gives the relation between the depen- 
dence functions of H and H, which is seen to involve the 
extremal index in an intricate manner. 

PROFOSITION 3.3. // {f„} has exvemal index 0(t), t« 
then 

■T. 

Dnit?^ /;-')-Dr(t).    tEr, (14) 

where 8j is the extremal index of {$,;}, /=1 d. 

PROOP, By definition of the dependence function, 
Df^{^.)~P{H^{Xy)^t^,...J^AX^)^U}vJhcK (X,,...X) is 
a random vector with distribution H. Therefore, since 

D„{tp tS'y=p {x,^tu...jCj^tj >=w(t)-w""(t) 

-D,?"(t). 

or required, D 

RHMARKS 

1.) Note that s=t'" (for some <:>0) if and only if log j/log 
,^rf=log fj71og tj-Oj (say), j= I „..,(/-1. Therefore we 
may write L,-L, where a=(fl|,...,aj-i), and hence by 
the remark following Propositbn 3.2, 6{t)^0{a), 
i.e., the extremal index is a function of d-1 vari- 
ables only. 

2.) By Proposition 3.3, D„(r,''',...,r;o=£>«'"(t)-£>ft(t*"). 
Also, if teL, then (lf\...,t^')^U^ where a*=(ai&|/ 
ftf fla-i^rf-i/Sj)- Thus DH is obtained by translat- 
ing the values of £)«(=//) on i. Onto L,.. 

3.) While the above results illustrate some of the basic 
properties of the multivariate extremal index, they 
are far from complete. For instance; it would be 
useful to identify the set of all "admissible" B(-) for 
a given R, that is the set of all 6{-) such that D„() 
defined by Eq. (14) is a probability distribution on 
[0,1 J"*. It wiHjId also be of interest to study the prop- 
erties of d{-) when one or both of ft and H are 
independent. In this context we have the following 
simple result. 

PROPt:>SiTiON 3.4. If ft is independeni, then H is inde- 
pendent if and only if 

,1 d 

eiX)-^ B, logr/^logf-.   for some t £(0,1)''. 

In particular, if both ft and H are independent then d{i) 
is a convex combination of the d/s. 

PROOF: If H is independent, then //(t)-//(t)*"*= 
(Il^irj)*^". The conclusion follows immediately from 
Corollary 2.7 (iii) upon taking logarithms and noting 
that if H is independent, then //[t)=n^irf. 

The extremal index can be given the following more 
general tbrmulaiion. Let /I and /a. be the probability 
measures on (0,1)'' corresponding to ft and H. respec- 
tively. Thus for in.stance. 

fjiiAH\mP{M„GvM)} 
rt—^Tc 

where v,(A)={v^(s) : sE.A }, AC(0,1)''. We now define 
d(A} via the rclatkanship iJ.{A)-il'^\A), or more di- 
rectly e(A)=logAi(A)/lf)gAi(A), for subsets -4C(0,1)'' 
such that /1(.4)>0 and /A(A)>0. 

Note that 6(t)-ti((0,/,)X-X(0,/j)) for tGT. Thus if 
{0(1): tST} is known along widi either of//or W. then 
it is possible at least in theory to obtain {d{A) : 
/1C(0,I)''}. In practice, however, it may not be possible 
to obtain 9{A) m a tractable form, but frequently one is 
only interested in certain special sets, typically rectan- 
gles of the form lll.,(aj,bj), and for such sets the compu- 
tation is easy. 

The definition of M„ as the vector of componentwise 
maxima actually corresponds to regarding ^; as an ex- 
treme observation if ^ip>v„j(tj) for some j. More gener- 
ally, one may define ^ to be an extreme value if 
^G.v„(A) for some AC(0,1 j"*, in which case 8(A) has an 
interpretation as a measure of the clustering of such 
extremes. Note that the original definition of extremes 
corresponds to letting A-{{0^t)X-..X(0,tj)Y. Alter 
nately one may consider taking A-{ti,\)X-.X{t^,\) 
which corresponds to defining £ as an extreme observa- 
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lion if £>>v',;(f;) for all j. Yet another choice is A= 

4.   Examples 

Wc conclude with two examples, both involving 
bivariate stationary sequences. 

EXAMPLE 4.1 l-et {ij,} be an iid sequence, and put 
^i=7j,. and ^2=max{Tj,-i, 17,}. L^t F denote the distri- 
bution of ^-(^1, ^j) with marginals F, and Fi. Then 

v{cA)=c-''v{A) (15) 

i^C-t,, JtiW <§,, ^„£.2Sxa}= IF, 
(Jr2), 
{x,)FAx2). 

if JCl&JTl 

if Xi<X2. 

If v^Ah) satisfies F,"(v,j(/,))-»rj, j=l,2. then lim,^, 
F"{v„i{h))=t^^    so    that    v„j(/j)-v„,(/j'^).    Morc<yver 
i'„(fi)>v„2(f2) if and only if /i^fi', and so 

//,(v.(0)=P<Mn^v,(OM- //(f)- '2 if /|S:r,"^ 
if /,<;' ^ 

The marginals of H are therefore H,(t,)^tt and H2(.h)= 
tj^ so that di-1 and 0:= 1 /2, and the dependence function 
of H is Dn{t)-H{ru rj*)-f|Afi. For the assix:iated iid 
sequence {|„ > on the other hand, it i"; easily verified that 

Ut'2 ,    u ri<r2 . 

from which it follows that 

Wc next consider a moving average sequence studied 
inRcf. [161. 

ExAMPi.F. 4.2. Let {Zi=(Zn,Zi3)'}. —=c<jt<3:, be a se- 
quence of iid random vectors in IR^. We assume the 
existence of a sequence of positive constants fl,->^, and 
a measure u on IR^ which is finite on sets of the form 
{x : ||x||>r }, r>Q (where jj ■ |{ denotes the Euclidean norm 
in IR^), such that rtP(a,'Z„e}-^' v(). (Here '^" 
denotes vague convergence of measures on IR^ with 
respect to the metric rf(Xi,x2)=|r7'—rf'!vl ^r-^il, 
where for i-l ,2,r, and 9, denote the polar coordinates of 
X,, and a\/b=max{a,b }.) The measure v is necessarily 
of the form p{{x : ||x!|>r.0(x)E/l })=r-"S(A ) for r>0 
and ACfO,27r), where S{-) Ls a probability measure on 
[O.ITT) and a>0. Hence in particular [I7j. 

for all c>0 and all sets /I with f(A)<=o. 
Etefine the bivariate moving average process 

X„-5j!4,CjZ, j, where {C,=[C;Juli;-i}j20 is a sequence of 
real 2X2 matrices satisfying2.^I Cj^ \ *<^, k,l=\,2, for 
some 8e(0,a). 5s 1. For x={xt^2)'&m\ write A.j-- 
{z : C^zG(.(-^ytj)X(-x^j))f}, where A' denotes the 
complement of a setAClR^ Then [16J, 

lira f {a, 'A/„sx}-e\p<-y(x)}, and 

lim P {a; 'A/„^x}-exp{-y(x)}, xETR^ 

where yix)^l%v(Arj) and r(x)-f(Ujl«A,j). The ex- 
tremal index is therefore fl(x)=y(x)/y(x), xGlR^ It fol- 
lows from the definition of/4,j and Eq. (15) that this Ls 
in fact a function of JTI/^TJ. Note that the extremal index 
defined above differs from that in Sec. 3 in that it is 
defined on IR^ rather than [0.1 f. However the two defi- 
nitions arc equivalent as may be seen by means of a 
suitable transformation from IR' to [0,1 J^ 

The actual calculation of d(\) may be quite difficult 
in general, but possible to carry out under appropriate 
simplifying assumptions. 

Case (i}. If Cf^jC where C=[cti]lj-i and the tj's are 
non-negative constants, then /4,j—cj"'if(x) and 
u;,/l,,=cB(x), where fi(x)={z; CzG{(-=c^,)X 
{-^^1))'} and c-max {t>: jsO}. Therefore by Eq. (15). 
HA,j)^;'v[B{x)) and H^U^.J^-HBix)) so that 
e(x)^72;^;. 

Case (ii). If the C/s arc diagonal, i.e.. C/=diag[Cji,Cj3] 
with cj,^0, ('=1,2, then A,j-{z: Cj,zi>x, or Cj2Z2>X2} 
and UjLvl,j=((-^^i/Ci)X(-=cjCj/cj))' where c,= 
niax{c^ ; jSO}, (=1,2. In parlicuJar, taking Xj—5= and 
using Eq. (15) as in Case (i), we have viA^j)- 
CJ"V({T:ZI>X,}) and )'(U^Aj)-crK{z: 2i>->^i}). so 
that the extremal index of {.V„,} is Oi-c'/'H'^Cj". 

Case (Hi). Let D denote the support of f. If DC 
{2 : Ci=0 or ;;2=0} (which Ls the case if the cotirdinates 
of Z^| are independent), then we may write 

H(-^^,)Xi-^^2)Y~a,xT''+aiX,'',    ji:i,X2>0.   (16) 

for suitable constants Oi^O and a^^O. Once again, as- 
suming the c^ji/'s to be non-negalivc and writing 
Ci/-max{tjjt, ;ys:0} for kj=\,l, we have (writing 
flAft=min{a,/>}) 

>i.,nt»-({-3c,r,/c^„AJC2/Ci2i)X(-«^,/C;.,iAX2/Cja2))'nD 
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and 

so that using Eq. (16) 

e(x)= Qi(jfi/CnA,r2/c2i) "''+q2(jfi/t.-ijAyj:/Qi) _''.  

Thus putting jc,-^, wchave 0.-(«,r|"; ^«lt QV(«i5;;!^<f|, f 
fliSjlof/i;)   and   similarly,   0;;'-(aifjV-^<iy"s;)^''i/5'-M/.;;', i 

If also c,.n-C;.2!-^ for each j, (that is if the <"'/r ?}f 
diagonal), then 

6»(x)- 

and in particular, 6>=c"J'S,J^tC'',, antl 0i^c"7''Xlf)rp,. Mot^ 
that in this case the limiting (iistributitms <if M„ ap<.! M, 
are both independent, and henc^ (in accordance with 
Proposition 3.4) d(x) is a convex combination of '.', ;tr«t 
02. 

The non-negativcncss of fhc C/s assnnx'd a'»ovr i<i 
not crucial and may be relaxed, althnuph ?t tb? ,'"-' ■■■< 
more involved calculations. 
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