
Volume 99, Number 4, July-August 1994 

Journal of Research of the National Institute of Standards and Technology 

[J. Res. Natl. Inst. Stand, Technol. 99, 539 (1994)] 

On the Convergence of the Number of 
Exceedances of Nonstationary 

Normal Sequences 

Volume 99 Number 4 July-August 1994 

J. Hiisler 

University of Bern, 
Bern, Switzerland 

and 

M. Kratz 

University Paris VI, 
Paris, France 

It is known that the number of ex- 
ceedances of normal secjucnccs is 
asymptotically a Poissoii random vari- 
able, under certain restrictions. We an- 
alyze the rale of convergence to ihc 
Poisson limit and extend the rcfiult 
known in the stationary case to non.sta- 
tionury normal sequences by using the 
Stein-Chen method. In addition, we 

consider the cases of exceedances of a 
constant level as welt as of a particular 
nonconstant level. 

Key wiirds: cxceeiinnces; minxtalionary; 
normal sequences; rate of convergence; 
Stcin-Chcn method. 

Accepted: March 22, 1994 

1,   Introduction and Result 

The extreme value theory of Gaussian sequences 
has interested many authors, for instance Refs. 
[1,4,7,8], dealing with the limit distribution of the 
suitably normalized extreme value. 

Let {Ai,/^!} be a standardized normal sequence 
with correlations E(X^i)=r„,iJ ^ 1, and <P(-} the 
distribution function of X,. 

Let 

N^ = ll(Xi>u,,) 

denote the number of exceedances of a boundary 
given by a triangular array {«„;,! =5 n ,n ^ 1}. Then it 
was also found that A',, converges in distribution to 
a random variable having a Poisson distribution 
/'(A„), if the mean number of exceedances 
A,, = jL,<»(l-<P(Uni)) remains bounded (cf. Ref. 
[4]). 

For practical use of the asymptotic theory, it is 
rather important to know the rate of convergence 
or at least some upper bound for this rate. 

For the stationary case, results on the rate of 
convergence have been obtained for instance by 
Refs. [2,3,9,10], The aim of this paper is to give an 
upper bound for the total variation distance dn- be- 
tween N„ and P{\.,), in the nonstationary case, ex- 
tending the results of these mentioned papers. 

Suppose that for some sequence p,,: Ki^py-ji 
for i^j, and that the two conditions 

P„<1 for all n^\ (1) 
pt^Allogk,k ^2, for some constant A      (2) 

are satisfied. Define p as p = max(0, ni, jVy)<l. 
In addition, we assume that the boundary values 

tend uniformly to = : 

«n,iiiin= mm u„ =» as «- (3) 
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The exceedances of a constant boundary u„i=u„, 
l^j^n, are considered first, where only the tools 
given in Ref. [3] are used. We show in the second 
result that the method of Ref. [3] can be used also 
for nonconstant boundaries {u„}. But these 
boundaries are restricted such that the condition 

lim sup n (1 - <P(u„.m«)) < C < « (4) 

holds. If we want to extend (he results lo a more 
general class of boundaries such that only 

lim sup A/, < C < » (5) 

holds, we need to combine the method developed 
by Ref. [4] with that of Ref. [3] to get satisfactory 
results (see Ref. [6]). 

Our first result for boundaries which are con- 
stant for fixed n, shows that the given upper bound 
of the rate of convergence depends mainly on the 
largest positive correlation value p. 

Theorem 1: Let {A",,/ ^1} be a standardized nonsta- 
tionary normal sequence with correlations {nj, 
ij^\}. Suppose that y,j\^pf^,\ for i^j, such that 
Eqs. (1) and (2) hold. Let the boundary values 
{u„i-u„,\<^i^n} and A,, he real values with 
A,, -n(\ - *(u«)). Suppose that A,, ^S C < oc, for 
some constant C. Then as n-*«! 

rf„,(N,„#'{\„)) = o(/i-T^ ■ (log «)- 

n    (=1 / 

H-p 

(6) 

This extends the result of Ref. [3] showing that for 
a constant boundary their upper bound of the rate 
of convergence in the stationary case holds also in 
the nonstalionary ca.sc. 

Theorem 2: Let {X,,i ^\} be a standardized nonsta- 
tionary normal sequence with correlations {r,;, /,_/ > 1} 
as in Tlieorem 1 satisfying Eqs. (I) and (2). Suppose 
that the boundary values {w,„, \^i^n,n ^1} are 
such that Eq, (4) holds. Then Eq. (6) holds. 

The first term of Eq. (6) dominates the rate of con- 
vergence in cases with itsi pi < » and p >0. 

Then the rate of convergence depends only on the 
lowest value «„.m:n of the particular boundary u,„ 
and also on the largest positive correlation p. It 
extends naturally the results of the stationary case 

with boundary values which are constant for fixed 
n. This rate is only good if u„^„,„ is not a uniquely 
low value, which is supposed for reasonable 
boundaries. For the case u„.min is uniquely low, the 
rate can be improved. 

2.    Proof 

The proof of Theorem 1 is an adaption of that 
used by Ref. [3] in the stationary case. We use the 
following lemma which is a straightforward ex- 
tended version of Lemma 3.4 of Ref. [3]. 

Lemma 1: Suppose that 

<x,.,,i«{(g),^ 7)). 

Define Zi = 1(^, >u„) for some boundary values u„ 
where 

1-*(»,„)« C//I 

for some finite constant C. 
Then for some constant K depending on C only and 
for all n^2: 

i) lf0^r,j<l,ihen 

0«cov(Z„Zj)^ A: ■ ^i^n--"A(log/i)-^ 
vl-/-,, 

llog 
>*Pi-i\ 

'" vlogn/ 

ii) //0«ry=S I, then 

0«cov(Zi,Z,)^K"'I '"j^" e^' "^" 
n 

iii) If -\<r„^0, then 

0^cov{Z„Z,)^ _/^hto^ _^azio£« 

iv) !f -\%r„^ 0, then 

Q^cov(Z.,Z,)^    K^ 
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We need for Theorem 2 an extension of Lemma t. 

Lemma 2: Suppose that (Xi,Xj) and Z, are as in 
Lemma I. For any i,j, define u„ij =m\n(u»i,u»,) and 

Then for some constant K depending only on C and 
for all n^2: 

i) ff0^rij^],then 

Vl-r,> ^   ""a   / 

with K S (217) ^ • (1 + r, )''^- 

ii) IfO^rij^ \,then 

0^ cov{Zi,Zj)^ Km ^(«,„)(v'(v,„>))^ 

iu) If -l^r,j^O,then 

05:cov(Z.,Zj)^-{l-<P(u,^m~<P(K.j)) 

iv) If -i^ri,^Q, then 

05 \cov{Zi,Zj)\^K min(l,|r„|u„(,i'„j +r^^j) 

(1-*(«„,)) •(i-tf'K,)) 

(The proof of this lemma is given in [6]). 

Theorem 1 follows also by Theorem 2. There- 
fore, we prove now Theorem 2 by using the method 
of Ref. [3]. 

By Theorem 3.1 of Ref. [3], we have 

d.(;V,./'(A,))«i^ (^ + S \cov{Z.,Z,)\). (7) 

If p = 0, i.e. if nj^O for ip^j, then using Lemma 
2(iv) for the second term of Eq. (7), we get the 
second term of Eq. (6) which dominates the first 
one in this case, if pn >0 for some k. Obviously, if 
Pi =0 for all k, then the result holds, since the sec- 
ond term in Eq. (7) is 0. 

Thus suppose from now on that p >0. 

Because of Eq. (2) the sum 

5„ =    2     [cov(Z,^;)j=-    X    c, 

is split up into three parts, by using S >0 such that 

35 < 
1+p 

There are only finitely many A's with pi>S. This 
will be treated first as Case (i). For indices k with 
pt<6, we distinguish Case (ii) with A</i* and 
Case (iii) with k^n\ 

Case (i): Each term c,j of the sum S„ is bounded 
above by 

if fy 5:0 by Lemma 2(i) 
or bounded by 

Kn -I 

if fy < 0 by Lemma 2(iii). 
Since there are finitely many k's with pit>5, the 
number of terms c, with |/ -j\—k and pt ><i is of 
the order 0{n). Hence the sum on these terms is 
bounded by 

A:/i-"-''>'""'"(logn)"<'^'"+/:/i-'. 

Case (ii): There are at most n* terms p* such that 
O^pi^S and /c<n*. Hence there are at most 
0(n^*^) terms c,j with such a k = \i—j\. But each 
such term c, of S,, is bounded by 

if r,j 3^0 by Lemma 2(i) 
or bounded by 

Kn-- 

if r,j <0 by Lemma 2(iv). 
Then the sum of these terms c,, is bounded by 
0(«   '*"). 

Case (iii): Finally we consider the terms such that 
pk^ S, with k Sn*. Note that we have 

0SP,5T^5-     -^ log A:    SlogAi 

Each such term C; of 5„ gives a contribution 

(8) 
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\\ Ti, >0 by Lemma 2(ii) and by using Eq. (8) 

if Tij <0 by Lemma 2(iv). 
Taking  now   the   sum   on  all  terms   (/,;')  with 
ji -j|Sn^ we get the second term of Eq. (6). 

Finally, adding up all these upper bounds of Cases 
(i), (ii), and (iii), the result Eq. (6) of Theorem 2 
follows. 
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