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1. Introduction and Result

The extreme value theory of Gaussian sequences
has interested many authors, for instance Refs.
[1,4,7,8], dealing with the limit distribution of the
suitably normalized extreme value.

Let {Xi,i 21} be a standardized normal sequence
with correlations E(X.X;)=r,;, i,j 2 1, and $() the
distribution function of X;.

Let

No ='_§2|1(X, > 1)

denote the number of exceedances of a boundary
given by a triangular array {u.,i €n,n = 1}. Then it
was also found that N, converges in distribution to
a random variable having a Poisson distribution
P(A), if the mean number of exceedances
A =Z2ica(1 — P(u:)} remains bounded (cf. Ref.
[4D.
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For practical use of the asymptotic theory, it is
rather important to know the rate of convergence
or al least some upper bound for this rate.

For the stationary case, resulls on the rate of
convergence have been obtained for instance by
Refs. [2,3,9,10]. The aim of this paper is to give an
upper bound for the total variation distance d, he-
tween N, and IP(A,), in the nonstationary case, ex-
tending the results of these mentioned papers.

Suppose that for some sequence p.: Ir;|< p;
for i#f, and that the two conditions

p.<1 forall nzl
msAllogk .k =2, for some constant A

(1
(2)

are satisfied. Definc p as p=maux(0, r;, i#j) <1,
In addition, we assume that the boundary values
tend uniformly to oc:

()

Uy min = M U, — 2 as n— =,
l€igsn
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The exceedances of a constant boundary u. =u,,
1<i=n, are considered first, where only the tools
given in Ref. [3] are used. We show in the second
result that the method of Ref. [3] can be used also
for nonconstant boundaries {u.}. But these
boundaries are restricted such that the condition

4)

holds. If we want to extend the results 10 a more
general class of boundaries such that only

limsup (1= @(tgmn)) <C < @

limsup A, <C < @

H—

)

holds, we need to combine the method developed
by Ref, [4] with that of Ref. {3] to get satisfactory
results {see Ref. [6]).

Qur first result for boundaries which are con-
stant for fixed n, shows that the given upper bound
of the rate of convergence depends mainly on the
largest positive correlation value p.

Theorem 1: Let {Xi,i =1} be a standardized nonsta-
tionary nommal sequence with correlations {ry,
i,j 21}. Suppose that |r;|< py-; for i=j, such that
Egs. (1} and (2) hold. Let the boundary values
{umi=u,,1<isn} and A, be real values with
A=n(l—-@.)). Suppose that A, <C <, for
some constant C. Then as n—

b0 =0

n—1
+'—‘;g2ﬂkz‘l (n -—k)pk). (6)

This extends the result of Ref. [3] showing that for
a constant boundary their upper bound of the rate
of convergence in the stationary case holds also in
the nonstationary casc.

Theorem 2: Let {X,,i 21} be a standardized nonsta-
tionary normal sequence with correlations {r;, i ,j =1}
as in Theorem 1 satisfying Eqs. (1) and (2). Suppose
that the boundary values {i., 1<i<n,n=1} are
such that Eq. (4) holds, Then Eq. (6) holds.

The first term of Eq. (6) dominates the rate of con-
vergence in cases with 22 o < @ and p>0.

Then the rate of convergence depends only on the
lowest value w,m. Of the particular boundary u.,
and also on the largest positive correlation p. It
extends naturally the results of the stationary case
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with boundary values which are constant for fixed
n. This rate is only good if i, e 1S not a uniquely
low value, which is supposed for reasonable
boundaries. For the case u, m is uniquely low, the
rate can be improved.

2. Proof

The proof of Theorem 1 is an adaption of that
used by Ref. [3] in the stationary case. We use the
following lemma which is a straightforward ex-

tended version of Lemma 3.4 of Ref. [3].

Lemma 1; Suppose that

@.x)=N{(0).(; 7))

Define Z; = 1{X; > u.) for some boundary values t;
where

1 = q)(um')s C/n
for some finite constant C.
Then for some constant K depending on C only and
foralln=2:

[) If0<r; <1, then

/i 8
2+l+r¢(]ogn) T+ry

1
0= 2 Zy=K -
OB A=

if

n? \psie
A
log n

i) IfO0sr =1, then

#logn o
0scov(Z,2)s K -"'?5%-— i loen
£ Kp!-_!-'l?g LR
=

i) If =1<r; €0, then

0zcov(Zi,Z;) = _Kki[}z%ﬂ; _Kgg_iltzng n

n

iv) If —1<r;<0, then

02 cov(Z,2)> K3
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We need for Theorem 2 an extension of Lemma 1.
Lemma 2: Suppose that (X:,X;) and Z; are as in
Lemma 1. For any i,j, define 1,; = min(t, 1) and

Ve = MBX(Lpi JHnj )-

Then for some constant K depending only on C and
foralln=2:

PDIf0sr<1, then

N\
O<eov{Z, Z,)=K 11 (ﬁL‘”_TLl)ln,, cugT*
v —rl'j nif

with K = (27) 45 « (1 +1; 2.

i) If0sry< 1, then
L=
O0scov(Z,Z)<Kry (p(u,..-j)(¢(v,,,-j))'+"i

i) If =1<sr;<0, then
0=zcov(Z:,Z)) = — (1 — $(u)))(1 = D(vay))
z — (1 @)
) If —i<ry<0, then
0< |cov(Zi, Z;)|< K min(1,jr; luugvny +rivin; )
(1= P(uny)) - (1 = P(vs))

(The proof of this lemma is given in [6]).

Theorem 1 follows also by Theorem 2. There-
fore, we prove now Theorem 2 by using the method
of Ref. {3]

By Theorem 3.1 of Rel. [3], we have

1—e™

Aa

dun, PO (243 oon(2.2)]). )

If p=0, i.e. if r;<0 for i}, then using Lemma
2(iv) for the second term of Eq. (7), we get the
second term of Eq. (6) which dominates the first
one in this case, if o >0 for some k. Obviously, if
=0 for all k, then the result holds, since the sec-
ond term in Eq. (7) is 0.

Thus suppose from now on that p >0,

Because of Eq. (2) the sum

541

S 2 eov(Z.Z)[= %

Cy
Igi<jsn I€i<jsn

is split up into threc parts, by using 8 >0 such that

P
36<1+p

There are only finitely many &’s with g > 8. This
will be treated first as Case (i). For indices k with
o< 8, we distinguish Case (i) with k <n® and
Case (iii) with k =n°.

Case (i): Each term ¢, of the sum S, is bounded
ahove by

Kn 200 (logn)=#1te

if ; 20 by Lemma 2(i)
or bounded by

Kn?

if ry <0 by Lemma 2(iii).

Since there are finitely many k’s with p. > 8, the
number of terms ¢; with |{ —j|=k and p« > 8 is of
the order O(n). Hence the sum on these terms is
bounded by

Kn-U-atite(log g ) rti+et 4 K-t

Case (ii): There are at most n® terms p such that
O0s ;< 8 and k <n® llence there are at most
O(n'*% terms c¢; with such a k =i —j|. But each
such term c; of S, is bounded by

Kn-**9(og n)-4+8g K n 2438

if r; 20 by Lemma 2(i)
or bounded by

Kn™?

if ry <t by Lemma 2({iv).
Then the sum of these terms ¢; is bounded by
O(njH-M)'

Case (i1): Finally we consider the terms such that
m< &, with £ 2n® Note that we have

A _ A
loghk ~ slogn’

(8)

Ospks..

Each such term ¢; of §, gives a contribution
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A Too m i+ 128
ka( IOgn)' ]+“5Kﬂ1(:lg;n

n

if r, 20 by Lemma 2(ii) and by using Eq. (8)

nl22)

if ry <0 by Lemma 2(iv).
Taking now the sum on all terms (i,j) with
li —j|=n?, we get the second term of Eq. (6).

Finally, adding up all these upper bounds of Cases
(1), (ii), and (iii), the result Eq. (6) of Theorem 2
follows.
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