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This article develops new theory and
mcthodology for the forecasting of
extreme and/or record values in an ex-
changcable sequence of random vari-
ables. The Hill tail index estimator for
long-tailed distributions is modified so
as to be appropriate for prediction of
futurc variables. Some basic issucs re-
garding the use of finite, versus infinite
idealized models, are discussed. It is
shown that the slandard idealized long-
tailed modcl with tail index <2 can
lead to unrealistic predictions if the
ohservable data is assumed to he un-
bounded. However, if the mode] is
instead viewed as valid only for some
appropriate finite domain, then it is
compatible with, and leads to sharper
versions of, sensible methods for pre-
diction. In particular, the prediction of

the next record value is then at most a
few multiples of the current record. It
ix argued thal there is no more reason
to eschew posterior expectations for
forecasting in the context of long-tailed
distributions than to do so in any other
cantext, such as in the many applica-
tions where expectations are routinely
uscd for scientific inferenee and deci-
sion-making. Computer simulations are
used to demonstrate the cffectivencss
of the methodology, and its use in forc-
casting is illustrated.
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1. Introduction

Consider a sequence X,....X, of positive random
variables that is exchangeable. We say that X, .. is
a (new) record value if X, > X, fori=1,..n. Sce
[2] for some related discussion of record values in
the iid case. The problem that we address concerns
forecasting of the next observation, X, ., given that
it is a record value, conditional upon the data
X, =x;, for i=1,..n. In other words, given that
X, +1 sets a new record, how large will it be?

In the Bayesian approach, with squared error
loss, the forecast of X, ., conditional upon the data
X1, X, and upon X, .1 >max{Xy,...,X,], is simply
the posterior expectation of X, conditional upon
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the same information. Note that if a sequence is
exchangeable, then the future variables are also
conditionally exchangeable, given the realization of
the first # variables. Hence each of the next NV ob-
servations has in fact the same posterior predictive
distribution. The posterior expectation for X,.;,
conditional upon X, +; being larger than each of the
first n observations, is then the same for eachj = 1.
It may be noted that there are two quite different
questions that arise concerning the forecasting of
future record vatues. The first concerns the fore-
casting of when the next record value will occur,
while the second concerns the forecasting of the
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magnitude of the next record value. In this article
we only consider the second question.'

Although we focus attention here only on the
prediction of the magnitude of X, ., given that it
sets a new record, there is a relatively straight-for-
ward extension of these results to the evaluation of
the posterior expectation of X, .,, given that it sets
a new record. To obtain the prediction of the next
record value, conditional upon the dala x),..x.,
and upon X, .; being the next new record value, we
must evaluate the posterior expectation of X,.,,
conditional upon the collection of inequalities that
define the event that X..; is the next record value,
This can be done by a generalization of the proce-
dure for forecasting X+, conditional upon its be-
ing the next record value. For example, the
posterior expectation of X, conditional upon its
setting a new record, can be obtained by condition-
ing upon the event that X, sets a new record, and
then making the same type of evaluation as above
for X, .1, given that it is a record value; or alterna-
tively, by conditioning upon the event that
Xani<max[X,,..X,], and then evaluating the pos-
terior expectation of X, given that it is larger
than max[X,,...X:). Since in the Bayesian frame-
work with a specified a priori distribution, the pos-
terior probability that X, sets a new record is
known, there is no difficulty in principle in extend-
ing the analysis for the posterior expectation of
X.+1, given that it sets a new record, to the fore-
casting of the magnitude of future record values.
Explicit algorithms for doing so will appear in a
later paper.

Although the present paper deals only with the
evaluation of the posterior expectation of X, .1,
given that it sets a record, we shall nonetheless
sometimes speak of forecasting the magnitude of
future record values, since this can be achieved by
the same basic methods. Similarly, one can ohtain
the posterior expectation of the maximum over
some finite horizon, say the maximum of
Xo+ 1y erXnsn, given that this maximum exceeds our
current record value. This is a problem of consider-
able practical importance both in economic fore-
casting of interest rates, and in engineering design,
where for example, one desires to build a structure
capable or withstanding severe winds or earth-
quake tremors over a certain period of time. To the

! For those unfamiliar with exchangeability, it may be remarked
that exchangeable scquences are strictly stationary processes,
and can be strongly dependent. An interesting and important
class of exchangeablc processes consists of the Markov-Palya
processes, discussed in [3,4,5,6), which play a4 major rolc in the
theory of stochastic chaos.
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best of my knowledge such forecasting has never
been attempted before in the sense of providing a
procedure that could be recommended for serious
consideration in real-world problems.

If we assume a conventional statistical model
with some unknown parameter @, then in principle
these are straight-forward Bayesian problems,
since one can integrate out unknown parameters
with respect to their posterior distribution, to ob-
tain the predictive distribution for a new observa-
tion; and then condition also upon such a new
observation being a record value, in order 10 an-
swer the question. For example, one could obtain
the posterior expectation and variance for X..,
given that it is a record value. However in typical
real-world problems involving forecasting of such
extreme values, the model is always uncertain and
often unreliable. This is cspecially so in the tails of
the distribution, where there is little, if any, past
data to rely upon. Thus to obiain reliable forecasts
requires serious attention to model uncertainly.
See Hill [71 for discussion of the selection of mod-
els from a Bayesian viewpoint, Poirier [8] for a
Bayesian analysis of some theoretical models in
economics, and Singpurwalla and Meinhold [9] for
Bayesian robustification theory in a closely related
area.

In this paper we attempt to deal with the prob-
lem by using the formulation for inference about
the tails of the distribution initiated in [1). See [10]
for an exposition, and Csorgd et al. [11] for related
asymptotic theory. This approach utilizes only the
upper order statistics of the past data for inference
about the upper tail, since it is only such order
statistics that fall in the upper tail where the form
of the distribution is assumed known. Seriously to
utilize the information in the other order statistics
requires knowledge concerning the global form of
the distribution, and such knowledge is often un-
avzilable. Suppose that given the parameter a, the
upper tail of a distribution F on the positive real
line is of algebraic form, with 1ail index a. We as-
sume that

1-F()=P{X >tla}=C x:t7",

for C >0,@>0, and 7 in some interval (4,k) that
is considered relevant for prediction of future ob-
servations. It is supposed that a random sample
Xi=x, for i=1,.n, from the distribution is
available, and based upon this data we wish to
forecast the next observation X, .. Such prediction
in the Bayesian context amounts to putting forth a
posterior distribution for X,,+,, that is obtained by
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integrating out unknown parameters such as e,
with respect to their posterior distribution, and
then making appropriate forecasts by minimizing
posterior expected loss with respect to some loss
function. In this article we consider only squared
error loss, but our methods can be used in connec-
tion with any loss function believed appropriate.
See Aitchision and Dunsmore [12] and Maret [13]
for the Bayesian theory and methodology of such
predictive distributions.

Often a simple summary of the posterior predic-
tive distribution, such as the posterior expectation
and variance of X,.i, suffices for many practical
purposes. In typical applications A will be the
largest order statistic of the past data. k can some-
times be + o, but for reasons discussed below will
often instead be some modest multiple of 4. We
might be interested, for example, in forecasting the
next observation, X, .,, conditional upon its being
between x™ and 5 xx", where x, is the largest
order statistic of the past data. Forecasting of such
a record value is an especially difficult part of the
overall forecasting problem, since by assumption
there is no past data of this magnitude. Yet in fore-
casting extreme values, it is necessary to consider
precisely the situation in which the observation is
more extreme than anything yet secn. For example,
in designing a structure to resist high winds, one
must make allowance for forces more extreme than
have yet been experienced. It would be foolish to
imagine that such forces have already been ob-
served at their maximum.

The best that one can do in such circumstances
is to use what relevant theory exists, making sure
that such theory is compatible with the data that
has been seen. In this article we shall rcly on the
theory of long-tailed distributions, in which the tail
is known to be of algebraic form at least in some
interval. Many data sets are known to be of this
form. Examples include income distributions, cily
size distributions, distributions of genera by spe-
cies, insurance claim sizes, word frequency distri-
butions, stock market fluctuations, and many
others. See Zipf [14] for graphical presentation of a
great variety of data in support of his theory for
long-tailed distributions. Several theoretical mod-
cls have been proposed for such data. These in-
clude the probability models of Yule [15], Hill
[16,17,18], Hill and Woodroofe [19,20], and Hilt,
Lane and Sudderth [3,4] Seec Johnson and Kotz
[21] for discussion of the model of Hill [22,17],
which was the starting point for the later models.
As pointed out by Chatterjee and Yilmuaz [23],
some of these models are related to stachastic
models for chaos,
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We are particularly interested in the case where
a is not large, so we are dealing with a truly long-
tailed distribution. For any « >0 the distribution of
Xa+1 is proper, even when k=, However, for
fixed known a < 1 the expectation of X+ is infinite
if there is no finite upper bound for the data, and
the variance of X, is infinite if a<2. Also, if
a =1 is unknown, which is ordinarily the case, the
posterior distribution for a must give sufficiently
small weight to values of a near 1, in order for the
posterior expectation of X...: to be finite. This gives
rise to an important practical issue for Bayesians,
since the predictions are then very sensitive to the
precise form of the a priori distribution for @ near
1, and the results are not robust. Similarly, if a 22
is unknown, the posterior distribution for a must
give sufficiently small weight to values of a near 2,
in order for the posterior variance of X,.1 to be
fimite.”

In view of such nonrobustness, it is necessary to
proceed more carefully than in most problems of
statistical inference and prediction. Our method is
to take explicit account of the boundedness of the
observations. In many real world applications of ex-
treme value theory, where one deals with maximal
temperatures, wind velocities, rain fall, etc., the
data are generally considered to be bounded. For
example, a wind velocity even double the highest
ever previously experienced, must be regarded as
extremely improbable. Even if such could occur, it
might be regarded as indicating a basic change in
climate such as would invalidate all standard as-
sumptions, and so require modification of existing
theory. This suggests that a realistic analysis of the
prablem should incorporate a finite upper bound,
say K, for the data.® Such a bound might be taken a

*Some may think 1hat because of such issucs one should be
considering inference about percentiles, such as the median,
rather than the expectation, However, means are often of par-
ticular intercst and importance in real-world problems, and of
course are appropriate for squared crror loss. If there were no
lechnical difficulties at infinity with the expectation, would any-
one argue against its use for prediction?

3 Instead of requiring that the mass be exactly 0 heyond a cer-
tain known bound K, une can alternatively require that the mass
beyond this bound be %o negligible as 10 be of no intcrest, In the
subjective Bayesian approach it would be remarkable for anyone
to have a probability of 0, to infinitely many decimal points, for
2 logically possible cvent. However, whether or not 8 is taken
literally, in cffect one ordinarily ighores values of the observa-
tiont larger than the bound. For 1he purposes of this article we
treat such negligible mass as though it were 0. An alternative
and nearly cquivalent way to deal with the problem is w con-
sider only ¢conditional inference, given that the obscrvations arc
no larger than the bound, A general theory and methodology for
sutch conditional inference is proposed in [24].
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good deal larger than is ordinarily believed reason-
able. A 10-fold increase above a previous record
value that was based upon substantial data would
often be 100 large, but is worthy of consideration. If
such an upper bound is incorporated in the analy-
sis, then as shown below, even if a< 1 there is no
problem with infinite moments. We will typically
assume some known finite upper bound K, perhaps
much too large, but we will not necessarily assume
that a =1, and will let the data speak for them-
selves in this regard. Since the density in the tail is
proportional to ¢!, we sec that a=0 corre-
sponds (in the tail) to a uniform distribution for
the logarithm of the observation. Such a distribu-
tion is often used by Bayesians to represent dilfuse
a priori knowledge about a positive quantity such as
a variance.

Qur precise model is as follows. We assume that
there exists a known constant K such that
0= X <K, so that K is a known upper bound for
the data. In applications, ordinarily K < o, but for
completeness we shall also discuss the case K = o,
which is sometimes appropriate and is mathemati-
cally convenient when a>2+¢>2, in which case
no problems arise due to infinite first or second
moments. We do not assume in applications that
one can necessarily determine a smallest such K,
but merely that one can pick some bound. We also
assume that there exist constants k and A with
K=>k>A >0, such that the tail is algebraic, to an
adequate approximation, for A <<k, with 0 mass
beyond K. Let x> - >xg,,; be the descending order
statistics of the past data. Ordinarily we take A to
be the largest order statistic of the past data,
A =x3. The quantity k is the key variable in our
analysis. It represents the point up to which the
algebraic assumption is assumed to be valid. & is
not a parameter in the usual sense, but is more in
the nature of a decision variable, since in applica-
tions the tail will not be exacrly algebraic in any
interval, but it will nevertheless be reasonable to
act as if it were approximately of this form for some
intervals. The selection of & in part acts as a means
to specify the portion of the distribution that we
are particularly interested in. Even il X > & we may
not be interested in forecasting X for such cxtreme
values, since the occurrence of such would force us
to reconsider our modelling assumptions, as in
[7,24,25].

We are in effect assuming a model in which the
algebraic behavior holds, given «, to a satisfactory
approximation for A € X<k, and that eventually
there is 0 {or negligible) mass beyond some known
K >k. We assume that the same & is appropriate

524

for all values of & being given positive weight. Be-
tween k& and K there must be a transition from the
algebraic tail behavior up o & and the negligible
mass beyond K. In this transition zone the tail of
the distribution may not even be approximately al-
gebraic, and if algebraic, may have a different tail
index. The mass between &k and K need not be en-
tirely negligible, but we assume there is no data-
based or other information concerning the form of
the mass distribution in this interval, apart from
the fact that the total mass in the interval is smaller
then C Xk 77 as is required by the model. If & is
large enough, then C xk ™%, although not entirely
negligible, may be sufficiently small so that the
mass between k£ and K < = has only a slight effect
upaon the posterior moments for X, +;. We shall as-
sume that this is the case, so that the tail distribu-
tion is of algebraic form from A4 10 &k, while beyond
k, although not 0 or entircly negligible, the mass is
of no practical importance for the assessment of
the posterior moments of X, ..

Typically, the posterior expectation of C Xxg"
will be of order of magnitude 1/(n 4 1) based on a
previous sample of size . Compare the maximum-
likelihood estimator €y of [I, p. 1168]. This also
corresponds to the fiducial analysis of Fisher [26, p.
210], and to the Bayesian non-parametric proce-
dure A4, of Hill [22,27,35]. Thus before observing
X1,....X., because of the exchangeability there is an
unconditional probability of 1/{n + 1} that X..+, will
be the maximum, which suggests that even condi-
tionally this will often be of the right order of
magnilude. As shown in [5], there is an explicit
parametric model, called a splitting process, for
which this evaluation holds cxactly, and such an
evaluation is coherent in the sense of de Finetti
[28,29).

The constunt K plays virtually no direct role in
the following analysis, but is important because of
the delicate issues that arise when o< 2, In this
case if there were no finite upper bound K and the
algebraic rail were assummed valid everywhere be-
yond A, then the posterior predictive variance of
the next observation would be infinite; and the pre-
dictive expectation would also be infinite unless the
a priori distribution for a gave sufficiently small
weight to values near 1. There is no known reason
that @ must be larger than 2, or even larger than 1,
and the data may in fact clearly suggest that it is
smaller than 1. But an infinite predictive expecta-
tion would not correspond to any rea) world prob-
lem that I know of concerning extreme data, and |
doubt that one could seriously recommend such
predictions. For example, they would lead to
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terribly poor performance if predictions were made
and assessed according to some proper scoring rule
or loss function. This change in viewpoint to reflect
the boundedness of the data gives rise to some sur-
prising consequences with regard to prediction.
The key choice concerns not K but &, since cven
if there were a known finite upper bound X for the
data, it might still not be appropriate to assume the
algebraic form all the way up to X, but only that in
the domain of practical importance the tail is of
this form, say up to k, which is equal to some ap-
propriate upper percentile of the distribution. This
is in essence a modelling assumption, just as when
we assume that the normal model for data is suffi-
ciently closely satisfied to be useful in the analysis
of that data. Modelling assumptions are rarely ex-
actly true, but they are sometimes indispensable in
order to proceed, and often give useful results. See
[7,25,27]. The form of analysis that we recommend
is a conditional analysis, given a specification of k.
For example, with A =x;,, we consider predictive
inference about the next gbservation given that it
lies between xy; and some k >x,. If L =k/xyy, then
we find that it typically makes a great difference
whether L is of order 5 or order 100, both with
respect to the posterior predictive mean and the
posterior predictive variance for the next ohserva-
tion. Based upon the mathematical and computer
analysis in the next sections, we recommend that
the forecaster make a choice of L, usually wilh
L <10 and sometimes even with L =2. To illus-
trate, when L is chosen to be 3, the adequacy of
our modelling assumption depends on whether it is
or is not the case that the algebraic form holds be-
tween x(;) and 3 Xxy, with the mass beyond 3 xx
no longer even approximately of the algebraic [orm
with the same a as between x;, and 3 X x(), and also
with the mass beyond 3 xx; sufficicntly small so
that for practical purposes it can be ignored. In
principle the optimal choice of & is the largest value
for which the algebraic assumption holds exactly
{or in a suitable sense, approximately); while be-
yond that k the tail is no longer of that same form,
and also is of little practical importance in the eval-
uation of the first two posterior predictive mao-
ments, It would be difficult if not impossible in
typical real-world problems to find such an optimal
k, and s0 we recommend that several values of k be
chosen, yielding different values for the posterior
predictive moments, and then by means of judg-
ment and data-analytic methods that a choice be
made to yield a forecast. See for example Sec. 5 of
(1] for a closely related type of data-analysis. Such
analyses must be made on a computer, rather than
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purely mathematically, and can be quite demand-
ing computationally.

We emphasize that it docs not seem possible to
avoid such considerations as to the choice of k,
since in even the best of cases, where the tail of the
distribution is known to be of the algebraic form in
the domain of interest, the only alternative to such
an analysis is to simply ignore the boundedness of
the data, and take k = =, But then our prediction
of the next record value can become infinite, which
is absurd in most real-world problems. Hence the
algebraic tailed model with 1< a = 2 is not compat-
ible with unbounded data unless the a priori distri-
bution is chosen to give suitably small weight to
values of o close to 1. There may be litile or no
evidence for choosing the a priori distribution in
this way, and it does not seem appropriate to do so
merely to avoid the issue, just as it does not seem
appropriate to rcplace the expectation hy the me-
dian merely to avoid the issue. At any rate, this
article shows that effective predictions can be
made with any prior distribution for e, including
cases where a<1, provided that one can justify
some finite upper bound K far the observations.

Our underlying motivation is that given the unre-
liahility of assessmcnis of the far upper tail of a
distribution, for predictive purposes it may be ap-
propriate to ignore this far upper tail, i.e., the part
beyond k, or cquivalently, to condition upon X
falling in some finite interval, say (xu),L Xxq), for
which the algebraic assumption is believed to be
valid, and beyond which there is no assumption
that is believed trustworthy. It is implicit in this
analysis that there is little mass beyond k, and that
in ignoring the case X =k far some appropriately
chosen &, one loses little, while gaining the power
of a statistical analysis based upon the extreme
value model with some a>{. In the case of a
known finite upper bound K, in effect we perform
conditional inference, given that the observation is
not too large, and then examine sensitivity to the
choice of k. The same is true if the random vari-
able is unbounded and K = =, since again beyond
a certain percentile one would have no empirical
basis for any assumption in the far upper tail.
Whautever extreme value theory exists for tails of
distributions could not be expected to hold literally
in the far upper tail of the distribution, where no
data has been observed. Nevertheless, one may
have 10 make some forecasts, and it would appear
reasonable to assume that the algebraic assumption
holds for at least some distance heyond x. If this,
or some other assumed model does not hold
beyond x;; then plainly no serious theory-based
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forecasting is possible. But if through data analysis,
as in [1,26], it has been discovered that the alge-
braic assumption is acceptable for say the upper
r 41 order statistics of the past dala, then it would
be reasonable to anticipate that this will also be
true for some distance beyond x(;,. A Bayesian the-
ory of data analysis is put forth in {25] which indi-
cates how the classical Bayesian approach must be
modified to deal with issues that arise from such
data analysis.

Finally, real world data sets of interest in regard
to the forecasting of extreme values are not neces-
sarily of the long-tailed algebraic form that we have
discussed. In this case we recommend that a trans-
formation be first applied to the data in order to
make the upper tail of the long-tailed form. For
example, if the tail is of Weibull form, then the
transformation to exp X* yields an algebraic tail, as
discussed in [1,10]. When the form of the tail is
unknown, data-analytic methods can be used 1o de-
termine an appropriate transformation. In this way,
having learned how o forecast extreme tails for the
long-tailed distributions as a type of standard case,
we can also apply our methods to distributions not
of this form in the upper tail, and then take the
inverse transformation to forecast the extreme val-
ues in the original units in which the data were
measured. Such methods are quite common in
statistics, for example in transforming data in order
to obtain approximate normality, using normal
methods for analysis of the data, and then trans-
forming back to the original units, In the Bayesian
scenario it is even possible to provide a strong justi-
fication for these methods, since conditional upon
the data, one can quite freely transform the
parameters, and obtain the posterior distribution
for the new parameters by the usual calculus of
transformations.

2. Predictive Moments for Known «
Our object is to evaluate, as meaningfully and
robustly as possible, the posterior moments

E(Xqu+l|/4 "<‘-Xl+l"‘k)

for specified A and &, and i =1,2. The primary ap-
plication will be in the case where there has been a
previous sample, X\,....X,. Let D denote the data
Xy=x,...X, =x,. Given this data, we wish 1o fore-
cast the next observation X..;. It i$ notationally
convenient to refer to X, as X from now on. Since
A will usually be held fixed, we suppress it in the
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notation. To evaluate the posterior predictive ex-
pectation of X we first condition on «, to obtain

flka)=E(XU<X<k,a),

and then we take the expectation of this quantity
with respect to the posterior distribution of « to
obtain the predictive expectation of primary inter-
esl.

Bascd upon our assumption that the tail is alge-
braic between 4 and &k, we obtain

x *d
k)=
For L =%, this yields:
A X2 xR ifa=0,1
f(k,a)—{A xIn(Lyxrs ifa=1
Ang=t if a=0. N
For a=0, 1, we can also write:
. a Ln—l_
f(kra) 'Axa_lx‘{'x [Lo=1 (2’)

A similar equation is available for f®(k,a)=
E(XY4 < X<k,a). We obtain:

1-f2-=

ATX X fa=0,2
j“’(k.a)—[?.xA xIn(L)x[=] ifa=2
A2 x,’;—;,('}, if =0,

(3)

The posterior predictive variance for a future
record value X, given a, is therefore

Vik.a)=fOk.a)-[f(k.a)F. (4)

It follows from (2) that for a > 1, as L — = we have

Flk.a)~A xa—‘:T. (5)

When a > |, the right-hand side of (5) decreases
from o« for &a=1 to the value 2xA when a=2,
with the value 3 x4 when a=1.5. Provided that «
is bounded away from 1 this expectation remains
bounded.

For a <2, the posterior predictive variance goes
to © as L->=. If we define e =2—a >0 then for
large L

[0k a)=Atx a x 2= (6)
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For each L >1, and for €>0, the function
¢ ()= is monotonically increasing in €. For
0<e<2 it has a maximum value of L5 when
e=2, and an infimum of In(L) as ¢—0. For large
L, as ¢—0 we see from Egs. (3), (5), and (6), that

Vi) =A% (@ In(L) - (75D O

From Eq. (3), it follows that for a >2 the poste-
rior predictive variance remains bounded, and as
L > tends to the limiting value

AT 2

Now consider the forecasting of the maximum of
N future observations, Define

M =max[X, e 1,eXurn]s

and Jet mw*(a,C) be the posterior distribution for
«,C, based upon the data D. The likelihood func-
tion Ly(a,8) of [1], when converted from lower tail
to upper tail inference, can be used to obtain this
posterior distribution. For r > A, we have

PM>t|D)= rr[l —-(1-C %179}

™ (a,C) da dC. 9)

When N =1 this gives the posterior predictive
distribution for a single new observation consid-
ered earlier, except that here we have not yet con-
ditioned upon X =A4. Just as before, one can
consider the postetior moments of M, given that
M =zA4. When N is not small it is very probable that
M =x1, so that a new record will be set. Thus for
large N the predictive distribution of M will be ap-
proximately the same as the predictive distribution
OfM, given M ?X“).

In Table | we present for several values of o the
predictive moments as obtained by numerical inte-
gration. The predictive mean is denoted by £*(X)
and the predictive standard deviation by SD*{X).
The column labelled DIST gives the posterior pre-
dictive probability that X is larger than 2, 3, and 5
times 4. Values of & go from .10 to 1.90, and values
for L go from 1.25 to 10° It can be checked that
the above asymptotic formulas hold quite closely
for fixed a.

We see from Table 1 that the posterior expecta-
tion of X, given that X >4, is only a few multiples
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of A, even when a is as small as .10, provided that
L =10. In an important class of application A4 is
taken to be xy;, so that the teal action takes place
with regard to a few multiples of the largest obser-
vation yct observed. When L <2 we sec thal the
value of o between .10 and 1.90 has very little ef-
fect on the posterior predictive first and second
moments. On the other hand, when L is very large
the value of « has a huge effect. For example, the
posterior expectation drops from 37,297 x4 when
L =10°to 2.11 XA, as a changes from .10 to 1.90.
The chaice of L can make a huge difference when
a< 1. However, in many applications of extreme
value theory, it could safely be assumed that
L <10, in which case L has only a minor effect
even when a< 1. The choice of L has a greater
effect with regard to the predictive variance, but
again if L <10 there is substantial robustness.*
Thus the first conclusion that we draw is that in a
real-world problem, where there has been substan-
tial data, such as with regard 10 wind velocities,
temperatures, etc.,, and where one does not take
seriausly the possibility of the next record value be-
ing an enormous multiple of the current maximum,
the precise choice of « and L has a limited effect
upon the forecast. This is precisely what we are
aiming for, namely an approach in which one can
seriously input a priori knowledge regarding a and
L in such a way as to see clearly the real but limited
effect of such choices.

Table | refers to the case of known a. In prac-
tice « will ordinarily be unknown. The Bayesian ap-
proach is to employ some a priori distribution « for
a, obtain the posterior distribution for a given D,
and then obtain the posterior expectation of X,
given that A <X <k, For a specified k, this poste-
rior expectation can be written as

Fk)=E[E(XIDAsX=<k,a)]=E[f(k,a)), (10)

where the last expeciation is taken with respect 10
the posterior distribution of «. Similarly, the poste-
rior second moment for X is obtained by evaluating

FOkYy=E[E(XYD A < X <k .a)]=E[f%(k,a))(11)

We employ the theory of [1] to oblain a likeli-
hood function for the parameter a based upon the
upper order statistics of the past data. We first
condition upon the upper r+1 order statistics of
the data lying in the region where the tail is of

* See [30] for a gencral formulation of the robustness problem
in Bayesian statistics.
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Table 1. Fixcd ALPHA

ALPHA FRED DIST BOUND
« E*(X) SD*(X) 2 3 5 i
10 112 7 9 8 71 13
10 1.23 14 83 85 79 150
10 144 29 93 & W 2
10 1.80 57 TR S
10 243 L12 93 8 M/ 5
10 375 245 9 8 9 10
10 18.70 23.46 9 85 ¥ 10
10 734.88 1715.25 % 8 .19 10
10 3729727 128x10° 93 85 .79 I0F
50 112 n no4s 32 L3S
50 1.22 14 74 3R s
50 141 24 74 32 2
50 L.73 56 J a4 323
50 2.24 107 745 325
50 3.16 2.22 Mo45 32 10
50 10.00 16.43 71 a5 32 100
50 100.05 S7LTT 7 o4 321
50 1001.62 1825756 745 32 e
90 112 o7 5423 a3 13
90 1.22 14 5423 a3 150
%0 1.39 28 S 23 a3 2
90 1.66 54 S8 23 33
50 2.05 1.00 54 23 a3 s
9% 267 1.93 54 @3 .3 10
90 535 10.12 54 23 a3 10
90 13.62 142.79 54 1 a3
%0 26.86 1806.66 54 23 a3 e
L.10 112 7 4T a1 08 135
110 121 14 AT 07 08 150
110 1.38 2 47 a1 s 2
110 1.63 53 4 a7 3
110 1.97 96 47 a7 08 S
1.10 2.46 L78 47 17 0 10
110 4.09 7.73 47 a7 8 100
110 6.62 69.46 47 a1 ;& I
L10 8.24 554.67 47 a7 8w
1.50 L1 07 3 03 12
1.50 1.21 14 35 09 03 150
1.50 1.36 27 33 09 03 2
1.50 1.57 50 3 0 03 3
1.50 1.82 &7 3 09 03 S
1.50 2.12 1.49 3 w0
1.50 2.70 4.44 309 03 100
1.50 297 16.98 s e 03 10
1.50 3.00 54.72 309 03 1
190 L1l 07 21 05 O 1.25
1.90 1.20 14 27 s 0l 1.50
1.90 134 27 27 05 w2
1.90 1.51 48 27 05 01 3
1.9 1.69 78 27 5 oS
1.90 1.87 122 21 05 o 10
190 2.08 261 27 05 0 100
1.90 211 4.93 21 05 0l 10°
1.90 211 7.23 271 05 W 10°
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algebraic form, i.e., larger than D of [1], and then
condition upon the values of the ratios of upper
order statistics v; =xx Y fori=1,.._r. As shown
in [1], if we are indeed in the upper tail of the
distribution where the algebraic form holds, then
conditional upon a, the quantities ¢, =i <In v, are
independent with a common exponential distribu-
tion having parameter «. A sufficient statistic for
a, conditional upon the v; and r, is then

t=it(r)= 2': é.

i=1

(12)

The (conditional} likelihood function based upon r
and ¢ is then

L{a)=xa xexp] —at], (13)
for a >0. In conjunction with some a prion distri-
bution for a this likelihood function can be used to

obtain the posterior distribution for ev. If & is large
and a > 1, we see from (5) that

E(XIDASX&I(,Q)::A xa% (14)

I

In general, the predictive moments of X can valy
be obtained by numerical integration, In Sec. 4 we
examine the sensitivity of such quantities to the
data, choice of L, and choice of a priori distribution
for «. The case k = o, however, has a closed form
analytic sotution for a Gamma a priori distribution
of a, and this contributes some insight into the be-
havior or the posterior moments of X

3. k==
In this section we examine the special cise in
which the distribution is known to be algebraic cv-
erywhere beyond A4 . In this case, in order for posic-
rior moments to be finite, we will have (o assurne
that e is sufficiently large. It follows from Eq. (1)
that the posterior expectation of X..), given that it
is in the upper tail and a, 15 finite if and only if
a > 1. In the Bayesian analysis, with an a priori dis-
tribution for «, the unconditional posterior expec-
tation of X is finite if and only if the a prion
distribution sufficiently downweights values of «
near 1.

We can gain some insight by suppasing that a > 1
has the prior distribution

w(a)=¢ X (a= 1) exp[ = Bla 1)},
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for 8,8 >0, where ¢ =1'(8)/B% is a proportionality
constant. In other words, we give a—1>0 a
Gamma a prieri distribution. If § >1 we obtain
from Eq. (1) that the posterior expectation of X/A4,
given X =24, is

E(-== D)

B Es)Y  xs I xexp] ~(t + B)s )ds
A sYyxs* T ixexp[— (1 + Bl lds

(15)

This expectation is finite provided that § > 1.

For positive integral values of r we can expand
the powers of 1 +5 using the binomial theorem, and
this allows us to make explicit evaluations, To illus-
trate, if r=1 as in the forccasting of city sizes in
Tahles 6 and 7, we have

ca 1428 - 1)/t + B) + 8(8— DIt + B)?
A e )= T+6/(t +B)
xi+B8 (16)

d-1"

This reveals the manner in which the expectation
blows up as 8 »1. When 8 =2, the right-hand side
can be written as

l+(!+p)(f+[3+l)
r+8+2 i

Fort + =1, we abtain the value 1.67. This is com-
parable with the values in Tables 2, 3, and 4, when
r=t=}, and L<35 Forr=1and 6=2, f(k) is ap-
proximately (1+r+B)x.4, provided that 1+ 8 is
sufficiently large. Similarly, other integral values of
ryield closed form expressions, which provide some
insight as 1o the behavior or the posterior expecta-
tion of X.

from Eqs. (3) and (11}, the posterior predictive
second moment for X, given that X' 24, is

'f‘z’(k)=:42x£';lﬁ ID,_X?A]. (17)

If o =2 and the a priori distribution for a—2 is of
the Gamma forin, with parameters 8,8, the poste-
rior prediclive variunce for X will be finite, pro-
vided that § > 1. Closed form expressions can be
obtained when r is a positive integer, just as with-
the corresponding predictive first moment.



Yolume 99, Number 4, July-August 1994
Journal of Research of the National Institute of Standards and Technology

Table 2. Uniform prior, LB=1.001, UB=1.999, prior mean=1.50, 3D =29

DATA POST PRED DIST BOUND

r ¢ E*a) SD*(a) E*x) SD"(X) 2 5 10 L

1 1 147 29 1.1 .07 37 10 M 1.25

1 1 1.47 29 1.21 .14 37 a0 .4 1.50

1 1 1.47 29 1.36 a7 27 10 .04 7]

1 1 1.47 29 1.58 51 27 10 ¢ 3]

1 1 147 .29 1.84 .88 37 10 M 5,

1 1 147 29 2.16 154 A7 10 04 10

1 1 1.47 .29 2.6 5.37 37 W0 M4 w0°

1 i 1.47 2 382 38.95 37 0 04 10*

1 1 1.47 29 430 305.19 37 .10 04 10

3 2 1.50 28 L.11 o7 36 10 04 1.25

3 2 1.50 28 1.21 .14 36 .10 04 1.50

k) 2 1.50 28 1.36 2 36 10 04 2

3 2 1.50 .28 1.57 51 36 10 04 3

3 2 150 .28 1.83 B8 36 .0 4 5

3 2 1.50 28 2.14 1.52 36 .10 .04 i)

3 2 1.50 .28 288 5.16 36 .10 04 10°

3 2 1.50 28 363 3599 36 0 M4 iy

3 2 1.50 28 4.03 276.83 36 10 04 10*

2 3 1.37 27 1.11 A7 .39 A2 05 1.25

2 3 1.37 .27 1.21 14 Ay 12 s 1.50

2 3 137 27 137 28 39 42 05 2;

2 3 1.37 .27 1.5% 51 A% 12 05 3

2 3 1.37 .27 1.87 90 a8 12 05 5

2 3 1.37 27 2.24 1.61 A9 360 .36 10

2 2 137 27 3.22 5.9% 39 36 .36 17

2 3 137 27 4,43 46.85 39 360 36 104

2 3 1.37 .27 5.16 37737 39 36 .36 10

5 1 1.67 .25 1.11 07 32 .u7 03 1.25

5 1 1.67 .25 1.21 .14 32 07 .03 1.50

5 | 1.67 .25 1.35 .27 32 07 .03 2

5 1 1.67 .25 1.55 49 32 07 .03 3

3 1 1.67 25 1.77 84 32 07 .03 5

5 1 1.67 .25 202 1.40 32 .07 .03 10

5 1 1.67 25 249 405 32 07 03 10°

5 1 1.7 225 2.8{) 21.99 32 .07 .03 lin

5 1 1.67 25 293 152.19 32 07 03 10°

1 § 122 20 111 .07 4315 o7 1.25

1 5 1.22 20 1.21 14 43 .15 07 1.50

1 5 1.22 .20 1.37 28 4315 07 2

1 5 1.22 20 1.61 52 43 15 07 3

1 5 1.22 .20 1.93 .93 43 15 07 5

1 5 1.22 20 2.36 .71 43 15 07 10

1 5 1.22 20 3.68 6.97 43 5 07 10°

1 5 1.2 .20 5.61 60,75 43 15 07 10

1 5 1.22 20 6.94 512.81 43 U5 07 10"
30 20 1.52 .23 1.11 .07 35 090 03 1.25
k!l] 20 1.52 23 1.21 .14 35 09 03 1.5¢
30 20 1.52 .23 1.36 27 35 09 .03 2
a0 20 1.52 23 1.57 50 35 .09 03 3
30 20 1.52 .23 1.82 87 35 09 03 5
30 20 1.52 .23 2,12 1.50 .35 09 .03 10
30 20 1.52 23 .74 4.81 35 09 .03 100
30 20 1.52 23 3.29 28.02 35 0 03 1
30 20 1.52 23 3.48 185.91 .35 He 03 10
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Table 2, Uniform prior, LB = 1.001, UB = 1.999, prior mean = 1.50, SD = .29 = Continued

DATA POST PRED DIST BOUND
r H E*(a) SD*(a) E%(X) SD*(X) 2 5 10 L

20 30 1.08 o7 1.12 07 47 18 0% 125

20 o 1.08 iy 1.22 14 47 .18 .08 1.50

20 30 1.08 07 1.38 28 47 8 08 Z

20 30 1.08 07 1.63 53 47 .18 08 3

20 o 1.08 07 1.98 .96 47 8 08 5

20 k] 1.08 07 248 1.80 47 .18 08 13

20 30 108 07 471 801 47 18 08 100

20 30 1.08 07 1.7 78.63 47 18 (K 104

20 30 1.08 07 9.7t 706.23 47 .18 .08 L
300 200 1.50 ki 1.11 07 a5 0 03 125
300 200 1.50 09 1.21 .14 35 0 03 1.50
ane 200 1.50 09 1.36 27 35 09 o 2
00 200 1.50 0 1.57 S0 35 .09 (03 3
300 200 1.50 .09 1.82 BT 35 09 03 5
300 200 1.50 09 2.12 1.4v 35 09 .03 10
300 200 1.50 09 27 4.48 35 09 03 lta
300 200 1.50 09 300 18.24 35 09 A3 10
300 200 S50 09 3.04 67.25 35 09 03 i
200 300 1.01 0l 1.12 07 S0 200 0 1.25
200 300 101 01 =2 14 30 20 .10 1.50
200 300 1.0 .01 1.3% 28 S0 200 .10 %)
200 300 1.061 N 1.65 53 .50 20 A0 3
200 300 1.01 1) 2.01 47 S0 20 10 5
200 300 1.0 0l 2.55 1.85 S0 20 0 10
200 300 1.01 01 4.59 8.73 So 20 .10 10°
200 300 1.01 01 8.88 95,94 S0 200 .10 1
200 300 101 01 13.01 94180 S50 20 10 ure

4, k<e

One of our purposes in this article is to show
that prediction can be very sensitive to the a priori
information introduced regarding L, and that it is
essential to incorporate strong a priort information
as to the magnitude of this quantity in order to
obtain realistic forecasts. No closed form results
are available apart from those of the last section.
We consider now various a priori distributions for
a. In the previous analysis it was not possible to
give a a uniform distribution, since this would re-
quire 8 =0 and 8 =1, in which case with infinite k
the expectation is infinite. However, with a finite
upper bound for X', we obtain a finite expectation
for any @ =20, and in fact even for negative «, al-
though this case is of little interest.

Table 2 displays results for the case of a uniform
a priori distribution for a, using a finite grid of pos-
sible values for o between LB=1.001 and
UB=1.999, several values of r and ¢, and several
choices of L. The prior expectation and standard
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deviation for a and 1.50 and .29, respectively. Table
3 gives such results for a uniform a prioni distribu-
tion, using a finite grid of values between LB =.001
and UB=1.999, in which case the prior expectation
and standard deviation for a are 1.00 and .58, re-
spectively. In these tables the column labelled
“POST" gives the posterior expectation and stan-
dard deviation for a, the column labelled “PRED”
gives the posterior prediclive expectation and stan-
dard deviation for the next observation X, and the
column labelled “DIST” gives the posterior proba-
bility that X is larger than 2,5, and 10 times A,
respectively.

So far we have only considered very strong a
priori knowledge, such as in Table 1 where o is
known, and very weak a priori knowledge, such as
the uniform distributions of Tables 2 and 3. In ap-
plications it is important also to be able to input an
a priori distribution for a in which some values are
singled out as being given substantially more
weight 1han others. A useful family of a priori dis-
tributions for a for this purpose is the three-
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Table 3. Uniform prior, LB =0.001, UB =199, prior mcan=1.0¢, $D = .58

DATA POST PRED DIST BOUND

r ' E*a) SD%a) E*X) SD*(X) 2 5 10 L

1 1 1.09 51 112 07 S50 .24 .15 1.25

1 I 1.09 31 1.21 14 50 24 .15 1.50

i 1 1.09 S 1.38 28 .50 24 15 2

1 1 L9 51 1.64 53 50 .24 15 4

1 1 1.09 5 1.99 98 S50 .24 15 5

1 1 1.09 31 2.55 1.90 S50 24 15 10

1 1 1.09 51 51 11.70 S50 24 .15 100

1 1 1.09 .51 5913 474.46 50 24 15 w

1 1 1.00 51 1599.34  26459.07 50 24 .15 10°

3 2 1.31 42 1.11 07 42 15 .08 1.25

3 2 1.31 A2 1.21 24 42 15 .08 1.50

3 2 1.31 A2 1.37 28 42 1S 08 2

3 2 131 42 1.60 S5 42 15 08 3

3 2 1.31 42 1.96 93 42 15 08 5

3 2 1.31 42 232 1.70 42 15 08 10

3 2 131 42 3.98 8.23 42 A5 .08 100

3 2 131 A2 15.97 209.46 42 15 0% 104

3 2 131 42 187.75 B561.51 42 15 08 10*

7] 3 40 .44 1.12 07 .56 29 19 1.25

2 3 90 .44 1.22 14 56 .29 .i9 1.50

2 3 90 44 1.39 28 56 .29 12 2

2 3 90 44 1.67 54 5602 19 3

2 3 90 44 2.07 1.0 56 .2 A9 5

2 3 90 44 2.72 2.04 56 .29 19 10

2 3 90 44 6.76 13.07 .56 .29 19 100

2 3 90 44 70.77 511.32 .56 29 19 10*

2 3 80 A4 1619.79  26176.42 .56 29 .19 10

5 1 1.64 .29 141 07 33 .08 3 1.25

5 1 1.64 29 1.21 .14 33 .08 03 1.50

5 1 1.64 29 1.35 .27 33 08 03 2

5 1 1.64 .29 1.55 50 33 08 .03 3

5 1 1.64 .29 1.78 .B5 33 .08 03 5

5 1 1.64 29 2.04 1.43 a3 (08 .03 10

5 1 1.64 .29 2.62 4.57 .33 08 .03 100

5 1 1.64 .29 3.57 50.32 a3 .08 03 107

5 1 1.64 29 7.89 1247.04 33 .08 03 10%

1 5 A0 28 1.12 .07 g1 51 47 1.25

1 5 A0 28 1.23 .14 N 57 47 1.50

1 5 .40 .28 1.42 .29 T 57 A7 2

1 5 A0 .28 1.75 56 37 57 A7 3

1 5 40 28 2.29 1.09 A 57 47 5

1 5 A0 .28 333 2.31 11 57 A7 10

1 5 AQ .28 12.74 19.46 a1 57 A7 100

1 5 40 .28 309.24 1125.56 a1 57 A7 19

1 5 AD 28 11841.58 72682.37 T 57 47 10%
30 20 1.51 24 1.11 .07 36 09 A4 1.25
!} 20 1.51 .24 1.21 14 36 09 M4 1.50
30 20 1.5 .24 1.36 27 d6 9 4 2
30 20 1.51 24 1.57 50 36 08 04 3
30 20 1.51 M 1.82 K7 36 08 M4 5
30 X 1.51 24 2.13 1.50 36 9 04 10
(4] 20 1.51 ) 2.81 4.92 .36 09 .04 104
30 20 1.51 24 3.42 32.25 36 .09 04 104
30 20 1.5 24 3.80 28487 36 09 04 jHi

532



Volume 99, Number 4, July-August 1994
Journal of Research of the National Institute of Standards and Technology

Table 3. Uniform prior, LB=0.001, UB==1.999, prior mean = 1.00, $D = .58 — Continued

DATA POST PRED DIST BOUND
A E*e) SD*a)  E*X) SD*X) 2 5 10 L
20 30 .70 15 t.12 07 e = B 1.25
20 30 70 15 122 14 62 33 21 1.50
20 30 70 .15 1.40 28 .62 33 21 2
20 30 70 15 170 55 62 33 .21 3
20 30 70 A5 2.14 1.03 62 33 21 5
20 30 70 15 291 2.09 62 33 10
20 30 70 Sk 7.49 13.50 62 33 21 100
20 30 70 15 46.87 366.86 62 33 .2 10*
20 30 .70 i3 35777 1063253 s m 2 10¢

300 200 1.50 09 111 07 35 003 1.25
300 200 1.50 .09 1.21 14 .35 09 03 1.50
300 200 1.50 .09 1.36 27 35 09 .03 2
300 200 150 .u9 1.57 S50 a5 09 .03 3
300 200 1.50 09 1.82 47 35 09 .03 5
300 200 1.50 09 212 1.49 35 0 .03 10
300 200 1.50 09 2571 4.48 35 0 03 100
300 200 1.50 09 00 18.24 35 09 03 (0
300 200 1.50 .09 304 67.25 35 0 .03 10¢
200 300 67 L5 112 .07 .63 T ] 1.25
200 300 67 05 1.22 14 o S R ] 1.50
200 300 67 03 140 28 63 3 .22 2
200 300 67 03 170 55 .63 340022 3
200 300 67 05 2.16 1.04 63 3 5
200 300 67 05 294 2,10 63 34 22 10
200 300 67 05 7.62 13.58 63 34 10
200 300 67 .05 41.81 330.65 6 34 10t
200 300 47 .05 212.71 744890 63 34 22 10%
parameter log-normal family. Suppose that long-tailed distributions. For «>1, and using a

In(a — ¥} ~N(u,0*). This is the three-parameter
log-normal distribution with threshold parameter
v, and is a very convenient and interesting family
with which to make inference about «. See
Aitchison and Brown [31], and Hill [32] for some
properties of this distribution. The integrations in
this case again have to be done by numerical analy-
sis. In Table 4 we present results for the case y=1,
with a taking values between LB=1.001 and
UB=10. The prior mean and standard deviation
for a are 1.50 and .61, respectively.

5. Discussion of Tables

If & >2 then for fixed known a there is no prob-
fem with infinite first and second moments. This is
also the case when « is unknown, except that the a
priori distribution for & must give sufficiently small
weight to values near 2 in order that the second
moment be finite. However, the case a>2, al-
though of some interest, does not deal with truly
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Gamma prior distribution for @ —1 with §>1, as
k— = the posterior moments of X converge to the
limiting results discussed in Sec. 3, such as in Eq.
(16). We observe, however, that the convergence is
quite slow. For values of k in the practical range,
say L < 10, the results are not very sensitive to the
precise value of L, but are quite different from the
limiting results, because the convergence is so slow.
For example, the theoretical value for the multi-
plier of A when r=0,t=1,6=2,8=1, is 3. Using
UB =10, when L = 10" the calculated value for this
multiplier is 2.86, and it is still only 2.98 when
L = 10", For L € 10% however, the multiplier is less
than 2,16, and for values L < 10, it is at most 2.
Thus even in this case, where the posterior expec-
tation exists for k = o, it can still be important to
use a realistic value for L. Although this case can
be described as a genuine long-tailed distribution,
in order for the posterior expectation of X to be
finite when k = @, it is necessary to take § > 1, and
so the a priori expectation for & must be larger than
1+ 1/8.
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Table 4. Log-normal prior, LB=1.001, UB=10,y=1, p = - L.19, r=1, prior mean=1.50, 5D = .61

DATA POST PRED DIST BOUND
oo E*@) SD*'@)  E*X) SDX) 2 5 10 L
11 139 38 111 07 9 a2 05 1.25
11 139 38 1.21 14 3% a2 05 150
1 ! 139 38 137 28 39 12 05 2
1 1 139 38 159 5l 39 a2 05 3
1 1 139 38 187 %0 39 a2 05 s
13 139 38 224 1.62 39 a2 05 10
1 1 139 38 326 609 39 a2 05 100
i 139 38 448 46,61 39 a2z 05 0
1 1 13 38 515 35395 39 a2 05 a0
3 02 1 38 111 07 39 a2 .05 125
3 2 4 38 .21 B 39 az 05 150
3 2 14 38 136 27 5 L A
i 2 1m0 3 1.59 51 3 12 05 3
3 2 1 38 1.86 90 39 a2 05 S
3 2 14 38 2.22 160 39 1z 05 10
I 2 14 38 318 592 39092 050
302 14 R 430 435 39 a2 .05 10°
3 2 L 38 490 33281 39 a2z 05 10°
2 3 1 .m 11 w 42 4 06 125
2 3 121 0» 1.21 14 42 4 06 LS
g 3 127 .23 137 28 42 14 06 2
3 4 1% A 1.61 52 42 4 06 3
2 3 121 o 1.91 92 42 14 06 s
2 3 1z B3 231 1.67 A2 4 06 10
2 3 .21 3 350 657 42 a4 06 100
2 3 1z B 502 5243 2 14 06 10
2 3 127 23 502 5243 42 a4 06 10f
s 1 23 L 111 07 25 06 2 125
s 1 234 17 120 4 25 06 02 150
s 1 23 LY 132 2 25 06 M2 2
51 M a7 148 47 25 o6 0z 3
5 1 23 L7 1.65 a1 25 6 2 S
5 1 23 L1 1.83 1.26 25 06 0210
51 234 222 182 25 06 02 100
5 1 234 L 258 2418 25 06 2 10
5 1 23 L7 2.74 170.55 25 06 02 10
15 L8 4 111 07 405 07 135
15 s 4 121 14 4415 07 150
15 118 4 18 28 4405 07 2
15 1B a4 62 .52 405 07 3
15 L8 a4 194 94 4 a5 07 s
1 s 118 a4 2.38 1.73 405 07 w0
1 5 118 a4 377 T 4405 07 100
1 s L1814 573 6045 4 a5 07 e
15 1’ a4 6.95 483.26 44 a5 e

30 20 140 0 2 111 07 3% 1 e 125
0 2 140 002 121 it 32 0 M 150
0020 140 .2 1.36 27 3 11 m 2
30 W 140 0 2 1.58 51 3 1 e 3
30 20 148 2 18 90 38 11 .M

30 20 140 22 221 1.58 38 1 0410
300 20 140 2 39 5w 38 a1 .4 100
300 20 140 02 392 3697 3 . 04 10
3 20 140 22 428 25219 38 a1 64 10
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Table 4. Log-normal prior, LB=1.00l, UB=10,y=1, p=-1.19, o=1, prior mean=1.50, SD= 61~

Continued
DATA POST PRED DIST BOUND

r ! E*{a) SD*{ua) E*(X) SD*(Xx) 2 § 10 L
20 30 t.10 07 1.11 07 47 A7 08 1.25
20 30 1.10 .07 1.21 14 47 17 .08 1.50
20 30 1.10 .07 1.38 28 47 17 .08 )
20 30 t.10 o7 L.63 53 A7 A7 .08 3
20 k1] 1.10 07 1.97 96 A7 17 08 5
20 30 1.10 07 246 1.78 A7 17 .08 10
20 30 .10 .07 4.09 71.76 47 A7 08 100
20 30 1.10 07 6.75 71.88 47 A7 08 10*
20 30 1.10 07 8.61 607.81 A7 17 08 1%

A case of substantial practical importance is that
in which the a priori information about a is weak,
apart from the knowledge that 1 <a< 2. There is
substantial empirical data on incomes, stock-mar-
ket prices, city sizes, the distribution of biological
genera and species, and many other variables, for
which a< 2. See Yule [15] and Zipf [14]. However,
there is no known theoretical reason for taking the
a priori distribution of o to be of the Gamma form,
or for taking & > 1. In the case of weak a priori in-
formatiom, the likelihood function is approximately
proportional to the posterior density for a. See the
stable estimation argument of Savage [33] and Ed-
wards, Lindman and Savage [34]. For either classi-
cal statisticians, to whom the a priori distribution is
non-existent or “unknown,” or to Bayesians who
prefer to use some form of “uninformative™ prior
distribution, the results of Table 2 should be quite
reassuring. It is possible, despite the delicacy at =
10 obtain robust answers. It may be noted in this
table that typically the posterior predictive expecta-
tion of X,.1, given that it is between x;; and
10 xxy), is some modest multiple of the largest ob-
servation, at most 3 Xx;)y; and it is at most 5 Xxy,
when L < 100. This s as it should be. One docs not,
for example, anticipate wind strengths that are
some enormous factor times the largest yct experi-
enced, even given that we set a new record wind
strength. By comparing Table 1 for a =1.50 known,
with Table 2 for the case r=3/=2, we see that
there is little sensitivity in either the predictive mo-
ments or the predictive probabilities. For example,
when L =35, Table 1 gives predictive moments of
1.82 and .87, and predictive probabilities of .35, .09,
and .03; while Table 2 gives predictive moments of
1.83 and .88, and predictive probabilities of .36, .10,
and .04. The greatest discrepancies occur for very
large values of L, such as 10%, which are inappro-
priate for most real-world applications.
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Another case of substantial interest is that in
which a 15 uniform from 0 to 2, so that even more
extreme long-tailed behavior is possible. Again re-
sults are not very sensitive to the choice of a priori
distribution, provided that L is not too large. For
example, Table 3 with r=34=2,L =5, gives the
predictive moments as 1,90 and .93, and the predic-
tive probabilities as .42, .15, and .08. Although
there is a real change from the results of Tables 1
and 2, it is of limited extent, and is in the direction
of making the predictive distribution longer-tailed,
as was to be expected. If anything, one might be
surprised that allowing a to get close to 0, as with
this a priori distribution, did not move the predic-
tive distribution much further to the right.

The final case of great interest is where some
definite a priori information is input, as we do here
with the log-normal distribution. Table 4, for the
case y=1lr=3¢=2L =35, gives 1.86 and .90 as
predictive moments, and .39, .12, and .05, as pre-
dictive probabilities. These results are close to
those of Table 2, in which « has the same a prion
expectation as in Table 4.

The reader may compare these variaus tables for
other values of the paramelters, to examine the ef-
fect of long-tailed sample data, greater sample
sizes, cases whcre the a4 priori information is less
concordant with the data, and the effect of L. For
example, in Table 3 with r =2 =3, 5o that & = .67,
and L =35, the predictive moments are 2.07 and
1.01, while the predictive probabilities are .56, .29,
and .19. Again, provided that a realistic upper
bound for L is chosen, such as 10, the changes from
previous values are real but of limited magnitude,
and in the direction to be anticipated.

Armed with this information, let us now examine
real-world dala on city sizes. Table 5 gives the sizes
of the 30 largest cities in the United States in 1940
and 1988. They are first presented in descending
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Table 5. City size x 107" data

1940 19RR

Ordered Permuted Ordered Permuted
7455 1931 7353 987
3397 859 3353 727
1931 302.3 297K 532
1623 305 1698 1647
1504 3397 1647 522
878 368 1070 599
859 816 1036 2978
816 587 987 463
771 vy 9441 1036
672 1623 924 02
663 456 751 434
635 387 738 51
587 x| 732 1071
576 635 727 7353
495 492 645 481
492 301.2 635 732
456 495 617 941
430 663 599 3353
399 306 578 578
387 873 370 570
385 7455 532 1098
368 325 521 617
325 322 511 924
vy 319 502 738
319 576 492 645
306 302.2 481 751
305 672 465 402
302.3 430 439 635
3022 1504 434 427
301.2 385 427 4349

order, and then in a randomly chosen permutation.
The data for 1940 was previously analysed in [1] to
illustrate use of the tail-index method. The upper
tail of such city size data is generally regarded as
being modelled by Zipf’s law, with some rail-index

Tahle 6. Forecast of 1940 city sizes % 1077

«. Tables 6 and 7 give the running forecasts, and
their standard deviations, for the next observation,
based upon the permutation. We imagine, in other
words, that a random sample has been taken from
the population, and that we successively forecast
the magnitede of each npcoming record value. In
this way we simulate the actual forecasting of fu-
ture record values based upon a random sample
from a population. It is well known that sampling
(with ar without replacement) from a finite popula-
tion generates an exchangeable sequence. Because
our forecast of the magpitude of the next record
value depends only upon the upper order statistics
of the past data, and not directly upon how many
past valies have been observed, we pul forth the
same expectation for the magnilude of the next
record value, until we observe a new record value.

The record values (with the first value taken as a
record vutue by default) for Table 6 occurred at
times 1, 5, 21, and huad the values 1931, 3397, 7455,
respectively. Table 6 gives the 1940 forecasts for
L. =3.5,10, where each forecast is based upon all
the past data up to the time of the forecast, and
uses only the current upper two order statistics of
the data, so r =1. The column labelled & gives the
corrent imaximuom-likelihood estimate of « based
upon the twa upper order statistics, so ¢ =%, The
first row of Tuble 6 would be read as follows. Based
upon the two Jargest order statistics (1931, 859) at
time 2 in the 1940 permuted sequence, the esti-
mate of o is 1.235. This data (with r=1 and
t == .810) is used to abtain the posterior distribution
for «, for a uniform a prieri distribution on the in-
terval from 0 to 2. Forecasts and standard devia-
tions are then presented for L =35,10. For
example the L =3 forecast of the next record value

City size 4 Forecast Forecast SD

3 5 10 ) 3 10
3397 1.235 3i40 380 4831 1023 1809 3596
7455 1.770 5500 on2l1 8205 1787 3244 H166

™

Table 7. Forccast of 1988 city sizes x 1) ?

City size & Forerast
3 3
1647 32N 1588 1899
2978 1.953 2663 1202
7353 L.68K 4824 5810

M L6 1207 14581

1.272 12137 14694

18608 3944 208 13844

Forecast 81D

10 3 5 1

2351 516 929 1743
4001 865 1568 2973
7290 1569 2847 5420

18574 A9 7154 13824
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is 3146 with a standard deviation of 1023, this fore-
cast being made using only the previous records of
1931 and 859. The realized value turned out to be
3397, Note that most of the actual values are well
within 1 standard deviation of the forecast. The
row ‘7" forecasts a next record value, based upon
alt the past data, as though the population were not
complete, and is given only for illustrative pur-
poses. Table 7 repeats the analysis for the 1988 city
size data. The record values occurred at trials 1, 4,
7. 14, and had the values 987, 1047, 2978, 7353,
respectively.

This type of forecasting problem, based upan a
random sample from a fixed population, is used to
illustrate the procedure in connection with an ex-
changeable sequence of observations. As shown by
de Finetti, and discussed in [35], one can always
represent real-world exchangeable sequences in
terms of limits arising in sampling from a finite
population. The exchangeable case is the simplest
scenario in which our methods can be usefully ap-
plied. More generally, one must deal with evolu-
tionary processes, as for example when successive
records are set over time. For example, if we con-
sider the successive Olympic High Jump records,
since 1880, we must keep in mind that we ure not
sampling from a fixed population, and that changes
in technique and gencrul level of physical fitness
over time, may have a substantial effect. Similarly,
in considering the next record value of some stock
market index, such as the Dow Jones, therc may be
time trends that must be taken into account. How-
ever, even in such examples as these, local ex-
changeability over sufficiently short time periods
may be a reasonable assumption, and appropriate
modification of the basic forecasting procedure
proposed in this article can be developed.

6. Conclusions

We believe that the above studies indicate that it
is possible to make cifective inference and predic-
tions about record values. Our methodology can be
used both with uniform a priert distributions, such
as represented in Tables 2 and 3, and with more
informative a prioyi distributions such as in Table 4.
The case that is perhaps of greatest interest for
applications is that of the three-parameter log-nor-
mal distribution with threshold taken to be 1 or 0,
as may seem appropriate. Uniform a priori distri-
butions can, for practical purposes, be represented
as special cases of such log-normal distributions.
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We believe that it is important to study sensitivity
of results to choice of a priori distribution, as rec-
ommended in {3630}, The choice of r and of L can
be implemented by Baycsian data-analytic tech-
niques, such as described in [1,25]. Here in our
forecast of city sizes we took r =1, but substantial
improvements could result from a Bayesian deci-
sion-theoretic ¢hoice of r.

There are some basic issues concerning the use
of finite models, versus infinite idealized models,
that are especially pertinent in connection with the
problem of prediction for long-tailed distributions.
tf one took the conventional idealized model liter-
ally in our example, then the analysis of Secs. 1 and
2 demonstrates that there are some logical diffi-
cultics, if one alsa views the observations as un-
bounded. For in the case of greatest interest,
where it is known that 1= o< 2, the posterior first
moment muay be infinite, even though it is plainly
unreasonable 10 make a prediction of more than a
few multiples of the largest observation yet seen.
The issue is resolved here by treating the algebraic
modc!} for the tail as only an approximation, valid
in some finite domain. In this case the algebraic
tail is compatible with both the data, and with
putting forth sensible predictions for squared error
loss. Sce [24] for discussion of the finite/infinite
question in connection with Steinian shrinkage cs-
timators.

The issue regarding infinite predictive moments
thus turns out 10 be largely irrelevant for forecast-
ing, provided that one is comfortable with using
some reasonable upper bound for the observable
variables. Carcless use of infinite models, ignoring
the fact that realistic finite upper bounds are usu-
ally availahle, might instead have led one to the
conclusion that theery-based forecasting is impossi-
ble in the case a< 2. Since all statistical analyses
must eventually be done an a computer with finite
memary, such infinite models are at best only vse-
ful guides, and their careless use can lead to nu-
merous  apparent  paradoxes, which have no
real-world importance. The primary conclusion of
this article is that provided that a finite upper
bound lor the observitions can be supplied, as is
ordinarily the case, it is possible to make effective
predictions of future record values. The forecasts
that we have obtained, employing such finite vpper
bounds, are by no means perfect, but they do at
least put one in the right ballpark, with predictions
that are at most a few multiples of the previous
record value. [ am not aware of other methods
available at present that do so.
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Forecasting is always difficult, and perhaps even
more so for the case of record values tn the case of
long-tailed distributions. Nonetheless, often such
forecasts are important in the decision-making pro-
cess, and must somehow or other be put forth. We
have suggested a Bayesian methodology which can
make systematic use both of a priori information
and of the current data. When used with care, we
believe these methods can be of value in a variety
of areas.

Acknowledgment

This work was supported by the National Science
Foundation under grant DMS-9201056.

7. References

L] B. M. Hill, A simplc general approach to inference about
the tail of a distribution, Ann, Stat. 3, 1163-1174 (1973).

[2] W. Feller, An Introduction to Probability Theory and Its
Applications, Volume 2, John Wiley and Sons, Inc., New
York (1971) p. 15.

[3] B. M. Hill, D. Lane, and W. Sudderth, A strong law for
somc generalized urn processes, Ann. Prob. 8§, 214-226
{1980).

[4] B. M. Hill, D. Lane, and W. Suddecrth, Exchangeuable um
processes, Ann. Prob, 15, 1586-1592 (1987).

[5] B. M. Hill, Paramctric models for A,: splitting processes
and mixtures, J. R. Statist, Soc. B 55, 423433 (1993).

[6] B. M. Hill, Bayesian forecasting of cconomic time series, to
appear in Econometric Theory, 1994,

7] B. M. Hill, Somc subjective Bayesian considerations in the
sclection of models (with discussion}, Econometric Revs. 4
{2), 191-288 (1985-86).

[8] D. 1. Poiricr, A Bayesian vicw of nominal money and real
output through a ncw classical macrocconomic window
{with discussion), J. Bus. Econ. Stat. 7, 125-161 (1991}.

[9] N. D. Singpurwalla and R. J. Meinhold, Robustification of
Kalman Filter Modcls, J. Amer. Statist. Assac. 84, 479-486
(1989).

[16] B. M. Hill, Tail Probabilitics, in Encyclopedia of Statistical
Sciences Vol, Y, 8. Kotz and N. Johnson, eds., John Wilcy
and Sons, inc,, New York (1988).

[11] S. Csorgs, P, Dehewvels, and D. M. Mason, Kemnel esu-
mates of the tail index of a distribution. Ann. Stat, 13,
1050-1077 (1985).

{12] 1. Aitchison and 1. R. Dunsmore, Statistical Prediction
Analysis, Cambridge University Press, Cambridge {1975).

[13] X. Maret, Estimating the Structure of Stochastic Dynamic
Lincar Systems: A Baycsian Approach and Economic Ap-
plications, Duoctoral dissertation, The University of Michi-
gan (1988).

[14] G. K. Zipf, Human Bchavior and the Principle of Least
Effort, Addison-Wesley Publishing Co. (1949).

[15] G. U. Yule, A mathcmatical 1heory of cvolution based on
the conclusions of Dr, J. C. Willis, F. R. S.. Phil. Truns. B
213, 21-87 (1924).

[16] B. M. Hill, Zipf's Law and prior distributions for the com-
pusition of a population, J. Amer. Statist. Assoc. 65, 1220~
§232 (1970).

538

[17) B. M. Hill, The rank frequency form of Zipfs Law, I
Amer. Statist. Assoc. 69, 1017-1026 (1974).

[18] B. M. Hill, A theorctical derivation of the Zipf (Pareto)
Law, in Studics on Zipfs Laws, H. Guiter, ed., Sprachwis-
senschaftliches Inst.,, Rubr-Universitat Bochun (1981),

[19] B. M. Hill and M. Woodroofe, Stronger forms of Zipf's
law, J. Amcr. Statist. Assoc. 70, 212-219 (1975).

[20] M. Woodroofe and B. M, Hill, On Zipf's Law, J. Applied
Prob. 12, 425434 (1975).

[21] N.L. Johnson and 8. Kotz, Urn Models and Their Applica-
tion, John Wiley and Sons, Inc.,, New York (1977) p. 350.

122] B. M. Hill, Posterior distribution of percentiles: Bayes' the-
orem for sampling from a population, J. Amer. Statist. As-
soc. 63, 677691 (1968).

|23] S. Chatterjee and M. R. Yilmaz, Chaos, fractals and statis-
tics, Statistical Sci. 7, 49-68 (1992).

[24]) B. M. Hill, On Steinian shrinkage estimators: The finite/in-

finitz problem and formalism in probability and statistics,

to appear.

B. M. Hill, A thcory of Baycsian data analysis, in Bayesian

and Likclihood Mcthods in Statistics and Econometrics:

Essays in Honor of George A. Barnard, §. Geisser, J. S.

Hudlges, 8. J. Press, and A. Zellner, cds., North-Holland

(1990) pp. 45-73.

R. A. Fishcr, Conclusions Fiduciare, Annales de I'Institut

Henri Poincaré 10, 191-213 (1948).

B. M. Hill, De Finciti's thcorem, induction, and A, or

Bayesian non-parametric predictive inference (with discus-

sion}, in Bayesian Statistics 3, J. Bernardo, M. DeGroot, D.

V. Lindley, and A. F. M. Smith, eds.,, Oxford University

Press (1988) pp. 211-241.

B. dec Finctti, La prévision: ses lois logiques, scs sources

subjectives, Annales de I'Institut Henri Poincaré 7, 1-68

(1937).

[29] B. de Finctti, Theory of Probability, Vol. 1, John Wilcy and
Souns, Inc, London (1974).

[30] B. M. Hill, Statistics, Robustness, in Encyclopedia of Physi-
cal Science andl Teehnology Vol 15, Academic Press, Inc.
(1992).

[31] J. Aitchison and J. A. C. Brown, The Lognormal Distribu-
tion, Cambridge University Press, Cambridge (1957).

[32] B. M. Hill, The three-parameter log-normal distribution
and Bayesian analysis of a point-source cpidemic, J. Amer.
Statist, Assoc, 58, 72-84 (1962).

[33] L. J. Savage, The Foundations of Statistical Infcrence, A
Driscussion, Methuen and Co. Ltd. (1962),

[34] W. Edwards, H. Lindmau, and L. J. Savage, Baycsian

statistical inference for psychological research, Psychologi-

cal Review 70, 193-242 (1963). Reprinted in Robustness of

Bayesian Analysis, J, Kadune, ed., North-Holland: Amster-

dam, 1-62 (with discussion) {1984},

B. M. Hill, Bayesian nonparametric prediction and statisti-

cal inference (with discussion), in Baycsian Analysis in

Statistics and Econometrics, P. K. Goel and N, §. Tyengar,

eds., Lecture Notes in Statistics Series, Springer-Verlag

(1992) pp. 43-94.

B. M. Hill, Robust analysis of 1he random mndel and

weighted least squares regression, in Evaluation of Econo-

metric Models, J, Kmenta and J. Ramsey, eds., Academic

Press (1980) pp. 197-217.

(23]

(35])

[36)

About the author: Bruce M. Hill is a statistician at the
University of Michigan. His interest is Bayesian statis-
Ly,



