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1.    Introduction 

Let 5(ir. = {Xi,..., Jf„} be a point set of independent 
identically di.'ttributed t^-ditnensional random vectors 
sampled from the probability mea.sure fi., and A' be a 
punctured at the origin cone mK^,d>\. Wc define the 
kth layer as 

^\^.)-{Xr.ti{K^,n 3ifj = t-i}  k-\2  

where K^ = x^^K is the translated cone with vertex in 
X E R"*. Intuitively, the Jtth Ij^er is the set of die ith 
extremes of ^, in the direction /^. The prime examples 
we have in mind arc {I) the Pareto-optimal points corre- 
sponding to the first layer in the direction of the positive 
orthani, and (2) the total maximum, which may be con- 
sidered as the first layer in the direction of the COIK, 

complement to the negati\« orthant. We are interested 
here in the distributions of random variables 

counting the number of points in the ^th layer. These 
distributions depend essentially on both K and ft. 

From a more general viewpoint, the first layer can be 
regarded as the set oimaximal elements[A\ with respect 

to the binary relation 3i in R** defined as x^y t^ x- 
y ^ K.AIternatively, any scale aixl translation invariant 
binary relation generates a cone by setting K ~ {x& R**; 
x'MQ) and the maximal elements are conical extremes. 

Two above cases of the counting problem have been 
considered in the literature under the assumption that fx 
is either a product of one-dimensional marginal mea- 
sures or a multivariate normal distribution (2,10,11,12]. 
It is well known, for example, that if /i. is a product 
measure in R** then the average number of Pareto points 
is of the order of (log n)'*'', while the probability that the 
multiple maximum exists is n'""'. 

In this paper we focus on a class of distributions ^ 
already studied in connection with multivariate ex- 
treme-value theory [8] and statistics of convex hulls 
[1,5,6,9]. These distributions are characterized by regu 
lar variation of the tail of the radial component and 
asymptotical independence of radial and angular com- 
ponents. We show that typically the V,'*''s converge in 
distribution and the expectations have finite limit.s as 
ft ^ «^. In the special case of slow variation we calcu- 
late explicitly the limiting distributions. 
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2.    Preliminaries 

We define a cone as a punctured at the origin, scale- 
invariant Borei set in R'', i.e., 0 ^ K, tK ~ K >;ft>0. 
Each cone Ls uniquely determined by its spherical base 
S^- K r\ S , where S denotes the unit sphere. Wc asso- 
ciate with K also the spherical set S_ obtained by reflec- 
tion abt^ut the origin, 5o - 5\ (S+ U 5.) and S:^" S^ H 5- 
The cone with spherical base CCS will be denoted 
cone (C). 

Set     B,= {jteR'':l[x]|<r},      B'-RM,     and 
Ar.c~CCm£(C) riB?. 

We fix in what follows a cone K and a multidimen 
sional probability distribution fi satisfying the following 
conditions: 
(i) There exists a > 0 and a probability measure p on 5 
such that 

r>0. (1) 

(ii) For all p-continuous C C 5 

(iii) p (im SJ) > 0, and 

lim piC), (2) 

(iv) ft has no atom at the origin. 
Consider an iid sample from p., 3(f, - {X, X„}, 

represented in the polar form as the product of radial 
and spherical components: X, = RiZ,, where /f,-||Xi||, 
Z, = X;/|[Xj]i. The above conditi<ms on p. have a natural 
probabilistic interpretation. Condition (i) means that the 
distribution function of the radial compt>nent, 

has a regularly varying tail. Condition (ij) is translated 
as 

lim P{Z, («,>r} = p(-) 

and LS to be interpreted as the asymptotic independence 
of radial and spherical components, where the limiting 
distribution p does not disappear in the interior of 5* 
(condition (iii)). The last condition is not essential and 
assumed for technical reasons. 

Given a Borel set iJ C R''. we represent the number 
of the Jtth layer points in fi as the sum of random indica- 
tors 

ft 

ff.^'\K n fl) = 2  1 (;r,eyf'(ar,.ni.>. 

and using the iid assumption write for the expectations 

E#,se*'(^. n B) - nP{X, e ^"XM.) nb}~ 

"(r;) P{X,Gfi;X, X^^K^,.X,.u..,X,^K^,)= 

"(j_!) J (t^{K,)t\\-ti(K.)r' d/i(.r) .       (3) 

The following lemmas will be used to estimate these 
integrals. 

Lemma 1. There exists T> 0 such that fiiK^) > 
T(\-n(Bi^))foraIlx&R''. 

Proof. Consider first the case where there exists a 
lirtear isomorphism which maps K onto the positive 
orthant- Let ;? be the  inverse  image of the vector 
(1 1)   under   this   isomorphism.   By  convexity, 
K,CK,for3WxGBi. 

Ctindition (iii) allows one to select a compact p-con- 
tinuous set CC S^ with p (C)>0 . It is easy to see that 
y £ int ^, the sets ^j,, s>0, arc increasing as j i 0 and 
U,>o K;y = int AT. It follows that C C K„ for sufficiently 
small 5. Furthermore, for small s wc have also 
A,,c C K^. Indeed, the points of v4].c are rcpresentable as 
fjc. with f > 1, jr € C, tlius, by convexity, ,t E K^ im- 
plies tx G K„y C K,y. Homogeneity implies A,:,,c C K^. 
It follows now from Eqs. (1) and (2) that 

> At(A,,,c)M(Bii) 
P(B;)       tJL(Bi-)       ft(B^,)   ti{B?i 

(4) 

From Kj D K\\^u, wc derive for sufficiently large r^ and 
lUII > rn that 

p.{K,) ^ M(^ii.i>)    2 " (r\ 

For X G B,„ wc have K^ ^ Kr,y, therefore Eq. (4) along 
with the inclusion ^,r„, D Kr,,,. t > 1, implies 

iL{K,)     p.(K,^,) 
>/i(A-„„)>0. 

The   assertion   follows   in   this   ca.sc   by   setting 
T-min(/i(/:,„,),^v"p(C)). 

For arbitrary K one can find a smaller cone K' C K, 
which is linearly isomorphic to the positive orthant and 
still has the interior of its spherical base of positive 
p-measure. This is possible since the spherical <i-sim- 
plexcs build a measure-generating class on 5. It remains 
to note that p.(K^) ^ p.(K't) for any translation, whence 
the estimate holds in general. □ 
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Lemma 2. //E V,*" has a limiting value v e (O*) 
then all EV,**', k - 2,3,... converge to this limit as 

Proof. Let m (0, f e [0,1 ], be the distribution function 
of the image measure mduccd by the mapping 
jc*-»/!.(/t^). Changing variables transform Eq. (3) to the 
one-dimensiona] Lebesgue-StiJtjes integral 

Similarly, ^, 

!imsupE#(i^"(X)nS.)=Sn    (l-T(l-F(r)r 
1^^ Jo 

dF(r)- 

(l-r(l-/)r'd/(/)~n   (1  T(l-r)r' At 
0 •'0 

EV"i> = fl(j_[)J t'-\\-ty^Am{ty 

A slight modification of the standard Tauberian theorem 
as found in [14] assures dial the limiting value of this 
integral for Jt- 1 exists iff m(t) is left-differentiable at 
I- I, in which case the limit and the derivative have the 
same value. Applying this theorem in the reverse direc- 
tion one can easily see that all the EV„'*^ 's must have the 
same limit. D 

Lemma 3. Assume % is an increasing sequence such 
that  lim  nO-F{y„))-*y, y>(i , then 

lim sup EV; 
n—>3c 

(5) 

lini supE # (<S?"Oif,) n J5„) « e '"T"', (6) 

with T determined by Lemma 1. 
Proof. Set 

fit) 
■"FCr)*; 

dF(r), re [0,1]. 

Regular variation of/^ at infinity implies readily that for 
all sufficiently di.<itant discontinuity points the ratio 
(jump size)/{distribution tail) is close to zero. It follows 
that (l-/(0)/(l-0—*' as / T I (for continuous f" this is 
obvkxjs since/(f) = t). Lemma 1, a change of variables 
and the Tauberian theorem yield 

EV;" = /.f (]-M^jr'dMU)« 

t)        (1-7 

I (t  T(l-F(r)r'df(0 
-'K 

df(r)- > f (i-T(i-f)r' 

where the equivalence can be justified by partial integra- 
tion, n 

3.    Pareto-T^ils: a>0 

In this section we study the limiting behaviour of V„'*' 
under the assumption that the regular variation index a 
in Eq. (I) is positive. Our plan Ls to translate Eqs. (I) and 
(2) into the convergence, of a suitably normalized sam- 
ple, to a PoLsson process[6,15] and then apply a continu- 
ity argument to prove also the convergence of the 
V,'*"s. 

Compactify R** by adjoining the infinite point ^ and 
then puncture in the origin. The resulting topological 
space, say R'', is isomorphic to R"* and canonically em- 
bedded into its compactification, bounded from die 
origin Borel sets B C ft"* being relatively compact. We 
endow the space A/(H'') of Radon measures with the 
vague topology: m„ A m iff m,(i*)—)m(B) for all rela- 
tive compacts. 

There exists a sequence of positive constants a„->3c 
.such that the measures v„(,) ^ nfi{a,) converge 
vaguely to the measure v determined by 

HA,,c)-r-"p(C), v({oo}).0. O) 

The limiting measure is in MiR"), being infinite on 
balls centered at the origin as well as on the sets 
cone (C) with p(C) > 0. In particular, condition (iii) 
implies V(int K) = ^. Clearly, i'is a pnxluct measure in 
polar coordinates and has no atoms. 

Let ^ be a Poisson point process in R'' widi intensity 
measure v, arid |, be die random element of Af (R**) 
associated with the scaled sample a„"'^,. Obviously, the 
operation of taking a layer commutes with rescaling: 
iP'XaS€„) - a^'"{K), a>0. therefore the number of 
points in each layer remains invariant under scale trans- 
formations. One can expect in this situation that V,'" 
converges in some sense to an analc^ous functional of 
the Pois.son process. 

Define the A th layer of die Poisson sample as 

^'•(f) = Ue R": |({x}) = I. f (KJ = Jt-1}. 

and denote V'** = #2^"(f) the number of points in die 
klh layer. 
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Using the p«,)1aT representation, .r = rz, and homo- 
geneity we can write v(K;,) = r"(l>(z), where (i>(z) ~ 
viK.J is a function of the spherical argument. Using 
Palm probabilities anJ integrating along radial rays we 
represent the expectations as 

say y,.i v.p and >i >ip, respectively.  These 

EV<«= f e" Av{x) = 

Js JR. 

.^•^.Ar-'MPf 
(k-1)! dpa)d(-r'0' 

I (8) 

The resulting integral does not depend on k, as it is 
suggested by Lemma 2. The integration area can be 
reduced to 5Mnt S since <^ is infinite on intS.. 

The following lemma is found in [5]. 
Lemma 4. Let Ebea locally compact. Hausdorff and 

separable space; ho, hi,... he a uniformly bounded 
sequence   of real   measurable  functions   commonly 
supported by a relatively compact set; and nu,, m  
be a sequence of Radon measures on E such that 
m, -^ mo. The set D- {x & E : 3{x,}, jr.—*jf, h„{x,) 
-h h{x)} is measurable and if mJD) = 0 then 
J h„dm„ —*/ h(dmn. 

Now we are ready to prove a convergence result. 
Theorem L As.sume (i)-{iv). a> 0, and 

v{-aK)-0, (9) 

»'Xv{Uj) G R'xk'': ix-y) G ^AT} = 0. (10) 

Then for all k= 1.2  

(\/T,....V<i>)4(V"\...V«>). (U) 

EV<iWEV<*', n^5c. (12) 

Proof. By SkortAod's theorem we can find random 
point measures |,,fGAf(ft'') satisfying ^„=^„, 
i = f and i„-^ ^ a.s. Thus to prove the convergence in 
distributicm (10) it suffices to consider the case ^, -^ | 
a.s. In what follows wc fix a typical realization of i and 
assume n sufficiently large. 

Since   i'(ini  K) = ^.   i lays   in  the  cone   interior 
infinitely many points. Select *; of thent, say jr, xt. 
Pick r sufficiently small to satisfy B, C fl*.,    Kx, as 
well as f((?B,) = 0 and also i*. n {.t, x,} = 0. The 
complement B", is relatively compact hence the 
processes ^ and £. have there a finite number of points. 

points may be labeled so thaty,j —»y,, as it follows from 
the vague convergence. By the construction, any trans- 
lated cone /Tj, with x EL Br contains at least k points of ^, 
thus B, n ^Xi) = 0 and also «, 0 ,T'\^,) = 0 for 
J=-l k. 

For y, e -inl K, the cone K^^ contains a vicinity of the 
origin, where £, has infinitely many points. Therefore 
y, € n)., ^'ia y„j e n*., ^«(4). 

The condition shown in Eq. (9) assures that no one of 
yi yp lies on -t9K, almost surely. 

For yi ^ -cl K, the shifted cone AT,, is bounded from 
the origin. Therefore there exists an open vicinity of 
clfUf= 1 Ky) which is still relatively compact, and hence 
contains at most a finite number of points in addition to 
y,  J-p • By Eq. (10). ({dKy,) = 0 a.s. Again the 
poinwise       convergence       implies       ^      (^v„^ = 
f(Ar,,), whence (V.'" V/") - (V" V"0°and 
thus(M). 

Now turn to the convergence in mean. It Ls enough to 
prove Eq. (12) for the first layer, A — 1. It Ls easy to see 
that 

EV„<» - J exp(^vA/(.))dp„(x) = I 

I 
(...)di'„+ 

(...)di'»    r>0 

Take a point x ^-c\ K and a sequence x„ —» x and 
consider the indicator functions of the sets K^ and K,^ as 
the h's in I^mma 4. The divergence set D is (?/f„ 
whence by (9) and the lemma v„ {K^J —> v(K,). 

For .r e -int /C, .v„—JJ; we have i',(Ar,J to ^(Arj = ^ 
since /f,„ contains some fixed vicinity of the origin,for 
all sufficiently large n. Therefore in this case also 

To make further use of Ixmma 4, consider this 
lime the fimctions ho(x) =^ cxp(-v(Kx)). h„{x) = 
exp{-v(Kj,J). For the discontinuity set we have D C 
-f?Ar U {x : v(<iK,) > 0}. The assumptions in Eqs. (9) 
and (10) imply i^D) = 0 , hence for any r 

I cxp{-v,{KJ)dwAx) ^ I cxp(-K/^J)dKJc)- 

Now apply Lemma 3 to derive die estimate 

limsup     exp(^»/,(/ir,))di'„(.r) e T'CXP(-I/(BOT). 

The right-hand side here tends to zero as r—^. 
Putting this all together and comparing with Eq. (8) 

wc conclude 
lim sup EV'i' « EV". 
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The reverse inequality. 

(11 IimiiifEV,"'>EV' 
n—>=c 

follows from the convergence in distribution D 
Remark. The continuity conditions of Eqs. (9) and 

(10) are actually some properties of the spherical mea- 
sure p. The first one trivially translates as p {-fiK) = 0, 
but we have not been able to find a re-formulation for 
the second. Sufficient conditions for Eq. (10) are: p is 
non-singular, and ^S» lies in a (n—2>-dimcnsional set; 
or K is convex, ^K has no two-dimensional facets aixl 
p(aS.) = 0. 

Example. Here is a remarkable case where the expec- 
tations are explicitly computed. Consider the two- 
dimensional Cauchy distribution specified by the 
density d/i(T) = (2fl')-'(l+Hjf ||r"'djt, jr e R=. The 
radial tail is regularly varying with a = 1 and the circu- 
lar measure is uniform, i.e., dv (rz) -(lir )"'r "^d/'d;. 
r>0, zG[0,27r). 

Assume first that K is the positive quadrant. The kth 
layer arc those X/s which are exceeded by exactly k-] 
pi>ints of S€„ in berth components. Integrating yields 

0(;)-K^,) = cos ; +sin ; -1 
27r sin ;cos z 

Z e (-7r/2, TT) 

and Mz) - ^ otherwise. Computing the  integral in 
Eq. (8) we obtain 

lim EV.<*' =\+~. 
n—i^ 4 

The first layer is either empty or just one point, maxi- 
mizing both components, thus this mean value coincides 
with the limiting probability of the total maximum. 

The limiting distribution and higher moments of the 
V^*' 's can be, in principle, expressed in terms of some 
integrals similar to Eq. (8). These expressions do not 
seem tractable by analytical methods because of the 
complicated integration domains. 

4.    Slowly Varying Tails: of = 0 

The case of slowly varying radial tail, with a = 0 in 
Eq. (1), is of special interest. The above Poisson approx- 
imation method does not work, since the sample cannot 
be rescaled to provide a non-degenerate limit. To get 
around, we extend here a method already exploited in 
[IJ, where the number of convex hull extremes of a 
sample under slighly stronger as.sumptions on the 
dLstribution has been studied. 

We assume for technical reasons that F is continutxis 
though, in fact, slow variation is all that is needed. 

Let X^W . . . , X';' be the elements of 3f„ arranged in 
the norm-decreasing order, i.e., ||X*^' || > ... > |lX';' ||. 
SetRi^i =/i;andZ'^'-Z;, iffX'^' =X;:/.j-1,..,. n. 
One can recognize in the /f';' 's the radial order .statistics. 
The associated spherical variables, Z',1' 's will be called 
concomitants. Note that the continuity hypothesis make 
the definitions correct since the radial components are 
different with probability one. 

Mailer and Resnick [13] proved that slow variation is 
equivalent to 

'W 1.2, (13) 

For it = I we have the limiting mean of the number of 
Parcto points. 

Now suppose K is the complement to the negative 
quadrant. The Jtth layer consists of those X,'s which 
exceed all except some it-1 sample points in both com- 
ponents. We get 

Our convergence results effectively exploit this fact 
combined with the asymptotic independence of the con- 
comitants shown next. 

Let Z'", Z^^',... be iid S-valued random variables 
with distribution p. 

Lemma 5. Assume that F(r) = pi(Br) is continuous 
and Eq. (2) holds. Then 

<l>(z) = 
cos ; -f sin z +1 
27r sin z cos z 

(0,7r/2) 

and </>(j) - ^ otherwise. Computing the integral Eq. (8) 
in this ca.se, we obtain 

lim EV,<«=l-4. 

(Z HI 
n * ' ,Zli')^(Z'" 2"i)    A-=1.2,, 

Proof. For p-continuous CCS write (2) as 

lim 
\-Fc(r) 

y-,^ I-F(r) -P(C), (14) 

where   Fr(r)-M(tone (C) D iJ^).    Sekct   arbitrary 
*GN and  p-continuous spherical  sets  C,,...,C(. 

515 



Volume 99, Number 4, July-August 1994 
Journal of Research of the National Institute of Standards and Technology 

We have 

P{Z':'EC ,Z'i'GG}- 
«! 

in-ky. 

P{z'ii e c. x'^'=X z'i' G c. X'," = 

Xt }-^^P{ZiJ'G Cu «'^'= R„ ..., 

z'." € Ct, /?',*' = /t.} = -^ip^ P{z': e c,  

Z'i' G Ct, J?,> ... > «i; /e*>K( for I = *+) n}- 

n! 
(«-*)! 

(«-*)! 

/ 
{F(r*))'^dAt(r,J,)...dAi(r.z*) = 

f I >... > fi 

.ec, &€& 

/ 

"t1)     / 

(F{r^))-*dfc>(^i)...dFc,(rt)- 

(F(r.})'^dFc,(r,)...dFc,(''0- 

f I 'i I > f. 

...dFc,,(f..,)-   «(j"[) J"(F(rar* 

(1-Fc, (r,))... (l-Fc^, (n)) dFc.C-i) - 

(...). 

(for large r uniformly in n) 

d^oCr*) + f ^ P(C,)... p{Ct) + €, 

as «—>« , where we have used Eq. (14) and applied an 
argument similar to that in Lemma 3. Asymptotically, 
the probability is factorized, whence the statement D 

To prove the convergence we combine in what follows 
the above lemma and Eq. (13). The idea is that the points 
with top layer ranks have also small ranks in the radial 
components. On the other hand, conical extrcmality of 
the points with small layer ranks is determined by their, 
almost independent, spherical components. 

Introduce the random variables 

r,'<» = 0; r."> = min{/ : Uj,., ^"'(^J n {X,'"". 

....X';l}-0}, A=l n, 

which count the X, 's in the norm-decreasing order until 
the first k layers having been filled. Clearly, 
yit) ^ pt) ^ 7(t+!) Denote S' the product of infinitely 
many spheres, and set 

f^Xz) = 0; P'\z) - minO : (S. n {zi zj})-k}, 

\?'*'(z) = #{/•: 7^'-" (z) < j « ?<*'(z), Zj e ^S.y, 

where 2-(zt.Zi,.. .)G 5* and inf0 = 2c. For i^j 
the set 

<z G S" : V>**'(z) -j, f^(2) = i > 

is a finite-dimensional cylinder in 5". 
Denote Z - (Z'''. Z'^',...) the sequence vt^ith iid 

components distributed according to p, 7^*' = T*\Z), 
V*** "= V<*'(Z). It folk>ws from the definltbn and condi- 
tbn (iii) of Sec. 2 that 7^'\ /:= 1,2.... is a .strictly 
increasing sequence of finite stopping times with 
respect to Z"\ Z'",... 

Theorem 2. A.sxume (i)-(iv), a = 0,and p(dS, U aS.) 
= 0. Then for any t = 1,2,... 

(v<j'. rv v.*'. ri») ^ iv''\ 7^",.... v«'. r% 

Proof. Fir integers v, vtit,,... ,ti = t satisfying 
0 < r, < ... < r* and 0 « V, =s ti-tt., for i = I,..., it. \^fe 
need to prove that 

lim p{v<i' = V,. r*,;' - ru   (■ ^ it} = 
PiV'^-Vi. r<'i = /,;j=^Jt}. 

Wc endow S' with the prtxiuct measure p' and the 
Euclidean metric. Define 

ZJ = /95.U (95^S-{(z, Z,)G5': 

{Zt z,}nD -0}, 

^-<(ji z,) G 5': V^^"U, z,)- 

f,. f"\zi &) = //;/«*}. 

The definition of .5^ is correct due to the cylindrical 
property. It is easy to see that ^ is compact, ,sAS is 
open and, by the assumptbn, p'{S) = 0, It follows. 
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p'{M) = p'ist^). For any 6 there exists Ms with the 
properties: 

Midsi^S), p{si}-p(sii)<S, dist(j#«,2i)>0. 

p'(^.8^«)-0. (16) 

To prove this, take %-{aEsi\2 :dist {a,^{si\ 
2))>6}, then '^e is an open set, increasing to 
jsr^a as ^iO . We have pXi-st'^h^)< S for 
sufficiently small d. On the other hand, d% C 
{fl E S':dist(a,^(jiAS)))= 0}, these sets being dis- 
joint for different d. Hence the set of the values of 0 
with p'id^g) > 0 is at most countable. Select an appro- 
priate 8 and set si^-^f. 

We derive from Eq. (16) with the help of some topo- 
logical considerations that for sufficiently small € 

U (;:+fi.)n cone (£))-©   (;, z,)<Esii. (17) 

Assume now that the compoutKl event 

(Z'-l' Z';i)e^,;e«i^'>/?r"    '=1 k  (18) 

occurs. We show next that in this case 

n^ = fi, V'i>.v,   /=1 k. (19) 

Let Q be an clement of the finite algebra of spherical 
sets generated by S* and S^ The following equivalence 
holds: 

X=;'-X^Tecone(Q)»Z';iGQforl^i^t,i<j'^n. (20) 

Indeed, note first diat (9(2 C D. By (17), Z';' e Q implies 
Z'^'+ fi, C cone (2). From Eq. (18) we have also 
X';'+J?„i,iCcone(G)- But X'iieB^yi thus X'^'- 
X^i} G cone {.Q). Use Q' instead of Q to prove the 
reverse implication. 

The definition of Jis' and Eq. (18) yield Z'J' G S., 
/=],....*. Setting g - 5+ in Eq. (20) we have XV- 
XH^^K,ii<j^n. Therefore, 

{X^" X';'} n (111 if<"'(3(f.)) =0. 

Let f,-i <>< r, and Z^i^ e S . Setting Q - 5. in Eq. 
(20), we have {A-i^"  >"„"'} C {X^^ + K). Setting 
S2 = S, we have further {X'^i', X'i=',.. .Xi'-'} 
e (X^i + Af) . That is, X^' ^ U„.» if^n^.). 

Let f^i <j < ti and Z(i' G So . Substituting C " ■So into 
Eq. (20) we get X^}-X\^ € cone (5o). >+ 1 ^ p ^ n, 
together with So - SD and 5i, D 5,. = 0 this yields 
{Xi^" X';'}n(/r+X^') = 0.    For   e = 5\5.    and 

P e (1 j-\ }\{f„/2,..., r;., >    we    have    X'S' $ 
(/f + X';'). Similarly, for p B {ti.h,..., /^i} we have 

{xi;'',xw ...,Xi''-'i}CXl;i + ^. 

Thus in this case X^^ G if"-"(3Sf.). 
In the same manner, Z^';* G S^.  implies X'S'G 

^*-"(^J. 
Summarizing, if Eq. (18) holds then 

S£'\K)- {XV ■ t,., <j ^ t„ Zlf> e 5.\S-}, whence 
Eq. (19). 

Now from Eq. (13) aixl Lemma 5 (recall that f - fi) 

P{(Z':' Z"*') G st„ eRi;i > Rr\ 
(-l,...,/t}-»p"('=^»). 

Recalling the definitions of M and j;/* we get 

lim inf P{V";' - v,. V2 =^;    t « it > > 

Take 6 = 5(vi,.,., v*;/!,... ,/*) with 
55(vi,..., v*; Ti, ...,(*)- /3 and choose a diagonal 
subsequence of the values of n to get the convergence of 
the probabilities in the left-hand side. Recalling that 
probabilities sum to one, we derive Eq. (15) by setting 
iS^OD 

Convergence in mean does not require additional 
restrictions, as shown next. 

Theorem 3. Under the assumptions of Theorem 2 

Proof. It is sufficient to consider only the case k— \. 
Denote by /.''' and /''' the indicator fiinctionsof the 
events {X';" € J?"(^,)} and {Z^'i e S\S-, /«7"'"}, 
respectively. Clearly, 

By an argument similar to that used in Theorem 2 we 
show that 

(/'i'...../':')^(/"l /'-')    An-1,2,...      (21) 

Choose y, satisfying np„—>A , where A > 0, p, = 
\-p{ByJ. The random variable JV-#({Xi,... ,X,} 
n By,) has binomial distribution with parameters (n,Pn). 
By Eq. (6), 

£(/,'"'" + ... + /',"') = E(<Sf "(^J n B.,,) « e-'V 
(22) 
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Fix m and write the expectatwn as 

EV'J' - E(/'il + ... /';') = E(/'il + ... /'r') + 

E(/i""'|+.../ij'i) 1 (,v.„ }+E(/r"+... /';!) 11^^„}+ 

E(/r"+... /'"')i<iv<™>. 

The first term converges by Eq. (21): 

E(y'ii+ ... /'r')-»E(/i" + ... /""'). The first and the 
third terms arc estimated by Eq, (22) as 

E(/r"+... /';') Us..y+E(/r"+... /';i) i<«<.} 

^ E(/r" + ... + /':') ^ e *'T '. 

Since Af is binomially distributed, we have for the 
second term 

E(/r" + .. . /'f) I w.„, <E(Ar !iv.„}) -> 

where A^^ is a Poisson random variable with parameter 
A. Selecting A and then m sufficiently large, we prove 
lim sup,^, EV'i' « EV". 

The inverse inequality involving lim inf follows from 
the convergence in distribution □ 

It is not hard to find the limiting distributions of the 
K'*'"s. Note fir.st that 

(v<", r% {v''\ r'>-r'\... 

are all iid, therefore it is sufficient to consider only the 
first pair. Clearly 7*"" is geometrically distributed with 
parameter p{S^). The probability law of V"* is found 
from the following scheme: throw down the iid points 
Z''', Z'^',... in S according to the probability law p 
until the first point falls into S^, then count all the points 
falling into S\S.. To make this precise denote 

Po - p{Sid, P- = p(5-), p- = p(S.), p. - p{5t) 

(thus po + p + P*-P- =1). The joint distribution of V*" 
and r*" is this: 

p{v">=j.r<"-j}- p{{z"' z^"} n s, =0, 

zw G s..#{{zi",..., z"!} n (irs5-)) = *} - 

p{{z"' z'^"}n5, -0. 

Z^ G S.\$ , #«Zl') Zi^"} n (5N5.)) - i-1} + 

P{{z"i z"^"} n 5*=0, z''" e s*. 

#({zi'i z'>"}n(5vj:-)) = /} = 

P {#(<zi'i,..,,zi"i}nSo) -i-i, 

#«Z"> Zl^-' 1} n (5.\5,)) = ;■-( )x 

p{z^i e s»\s_} + P{#({Z'" z^'i} n 5o) - i, 

#({Zi",...,Z'^'i}n(S\S.))->^   1}P{Z^'E5,> = 

where t S: 0, y 5: I and j^ i. Summing over_/ we arrive 
at the limiting distributitjn of points in the kth layer 

P{V<*' _ 0} - -~-^ , 
1-p +p^ 

P<K^'^ = ,-}, f t'-P->P;,   /,i.2. 

If the cone satisfies K H -K = Q (or, more generally 
p(5. n 5.) = 0 ) then p^ » 0 and V'*^ is geometrically 
distributed. A little additional work is needed to find the 
expectation; 

EV" 
l-p 

(23) 

Example. Assume that the radial tail is slowly vary- 
ing and p is the uniform spherical measure. 

For A" = R; we have p,-p. = 2 '', and Eq. (23) yield 
EV"** —> 2'' -1. In particular, the mean number of Pareto 
points in two dimensions converges to 3. 

Taking the complement to the negative orthant. we 
have p., = p. - I -2^ and E V^** -^ (T'-l)"'. In two dimen- 
sions, the probability thai the sample has the double 
maximum tends to 1/3. 

Appearing of inverse numbers in the above example is 
a general phenomenon.We write further V'^^{K) to 
emphasize the dependence on the cone. 

Theorem 4. Under the assumptions of Theorem 2 

lim EV*i*(A:)EV'i'(-A:0-l, 

provided one of the numbers p^ or l-p  is positive. 
Proof. This folbws from Theorem 3, Eq. (23), and the 

formulas p_(-A'') = l-p,(K), p^(-K''} = l-p-(A') D 
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Remark. Given a binary relation, say 'M, on a sam- 
pling space, and a random sample X, tlicrc are two 
natural ways to define the "/tth extremes" o/9if,; (1) 
sample elements X, which are in vfi with all other sample 
elements with the exception of some k-\ points; or 
(2) the elements X, such that there are exactly k-\ 
sample points which are in the relation with X,. Tn the 
theory of partially ordered sets extremes {k = IJ of the 
first type are called the greatest p<^ints, of the second 
type—maximal [41. This is best illustrated by the 
natural partial order of R'': total maximum is the great- 
est point, while Parcto set consists of maximal points. If 
the binary relation £S is generated by a cone K, as 
mentioned in Introduction, then the X'-extremes are 
maximal points, while the -/L ' -extremes are the greatest 
points w.r.t. 'M. Baryshnikov [3] has proved that the 
asymptotic upper btnind for (he pr<xJuct of expectations 
of the numbers of the extremes of both types is at most 
I, for any fixed 9? and k. Theorem 4 shows that this 
bound is sharp. 

Remark. Normal multivariate distributions can be 
viewed as the case of fast decreasing radial tails, ci = ^. 
The mean number of conical extremes demonstrates 
typically the following behavior: for any A, EV' 
infinitely grow.s if K is contained in a half-space, and 
lends to zero if K contains a half-space [10,11], 
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