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1. Introduction

Let X, = {X.....,X,}be a point set of independent
identically distributed 4-dimensional random vectors
sampled from the probability measure g, and K be a
punctured at the origin cone in RY, d > 1, We definc the
kth layer as

FNFH) =X #(Kx, N H)=k-1} k=12,...,

where K, =x+K 1s the translated cone with vertex in
x € R’ Intuitively, the kth layer is the set of the kth
cxtremes of #, in the direction K. The prime examples
we have in mind arc (1) the Pareto-optimal points corre-
sponding to the first layer in the direction of the positive
orthant, and (2) the total maximum, which may be con-
sidered as the first layer in the direction of the cone,
complement to the negative orthant. We are interested
here in the distributions of random variables

V.= SO,

counting the number of points in the kth layer. These

distributions depend essentially on both K and .
From a more general viewpoint, the first layer can be

regarded as the sct of maximal elements[4] with respect
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to the binary relation & in R? defined as x®Ry > x-
y € K. Alternatively, any scale and translation invariant
binary relation generates a cone by setting K = {x & R*"
xR0} and the maximal elements are conical extremes.

Two above cases of the counting problem have been
considercd in the literature under the assumiption that g
is either a product of one-dimensional marginal mea-
sures or a multivariate normal distribution (2,10,11,12).
It is well known, for example, that if & is a product
measure in R? then the average number of Pareto points
is of the order of (log n)*", while the probability that the
multiple maximum exists is n'™.

In this paper we focus on a class of distributions y
already studied in connection with multivariate ex-
treme--value theory [8] and statistics of convex hulls
[1.5,6,9]. These distributions are characterized by regu-
lar variation of the tail of the radial component and
asymptotical indcpendence of radial and angular com-
ponents. We show that typically the V,*"’s converge in
distribution and the expectations have finite limits as
n — %_In the special case of slow variation we calcu-
late cxplicitly the limiting distributions.
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2. Preliminaries

We define a cone as a punctured at the origin, scale-
invariant Borel set in R?, ie, 0 &€ K, (K=K ¥i>0.
Each cone is uniquely determined by its spherical basc
S.,=K N §, where S denotes the unit sphere. We asso-
ciate with K also the spherical set S_ obtained by reflec-
tion about the origin, So = S\(S, U S)and S. =5, N S..
The cone with spherical base € C § will be denoted
cone (C).

Set B, =~{xeER:|k=r}
A.c=cone (C) N B},

We fix in what follows a cone K and a multidimen-
sional probability distribution g satisfying the following
conditions:

(i) There exists @ = 0 and a probability measure pon §
such that

B =RAB, and

. By
lim

—_—r >0,
1=be 0B r

O
(ii) For all p-continucus C C §

" (Ar.(‘ )

hm L@

11—

= p(C), (2)

(i1v) p (int §,) > 0, and

(iv) p has no atom at the origin.

Consider an iid sample from p, #, = {X1,.... X, }
represented in the polar form as the product of radial
and spherical components: X, =R, Z;, where R, =|X.[,
Z, = X,/|IX;||. The above conditions on g have a natural
probabilistic interpretation. Condition (i) means that the
distribution function of the radial component,

F(ry < p(B,).

has a regularly varying tail. Condition (31) is translated
as

lim P{Z,E-[Ri>r}=p()
r—%

amnd is to be interpretcd as the asymptotic independence
of radial and spherical components, where the limiting
distribution p does not disappcar in the interior of S,
{condition (iit)). The last condition is not esseptial and
assumed for technical reasons.

Given a Borel set B C R, we represent the number
of the kth layer points in B as the sum of random indica-
tors

#ENH, N B) = E Lix, e w0 wynio,

il

and using the iid assumption writc for the cxpectations

E&LPNH, N B)=nP{X, € FYHKINB}=

n(::})P{x.es;xz,....x,ekxl;xm,...,x.@Kx,}=

”(zj) L(#(K:))""(l—m&)r* dux) . (3

The following lemmas will be used to estimate these
integrals.

Lemma 1. There exists 7> 0 such that u(K,) >
T(I—p(By) for all x ER”.

Proof. Consider first the case where there exists a
linear isomorphism which maps K onto the positive
orthant. Let y be the inverse image of the vector
(1....,1) under this isomorphism. By convexity,
K, C K, for all x € B,.

Condition (iii) allows one to select a compact p-con-
tinuous set CC S, with p (C)=>0 . It is easy to see that
y € int K, the sets K, s>0, arc increasing as s 1 0 and
U, K, =int K. It follows that C C K, for sufficiently
small s, Furthermore, for small s wc have also
Ay C K,,. Indeed, the points of A, - are representable as
tx, with t> 1, x € C, thus, by convexity, x € K, im-
plies Ix € K,,, C K,,. Homogeneity implies A, C K.
It follows now from Eqs. (1) and (2) that

pKy)  plhuc) plAnc) p(Bh)
p(B) ~ p(B)  p(Bi) u(B)

- 57p(C). rox>,

4
From K, D Kyg, we derive for sufficiently large ry and
fle]l > rq that

wlK)  pKw) 1,
pEy) - ply T2 PO

For x € B,, we have K. D K, ,, therefore Eq. (4) along
with the inclusion K., D K, . t> 1, implies

pK) _ pK,,)
wBy ~ pEY

The assertion follows in
= min{pe(K,,, ). 35°0(C)).

For arbitrary K onc can find a smaller cone XK' C K,
which is linearly isomorphic to the positive orthant and
still has the interior of its spherical base of positive
p-measure. This is possible since the spherical d-sim-
plexcs build 2 measurc-generating class on S. [t remains
to note that w(K,) = p (K1) for any translation, whence
the estimate holds in genecral. [J

> plK, ,)> 0.

this case by sctting
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Lemma 2. If E V," has a limiting value v € [0,%)
then all EV,", k=23,... converge to this limit as
n-—%,

Proof. Letm(1), t € [0,1], be the distribution function
of the image measure induccd by the mapping
x—p{K,). Changing variables transform Eq. {3) to the
one-dimensional Lebesgue-Stiltjes integral

1
EVY = n(';::)f (-1 dm(1).

o

A slight modification of the standard Tauberian theorem
as found in [14] assures that the limiting value of this
integral for k=1 exists iff m(t) is left-differentiable at
r=1, in which case the limit and the dcrivative have the
same value. Applying this theorem in the reverse direc-
tion one can easily see that all the EV,,* s must have the
same limit. [

Lemma 3. Assume -y, is an increasing sequence such
that h_IEo n(I-F(v. )=y, v> 0, then

n

limsup EV¥® = 77, (5

n—x

limsup E#(FK,)NB)<e"7 ', (6
n—%

with t determined by Lemma 1,
Proof. Set

flt)y = dF (), 1 € [0,1].

Firy=

Regular variation of F at infinity implies readily that for
all sufficiently distant discontinuity points the ratio
(jump-size)/(distribution tail) is close to zero. It follows
that (1-f(£))/(1-r)—1 as ¢ T 1 (for continuous F this is
obvious since f(t) =t ). Lemma 1, a change of variables
and the Tauberian theorem yield

EV," = HJ (J-p(K))Y dpx) =
RY
n j (1-7(1-p(B))" 'dpe(x) =
RY

J (1-7(1-F (@)Y 'dF (r) = f (—7(1-0)y""df (r)—7".
R [1]

Similarly, o
lim sup E#(.‘f’(”(?ﬁ,)ﬂB,")EnJ (1-7(1-F (r)y™
n—% ]

dF(ry=

Flya) v
nJ (l—r(l—r))“ldf(l)"’ﬂj. (1-7(1-1))"" dr

[}

—e 777,
where the equivalence can be justified by partial integra-
tion. (J

3. Pareto-Tails: a>0

In this section we study the limiting behaviour of V0
under the assumpticn that the regular variation index o
in Eq. (1) is positive. Our plan is to transiate Eqgs. (1) and
(2) into the convergence, of a suitably normalized sam-
ple, to a Poisson process[6,15] and then apply a continu-
ity argument to prove also the convergence of the
AL

Compactify R? by adjoining the infinite point > and
then puncture in the origin. The resulting topological
space, say R is isomorphic to R? and canonically em-
bedded into its compactification, bounded from the
origin Borel sets B C R? being relatively compact. We
endow the space M(RY) of Radon measures with the
vague topology: m, 2> m iff m,(B)—>m(B) for all rela-
tive compacts.

There exists a sequence of positive constants a, —x
such that the mcasures »,() & nu(a,-) converge
vaguely to the measure v determined by

V(A c)=r7p(C), v({=h=0. )

The limiting measure is in M (R“) , being infinite on
balls centered at the origin as well as on the sets
cone (C) with p(C)> 0. In particular, condition (iii)
implies » (int K') = =, Clearly, v is a product measure in
polar coordinates and has no atoms.

Let £ be a Poisson point process in R? with intensity
measure v, and £ be the random element of M(RY)
associated with the scaled sample @' %,,. Obviously, the
operation of taking a layer commutes with rescaling:
Fad,) = af?(3.), a>0, thereforc the number of
points in each layer remains invariant under scale trans-
formations. One can expect in this situation that V,™
converges in some sense to an analogous functional of
the Poisson process.

Define the kth layer of the Poisson sample as

FHE =X ER: E{x =1, £(K) = k1),

and denote V* = £F(£) the number of points in the
kth layer.
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Using the polar representation, x = rZ, and homo-
gencity we can write ¥(K,) = r“¢(z), where ¢(z) =
K.} is a function of the spherical argument, Using
Palm probabilities and integrating along radial rays we
represent the expectations as

EV® = f
B

JJ,s

dp(z)
5 d2)

viK, )(V(K ))t 3

- 1)! dr(x) =

e "‘1’(2))*'

(k ])" dp(;-)d(—r ”)=

(8)

The resulting intcgral does not depend on &, as it is
suggested by Lemma 2. The integration area can be
reduced to S\int § since ¢ is infinite on int S..

The following lemma is fourd in [S].

Lemma 4. Let E be a locally compact, Hausdorff and
separable space; ho, h, ...be a uniformly bounded
sequence of real measurable functions commonly
supported by a relatively compact set; and ma, my, . . .
be a sequence of Radon measures on E such that
nt, Y mg. The set D={x € F :3{x,}, x.—x, h{x,)
b h(x)} is measurable and if mfD)=0 ihen
f h.dm, —)_f hoetmo,

Now we are ready 1o prove a convergence result.

Theorem 1. Assume (1)}+v), a> 0, and

v{—AK) =0, )

vXp{xy) ERIXR: (x—y)EK}Y=0. (10)
Then for all k= 1,2, ..

O, L vy Gy, ey, an

EVO SEV® psx, (12)

Proof. By Skorohod’s theorem we can find random
point measures £,.£€ M(RY satisfying £, 28,
é 4 gand £, % f a.s. Thus 10 prove the convergence in
distribution (10) it suffices to consider the casc & -5 £
a.s. In what follows we fix a typical realization of £ and
assume n sufficiently largc.

Since v(int K)=3=, £ lays in the cone intcrior
infinitely many points. Select k of them, say xi, . .., x.
Pick r sufficiently small 1o satisfy B, C Mf_, -K, as
well as £(dB,)=0and also B, N {x;,.... x5} =8 The
complement B; is relatively compact hence the
processes £ and £ have there a finite number of points,

514

52 Ynls---.Yap aDd ¥y, ....¥, respectivcly. These
points may be labeled so that y,; — y,, as it follows from
the vague convergence. By the construction, any trans-
lated cone K, with x € B, contains at least & points of £,
thus B, N FY(£)=0 and also B, N F%E)=0 for
J=1.....k

For y; € —int X, the cone K, contains a vicinity of the
origin, where £ has infinitely many points. Therefore
AL T A R0E Y oy Gy 2RI, )

The condition shown in Eq. (9) assures that no one of
¥is o+, Ys lics on =K, almost surcly.

For y; € —1 K, the shifted cone X, is bounded from
the origin. Therefore there exists an open vicinity of
clfUif-, K, ) which is still relatively compact, and hence
contains at most a finite number of points in addition to

Baa 8 a0 ¥, . By Eq. (10), £&(aK, )} = 0 a.s. Again the
poinwise  convergence  implies £ (K, )=
&(K,)), whence (V... v,y =(V'",...,V®) and
thus (11).

Now turn to the convergenee in mean. It is enough to
prove Eq. (12) for the first layer, & = 1. It is easy 10 see
that

EV,,") 3 J’ EXP(*Vn(KJ))an(x) = ( === )dp"+
B

f(...)dv, r>0
Bf

Take a point x & —cl K and a sequence x, — x and
consider the indicator functions of the sets K, and K as
the A’s in l.emma 4. The divergence sct D is dK,,
whence by (9) and the lemma », (K,)) = »(K,).

For x € ~int K, x,—x we have v,(K,)to v(K,) ==
since K, contains some fixed vicinity of the origin,for
all sufficiently large n. Therefore in this case also
v, (K, )ov(K, )= =

To make further use of lemma 4, consider this
time the functions Ao(x)= exp(-r(K,)). h.{x)=
exp(—»(K, ). For the discontinuity set we have D C
~aK U {x : 1f3K,) > 0}. The assumptions in Eqs. (9)
and (10) imply o) = 0, hence for any r

J BXP(—V.(Kx))qu(I)—)J ‘;XP(—V(Kx))d!-'(X)-

¢
L

Now apply Lemma 3 to derive the estimate
lim sup J exp(-v, (KOMw(x) < 7 'exp(=v(B))T).
n—%

The right—hand side here tends to 2cro as r—0.
Putting this all together and comparing with Eq. (8)
we conclude
lim sup EVY) = EV(.

n-3x
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The reverse incquality,

lim inf EV,"? = EV‘",
n-3x
follows from the convergence in distribution [

Remark. The continuity conditions of Egs. (9) and
(10) are actually some properties of the spherical mea-
sure p. The first one trivially translates as p (—9K) =0,
but we have not been able to find a re~formulation for
the second. Sufficient conditions for Eq. (10} are: p is
non—singular, and 48, lies in a (n—2)—dimensional set;
or K is convex, K has no two-dimensional facets and
p(a5.)=0.

Example. Here is a remarkable case where the expee-
tations are cxplicitly computed. Consider the two—
dimensional Cauchy distribution specified by the
density dp(x) = Q=)' (1+]x])*dx, x € R’ The
radial tail is regularly varying with &« =1 and the circu-
lar measure is uniform, ie., dv (rz) = (27 ¥'r 'drdz,
r>0, z€(0,27).

Assume first that K is the positive quadrant. The kth
layer arc those X;’s which are exceeded by exactly &1
pomnts of #, in both components. Integrating yields

c0s 7 +sin 2 -1
27 sin zcos 2

¢y =v(K.)= € (—mi2, T

and ¢(z) == otherwisc. Computing the integral in
Eq. (8) we obtain

i BV o= 227
n—> 4

For k= | we have the limiting mean of the number of
Parcto points.

Now suppose K is the complement to the ncgative
quadrant. The kth layer consists of those X;'s which
exceed all except some k—1 sample points in both com-
ponents. We get

_ cos z+sin z 4]

$@= Srimzeosz <C O

and ¢(z) = = otherwisc. Computing the integral Eq. (8)
in this case, we obtain

lim Ev,9=1-Z
A 4

The first layer is either empty or just one point, maxi-
mizing both components, thus this mean value coincides
with the limiting probability of the total maximum,

The limiting distribution and higher moments of the
V% s can be, in principle, cxpressed in terms of some
integrals similar to Eq. (8). These expressions do not
seem tractable by analytical methods berause of the
complicated integration domains.

4. Slowly Varying Tails: @ =0

The case of slowly varying radial tail, with =0 in
Eqg. (1), is of special interest. The above Poisson approx-
imation method does not work, since the sample cannot
be rescaled to provide a non-degenerate limit. To get
around, we extend here a method already exploited in
[1], where the number of convex hull extremes of a
sample under slighly stronger assumptions on the
distribution has been studied.

We assume for technical reasons that F is continuous
though, in fact, slow variation is all that is needed,

Let X%, ..., X" be the elements of ¥, arranged in
the norm-decreasing order, ie., X2 >...> X7 |.
Set R =R;and Z' = Z, ,iff X\ =X;: 4, j=1,...,n.
One can recoghize in the RY) 's the radial order statistics.
The associated spherical variables, Z% 's will be called
concomitants. Note that the continuity hy pothesis make
the definitions correct since the radial components are
different with probability one.

Maller and Resnick [13] proved that slow variation is
equivalent to

R,!i+l] : 1
W—-)O i=12,.... (13)
Our convergence results cffectively exploit this fact
combined with the asymptotic independence of the con-
comitants shown next.
Let Z'" Z'% . be iid S-valued random variables
with distribution p.
Lemma 5, Assume that F(r)= w(B,) is continttous
and Eq. (2) holds. Then

G2 et b 0 B (] e 2N | Rzl 2k

Proof. For p-continuous C C S write (2) as

B ]—F(‘(!')
Jl_r’nx TFr) =p(C), (14)
where  Fe(r)=pi{cone (CYN B.). Select arbitrary
k€N and p-continuous spherical sets Cy,...,GC;.
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We have Introduce the random variables

T.9=0; T, =min{i : UL, £*(3) N (XY,
Xy =0) k=1,

n 1l _nt
PZYEC,... .2 E Gl
i 110/ 1) W
P2 EC. Xy =Xy, ..., 24 EC Xo which count the X; s in the norm-decreasing order until
' the first k layers having been filled. Clearly,
X y= (n%k)"f rZV'ecC,RM=R, ..., V¥ = 79 < T Denote §* the product of infinitely
’ many spheres, and set

n!

Zlit e CA.R’5=R;}=m

PEZVeq,..., T92)=0; 7@ =min{j: (5. N {21 ...z =k},

Vz) = #4 : T* (2) < j < T¥(2), € \S.)
ZHEC,R>...>R Ri>Rifori=k+},...,n}k=
where z=(z,,75,...)E 5" and inf@=2. For i=j

! the set
(_;:'T)! J Fr)ydunz) ... dunz) = 4
nE. aEG Z €5 : V@) =j, T(2)=i}
n! - . is a finite-dimensicnal cylinder in 5™
h j (Fr)y—dFc(r) . .. dFc(r) = Denote Z = (Z", 22, ..) the sequence with iid

Yis..on components distributed according to p, T® = T#(Z),
V® = 7)., Tt follows from the definition and condi-
tion (iii) of Sec. 2 that T®, k=12,...05 a strictly
increasing sequence of finite stopping times with

n(’kl::) j (F(fl))Hchl(n) R chk(f*) =

Fucesti >0 respect to ZI'L, ZP, .,
Theorem 2. Assume (i)-(iv), a =0, and p(dS, U 45.)
E i =0.Th k=12,...

n(z_l) r(F(r,))“qu(r,) J = I dFe (r) 0. Tew for-any

° o VLT, ... Vo7 v, T, v®, 7o)
n—1 =

o dFe, (ra) = "(k—l) J:(F(n)) Pe0or, FOTRERN . - & P Do B TR
O<n<...<hhandO<sv, s -1 fori=1,..., k. We

(1-Fc, (r)) .. . (1=F¢,_, (r)y dF g (ri) = need to prove that

"(EZ}) (L’(--J’fr(---))~n(2:})f(...>= lim POVE =y T9 =i i<k)=

PVO=vy, TP =1 ik}
(for large r uniformly in z)

- We endow S' with the product measure p' and the
"(lc—l) p(C) ... p(Cun) J-m(l—F(n NE N Euclidean metric. Define

dFe,(r) + € = p(C) - - . p(Cy) + €,

as n— , where we have used Eq. (14) and applied an D= a5 |5 Sy apar ) 3

argument similar to that in Lemma 3. Asymptotically, Lo o3y D =9},
the probability is factorized, whence the statement O3
To prove the convergence we combine in what follows d={z,....2)ES Vg, ...,2)=

the above lemma and Eq. (13). The idea is that the points
with top layer ranks have also small ranks in the radial
components. On the other hand, conical extremality of
the points with small layer ranks is determined by their, The definition of & is correct due to the cylindrical
almost independent, spherical components. property. It is casy to see that @ is compact, S\D is

open and, by the assumption, p'(2)=0. It follows,

Vis T“M(Zl, T . .Z,)=Ii; = k}

516
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p'(s) = p'(\D). For any & there exists ¢ with the
properties:

A;CAD, p(A)y-p(sls)<8§, dist(sfs, D)>0,

p'(3d5)=0. (16)
To prove this, take %;={a € \D :dist (a,F(N
@Dy >06}) then €%, is an opcn set, increasing 1o
D as 610 . We have p((\DNE) <8 for
sufficiently small @, On the other hand, % C
{a € §': dist {a,d (D)) = 8}, these sets being dis-
joint for different 8. Hence the set of the values of 8
with p'(d%,) > 0 is at most countable. Select an appro-
priate 8 and set s = €, .

We derive from Eq. (16) with the help of some topo-
logical considerations that for sufficiently smail ¢

.-sz, (Z+B)Ncone (D)y=0 (z.....7) € o4 (17)

Assume now that the compound event

@ZY, ..., 2N e of; RYSRIF §=1,...,k (I8)

occurs. We show next that in this case

T.(,?=!,', V(,P=Vi i=],...,k. (]9)
Let Q be an clement of the finite algebra of spherical
sets generated by S, and 5. The following equivalence

holds:
X-xWecone(Q)=ZieQforl sisti<j<n, (20)

Indeed, note first that 3Q C D. By (17), Z'J € Q implies
Z¥ 4+ B, C cone (Q). From Eq. (i8) we have also
X4 Beyp Ccone (). But XV € Byp thus XU -
XU € cone (Q). Use Q° instead of Q to prove the
reverse implication.

The definition of & and Eq. (18) yickd Z'i' € §,,
i=1,...,k. Setting Q =5, in Eq. (20) we have X5~
XV e K, 1,<j=n. Therefore,

[ 4
o xiyn U goee) e

Let ry<j<# and ZV € S. Setting @=S_ in Eq.
(20), we have {X}*'" ..., X0} C (XY + K). Setting
Q=S we have further (X", X@® .  xi-7y
€ (XU +K) . That is, X9 & U, <; F™(,.).

Lett,, <j<t;and ZY € §, . Substituting ¢ = S, into
Eq. (20) we get XV X% Econe (). j+1=p=n,
together with S =-85, and SN S, =0 this yields
XU XN (K4XVW =0. For Q=5\S, and

517

pE{].....j—']}\{ﬁ,fz.....fH} we  have X]ﬁ'le
(X + X"y, Similarly, for p € {t,,t3, ..., 1.1} we have

XBLXY, .. XB Iy CXPa K.
Thus in this case X! € £-Y(,).

In the same manner, Z'J' € S\S. implies X! €

g’(i—!)(gfn).

Summarizing, if Eq. (18) holds then
FPUFH) =X <jst, ZWESNS), whence
Eq. (19).

Now from Eq. (13) and Lemma 5 (recall that t =1, )

P{ZV. ..., Zh € of;, R\ » RIH:
L ),

Recalling the definitions of «f and &f, we get

Hminf PV = v, TO =t;: i<k}>
no=
P{VP ey, T =y i<k)}8.
Take §=06(vi,....viityy ..., 1) with
X3, Viihh.. ., )= and choose a diagonal

subsequence of the values of n to get the convergence of
the probabilities in the lefti-hand side. Recalling that
probabilities sum to one, we derive Eq. (15) by setting
B—00O

Convergence in mecan does not require additional
restrictions, as shown next,

Theorem 3. Under the assumptions of Theorem 2

EVPSEVY, p oo,

Proof. 1t is sufficient to consider only the case k= 1.
Denotc by I, and /' the indicator functionsof the
events {X'le £} and {ZV € S\S, i=T"),
respectively. Clearly,

ALY (PRI [ON U RS (DY (O P

By an argument similar to that used in Theorem 2 we
show that
Oy S At m=12,..0 (2D
Choosc v, satisfying np,—A , where A>0, p, =
l—p(B,). The random variable N=#{X:,...,X,}

M B;,) has binomial distribution with parameters (7,2, ).
By Eq. (6),

E(l.w'" Foo. + MY =E&F(FKIN Bh) R
(22)
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Fix m and write the expectation as ZUE SN, #{ZM, . ... ZVM N(S\S ) =i-1}+
EVY =E{/U+. .. IY=E@V+... '+ P{{Z",....ZV"Yyn 5. =0, ZV E 8.,
EM M I am HE@O 4L Y et #HLEZ", . L ZV NSNS ) =i )=
E¢™ 4 1™ Lwemye P {#(42", ..., 28N §) =i,
The first term converges by Eq. (21): #zZM, .., ZF"Y N (8NS,)) = j—i }X
E@"4+... FYSEW" +. .. /™)), The first and the P{ZV € S)S_ Y+ PLH({zM ..., Z¥'YyN Sy =i,

third terms are estimated by Eq. (22) as

#4ZM,. ., ZFY N (SNSL) = j-i—-1)P{ZV E 5.} =
(AL I SO Loy T PPIRRY O1¢ Lt SR i) 1 P

j—1 i ' =1 i
=EIMY+ ... + 'y <setr . (ﬁ—l) P (p—p=Y ' (pi=p-) + (J 5 )po P—p=Y'p..
Since N is binomially distributed, we have for the where i =0, j= | and j = /. Summing over j we arrive
second term at the limiting distribution of points in the kth layer:

E(”'ml] I I!f“) [(,va-m} <EN lcvzm)) = P{V(n - 0} - P
lp +p.’
AP{N,=m-1}, n—ox

i1
P{Vm=f}=&¢p_‘)g‘_ i=12,...

where N, is a Poisson random variable with parameter (I—p_+p.)™
A. Selecting A and then m sufficiently large, we prove
lim sup,_« EVY < EV®, It the cone satisfies K M —K =0 (or, more generally
The inverse inequality involving lim inf follows from p(5. N S)=0) then p. =0 and V¥ is geometrically
the convergence in distribution T distributed. A listle additional work is needed to find the
It is not hard to find the limiting distributions of the expectation:
Vs, Note first that
VO Ty, (v, AT, EV® - 'JPP_ _ (23)
are all iid, thercfore it is sufficient to consider only the Example. Assume that the radial tail is slowly vary-
first pair. Clearly 7" is geometrically distributed with ing and p is the uniform spherical measure.
parameter p(S,). The probability law of V" is found For K = R? we have p, = p_= 2", and Eq, (23) yield
from the following scheme: throw down the iid points EV® — 27—1. In particular, the mean number of Pareto
ZW, Z¥ . in § according to the probability law p points in two dimensions converges to 3.
until the first point falls into S, , then count all the paints Taking the complement to the negative orthant, we
falling into S\S_. To make this precise denote have p, = p_= 127 and EV¥ 5 (2°-1)"", In two dimen-
sions, the probability that the sample has the double
Po=p{Su), p= = p(S-), p-= p(S.), p. = p(S.) maximum tends to 1/3.

Appearing of inverse numbers in the above example is
a general phenomenon.We write further V% (K) to
(thus po+ p + p.—p- = 1). The joint distribution of V" cmphasize the dependence on the cone.
and 7' is this: Theorem 4. Under the assumptions of Theorem 2

lim EVE(KYEVY (K9 =1,
PVO =i TVaj}=P{Z",...,ZV NS, =0, L i
provided one of the numbers p, or 1=p_ is positive.
Z0e S #{zZM, .., ZUy N (S5\S)) =i}= Proof. This follows from Theorem 3, Eq. (23), and the
formulas p_.(-K*) = 1—-p (K}, p.(-K}=1-p(K) U
Pz L ZEIyN S, =0,
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Remark, Given a binary relation, say &, on a sam-
pling spacc, and a random sample #,, there are two
natural ways to define the *“kth extremes™ of X, : (1)
sample elements X; which are in # with all other sample
elements with the exception of some k-] points; or
(2} the elements X; such that there are cxactly k-1
sample points which are in the relation with X,. In the
theory of partially ordercd sets extremes (k = 1) of the
first type are called the greatest points, of the sccond
type—maximal [4]. This is best illustrated by the
natural partial order of R”: total maximutn is the great-
est point, while Parcto set consists of maximal points. If
the binary relation @ is generated by a conc K, as
mentioned in Introduction, then the K-extremes are
maximal points, while the —K* -extrcmes are the grcatest
points w.r.t. &. Baryshnikov [3] has proved that the
asymptotic upper bound for the product of expectations
of the numbers of the extremes of both types is at most
1, for any fixed & and k. Theorem 4 shows that this
bound is sharp.

Remark. Normal multivariate distributions can be
viewed as the case of fast decreasing radial tails, o = =,
The mean number of conical extremes demonstrates
typically the following behavior: for any &, EV{
infinitely grows if K is contained in a half-space, and
tends to zero if K contains a half-space [10,11].
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