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Various attempts have been made to
develop models for predicting the de-
velopment of damage in mctals and al-
loys due to pitting corrosion. These
muodels may be divided into two classes:
the empirical approach which employs
extrcme value statistics, and the detcr-
ministic approach based on pcreeived
meehanisms for nuclcation and growth
of damage. More recently, Artificial
Neural Networks (ANNs), a nondeter-
ministic type of model, has been devel-
oped (o describe the progression of
damage due to pitting corrosion. We
compare the three approaches above—
statistical, deterministic, and neural net-

advantages and disadvantages of each
approach, in order that the most reli-
able methods may be employed in fu-
ture algorithms for predicting pitting
damuge functions for engincering struc-
turcs. To illustrate the difficulty that
we facc in predicting cumulative pitting
damage, we sclected a set of data that
was colleeted in the laboratory. We
comparc and contrast the three ap-
proachcs by reference to this data set,
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1. Introduction

On the basis of laboratory studies [1], and
through the analysis of field data collected over the
past decade by Battelle Columbus Laboratory [2],
several factors have been identified as contributing
to the development of pitting damage in gas fired
heat exchangers in domestic and industrial service:

(i)  The type of alloy used for fabricating the
heat exchanger

(i) Chloride concentration in the fue gas
condensate

(iii) Temperature

(iv) Exposure time

{(v) Ambient versus indoor air

(vi) pH

(vii) Electrochemical potential

Unfortunately, few of these factors are simply
related to the damage functions or to one another.
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Accordingly, it is seldom possible 1o establish a
simple empirical equation for predicting pitting
damage as a function of thesc variables. The case
cited above is not atypical, and it illustrates the Jif-
ficulties faced by those who seek to develop predic-
tive models for asscssing corrosion damage.
Indeed, the data base established by Battelle is
probably one of the best that currently exists for
the developmem of pitting damage in an indusirial
systemn. A full interpretation of the Batielle data in
terms of statistical, deterministic, and artificial
neural network models is published elsewhere [3].

In the present paper, we use a more restricted
database to illustrate how various classes of models
arc used to analyze the damage caused by pitting
corrosion. These models include a statistical ap-
proach based on the Weibull distribution function,
a deterministic model based on a physicochemical
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mechanism, and an Artificial Neural Network
(ANN) that assumes neither a mathematical model
nor a physical model, but which seeks to establish
relationships between the dependent and indepen-
dent variables by examining the patterns contained
within the data set.

2. Experimental Data

We used laboratory data to illustrate the time
and potential dependencies of pitting damage. To
do this, we chose a laboratory data set for which the
following independent variables were identified: 1)
concentration of minor alloy elements in weight
percentages, 2) difference in oxidation statc be-
tween host metal and minor alloy elements, 3) ap-
plied potential, and 4) time of observation. Inde-
pendent variables 1) and 2) are related to the type
of alloy; and independent variable 4) together with
solution composition (which was maintained con-
stant) is determined by the electrochemical poten-
tial. Temperature, solution composition, and pH
were maintained constant. The dependent variable
was the total number of pits.

We then used this set to illusirate the prediction
of cumulative damage for pitting corrosion using
three different models: statistical, deterministic,
and artificial neural networks. The data werc mea-
sured by English and Macdonald at SRI Interna-
tional [1).

Several alloys of nickel were fabricated. Cuch of
the alloys tested was arc-melted from powders un-
der an Argon gas blanket in a sealed contuiner. Bi-
nary nickel alloys containing Al, Ta, and Mo in
nominal concentrations of 0.1 %, 0.5 %, 1 %, 3 %,
5 %, and 8 % by weight were cast as 100 g buttons
and were sectioned in an acrylic plastic before pol-
ishing. The alloying elements were selected on the
basis of their oxidation states relative to nickel (ox-
idation state =2). The excess oxidation statcs range
from 1 for Al to 4 for Mo.

The polished specimens were placed in a cell.
The electrode potential was swept in the positive
direction at 1 mV/s from an initial potential of 0.0
V. This results in a distribution in breakdown po-
tentials. Alternatively, the potential was stepped
from 0.0 V10 0.325 V, 0375 V, 0.4 V, and 0.45 V.
This resulted in a distribution in induction {or ob-
servation) times for the nucleation of pits.

In both types of experiments the pit nucleation
and growth events were photographed at 65 X mag-
nification at regular intervals. The number ofl pits
were counted on the pictures taken at differcnt
times and conditions.
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The pitting data were measured scveral times on
a similar sample 1o cxplore reproducibility. The re-
producibility in pure nickel appeared satisfactory
(about 10% difference between runs), but the
reproducibility from alloy compeosition to alloy
composition was different. Rcproducibility was
better at high potentials perhaps because the total
number of pits developed was higher. Reproducibil-
ity appeared to be better at high minor alloy con-
tents and high oxidation states (about 20 %), than
at low minor alloy contents and low oxidation states
(about 50 %). Regardless of the poor reproducibil-
ity in some of the samples, a general trend was cob-
served: a) The cumulative number of pits
diminishes with 1} minor alloy element content, and
2) with increasing difference in oxidation state be-
tween the base alloy and the minor alloy element;
and b) The cumulative number of pits grows with
increasing applied potcential and observation time.

Cumulative pitting damage is an irreversible,
dynamic, time decay, environmentally related pro-
cess. The literature is abundant in pitting corrosion
data, but there is a lack of good quality data be-
cause of the dilficulty of measuring pitting corro-
sion when controlling all the environmental
parameters.

All model building is concerned with an attempt
to increase our knowledge of complex physical real-
ity. The parameters plus the validity of the model
must be determined from the data. The philosophy
behind 1he type of modecl is different. The informa-
tion obtained from a purely probabilistic model
(statistic and stochastic models) is about finding
embodied in the data trends that can be used in fu-
ture predictions. The information obtained from a
deterministic madel is about the physical meaning
of the phenomena itself. The information obtained
with a ANN model is about the dependency and im-
portance of input /output relationships. In any case,
the model capabilities need to be tested.

We can start the process of solving our problem
by listing facts, listing observations, and listing exist-
ing laws relating variables and outputs. Then we
have to ask ourselves which will be the best model
to describe the problem, and what do we expect
from the model. Later we need to identify the
model or models to use; specify the constraints,
choose the coordinates, and apply the laws dictated
by the model. Emportant questions related to the
choice of a correct model are: Is the process static
or dynamic? Is the process stationary or not?; Are
the available data distributed or not? What do the
data mcan? What is the data variance? What are
the correlations?. In any case, the fitted model you
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use for analyzing your data is the nearest represca
tation of the true situation you have available.

3. Statistical Approach and Results

Stochastic processes are dynamic, and go.d ex
amples are fatigue, wear, and crack or pit growth
There are two main types of stochastic pro-
cesses: stationary and nonstationary.

It is well known from experimental data that cu-
mulative pitting damage is a nonstationary phe-
nomenon. It is well known that nonstativnary
models and their estimation are notoriously diffi-
cult problems to handle except for special cases,
Discrete state continuous Markoff processes are
good examples of models that describe nonstation-
ary stochastic phenomena. However, there is no lit-
erature on problem solving using nonstationary
finite Markoff chains [4]. On the other hand, fay the
last data set [1] (measured at the laboratory), the
cumulative damage versus time was measured, but
the pit depth versus number of pits was not. There-
fore, it is impossible to derive a dynamic model for
pitting damage using that data set. The only option
available is to try to fit a static model (i.e., our hy
pothesis is that the numbers of pits versus pit depth
does not change with time). We choose a 2 purame
ter Weibull distribution; for which we assume that
the independent parameters are potential, and the
oxidation state and concentration of the minor al-
loying elements. The dependent variables are the
cumulative number of pits and the induction time.
The Weibull distribution function is

Fix)=(1—exp(-(/B)7))

where a and B are fitting parameters and x is the
dependent variable of interest.

We normalized the data set to 80 % of its naxi-
mum value, allowing 20 % of the pits 10 nucleate if
the time would have been extended to infinity. For
each potential, oxidation state, and perceatile of
minor alloy element, we performed a nonlinear fit
to estimate the Weibull fitting parameters.

The choice of a Weibull distribution is arbinary,
we chose a Weibull distribution instead of somc
other probabilistic distribution because of the flexi-
bility that this distribution offers in fitting diffcrent
shapes obtained when plotting cumulative damuge
versus dependent variables.

The nonlinear fits were acceptable (swa of
square errors between fit and data <20 % for wor
B). We used those data sets for which smooth
changes of o and B were calculated as 1 function ot
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polentidl. Fhanredoced the Jata base 1o about 50 9%
uf the 1014l available (the total data base had 1400
data lines containing number of pits at different ob-
scivalion thes, applicd potential, oxidation states,
and percentite uf minor elenients). We plotted the
« and B values as o function of potential, Figures la
and 1 show the 1esulis. The beta parameter of the
Weibull distsibution appears to not change with ap-
phed potential at high concentration of minor alloy
elements (3 %), but it changes drastically with ap-
plied potenuial at low concentrations of minor alloy
element (3 %, 1 %). We then fit polynomials de-
scribing « and B as functions of applied potential,
oxidaticy slale, and percentile of minor alloy
clements.

The Wesbull distribution with & and 8 as parame-
lers was uwsed Lo generate the cumulative damage
funciion Figores 2a, b, and ¢ show the predictions
obtained wirh 1his statistical model, When we com-
pared the predictions obtained with this model and
the measured data, we observed that both trends
are similar. Huwever, it would be very risky to use
the model o make predictions for other oxidations
States, percentile of minor alloys elements, or
applied porentials outside the range for which the
Weibull-parameters were calculated.

It is well known that the Weibull distribution is a
sufficiently flexible function that practically any set
of dala can be finted by it. However, the problem we
faced is that we Ju not know u priovi the correct re-
tationships between « and B and the independent
variables.

Predictions with the same muodel for oxidation
stales grealer than 3 2 gave cumulative probability
ol zeru at any lime and are not shown. The designa-
tiun *3 27 referes to the oxidation state of the al-
loying elenient (Al = 3) and the host metal (Ni=2).

4. Deterministic Model

A complerely successful model must account for
all of the phenomenological correlations that exist
bictween pinting susceptibility and pit velocity, and
varicus envitonmental and electrochemical factors,
such as tlemperatuee, pH, |Cl], potential, time, and
alloy composition. The Point Defect Model (PDM)
{5, 6] accounts far the effects of electrochemical po-
tential, alloy composition, and environmental con-
ditions on the nucleation of pits.

The determumistic mode! is based on the PDM
and the Solute Vacancy Interaction Model (SVIM)
[7-10} The PDM proposes that passivity break-
down vceurs becanse of an enhanced flux of cation
vacancics from the film/solution to the metal/film
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Fig. 1. {(a) Alpha parameter of the Weibull distribution versus

applicd potential; at several percentiles of minor alloying clements,
and oxidation states. (b} Beta parameter of the Weibull distribution
versus applied potential; at scveral pereentiles of minor alloying ele-

ments, and oxidation states.

interface. If the excess of vacancies arriving at the
interface between the metal and the film can not be
absorbed into the metal or be annihilated by some
appropriate mechanism at high enough rate, they
accumulate to form a vacancy condensate at the
metal film/interface, which then grows to a critical
size. The PDM is used to calculate the breakdown
potential and induction time. The effect of the mi-
nor alloying elements in the oxide film on the
breakdown parameters is modeled using the SVIM.
The SVIM is based on the hypothesis that highly ox-
idized solutes in the passive film electrostatically
complex with the mobile cation vacancies.

The PDM and SVIM results in distributed values
of the breakdown potential and induction time, and
complexing between the immobile alloying element
in the film (the “solute”) and the mobile vacancies
diminishes the flux of vacancies across the film. This
leads to an increase in the breakdown potential and
the induction time for film breakdown. The higher
the net oxidation state (minor alloy element oxida-
tion-host ion oxidation) and/or the higher the per-
centile of minor alloying elements in the film, the
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greater the effcct on reducing the flux of vacancies
and hence in increasing the pitting potential and
the induction time. Once the pits nucleate, they
grow at different rates. To calculate the pit prowth
rate we used 1) a simplistic steady state model sug-
gested by Alkire [11]; and 2) a nonstationary model
developed by us [ 12-13]. The stationary model is ex-
pected to be adequate for only short times.

The overall model {combination of the PDM,
SVIM, and pit growth) requires the defining of a
number of parameters, as shown in Table I.

Figure 3a shows the cumulative probability of the
number of pits (normalized to 1) as a function of pit
depth and observational time of 50 s, for an applied
voltage of 0.325 V and for several concentrations of
the minor alloying element with oxidation state of
3-2 (example aluminum in nickel). Figures 3b and
3c show similar plots for oxidation states of 4-2
{e.g., titaninm-nickel) and 6-2 {e.p., molybdenum-—
nickel), respectively, for the same conditions. It is
interesting to note the great effect of minor alloying
elements with high oxidation states. The model pre-
dicts that the cumulative probability of the number
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Fig. 2, Predicted cumulative probubility, obtained using the statisti-
cal madel, versus time of observation, at several applied potentials. (a)
Oxidation state 3-2; and 1 % of minor alloying clement segregated in
the film. (b} Oxidation state 3-2; and 3 % of miner alloying element
segregated in the film. (c) Oxidation statc 3-2; and 5 % of minor
alloying clement scgregated in the film.

Tablel. Input data used in the calculation of the deterministic/probabilistic model

Paramctcrs Value Units
Stoichiomctry 2

Avogrado constant 6.023 E+23 mol !

Mol vol. of oxidc cation 30 em’*/mol
Gibbs energy change?® — 40,000 Jimol

Gibbs encrgy change® —10,000 J/mol

Mean diffusion coctficient 5E-20 cmls
Standard devistion 0.75 Dmcan em?/mol
Chloride activity 0.573/72

Electrical field across film LY1E+6 V/em
Alpha 0.65

Beta —0.01 V/pH  unit
Criticul area vacancy size? 1E+16 No.fem®
Critical vacancy flux* 1587 E+12 No.jem?®*
Temperature 208.15 K

Applicd potential —{.55 V SHE
Molar gas constant 8.314 JK 'mol™?
Electrical potential filmfsol -0.35 V SHE

.* Variables that were used to adjust one datum point to scale the results properly.
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of pits at all pit depths is higher at lower minor
alloying element oxidation state and at lower con-
centration of the minor alloying element. Because
the model does not assume a total number of break-
down sites only a normalized probability is ob-
tained.

Figure 4 shows the beneficial effect of adding
minor alloying elements with high oxidation states.
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Fig. 4. Difference between culeulated breakdown potential
of nickel containing 0 %-5 % of minor alloying elements with
oxidation states of (___ 3-2: Ni-Al), (---4-2 Ti-Ni), and
(-.-.-.6-2: Mo-Ni} and calculated breakdown potential of
pure nickel {containing 0 % of minor alloying clements).
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The breakdown potential is shifted in the positive
direction, indicating that higher potentials are nec-
essary to achieve the same damage.

5. Artificial Neural Network Model and
Results

Probably the most efficient method, when data
are available, of establishing relationships between
inputs and results is to use artificial intelligence
techniques. Accordingly, we describe here an Artifi-
cial Neural Network (ANN) for predicting pitting
damage functions for condensing heat exchangers.
When the net is trained with reliable data and
knowledge, we are able 1o accurately predict dam-
age outside the ranges of the input variables.

An ANN is a highly interconnected system
inspired by the brain and formed by simulated
“neurons” represented by a transfer function, and
“weights” associated to the connections of the
“ncurons.” The back propagation training al-
gorithm allows experimenta! acquisition of input/
output mapping knowledge within multilayer
networks. Because we have experimental data on
the cumulative numbers of pits versus time of obser-
vation, as a function of oxidation state, minor alloy-
ing element, and applied potential, we decided to
use an ANN backward propagation technique with
supervised learning. During training of the ANN,
the cumulative numbers of pits were used as
“output” and the applied patential, oxidation state,
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minor alloying element concentration, and time of
observation as “inputs.” We explored several to-
pologies to obtain the best compromise between
learning and computing time for an ANN with 2
hidden layers.

The maximum training time was set to 12 hours
on a Macintosh II microcomputer with a threshold
of 10 % of the normalized input values (input-
ouput) [2].

The ANN had the following features:

(i) Heteroassociative memory, for which the
patterns on recall from the memory are purposely
different from the input pattern, because the inputs
and cutputs are different and belong to different
classes of information.

(ii) Delta rule type of learning, where the neu-
ron weights are modified to reduce the difference
between the desired output and the actual output of
the processed element. The weights are changed in
proportion to the error calculated. This rule also
limits the learning, if the error at the output of the
network is lower than a given threshold. The learn-
ing rates of those layers close to the output are set
lower than the learning rates of the other layers.

(iii) A momentum term, which is used to
smooth out the changes.

(iv) A sigmoid transfer function, which is a
monotonically continsous mapping function.

The ANN predictions are in good agreement with
the measured data. Figure 5 shows that correlation.
Considering the difficulty of obtaining high quality
data, we consider that the correlation factor is satis-
factory.
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502

After the ANN was trained, it was used to make
predictions of the number of pits at different ap-
plied potentials, observation times, oxidation states,
and percentages of minor atloying elements in the
film. The total number of pits predicted by the
ANN decreased with increasing percentage of mi-
nor alloying elements in the film, and with increas-
ing oxidation state of the alloying element (Figs. 6a
and 6b}. Behavior similar to that predicted by ANN
was observed experimentally.

The ANN, once trained, can be used to explore
the importance of the relationship between
“output” and “inputs.” We found that the results
were strongly dependent on observation time (23, ¢),
have a medium dependency on applied potential
('), and show weak dependencies on oxidation
state (Z') and concentration of minor alloying
element in the film ([%]").
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tiles of minor alloying clements. (6a) Oxidation state (4-2). (6b)
Oxidation state (6-2).
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6. Discussion

Figures 7a to 7d show the best predictions
obtained with the three models compared with the
laboratory data.

The deterministic model predicts that the cumu-
lative probability at low applied potentials is not
only described by a flat curve but that the curve is
displaced to higher times. This prediction coincides
with the experimental observations. The predictions
with the deterministic model at high potentials indi-
cated that the plateau corresponding to higher
times is reached sooner than that measured. The
deterministic model is the only model {compared to
the other two models) that brings together an un-
derstanding of the problem as well a predictive tool.
Another advantage that the deterministic model
has over any nondeterministic model is that to fit
the model, only an experimental datum point is nec-
essary to calibrate the model to the data. The deter-
ministic mode] was developed to predict damage
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and cumulative number of pits simultaneously. This
last capability makes it very attractive to the user.

The results obtained with the probabilistic model
are in general agreement with the experimental ob-
servations. As with the deterministic model, the
plateau in cumulative damage is reached sooner
than the measurcd one. However, the curves are
flatter at lower potentials than at high potentials,
but they are not displaced to higher times. The
probabilistic approach needs a large data base, and
the predictive capabilitics are limited to the ranges
of variables confined in the data base.

The ANN model describes the cumulative num-
ber of pits very close to the experimental measure-
ments. The plateaus on cumulative damage
correspond very well to the plateau obtained exper-
imentally. The ANN predictions at low number of
pits are inaccurate, but they are very close to the
experimental observation at higher cumulative
numbers of pits.

Cumulative Probability

) Time, s

riumnlative Prakahility
Cumulative Probatility

o 10 20 30 a0 50
d) Time, 5

Fig. 7. Cumulative number of pits versus time of observation at several applicd potentials; Oxidation state (3-2); and 3% of minor
alloying ¢lement. (7a) Predictions using the deterministic model. (7b) Predictions using Weibull Distribution model with 2 fitting
parameters. {7¢) Predictions using the ANN. (7d) Laboratory mcasurements.
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We conclude that litile is learned abong the phe -
nomena when nondeterminictic models are used;
however, they can represent invaluhle pradictive
tools. The statistical madel is in a sense more e
manding that an ANN madel. Tt roquives 2 sobust
and large data base. We fonnd that san ALIN cun
learn from “noisy” data. and that 1he range ot pee
diction can be extended outside the range for which
it was trained, if trained correctly [11]. Pamage
functions can also be calculated using 1he determin
istic odel based on The PDM and SVIM, The (le
terministic model does not need to have an
extensive data hase that includes pit depth distriby
tions. On the other hand, the nondererminisiic
models need a large data hase, and they are noable
to make predictions of partial damage if the pit
depth versus number of pits is not conflined to the
data base. Cumulative damage can be interpolated
and extrapolated to other voltages and times, and 10
other applied potentials, for any of the three mixd
els. In general the results ohtained with the Three
models were found to be ip reasonnble agreement
with experimental data [12].

We do not intend 1o emphasize here the impor
tance of deterministic models aver nondeterminis.
tic models, but we have 1o keep in mind. when
picking a model, to choose the one that hest vepre.
sents the observations and that is rensonably easy 1n
solve. Clearly, the reliability of the extrapalation, in
particular, depends ¢ritieally on the qualiny af the
data and on the veracity of the model
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