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Various attempts have been made (o 
develop models for predicting the de- 
velopment of damage in metals and al- 
loys due to pitting corrosion. These 
muOcIs may be divided into two cliu.ses: 
the cmpirieiil approach which employ.s 
extreme value statistics, and the deter- 
ministic approach based on perceived 
mechanisms for nuclcation and growth 
of damage.    More recently. Artificial 
Neural Networks (ANNs), a iionileter- 
mlnistic t)'pc of model, has been devel- 
oped lo describe the progression of 
damage due to pitting corrosion. Wc 
compare the three approaches above — 
Statistical, deterministic, and neural net- 
work!). Our goal i.s to Illustrate the 

advantages and disadvantages of each 
approach, in order that the most reli- 
able methods may be employed in fu- 
ture algorithms for predicting pitting 
damage functions for engineering struc- 
tures. To illustrate the difficulty that 
We face in predicting cumulative pitting 
damage, we selected a set of data that 
was collected in the laboratory. Wc 
compare and contrast the three ap- 
proaches by reference to this data set. 

Key words:    artificial neural networks; 
deterministic; maihcmaiicai modeling; 
pitting corrosion; statistics. 

Accepted;    March 22, 1994 

1.    Introduction 
On the basis of laboratory studies [1], and 

through the analysis of field data collected over the 
past decade by Battelle Columbus Laboratory [2], 
several factors have been identified as contributing 
to the development of pitting damage in gas fired 
heat exchangers in domestic and industrial seivice: 

(0 The type of alloy used for fabricating the 
heat exchanger 

(ii) Chloride  concentration   in   the   flue  gas 
condensate 

(iii) Temperature 
(iv) Exposure time 
(V) Ambient versus indoor air 
(vi) pH 
(vii) Electrochemical potential 

Unfortunately, few of these factors are simply 
related to the damage functions or to one another. 

Accordingly, it is seldom possible to establish a 
simple empirical equation for predicting pitting 
damage as a function of these variables. The case 
cited above is not atypical, and it illustrate-S the dif- 
ficulties faced by those who seek lo develop predic- 
tive models for assessing corrosion damage. 
Indeed, the data ba.se established by Battelle is 
probably one of the best that currently exists for 
the development of pitting damage in an industrial 
system. A full interpretation of the Battelle data in 
terms of statistical, deterministic, and artificial 
neural network models is published elsewhere [3]. 

In the present paper, we use a more restricted 
database to illustrate how various classes of models 
are used to analyze the damage caused by pitting 
corrosion. These models include a statistical ap- 
proach based on the Weibuil disiribution function, 
a deterministic model based on a physicochemical 
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mechanism, and an Artificial Neural Network 
(ANN) that assumes neither a mathematical model 
nor a physical model, but which seeks to establish 
relationships between the dependent and indepen- 
dent variables by examining the patterns contained 
within the data set. 

2.    Experimental Data 

We used laboratory data to illustrate the time 
and potential dependencies of pitting damage. To 
do this, we chose a laboratory data set for which the 
following independent variables were identified: 1) 
concentration of minor alloy elements in weight 
percentages, 2) difference in oxidation state be- 
tween host metal and minor alloy elements, 3) ap- 
plied potential, and 4) time of observation. Inde- 
pendent variables 1) and 2) are related to the type 
of alloy; and independent variable 4) together with 
solution composition {which was maintained con- 
stant) is determined by the electrochemical poten- 
tial. Temperature, solution composition, and pH 
were maintained constant. The dependent variable 
was the total number of pits. 

We Ihen used this set to illustrate the prediction 
of cumulative damage for pitting corrosion using 
three different models: stati.stical, deterministic, 
and artificial neural networks. The data were mea- 
sured by English and Macdonald at SRI Interna- 
tional [1]. 

Several alloys of nickel were fabricated. Each of 
the alloys tested was arc-melted from powders un- 
der an Argon gas blanket in a sealed container. Bi- 
nary nickel alloys containing Al, Ta, and Mo in 
nominal concentrations of 0.1 %, 0.5 %, 1 %, 3 %, 
5 %, and 8 % by weight were cast as 100 g buttons 
and were sectioned in an acrylic plastic before pol- 
ishing. The alloying elements were selected on the 
basis of their oxidation states relative to nickel (ox- 
idation state = 2). The excess oxidation states range 
from 1 for Al to 4 for Mo. 

The polished specimens were placed in a ceil. 
The electrode potential was swept in the positive 
direction at 1 mV/s from an initial potential of 0.0 
V. This results in a distribution in breakdown po- 
tentials. Alternatively, the potential was stepped 
from 0.0 V to 0.325 V, 0.375 V, 0.4 V, and 0.45 V. 
This resulted in a distribution in induction (or ob- 
servation) times for the nucleation of pits. 

In both types of experiments the pit nucleation 
and growth events were photographed at 65 x mag 
nification at regular intervals. The number of pits 
were counted on the pictures taken at different 
times and conditions. 

The pitting data were measured several times on 
a similar sample to explore reproducibility. The re- 
producibility in pure nickel appeared satisfactory 
(about 10% difference between runs), but the 
reproducibility from alloy composition to alloy 
composition was different. Reproducibility was 
better al high potentials perhaps because the total 
number of pits developed was higher. Reproducibil- 
ity appeared to be better at high minor alloy con- 
tents and high oxidation states (about 20 %), than 
at low minor alloy contents and low oxidation states 
(about 50 %). Regardless of the poor reproducibil- 
ity in some of the samples, a general trend was ob- 
served: a) The cumulative number of pits 
diminishes with 1) minor alloy element content, and 
2) with increasing difference in oxidation state be- 
tween the base alloy and the minor alloy element; 
and b) The cumulative number of pits grows with 
increasing applied potential and observation time. 

Cumulative pitting damage is an irreversible, 
dynamic, time decay, environmentally related pro- 
cess. The literature is abundant in pitting corrosion 
data, but there is a lack of good quality data be- 
cau.se of the difficulty of measuring pitting corro- 
sion when controlling all the environmental 
parameters. 

All model building is concerned with an attempt 
to increase our knowledge of complex physical real- 
ity. The parameters plus the validity of the model 
must be determined from the data. The philosophy 
behind the type of model is different. The informa- 
tion obtained from a purely probabilistic model 
(statistic and stochastic models) is about finding 
embodied in the data trends that can be used in fu- 
ture predictions. The information obtained from a 
deterministic model is about the physical meaning 
of the phenomena it.self. The information obtained 
with a ANN model is about the dependency and im- 
portance of input /output relationships. In any case, 
the model capabilities need to be tested. 

We can start the process of solving our problem 
by listing facts, listing observations, and listing exist- 
ing laws relating variables and outputs. Then we 
have to ask ourselves which will be the best model 
to describe the problem, and what do we expect 
from the model. Later we need to identify the 
model or models to use; specify the constraints, 
choose the coordinates, and apply the laws dictated 
by the model. Important questions related to the 
choice of a correct model are: Is the process static 
or dynamic? Is the process stationary or not?; Are 
the available data distributed or not? What do the 
data mean? What is the data variance? What are 
the correlations?. In any case, the fitted model you 
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use for analyzing your data is the nearest icpiescn 
tation of the true situation you have available. 

3.    Statistical Approach and Resu)t!> 

Stochastic processes are dynamic, and go^d ex 
amples are fatigue, wear, and crack or pit groviih 
There are two nnain t>pes of stochastic pro- 
cesses: stationary and nonstationary. 

It is well known from experimental data that cu- 
mulative pitting damage is a nonstationary phe- 
nomenon. It is well known that nonstationai'y 
models and their estimation are notoriously diffi- 
cult problems to handle except for special cases. 
Discrete state continuous Markoff processes are 
good examples of models that describe nonstatioii- 
ary stochastic phenomena. However, there is no lit 
erature on problem solving using noiistutionaiy 
finite Markoff chains [4]. On the other hand, foi the 
last data set [1] (measured at the laboratory), the 
cumulative damage versus time was measured, but 
the pit depth versus number of pits was not. There- 
fore, it is impossible to derive a dynamic model for 
pitting damage using that data set. The only option 
available is to try to fit a static model (i.e., our hy 
pothesis is that the numbers of pits versus pit depth 
does not change with lime). We choose a 2 paramc 
ter Weibult distribution; for which we assume that 
the independent parameters are potential, and the 
oxidation state and concentration of the minor al- 
loying elements. TTie dependent variables are [lie 
cumulative number of pits and the induction time. 
The Weibull distribution function is 

F(x) = (1-exp(-(x/^n) 

where a and /3 are fitting parameters and x is the 
dependent variable of interest. 

We normalized the data set to 80 % of its maxi- 
mum value, allowing 20 % of the pits to nucleate if 
the time would have been extended to infinity. Tor 
each potential, oxidation state, and percenlilo of 
minor alloy element, we performed a nonlinear fit 
to estimate the Weibull fitting parameters. 

The choice of a Weibull distribution is arbitiary, 
we chose a Weibull distribution instead of simic 
other probabilistic distribution because of the flexi- 
bility that this distribution offers in tilting dtllerenl 
shapes obtained when plotting cumulative damage 
versus dependent variables. 

The nonlinear fits were acceptable (,Nuin of 
square errors between fit and data < 20 % for a ur 
P). We used those data sets for which smooth 
changes of a and f3 were calculated as a function ot 

putciiiidl. lliji leduLed ihc daia ba.se to about 50% 
uf ihc luial a^diiable (the loial data base had 1400 
daia lilies ctjniaining number of pits at different ob- 
sop.rtlion limes, applied potential, oxidation states, 
and pefccmilc ui minoi clciiients). We plotted the 
(*.i!id (i values js d tunciioii of potential. Figures la 
and ]t> show the lesulis. The beta parameter of the 
Vveitiull (.listiihuiion appears to not change with ap- 
plied puiciilial rti high concentration of minor alloy 
elements (5 %), but it changes drastically with ap- 
plied potential ai low concentrations of minor alloy 
element (3 %, 1 %). We then fit polynomials de- 
scribing a and p <is functions of applied potential, 
oxidation Slate, and perceniile of minor alloy 
clenieiUs. 

I'iie WciLiult dtiiribiitioii with a and /3 as parame- 
ters WdS L^cd 10 generate tiie cumulative damage 
fuiKtiiin figiues 2a, b, and c show the predictions 
obidined wiih ihis statistical model. When we com- 
pared iht ^nedictions i)btained with this model and 
the measured data, we ob.served that both trends 
are ^inular UiAvover, it would be very risky to use 
the model lu nuke predictions for other oxidations 
states, percentile of minor alloys elements, or 
applied poitiiliaKs outside the range for which the 
Weibuli-paiaineters were calculated. 

It is well known that the Weibull distribution is a 
Si]ffii.-ie!iliy flexible funclion that practically any set 
lit data Can tie titietl by it. However, the problem we 
fated i>, thai vvc i!<j not know u pno/i the correct re- 
laiion.il)ii>s l.ciweeii a tind {i and the independent 
variables. 

PrcdictRMii A lib I he same model for oxidation 
iiaies greater than 3 2 gave cumulative probability 
ol zcnj at any lime and are not shown. The dcsigna- 
tiuii "3 2" refcres to ihe oxidation state of the al- 
loying elcntcnt (Al^3) and the host metal (Ni = 2). 

4.    Deici'iuiiii^tic Moilcl 

A euiii|jlcicly succtvjful model must account for 
all lit the piienomenological correlations that exist 
btiAxeii pilling susceptibility and pit velocity, and 
various enviionmcnial and electrochemical factors, 
suv^h as icmjiciature, pH, [Ci], potential, time, and 
allov Lojuposilioii. The Point Defect Model (PDM) 
15, 6J accounts for the effects of electrochemical po- 
terttial, alloy composition, and environmental con- 
dititins on the nuclcation of pits. 

The dcterniiui.stic model is based on the PDM 
and the Solute Vacancy Interaction Model (SVIM) 
[7 JO). The PDM proposes that pa.ssivity break- 
d(jvvn occurs because of an enhanced tlux of cation 
vacancies from the film/solution to the metal/film 
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Fig. 1. (a) Alph» parameter uf the Wcibull distribution versus 
applied potentiah at several pcrcentilcs of minor alloying clcmcntii, 
and oxidatiun states^, (b) Beta parameter of the Wcihull distribution 
versus applied potential; at several pcrccntiles of minor alloying ele- 
mentii, and uxidalion !itateK. 

interface. If the excess of vacancies arriving at the 
interface between the metal and the film can not be 
absorbed into the metal or be annihilated by some 
appropriate mechanism at high enough rate, they 
accumulate to form a vacancy condensate at the 
metal film/interface, which then grows to a critical 
size. The PDM is used to calculate the breakdown 
potential and induction time. The effect of the mi- 
nor alloying elements in the oxide film on the 
breakdown parameters is modeled u.sing the SVIM. 
The SVIM is based on the hypothesis that highly ox- 
idized solutes in the passive film electrostatically 
complex with the mobile cation vacancies. 

The PDM and SVIM results in distributed values 
of the breakdown potential and induction time, and 
complexing between the immobile alloying element 
in the film (the "solute") and the mobile vacancies 
diminishes the flux of vacancies across the film. This 
leads to an increase in the breakdown potential and 
the induction time for film breakdown. The higher 
the net oxidation state (minor alloy element oxida- 
tion-host ion oxidation) and/or the higher the per- 
centile of minor alloying elements in the film, the 

greater the effect on reducing the flux of vacancies 
and hence in increasing the pitting potential and 
the induction time. Once the pits nucleate, they 
grow at different rates. To calculate the pit growth 
rate we used 1) a simplistic steady state model sug- 
gested by Alkire [11]; and 2) a nonstationary model 
developed by us [12-13]. The stationary model is ex- 
pected to be adequate for only short times. 

The overall model (combination of the PDM, 
SVIM, and pit growth) requires the defining of a 
number of parameters, as shown in Table I. 

Figure 3a shows the cumulative probability of the 
number of pits (normalized to 1) as a function of pit 
depth and observational time of 50 s, for an applied 
voltage of 0.-^25 V and for several concentrations of 
the minor alloying element with oxidation state of 
3 2 (example aluminum in nickel). Figures 3b and 
3c show similar plots for oxidation states of 4-2 
(e.g., titanium-nickel) and 6-2 (e.g., molybdenum- 
nickel), respectively, for the same conditions. It is 
interesting to note the great effect of minor alloying 
elements with high oxidation states. The model pre- 
dicts that the cumulative probability of the number 
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3I5V(3-3P* 

«ICV|33U« 
4Z5V (3-2)1* 

Fig, 2. Prcdicied cumulative probability, obtained using the statisti- 
cal model, versus time of observation, at several applied potL-ntiHls. (a) 
G\idation slate 3-2; and I % of minor alloying clcnieiu segregated in 
the film, (b) Oxidation slate 3-2; and 3 % of minor alloying element 
segregated in the film, (c) Oxidation state 3-2; and 5 % of minor 

alloying clement segregated in the film. 

Table I.     Input data used in the calculation of the deterministic/probabilistic model 

Parameters Value Units 

Stoichiomctry 
Avogrado constant 
Mol vol. of oxide cation 
Gibbs energy change' 
Gibbs energy change' 
Mean diffusion coefficient 
Standard deviation 
Chloride activity 
Electrical field across film 
Alpha 
Beta 
Critical area vacancy size* 
Critical vacancy flux" 
Tcmporature 
Applied potential 
Molar gas constant 
Electrical potential film/sol 

6.023 E-i-23 
30 
-40,IKX> 
-10,000 

."i E - 2(1 

0.75 Dmcan 

0.57.3/2 
1.1 E + 6 
0.6S 
-0.01 
1 E+ iCi 
15.87 E +12 
298.15 
-0-55 
8.314 
-0.5 

mol"' 
cmVmol 
IABOI 

VmcA 
cnr/s 
cm-/raol 

V/cm 

V/pH    unit 
No./cm- 
No-/cm-'~ 
K 
VSHE 
JK-'mo|-' 
V SHE 

■ "Variables that were used to adjust one datum point to scale the results properly. 
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Pig. 3a. Cumulative probability, catculatcd using the deterministic 
model, versus pit Uepth for several concentrations of minor alloying 
clement segregated in the fttm for oxidation state (3-2). 

Probability (0-1) 

[Mo) ParcenI 

Pit 0»fJth, cm 

Fig. 3b. Cumulative probabilily, Ciilcululcd using the deterministic 
model, versus pit depth for several concentrations of minor alloying 
clement segregated in the film for oxidation state (4-2). 
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Fig. 3c. Cumulative probability, calculiited using the deterministic 
model, versus pit depth for several concentrations of minor alloying 
element segregated in the film for oxid^ition stute (ti-2). 

of pits at all pit depths is higher at lower minor 
alloying element oxidation state aniJ at lower con- 
centration of the minor alloying element. Because 
the model does not assume a total number of break- 
down sites only a normalized probability is ob- 
tained. 

Figure 4 shows the beneficial effect of adding 
minor alloying elements with high oxidation states. 

2 % 3% 4 % 

Minor Alloy Parcant 

Fig. 4.    Difference between calculated breakdown potential 
of nickel containing 0 %-S % of minor alloying elements with 
oxidation states of ( 3-2: Ni-Al), (- - - 4-2: Ti-NI), and 
(-,-.-.6-2:  Mo-Ni) and calculated breakdown  potenliiil of 
pure nickel (containing 0 % of minor alloying elements). 

The breakdown potential is shifted in the positive 
direction, indicating that higher potentials are nec- 
essary to achieve the same damage. 

5.    Artificial Neural Network Model and 
Results 

Probably the most efficient method, when data 
are available, of establishing relationships between 
inputs and results is to use artificial intelligence 
techniques. Accordingly, we describe here an Artifi- 
cial Neural Network (ANN) for predicting pitting 
damage functions for condensing heat exchangers. 
When the net is trained with reliable data and 
knowledge, we are able to accurately predict dam- 
age outside the ranges of the input variables. 

An ANN is a highly interconnected system 
inspired by the brain and formed by simulated 
"neurons" represented by a transfer function, and 
"weights" associated to the connections of the 
"neurons." The back propagation training al- 
gorithm allows experimental acquisition of input/ 
output mapping knowledge within multilayer 
networks- Because wc have experimental data on 
the cumulative numbers of pits versus time of obser- 
vation, as a function of oxidation state, minor alloy- 
ing element, and applied potential, we decided to 
use an ANN backward propagation technique with 
supervised learning. During training of the ANN, 
the cumulative numbers of pits were used as 
"output" and the applied potential, oxidation state. 
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minor alloying element concentration, and time of 
observation as "inputs." We explored several to- 
pologies to obtain the best compromise between 
learning and computing time for an ANN with 2 
hidden layers. 

The maximum training time was set to 12 hours 
on a Macintosh II microcomputer with a threshold 
of 10 % of the normalized input values (input- 
ouput) [2]. 

The ANN had the following features: 
(i) Heteroassociative memory, for which the 

patterns on recall from the memory are purposely 
different from the input pattern, because the inputs 
and outputs are different and belong to different 
classes of information. 

(ii) Delta rule type of learning, where the neu- 
ron weights are modified to reduce the difference 
between the desired output and the actual output of 
the processed element. The weights are changed in 
proportion to the error calculated. This rule also 
limits the learning, if the error at the output of the 
network is lower than a given threshold. The learn- 
ing rates of those layers close to the output are set 
lower than the learning rates of the other layers. 

(iii) A momentum term, which is used to 
smooth out the changes, 

(iv) A sigmoid transfer function, which is a 
monotonically continuous mapping function. 

The ANN predictions are in good agreement with 
the measured data. Figure 5 shows that correlation. 
Considering the difficulty of obtaining high quality 
data, we consider that the correlation factor is satis- 
factory. 

-4 -2 0 Z 4 6 

LN (Measured Cumulative Number of PiU) 

Fig. 5. Natural lugcirilhni of the predicted ANN tutal number 
of pits versus natural logarithm of laboratory measured total 
number of pits. The tncasurcmctits included several: applied 
potentials, observational times, oxidation states, and percent of 
minor allaying elements. 

After the ANN was trained, it was used to make 
predictions of the number of pits at different ap- 
plied potentials, observation times, oxidation states, 
and percentages of minor alloying elements in the 
fdm. The total number of pits predicted by the 
ANN decreased with increasing percentage of mi- 
nor alloying elements in the film, and with increas- 
ing oxidation state of the alloying element (Figs. 6a 
and 6b). Behavior similar to that predicted by ANN 
was observed experimentally. 

The ANN, once trained, can be used to explore 
the importance of the relationship between 
"output" and "inputs." We found that the results 
were strongly dependent on observation time {/', 0> 
have a medium dependency on applied potential 
(K''^), and show weak dependencies on oxidation 
state (Z"^) and concentration of minor alloying 
element in the film ([%]'")■ 

200 250 300 

aj Applied PolenUaJ, mV 

250 300 

Fig. 6. ANN prediction of c umulativc numbcrnf pits versus a p- 
plied potential, at 50 s lime of observation; and several pcrcen- 
tileii of minor alloying elements, {ba) Oxidation state (4-2). (6b) 
Oxidation state (6-2). 

502 



Volume 99, Number 4, July-August 1994 

Journal of Research of the National Institute of Standards and Technology 

6.   Discussion 
Figures 7a to 7d show the best predictions 

obtained with the three models compared with the 
laboratory data. 

The deterministic model predicts that the cumu- 
lative probability at low applied potentials is not 
only described by a flat curve but that the curve is 
displaced to higher times. This prediction coincides 
with the experimental observations. The predictions 
with the deterministic model at high potentials indi- 
cated that the plateau corresponding to higher 
times is reached sooner than that measured. The 
deterministic model is the only model (compared to 
the other two models) that brings together an un- 
derstanding of the problem as well a predictive tool. 
Another advantage that the deterministic model 
has over any nondetermini.stic model is that to fit 
the model, only an experimental datum point is nec- 
essary to calibrate the model to the data. The deter- 
ministic model was developed to predict damage 

and cumulative number of pits simultaneously. This 
last capability makes it very attractive to the user. 

The results obtained with the probabilistic model 
are in general agreement with the experimental ob- 
servations. As with the deterministic model, the 
plateau in cumulative damage is reached sooner 
than the measured one. However, the curves are 
flatter at lower potentials than at high potentials, 
but they are not displaced to higher times. The 
probabilistic approach needs a large data base, and 
the predictive capabilities are limited to the ranges 
of variables confined in the data base. 

The ANN model describes the cumulative num- 
ber of pits very close to the experimental measure- 
ments. The plateaus on cumulative damage 
correspond very well to the plateau obtained exper- 
imentally. The ANN predictions at low number of 
pits are inaccurate, but they are very close to the 
experimental observation at higher cumulative 
numbers of pits. 

10 20 30 40 

a) Time, s 

50 

0) Time, s 

I 
o 

It   — 

c    ro s. I 

c) Tin», s 

Fig, 7, Cumulative number of pits versus time of observation at .■several applied potentials; C))(idyiion state (3-2); and ^% eif minor 

alluying clement. (7a) Predictions using the deterministic model. (7b) Predictions using Wcibull Distril>ution model with 2 fitting 
parameters, (7c) Predictions using the ANN. (7d) Laboratory mcasuremenis. 
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We conchide that iin!e is learned Hh^m the phe 
nomena when nondetcrmini<;lic jnodfl* int" u'seH; 
however, they can represent invnl'i-iMf nr*!'lif five 
tools. The statistical model is in a scnsf more tJc 
manding that an ANN rnodel. It rc'j"it''<; a in1»i<;t 
and large data base. Wo found ih;H tm A.i)N r;<ti 
learn from "noisy" dam. and thnt I'le ranee nl pre 
diction can be extended outside the > itige f'M whicii 
it was trained, if trained correctly [1.^1. PamnEe 
functions can also be cjdculated using the d^terniin 
istic model based on the PDM and SVIM. 'Ihe de 
terministic   model   does   not   need   to   have   nn 
extensive data base thnt inrlndes pit depth di<:tTibii 
tions.  On  the  other  hand,  the   nfipdeterininisiir 
models need a large data ha<;e. snd Itiey ;ir<' nnnSte 
to make predictions of partial damage if tlic pit 
depth versus number of pits is not confined to the 
data base. Cumulative damage can be interpolated 
and extrapolated to other voltages and ti'ties, and to 
other applied potentials, for any of Ihe three ni'id 
els. In general the results obtained with the three 
models were found to be in reasfnnblt: ajir'^PMipnt 
with experimental data [12], 

We do not intend to cniphasi/.e here the impor 
tance of deterministic models over iiondeteiminis- 
tic models, but we have to keep in i>iin<t. when 
picking a model, to choose the one that besi vepte 
sents the observations and that is leasonnbly easy to 
solve. Clearly, the reliability of the evtraiMtlatinn, In 
particular, depends critieally on the qnnli'v nf th^? 
data and on the veracity of the model 
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