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This paper studies the applicability of the 
path integral sdution technique for esti- 
mating extreme response of nonlinear dy- 
namic oscillatc«^ whose equations of mo- 
tion can be modelled by the use of lio 
.>;tochaSliC differential equations. The state 
vector process associated with such a 
model is generally a diffusion process, 
and the probability density function of the 
state lector thus saii^ries the Fokkcr- 
Planck-Koimogorov ecjualion. Il is shuwn 
that the path integral solution technique 
combined with an appropriate numerical 
scheme constitutes a powerful method for 
solving the Fokl(cr-Pianck Kolmogorov 
equation with natural boundary condi- 

tions. With the calculated probability den- 
sity function of the state vector in hand, 
one can proceed to calculate the required 
quantities for estimating extreme re- 
sponse. The proposed method distinguishes 
itself by remarkably high accuracy and 
numerical rohustness. These features are 
highlighted by application to ejiamplc 
studies of nonlinear oscillators excited by 
white noise. 
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1.    Introduction 

An important element in the safety assessment of 
many engineering systems, is the task of estimating the 
probability of extreme events that may Jeopardize the 
structure in some specified sense. Very often, this prob- 
lem can be formulated as finding the probability that 
some time varying random quantity docs not exceed a 
specified capacity level during a given time period. 
Stated this way, the problem typically reduces to a study 
of the extreme values of a .stochastic process originating 
as the response of a system subjected to some stochastic 
loading process. 

In this paper the focus will be on the problem of 
estimating the extreme response of nonlinear dynamic 
systems subjected to random forcing pnx;esses. In re- 
cent years the methods of time domain Monte Carlo 
simulations, see, e.g., Refs. fl-S], have received consid- 

erable attention as a tool for estimating response statis- 
tics. These methcxls are versatile and attractive in the 
sense that nonlineariiies can be easily dealt with. TTie 
main drawback at present is the large CPU times needed 
for accurate prediction of extreme responses. Even if 
this issue seems to become less of an obstacle every 
year, portending perhaps that such methods may domi- 
nate practical estimation of response statistics of nonlin- 
ear systems in the not too distant future, it will still be 
desirabk to ha\'e available alternative methods of calcu- 
lating the response statistics, both simplified and more 
elab<')rate. Here we shall explore a method ba.scd on the 
theory of Markov diffusion processes. The justification 
for using this theory is related to the fact that the re- 
sponse of nonlinear dynamic systems to broad band 
random excitation can very often be accurately dc- 
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scribed by applying the theory of multidimensional 
Markov priKCSses. By this, the extensive theory of 
Markov diffusion processes can be brtxight to bear on 
these problems. In particular, it can be shovi^n that the 
probability law of response quantities can be derived by 
solving a partial differential equation, viz., the Fokker- 
Planck (-Kolmogorov) (FPK) equation, see Refs. [6.7]. 
In most cases of practical interest, this equation has to be 
solved numerically. 

In the next section we shall describe a method for 
solving the FPK equation that is ba.scd on a formal 
solution of the same equation. This solution is obtained 
by invoking the fact that a Markov diffusion process 
locally looks like a Brownian motion. By using the 
Markov property, the global solution can dien be con- 
structed by linking the local solutions, which are known 
explicitly. The obtained solution is generally known as a 
path integral solution (PIS). The reader is referred to 
Ref. [7] for a further discusskm. One of the first efforts 
to cxptoit the PIS method explicitly in developing nu- 
merical solution algorithms is described in Ref. [81. 
Subsequently, other authors have also used the PIS ap- 
proach to solve various random vibration problems, cf. 
Rcfs. [9-! 3]. 

Before embarking on a description of the PIS method, 
it is expedient to briefly show how the obtained solutions 
are used in an extreme value analysis. Assuming that the 
response quantity of interest is a scalar (real) stationary 
stochastic process, Z(t) say, the PIS method typically 
provides a numerical estimate of the joint probability 
density function (PDF)/ii(».«) of Z(r) and Z(f)=dZ(r)/ 
dr. It is now assumed diat the mean level upcrossing rate 
vj(') of Z(f) can be calculated from Rice's formula a.s 
follows 

^{z)-\yfzz(z,y)dy. (1) 

Adopting the assumption that upcrossing of high levels 
are statistically independent events, which leads to Pois- 
son distributed crossings, it follows that an asymptotic 
approximation of the probability distribution function of 
the extreme value of the process Z(t) during a time T, 
denoted by M(T) (=sup{Z(/);0:£/<r}). is given by 

Prob{Ma)-^z}-cxpi-i^Xz)T)   (7"^^).       (2) 

The accuracy of Eq. (2) depends to a large extent on 
the effective bandwidth of the response process Z(f). 
Decreasing bandwidth leads eventually to a significant 
clumping effect of large response peaks, invalidating 
the assumptkin of statistically independent upcrossing of 
high levels. Methods that aim at correcting for this effect 
have been proposed for Gaussian (Refs. [14,151) and 

non-Gaus.sian (Ref. [ 16]) processes. However, thus poini. 
will not be pursued any further here. We shall assume 
that Eq, (2) provides an acceptable approximatkm. 
Hence, the central parameter to be determined is the 
upcrossing frequency i^K*), which Ls easily calculated 
once the joint PDF/zz<*.') of Z{r) andZ(f)-dZ(f )/df has 
been made available. In the next section it is shown how 
this PDF can be calculated for the resEK>nsc of a wide 
range of nonlinear oscillators subjected to white noise 
or filtered white noise loading. 

2.    The Path Integral Solution 

The path integral solutk)n (PIS) method is suitable for 
calculating the joint probability density functbn (PDF) 
of a vector pnx:e.ss X(t)=lX,0)....JlAt)f (T-transposi- 
tion) satisfying a stochastic differential equatkm of the 
ft^lkiwing form, cf. Ref. [6], 

dX(i)-m[X(i)]<ii+QlX{t)^W(t). (3) 

Here i«(«)«[mi(*),...,/n„(*)]^ "lA*) denotes a real func- 
tion of n real variables. C(*)-(?y(*)) denotes an nXm- 
matrix where each ^,j(*) is a real function of n real 
variables.     W(f)=[lV|(/) W„{t)V     where      W;(f), 
j-\,...jn are staiKJard, real Brownian motkm processes, 
which are mutually independent, sec e.g., Refs. [6.7]. 
That is. £lW,(r)J=Oand 

fc[dW,{r)dW/i+T)]-S„8,,,.,dT, (V-1 ,...j».       (4) 

where 8„-l for JT-V. 6,V=0 for x'^^y. Equatkm (4) 
is     a     short-hand     notatkm     for     the     relation 

£[|jft(5.f)dW,(5)dW,(r)|=8j/i(r,r)dr,  where  /»(•.•) 

is a non-random function. 
Equatk>n (3) is interpreted here a.s an Ito stochastic 

differential equatbn (SDK). Since it is often relevant to 
consider Eq. (3) as being obtained as a limit of equations 
with band limited noise processes, it may happen that 
m{*) should contain correction terms to ensure a consis- 
tent limiting solution, cf. Ref. [6]. It is a.ssumed here that 
this consideratkin has already been made, and that Eq. 
(3) has the final form to be used subsequently. 

It is demonstrated in Ref. [6] that the st>lulk)n X(t) to 
Eq. (3) is a Markov vector process. Its transition proba- 
bility density functk)n (TPD). p{xj\x'.t'), is defined 
by the equation 

Prob {X{t) e A \XU')-x'}= I "• \p(x,t I x',t')ilx, (5) 

where A C R" is some event, jc, jr' G R", djr=dvi...d.r„. 
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Provided that /»{•) and Q{') satisfy certain regularity 
conditions, see Rcf. [6], it can be proved that the TPD 
p(x,t \x',i') (f^r'aO) is the solution of a partial differ- 
ential equation of the form 

O denote appropriate zero-matrices and G(*) denotes an 
(n—r)X(rt—r)-matrix function with elements g,j('), 
jj=r+l,...,n. G(*) will be called the reduced diffusi<in 
matrix. Equation (6) can now be rewritten as 

j-p(x.t\x',f)=-2 j-[m.{x)p{xj |xV')l at __| ax, 

+ \t2T~T;\S.Ax)p{x,t\x\ni (6) 

where   G(x)={!i>j(x))=Q{x)Q(xV-(Z'^.,q^qj,),   and 

with initial condition p{x,t' \x',t')=b(x~x'). C(') will 
be called the diffusion matrix and Eq. (6) will be re- 
ferred to as the Fokker-Planck-Kolniogorov (FPK) 
equation. Since clearly Prc^{X(t)&R'\X{i')=>x'}'\ 
the TPD satisfies the following normalization condition 

|«'« p(jr,rijc'/)dj:=l. (7) 

Let/(jc.r) denote the PDF of the random vector ^(r). 
U f(x,!')=w{x) for some initial PDF w(x), then it is 
recognized from Eq. (6) and the relation 

f(x^)=j'^'jp {x,i\x' / )vv (x' )dJt' (8) 

lhat/{je,/) itself is a solution of Eq. (6) satisfying the 
initial condition/(X,;')=K'(X). 

In this paper wc shall be interested primarily in sta- 
tionary .solutions/,(j) to [iq. (6), that is 

/,(xHim/(x.f)=Iim/?(Jr,/ \x',i') (9) 

provided they exist. Even when both limits exist, it is 
clear that lim/(x,/) provides the faster convergence 
when the initial condition/(x,f')*=/,(x). This comment 
is relevant to the numerical implementation of the PI.S 
method, and will be discussed below. 

11) obtain the PIS appropriate for the dynamic systems 
studied in this paper, it is necessary to be more specific 
on the structure of the matrix function Q{'). In particu- 
lar, it will be assumed that the first r rows of Q(') arc 
zero, that is 

q.ji')^ for '=1 '■; j=U..J>i (r<n) (10) 

and that ^,/*)#0 for at least one j for every iW+1 n. 
This implies that the diffusion matrix G(*) assumes the 
form 

G{')= 
O 
O 

o 
6(.) (II) 

j^p{xj\x'/)~-^^\m,{x)p{x4 U'/)l 

+ i S 2 ^ \s>M)Pix4 Ix'/)]. 
■ i-r+l t-r*\ (iXjCiXj 

(12) 

Proceeding in a manner similar to the derivations in 
Ref. [7], it can be shown that the TPD for small values 
of T(-/-r') is given by the following expression, which 
is correct up to terms of order T^ 

p{x,t+T I x',/)-{n5(jr-x,'-m,(x')T)} 

.(2TTT)-¥ie(x')i4^xp<-^i; s 

{xt-x;~m,{x')T) [G(x') 'J, ,^-,(x,   x;-m,(x')T)}. 

where IGI denotes Ihc determinant of the reduced dif- 
fusion matrix G, assumed to be positive definite. This 
implies that 161 > 0. [6" '],j denotes the element in po- 
sition ij of the inverse matrix of G. As shown in Ref. 
[7], the expression given by Eq. (13) is not unique, but 
seems to be well suited for tnir purpose. 

Having obtained an explicit expression for the TPD 
for a short time step, one can now invoke the Markov 
property. This allows a TPD over a time interval of 
arbitrary length to be expressed in terms of a product of 
short-time TPDs. % dividing a given time interval (r',/) 
into A' small time intervals of length T^t—t'VN, it is 
found that (f,=?'+/T, /=f \ x-x''^\ f'=f„. x'=x"") 

p(xAx\t')=\-{f\p{x^jt,\x^''\t^^W 

(14) 

Similarly, with an initial PDF/(x'.f')=w(x'). the PDF 
f{x4) will be given by 

/(x .t )= f — f n P (x''\lj IX*' '',/, , )H'{x"'Odi'"'..nlx''' ''. 

(15) 

Hence, by combining Eq. (13) with Eqs. (14) or (15), 
a formal (approximate) solution of the FPK equation can 
be written. Equations (14) and (15), which arc often 
referred to as PIS, constitute the core of the numerical 
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solution procedure to be described subsequently. It is 
realized chat a numerical solution according to this 
method, automatically provides the evolution in time of 
the (conditional) PDF of the Markov process Xit) from 
given start conditions in terms of an initial density 
fix' ,t')=w(x'), including the degenerate case 
/(jr*,r')-S(jr'-Jro), for some starting point Xo. It is also 
worth noting how the PIS relates to the physics of the 
dynamic model, which is expressed through the coeffi- 
cients ntji*) and £?,;(•), cf. Eq. (3). The evolution in time 
of the PDF as expressed by the PIS, is seen to be directly 
determined by these coefficients in an explicit manner. 
This fact is a very important advantage of the PIS 
method, and reveals its fundamental physical signifi- 
cance. 

3.    Numerical Implementation 

In the numerical implementation, the PIS is obtained 
by an iteration process based on the Chapman-Kol- 
mogorov equation expressed as 

p(x^Vj \x',t')'j'*;jp(x^\tj\x'^-'^^^dpix'^''K 

0.,U',/')djr<'-". (16) 

The discretization of state space for the numerical 
solution makes it appropriate to employ an interpolation 
and smoothing procedure to increase the numerical effi- 
ciency. It was found that application of cubic B-splines, 
as detailed in Ref. [17), offered the desired accuracy and 
smoothness for the type of problems considered in this 
paper. This procedure was used as follows. At each time 
step tj-,—itj,p(x^~'\t,-i \x\t') is represented as a cubic 
B-spline series in the following manner 

p(x^-'\tj\x\n-J.—l^r^-'\ku»*x) 

®fit,(Jc^ '*), (17) 

where Afj=number of grid points for the i'th state vari- 
able .T;, {0^|Bi,(')}fJl[ is a tensor product basis of cubic 
B-splines and {1^ 'Xf:i,"'Jc,)}"ri 'S the set of interpola- 
tion coefficients associated with time tj ,. It is assumed 
that each set {Bt,(*)}^^,, i-l,•••,«, is a basis of cubic 
B-splincs associated with the knot sequence determined 
by the grid points for the i'th variable jr,. The tensor 
product B-spline is defined by 

The representation of p(Jt'^"",f,_i \x',l') by B-splincs 
makes it possible to retain high numerical accuracy even 
with a fairly coarse basic grid \fp{x^''\tj-i \x',i') is not 
too singular. By substituting from Eq. (17) into Eq. (16), 
Eq. (19) is obtained 

p(x^\/j I j'.r')=2—2 f^""(*!,•".*.) 

I* YJP(JC^\/JX^"",0-,) i^B,Xx^'')dx^-'\     (19) 

It LS seen from Eq. (13) that since mj{') and gy{») are 
not functions of time /, the TPDs cannot depend on 
absolute time, but only on the time increment. Markov 
processes whose TPDs have this property, are called 
homogeneous. It folkwvs that 

p(jc^Vjx^ "^^,)=p(jr''Vljr<^-'»,0),j=l,2     (20) 

which holds for any /^-/J-I-T^O. 

From Eqs. (19) and (20) it is seen that for a fixed 
value of the time increment T, each of the integrals on 
the right hand side of Eq. (19) need to be calculated only 
once, and can be stored for repeated use. That is, the 
following parameters are calculated initially and stored 

Bi';:'f-J***J/'(Jt,V|,,„T |je<^-'\0) ® Bi,(jr"^»)dr«-'>. 

(21) 

Here, the index /;, i—1,...,/!, refers to grid point number 
/, for the state space variable x,. It may be noted here that 
due to the properties of the TPD for small time incre- 
ments T, the tensor 5*',..^, has a strongly banded charac- 
ter with the elements decreasing rapidly away from the 
main diagonal k,-li,...,k„-l„. This has important impli- 
cations for the efficiency of the computer program. Let 
p/f../,=P(*(Vlj,).'j U'.f')- Then Eq. (19) can be rewritten 
as 

Pt^ ■I-E /^-'u,,.^ 
ti-i j^i 

■X)Bi\il (22) 

®B*,(jc)-n«*,(jf.)- (18) 

Having calculated the TPD p(jc^\/j \x',t') at the grid 
points by using Eq. (22), a spline interpolation is again 
carried out and a new set of interpolation coefficients 
{/^\Jti,...,A„)}^ii are calculated- This provides an up- 
dated representation of the TPD for time stepy, cf. Eq, 
(17). For each time step, the normalization condition Eq. 
(7) is checked. That is, if 

r       r                                    Ml       «» 
\"-\p(x^\t,\x\ndx^'^^'"^n\k X) 

f\ \ ti,Xx)dx=qj (23) 
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and q^i^ 1.0 within the desired accuracy, then the follow- 
ing replacement is made to restore the correct normal- 
ization. 

Z+Zg{E)+h(Z)~rNU)- (28) 

T^\ku"'Xr' *-<?;"' I^\K'»J,„r (24) 

This normalization check and replacement strategy con- 
tributes to producing a \'ery stable and accurate numer- 
ical procedure. 

4.   Examples 

The accuracy and power of the developed PIS prt^e- 
durc will be illustrated by application to specific case 
studies taken from two classes of dynamic models. Both 
models are described by Eq. (3) with n-2 and m-3. 
This implies a two-dimensional state space vector 
X={X,J(2f'-{ZJZf. Further, 171 (•) and Q(*) are such that 
'"[(A'lA)-^: and q,j{')-0 for_/=l,2,3. Assuming suffi- 
cient restrictions on m{») and Q('), cf. Refs. [6,7], X{t) 
becomes a Markov diffusion process. Invoking Eq. (13), 
it can be shown that, up to correction terms of order T^, 

the associated TPD assumes the form 

p(x.7- |x'.0)=S(j:i-Jc,'-jrj' T)-^(jr2,T |x'.0).      (25) 

p{x2,T I x',0) Ls given by the relation 

piXi,7\x',0). 
V2ir/3(J:')T 

cxp 
(jc;-jfi'-ma(x')r)^l 

r')T    r 2^(J:' 

where 

/3(JC')=2 92Ax'f 

(26) 

(27) 

By combining Eqs. (25) and (26), aixi applying (he 
solution technique described in the previous section, the 
TPD p(x,t I jc',f') for large t-r' can be calculated. By 
this, the time evolution of the system when it starts from 
rest, for example, can be studied. The stationary PDF is 
obtained in the limit as f-f'->^. For application of the 
PIS method to other problems involving both two- and 
three-dimensional slate space vectors, the reader may 
consult Reft. 111-13,18.19], 

4.1    Example 1—The Caughey Oscillator 

There is a class of dynamic models for which there 
exist an analytical solution for the stationary joint PDF 
of X. A member of this class m^ be called a Caughey 
oscillator, Ref. [20], The generic equation of motion for 
this oscillator can be written as 

N(t) denotes a stationary, zero-mean Gaussian white 
noise satisfying E[N{t) A'(r+T)]-B(T), where &(•) de- 
notes Dirac's delta function, /'is a positive con.stanl and 
g(E) is a function of the total energy E=E(Z^) given 
as follows 

E=jZ'+V(Z) (29) 

where 

VC 
-! 

h(s)ds. (30) 

For this example m2(z4)~ zs[E(.z,z)]-h(z), and 
we may choose qi\=qi2='W,-W2=0. qii-F and 
dW,{,t)-N{t)dt. The stationary, joint PDF, denoted by 
p^{*), is then determined by the relation, cf, Refs. 
[20.21] 

p,(z^)-C exp{- -p j g(5)dj}, (31) 

where £'-z'/2+V(z), and C is a normalization constant 
to ensure a total probability equal to 1.0. 

For the illustration purposes in this paper, we hjtve 
chosen the following special case of Eq. (28) 

2{t)+l^{,t){\+£i\z\t)^)^Z\t)+\xZ\t)V'^)+Z{t) 

+XZHt)=2V^U) (32) 

with parameters ^, e, and A. 
The stationary PDF only depends on the parameters e 

and A, and the numerical solution for the following set 
of parameter values has been calculated (c,A)=(0.0) 
(Gaus.sian response), (0, 0.2) (Duffing oscillator) and 
(0.5, 0.1). The calculations were carried out with the 
same number of grid points on both axes in state space, 
aviz-, 45. Since the resulting PDFs are actually indepen- 
dent of ^, the value §=0.\ was chosen for the Gaussian 
and Duffing ca.ses, while ^-0.5 was adopted for the last 
case. The time increments used were T-0.0025 S, 0.001 
s, and 0.02 s, respectively. The total CPU time on a DEC 
station 3100' was about 5 minutes for each case. In Figs.. 

'Certain commercial equipment, inslramcnts, or materials are identi- 
fied in this paper to specify adequately the experimental procedure. 
Such idenlificalion does not imply recomTtirixlalion or endorsemeiu 
by the National Institute of StandanJs and Technology, nor does it 
imply that the materials or equipment identified arc necessarily the 
best available for the purpose. 
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1 and 2 are shown the marginal PDFs of the displace- 
ment response for the three case studies considered, 
together with the corresponding analytical solutions, in 
Fig. 3 are given the corresponding analytical and numer- 
ical results for the mean upcrossing rate. It is seen that 
in all three cases the agreement between the numerical 
PIS and the analytical solution is very gotxl over the 
whole range of probability levels given. In fact, the 
accuracy can be retained down to much lower probabil- 
ity levels (=10 '") at a mtxJcratc increase in computer 
time. 

are indepetidenl Gaussian white noises satisfying 

£[;V,a);V;(/+T>W;' «(T). >I .2.3, (34) 

where 1] are positive constants. For this example it 
is foiod that m2(z.z)-"2^z-y\z^+z^/€0^]-a)^z, 
quizj.)—2£zrt. q22(.zJ.)=-o^zri and q2^(zJ.)^I\. 

This model was studied by Dimentberg [22], who 
showed that when 

w,n=^en (35) 

4.2    Example 2—Parametric and External 
Excitation 

In this example, the resptmse statistics of a nonlinear 
oscillator subjected to both external and parametric ran- 
dom excitation will be illustrated by applying the 
methodology of the paper to two specific case studies. 

The equation of motion of the oscillator is the follow- 
ing 

Z+2^[l+;V,(/)]Z+7[Z'+-TlZ+ta?ri+^2(/)]Z-iV3(r). 

(33) 

Here f, y, and tnj^ are positive constants, Nj{.t),j-\,2,i, 

a closed-form expressit>n for the stationary joint PDF 
can be obtained. It is given as 

cxp{-M(;^+;V&H>)} ,,^. 

where C is a normalization constant and 

7 n   ^ 2i    I 
f - —TFT . *-= -TTT^ + T . M= ■ a^n^'^c^^n^i'^t^^ri (37) 

By this, we have the opportunity to test the accuracy of 
the PIS method for this kind of dynamic model. The 
results of two particular cases will be presented. 

Fig. !■ Probability density function of displacement response for the Caughey oscillaior in ejiample 1. Ana- 
lytical solutions:  , E-0, A=0; - • - •, t>=0, A=<J.2; , e-0.5. A=0.1. Numerical path imcgral 
solution: +, F-0, A-0; x, £=0, A=0.2; O, *=fl,5. A-O.l, 
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I. 

471 



Volume 99. Number 4. July August 1994 

Journal of Research of the National Institute of Standards and Technology 

Case 1: Here the following parameter values were 
used. ^.1, T^.l, wi,-1.0, /T=2.5, /7=0.l, A?-0.3. 
For the numerical calculations a grid size of 49X49 
points and a time increment 7M).01 s was used. The total 
CPU time on a DEC 3100 work station was 3 min for the 
PIS calculation. The results for the analytical and nu- 
merical solutions are given in Figs. 4-6. In Figs. 4 and 
5 are shown the marginal PDF of the displacement re- 
sponse and in Fig, 6 is shown the corresponding mean 
upcrossing rate. 

Case 2: In this case the following set of parameters 
were used. |=0l. r-0-4, &»n=i.O, n=5.0, ^-0.2, 
n-0.3. A grid size of 51X51 points together with a 
time increment T=0.01 S were chosen. The CPU time 
was about the same as in the previous case. The same 
results as for Case I are presented in Figs. 4—6. 

5.    Conclusions 

A numerical method for estimating the extreme re- 
sponse of nonlinear oscillators excited by white noise, 
or filtered white noise, has been described. The example 
calculations presented show that the method gives very 
accurate estimates of the required joint PDF. In fact, for 
every example having analytical solution on which the 
method has been tested, complete agreement has been 
found with proper choice of grid size and time incre- 
ment in the numerical solution procedure. In the present 
paper, of course, only a few cases can be given. Experi- 
ence with the method indicates that two-dimensional 
problems can be solved routinely with high accuracy 
requiring a few minutes CPU time on a work station 
(DEC .station 3100). The solution of three-dimensk)nal 
problems requires more care in the sense that computer 
capacity starts to become an issue of importance. In 
such cases the CPU time easily runs into htxirs. 
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Fig. 4. Probabiiiiy density function of disptaccmeiA response for the oscillator in example 2, case 1 and 2. 
Analjlical solutions: . ca.sc I; - • - *, case 2. Numerical palh integral soJulion; +. case I; O, case 2. 
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Fig. 5. Logarithmic plol af the probabiliiy density function of displacement response for the oscillator in 
example 2, case 1 and 2. Key as in Fig. 4. 
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F^ 6. Mean upcrcKsing rate of displacement response for the oscillator in example 2. case I aid 2. Key as. in 
Fig. 4. 
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