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This paper studies the applicability of the

path intcgral solution technique for esti-
mating extreme response of nonlinear dy-
namic oscillators whose equations of mo-
tion can be modclicd by the use of 6
stochastic differential equations. The state
vector process asseciated with such a
model is generally a diffusion process,
and the probability density function of the
state vector thus satisfies the Fokker-
Planck-Kolmoegorov equation. It is shown
that the path integral solution technique
combined wilh an appropriate numerical
scheme constitutes a powerful method for

tions. Wilh the calculated probability den-
sity function of the state vector in hand,
one can proceed 1o calculate the required
quantities for estimating extreme re-
sponse. The proposed method distinguishes
ftself by remarkably high accuracy and
numerical robustness, These features are
highlighted by application to example
studies of nonlinear oscillators excited by
white noise.
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1. Introduction

An importamt element in the safety assessment of
many engineering systems, is the task of estimating the
probability of extreme events that may jeopardize the
structure in some specified sense. Very often, this prob-
lem can be formulated as finding the probability that
some time varying random quantity does not exceed a
specified capacity level during 2 given time period,
Stated this way, the problem typically reduccs to a study
of the extreme values of a stochastic process originating
as the response of a system subjected to some stochastic
loading process.

In this paper the focus will be on the problem of
cstimating the extreme responsc of nonlinear dynamic
systems subjected to random forcing processes. In re-
cent years the methods of time domain Monte Carlo
simulations, see, e.g., Refs. [1-5], have received consid-
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erable attention as a tool for estimating response statis-
tics. These methods are versatile and attractive in the
sense that nonlinearities can be easily dealt with. The
main drawback at present is the large CPU times needed
for accurate prediction of extremce responses. Even if
this issue seems to become less of an obstacle every
year, portending perhaps that such methods may domi-
nate practical estimation of response statistics of nonlin-
ear systems in the not too distant future, it will still be
desirable to have available alternative methods of calcu-
lating the response statistics, both simplified and more
elaborate, Here we shall explore a method based on the
theory of Markov diffusion processes. The justification
for using this theory is related to the fact that the re-
sponse of nonlinear dynamic systcms to broad band
rarklom excitation can very often be accurately de-
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scribed by applying the theory of muludimensional
Markov processes. By this, the cxtensive theory of
Markov diffusion processes can be brought to bear on
these problems. In particular, it can be shown that the
probability law of response quantities can be derived by
solving a partial differential cquation, viz., the Fokker-
Planck (-Kolmogorov) (FPK) equation, see Refs. [6,7].
In most cases of practical interest, this cquation has to be
solved numerically.

In the next section we shall describe a method for
solving the FPK equation that ts based on a formal
solution of the same equation. This solution is obtained
by invoking the fact that a Markov diffusion process
locally looks like a Brownian motion. By using the
Markov property, the global solution can then be con-
structed by linking the local solutions, which are known
explicitly. The obtained solution is generally known as a
path intcgral solution (PIS). The reader is referred to
Ref. [7] for a further discussion. Onc of the first efforts
to exploit the PIS method explicitly in developing nu-
merical solution algorithms is described in Ref. [8].
Subsequently, other authors have also used the PIS ap-
proach to solve various random vibration problems, cf.
Refs. [9-13].

Before embarking on a description of the PIS method,
it 1s expedient to briefly show how the obtained solutions
arc used in an extremc value analysis. Assuming that the
response quantity of interest is a scalar (real) stationary
stochastic process, £(t) say, the PIS method typically
provides a numerical estimate of the joint probability
density function (PDF) fy{(+,) of Z(r) and Z(1)=dZ(1)/
dr. It is now assumed that the mean level upcrossing rate
v>(*) of Z{r) can he calculated from Rice's formula as
follows

"

v2(2)=| yfz(z.y)dy.

[1}

(N

Adopting the assumnption that upcrossing of high levels
are statistically independent events, which leads to Pois-
son distributed crossings, it follows that an asymptotic
approximation of the probability distribution function of
the extremne value of the process Z(r) during a time T,
denoted by M(T) (=sup{Z(1).0=r=T}). is given by
Prob {M(T)Y=z }=exp{—35(2)T} (TH=). ()
The accuracy of Eq. (2} depends to a large extent on
the effective bandwidth of the response process Z(r).
Decreasing bandwidth leads eventually to a significant
clumping cffect of large response pcaks, invalidating
the assumption of statistically independent upcrossing of
high levels. Mcthods that aim at correcting for this effect
have been proposed for Gaussian (Refs. {14,15]) and
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non-Gaussian (Ref. | 16]) processes. However, this point
will not be pursued any further here. We shall assume
that Eq. (2) provides an acceptable approximation.
Hence, the central paramcter 1o be determined is the
upcrossing frequency wi(»), which is casily calculated
once the joint PDF fr{+,*) of Z(¢} and Z(1)=dZ (r)/dr has
been made available. In the next section it is shown how
this PDF can be calculated for the response of a wide
range of nonlincar oscillators subjected to white noise
or filtered white noise loading.

2. The Path Integral Solution

The path integral solution (PIS) method is suitable for
calculating the joint probability density function (PDF)
of a vector process X (1 )=[X\()....X.(t)]" (T-transposi-
tion) satisfying a stochastic differential equation of the
following form, cf. Ref. [6],

dX()=m[X(D))di+Q [X (1)1dW(1). 3

Here m (e)=[m(*).....m.(*)]", m,(+)} denotes a rcal func-
tion of n real variables. Q(*)=(g;{*}) denotcs an nXm-
matrix where each q;(+) is a rcal function of n real
variables.  W(0)=[W,(1),...,W..(1)]" where W,(r),
J=1....,m are standard, real Brownian motion processes,
which are mutually independent, sce c.g., Refs. 6,77,
That is, E|W;(£)]=0 and
E[AW,(0)YdW,(147)]=8,,8,...d7, i j=1....m, C))
where 8.,=1 for x=y, §,=0 for x#y. Equation (4)
15 a short-hand notation for the relation

Ef J f (s AW, (s)dW,(e)]=8;] h(r,1)dt, where h(s.e)

is a non-random function.

Equation (3) is interpreted here as an Itd stochastic
differential equation (SDE). Since it is often relevant to
consider Eq. (3) as being obtained as a limit of equations
with band limited noise processes, it may happen that
m(+) should contain correction terms to ensure a consis-
tent limiting solution, ¢f. Ref. [6]. Tt is assumed here that
this consideration has already been made, and that Eq.
(3) has the final form to be used subsequently.

It is demonstrated in Ref. {6] that the solution X (1) to
Eq. (3) is a Markov vector process. Its transition proba-
bility density function (TPD), pGx.t | x*.), is defined
by the cquation

Prob{X(1)EA iX(r')=x’}=f-;'fp(x,r |x',r'}dx, (5

where A C R" is some event, x, x' € R”, dx=dx,...dx,.
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Provided that m(e) and Q(+) satisfy certain regularity
conditions, see Ref. [6], it can be proved that the TPD
plx.r |x’ J£1) (r=1'=0) is the solution of a partial differ-
cntial equation of the form

[m:(x)p(x .t D)

3 .
P L7r)= 28.::,

i=1

—EZ

f-l =l

[gu(x)plx.t [x' a0, (6)

0 0x;

where  Gx)=(gy(x)=Q(x)Q(x)~(X1., ga gu), and

with initial condition p(x.t’ Ix’,t')«—-B(x-x'). G (=) will
be called the diffusion matrix and Eq. (6) will be re-
ferred to as the Fokker-Planck-Kolmogorov (FPK)
equation. Since clearly Prob {X{t) € R"| X (1')=x"}=1
the TPD satisfies the following normalization condition

f-l;.-J'p(x.l |x',l’)dx=l.

Let f(x.t) denote the PDF of the random vector X (r).
If fix,r"}=w(x) for some initial PDF w{x), then it is
recognized from Eq. (6) and the relation

(M

flx)= j fias J P | wxydxt ®
that f(x.r) itself is a solution of Eq. (6) satisfying the
initia! condition f{x ¢ )=w{x).

In this paper we shall be intcrested primarily in sta-
tionary solutions f;(x) o Eq. (6), that is

£Ge)=lim fQx.)=tim p(x.t 1 x ) 9
I IR
provided they exist. Even when both limits exist, it is
clear that lim f(x.r) provides the faster convergence
when the initial condition f(x t')==f,(x). This comment
15 rclevant to the numerical implementation of the PIS
method, and will be discussed below.

To obtain the PES appropriate for the dynamic systems
studied in this paper, it is necessary to be more specific
on the structure of the matrix function @ (+). In particu-
lar, it will be assumed that the first r rows of Q(+) arc
zero, that is

q,{"=0 for i=1 (10)

..... r j=1,..0n (r<n)

and that g, (=)0 for at least onc j for every i=r+1....n
This implies that the diffusion matrix G (+) assumes the
form

o 0

G)= [0 Eo b an
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O denote appropriate zero-matrices and G(») denotes an
(n—r)xX(n—r)-matrix function with elements g,(*),
Pg=r+l....n. G(s) will be called the reduced diffusion
matrix. Equation (6) can now be rewritten as

a [ 5 i ] ()
S;p(x,: |x £ )= § ax’_[m‘(x)p(x,r lx 4N

+~EZ

.l-r-i-l e+

lgs(ep et . (12)

Bx, Eh‘

Proceeding in a manner similar to the derivations in
Ref. [7], it can be shown that the TPD for small values
of r(=t—1"}) is given by the following expression, which
is correct up to terms of order 7°

plxg+7 I o .r)ﬁ{nﬁ(x,‘—.r,-'—m,-(r’)r)}
i=1

«(2m7)” 5 IG(x )[ ] -cxp{—z—

> %

Ferdl jurs]

Co—x=mi(x)7) [Gx') )i rier (=X"—my(x*)T)),
(13)

where |G| denotes the determinant of the reduced dif-
fusion matrix G, assumed to be positive definite. This
implics that | G |> 0, [G™'], denotes the element in po-
sition 7 J of the inverse matrix of G. As shown in Ref.
[73, the expression given by Eq. (13) is not unique, but
scems to be well suited for our purpose.

Having obtained an explicit expressian for the TPD
for a short time step, one can now invoke the Markov
property. This allows a TPD over a time interval of
arbitrary length to be cxpressed in terms of a product of
short-time TPDs. By dividing a given time interval (1'.1)
into ¥ small time intervals of length m=(r—')/N, it is
found that (¢=t"+j7, 1=t*, x=x'*, '=p, x'=x'™")

w

plx,t |x'.r’)=f-"fl—[ Pt [x90_ Ydx Veeede™ 1,
R Wl

(14)

Similarly, with an initial PDF f(x',t')=w(x'}, the PDF
ftx,r) will be given by

f(_r ;)_J...jnp(xuﬁ n |x(ru t )w(x“")d_r‘m"'dxw u
(15)

Hence. by combining Eq. (13) with Eqs. (14) or (15),
a formal (approximate) solution of the FPK equation can
be written. Equations (14) and (15), which are often
referred to as PIS, constitute the core of the numerical
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solution procedure to be described subsequently. It is
realized that a numerical solution according to this
method, antomatically provides the evolution in time of
the (conditional)} PDF of the Markov process X () from
given start conditions in terms of an initial density
Jix' t)=w(x'), including the degenerate casc
flx' ")=8(x"'—x,), for some starting point x,. It is also
worth noting how the PIS relates to the physics of the
dynamic model, which is expressed through the coeffi-
cients n;{*) and g;(*), cf. Eq. (3). The evolation in time
of the PDF as expressed by the PIS, is scen to be directly
determined by these coefficients in an explicit manner.
This fact is a very important advantage of the PIS
method, ard reveals its fundamental physical signifi-
cance.

3. Numerical Implementation

In the numerical implementation, the PIS is obtained
by an iteration process bascd on the Chapman-Kol-
mogorov equation cxpressed as

P9 | x’,f')ﬂj';u'fp(xu’,rj |61 )p(x",

tio % 4yde v, (16)

The discretization of state space for the numerical
solution makes it appropriate to employ an interpolation
and smoothing procedure to increase the numerical effi-
ciency. It was found that application of cubic B-splines,
as detailed in Ref. [17], offercd the desired accuracy and
smoothness for the type of problems considercd in this
paper. This procedure was used as follows. At each time
step 1=, p(x¥"" 05, | x* 1"} is represented as a cubic
B-spline series in the following manner

M) My
P | Xt g )= D eee > TV Kk s0n k)
ko=l kel
g Bk,(xu ‘)), (17)
where M=number of grid points for the i'th state vari-
able x;, {®L,B;,(*) }i%, is a tensor product basis of cubic
B-splines and {IV "(k,,***.k,) )%, is the set of interpola-
tion coefficients associated with time £; . It is assumed
that cach set {By(*)}i,, i=L#*e,n, is a basis of cubic
B-splines associated with the knot sequence determined
by the grid points for the 1’th variable x;. The tensor
product B-spline is defined by

® B, (0)- ] Bux). (18)
m~ [
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The representation of p(xY"",r._, | x',+') by B-splincs
makes it possible to retain high numerical accuracy cven
with a fairly coarse basic grid if p(xY""y1,_, L' ") is not
too singular. By substituting frem Eq. (17) into Eq. (16),
Eq. (19) is obtained

My M,
Pl xr =D wes S 10k, 000 k,)

T I
f LD J PGPty |77 1-) @ By (5 dx 0. (19)

It is seen from Eq. (13) that since m;(=) and g;(*) are
not functions of time ¢, the TPDs cannot depend on
absolute time, but only on the time increment. Markov
processes whose TPDs have this property, are called
homogencous. It follows that

P(Im-fj l x(j*“"j_ l)=P ('t(nsT I x(j— n!O)v j=l ;21--" (20)

which holds for any ,—1,_,=7=0.

From Egs. (19) and (20) it is seen that for a fixed
value of the time increment 7, cach of the integrals on
the right hand side of Eq. (19) need to be calculated only
once, and can be stored for repeated use. That is, the
following parameters are calculated initially and stored

BI‘,T.’.E’,-J' R‘_'JP (&7 | x970,0) éi B, (x"dxh,
(21)

Here, the index [, i=1, ..., n, refers to grid point number
i; for the state space variable x;. It may be noted here that
due to the properties of the TPD for small time incre-
ments 7, the tensor B{"% has a strongly banded charac-
ter with the clements decreasing rapidly away from the
main diagonal &,=/,....k,=/,. This has important impli-
cations for the efficiency of the computer program. Let
P2 = (xP i |x',r'). Then Eq. (19) can be rewritten
as

M M,

P2 =D e Tk )Bi

kpmb k-l

(22)

Having calculated the TPD p(x?; [x*.1') at the grid
points by using Eq. (22), a spline interpolation is again
carricd out and a new set of interpolation coefficients
{Ik,y,...k.) ity are calculated. This provides an up-
dated representation of the TPD for time step f, cf. Eq.
(17). For each time step, the normalization condition Eq.
(7) is checked. That is, if

My

j & j P, |6 a)dxPm S eo S 1k )
Lo bl kel

[T | Bi()dx=g (23)



Volume 99, Number 4, July—August 1994
Journal of Research of the National Institute of Standards and Technology

and ¢,#1.0 within the desired accuracy, then the follow-
ing replacement is made to restorc the correct normal-
ization.

I-‘n(klv“'akn )m ('—(Ii—' I‘n(kh“‘vkﬂ' )(ﬂd (24)
This normalization check and replacement strategy con-

tributes to producing a very stable and accurate numer-
ical procedure.

4. Examples

The accuracy and power of the developed PIS proce-
durc will be illustrated by application to specific case
studies taken from two classes of dynamic models. Both
models are described by Eq. (3) with n=2 and m=3.
This implies a two-dimensional state space vector
X=(X,.X2)"=(Z Z)". Further, m(=) and Q(+) are such that
m (X X=X, and g,;(*)=0 for j=1,2,3. Assuming suffi-
cient restrictions on m{*) and Q (=), cf. Refs. [6,7], X(r)
becomes a Markov diffusion process. Invoking Eq. (13),
it can be shown that, up 1o cormrection terms of order 72,
the associated TPD assumes the form

p(x,7| 2 0)=8(x,—x,'— x5’ TPt |2 ,0).  (25)

plxyT |x’,0) is given by the relation

= o 1 _rmx'—my(x)1)
Pl 0 V2uB(x')r CXP{ 2B(x")r }
(26)
whcre
3
B@'=2, gy(x'Y. @7

By combining Eqgs. (25) and (26), and applying the
solution technique described in the previous section, the
TPD p(x |.r',r‘) for large 1—¢' can be calculated. By
this, the time evolution of the system when it starts from
rest, for example, can be studied. The stationary PDF is
obtained in the limit as 1~¢'—, For application of the
PIS method to other problems invelving both two- and
three-dimensional state space vectors, the reader may
consult Refs. [11-13,18,19].

4,1 Example 1—The Caughey Oscillator

There is a class of dynamic models for which there
exist an analytical solution for the stationary joint PDF
of X. A member of this class may be called a Caughey
oscilator, Ref. [20]. The generic equation of motion for
this oscillator can be written as
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Z+Zg (EY+h(Zy=T' N{1). (28)
N(t) denotes a stationary, zero-mean Gaussian white
noise satisfying E[N(t) N(r+7)]=8(7), where 8(s) de-
nates Dirac’s delta function, I'1s a positive constant and
g(E) is a function of the total energy E=E(Z,Z) given
as follows

1

Z*+V(Z) 2%

where

V(z)-j h(s)ds. (30)
L]

For this example m(z,2)=—72glE(z,2)]—h(z), and
we may choose gyu=gn=W=W,=0. gy=I and
dW.{r)=N(r)dr. The stationary, joint PDF, denoted by
p.(*), is then determined by the relation, cf. Refs,
[20,21]

2

p:(z2.2)=C exp{— K

jg(s)ds}, (3D
L]

where E'=7%/24V(z), and C is a normalization constant
to ensure a total probability equal to 1.0,

For the illustration purposes in this paper, we have
chosen the following special case of Eq. (28)

22O+l O 32200+ AZY O HZ ()

FAZ(=2VEN(1) (32)
with parameters &, £, and A.

The stationary PDF only depends on the parametcrs €
and A, and the numerical solution for the following sct
of parameter values has been calculated (e,A)=(0,0)
(Gaussian responsc), (0, 0.2) (Duffing oscillator) and
(0.5, 0.1). The calculations were carried out with the
same number of grid points on both axes in state space,
aviz., 45, Since the resulting PDFs are actually indepen-
dent of £, the value &0.1 was chosen for the Gaussian
and Duffing cases, while &=0.5 was adopted for the last
case. The time increments used were 7=0.0025 s, 0.001
s, and 0,02 s, respectively. The total CPU time ona DEC
station 3100' was about 5 minutes for each case. In Figs,

'Certain commercial equipment, insirements, or materials are identi-
fied in this paper 1o specify adequatcly the experimental procedure.
Such identification does not imply recommendation or ¢endorsement
by the National Instilule of Standards and Technoiogy, nor does il
imply that the materials or ‘equipment identified are necessarily the
best availahle for the purpose.
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1 and 2 are shown the marginal PDFs of the displace-
ment responsc for the three case studies considered,
together with the corresponding analytical solutions. In
Fig. 3 are given the corresponding analytical and numer-
ical results for the mean upcrossing rate. It is seen that
in all three cascs the agreement between the numerical
PIS and the analytical solution is very good over the
whole range of probability levels given, In fact, the
accuracy can be retained down to much lower probabil-
ity levels (==107'%) at a moderate increase in computer
time.

4.2 Example 2—Parametric and External
Excitation

In this example, the response statistics of a nonlinear
oscillator subjected to both external and parametric ran-
dom excitatton will be illustrated by applying the
methodology of the paper to two specific case studies.

The equation of motion of the oscillator is the follow-

ing

2
Z42E[14N(D))Z+y(Z7+ %}z'mg [14+N:(1Z-Na(1).
N 0
(33)

Here £, ¥, and oy are positive constants, N’,(r).j=l,2.3,

are independent Gaussian white noises satisfying
EIN(ON;(t+1)=17 8(7). }=1.2.3, (34)
where [} are positive constants. For this example it
is found that my(z,9)~—2&—yiz+iY @il iz,
@z 2)=—2&T. gn(z.2)=— ezl and ga(z.2)=I%.

This medel was studied by Dimentberg [22], who
showed that when

w! 17=4£"17 (33)

a closed-form cxpression for the stationary joint PDF
can be obtaincd. It is given as

exp{—p i+ al)}

P,(Z,Z)=C (K+Z‘.'+z-1lto§)ﬁ:xu ¥ (36)
where C is a normalization constant and
It 26 ¥
cwrnrantrten . @

By this, we have the opportunity to test the accuracy of
the PIS method for this kind of dynamic model. The
results of two particular cases will be presented.

0.6 ;

Probability density

Displacement

Fig. 1. Probability density function of displacement response for the Caeghey oscillator in example 1. Ana-

Iytical solutions:

—, E=(, A=0; —+ -+ g=0, A=0).2, ————, £=0.5, A=0.1, Numerical path ntegral
solution: +, e=0, A=0; X, e=0, A=0.2; O, £={.5, A=0.1,



Volume 99, Number 4, July-August 1994
Journal of Research of the National Institute of Standards and Technology

100 T T T T T

1L ILLL

101

L i baid

rrrra

102

« TEITHW
L L Litlll

103

T TTTImr
L LLiLatl

Probability density

104

T T 10

[ I

105

L1 18Jitiy

T T TTITHT

104 .

o
—
[ %]

Displacement

Fig. 2. Logurithmic plot of the probability density function of displacement response for the Caughey oscillator
in example 1. Key as in Fig. 1.
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Fig, 3. Mcan upcrossing rale of displacement response for the Caughey oscillator in example 1. Key as in Fig.
1.
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Case L: Here the following parameter values were
used. £&=0.1, ¥=0.1, wy=1.0, [7=25, =01, I'7=03.
For the numerical calculations a grid size of 49x49
points and a time increment 7=0.01 s was used. The total
CPU time on a DEC 3100 work station was 3 min for the
PIS calculation. The results for the analytical and nu-
merical solutions are given in Figs. 4-6. In Figs. 4 and
5 are shown the marginal PDF of the displacement re-
sponse and in Fig. 6 is shown the comresponding mean
upcrossing rate,

Case 2: In this case the following sct of parameters
were used. &0.1, 0.4, ay=1.0, I7=5.0, [7=02,
I?=03, A grid size of 51X51 points together with a
time increment =0.01 s werc chosen. The CPU time
was about the same as in the previous case, The same
results as for Case 1 are presented in Figs. 4-6.

5. Conclusions

A numerical method for estimating the extreme re-
sponse of nonlinear oscillators excited by white noisc,
or filtered white noise, has been described. The example
calculations presented show that the method gives very
accurate estimates of the required joint PDF. In fact, for
evcry example having analytical solution on which the
method has been tested, complete agreement has been
found with proper choice of grid size and time incre-
ment in the numerical solution procedure. In the present
paper, of course, only a few cases can be given. Experi-
ence with the method indicates that two-dimensional
problems can be solved routinely with high accuracy
requiring a few minutes CPU time on a work station
{DEC station 3100). The solution of three-dimensional
problems requires more care in the sense that computer
capacity starts to become an issue of importance. In
such cases the CPU time easily runs into hours.

0.7

Probability density

Displacement

Fig. 4. Probability density function of displacement response for the oscillalor in example 2, case 1 and 2.

Analytical solutions:
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,case 1; —» -+, case 2. Numerical path integral solution: +, case 1; O, case 2.
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Fig. 5. Logarithmic plot of the probability density function of displacement response for the oscillator in
example 2, case 1 and 2. Key as in Fig. 4.
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Fig. 6. Mean upcrossing rate of displacement response for the oscillator in example 2, case 1 and 2. Key as in
Fig. 4.
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