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Jack-up platforms are sensitive to 
dynamic amplification in waves because 
their fumiBinenlal period can be as 
high as 7 s-H s. Whereas I he dynamic 
motion of the platforms is rather well 
ilescribetl by linear theory the excita- 
tion depends nonlinearly on the wave 
height. The stochastic wave loading is 
thus fur from being normally di.s- 
tribulcd. 

tn this paper dynamic amplifications 
obtained by the diffusion theory ex- 
tended to cover nonnormai excitations 
are compared with available time simu- 
lation results in irregular seaways. Gen- 

erally, the lime simulations seem to 
yield responses less nonlinear in the 
wave heights than the responses esti- 
mated from the diffusion theory. Expla- 
nations for these discrepancies arc 
discussed and mainly allrihuted to a 
proper choice of total damping. 
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1.    Introduction 

The jack-up drilling rig concept, Fig. 1, has 
proved to be very convenient in the exploration for 
oil and gas in offshore areas. Therefore, requests 
are made for designs able to operate in increasing 
water depths. Due to their sizes and independent 
leg configuration the natural periods of their lowest 
vibration modes become comparable with the dom- 
inant wave periods in the design sea states. As an 
example jack-up rigs with leg lengths of 160 m, hull 
masses of the order 15,000 t and lowest natural pe- 
riods around 8 s are currently under construction. 
For such structures dynamic amplification of the 
wave load responses is certainly to be expected. 

The wave loading on the legs can be estimated us- 
ing Morison's equation. Usually, the legs are truss- 
like, with each leg consisting of three (or four) 
vertical chords connected by horizontal and oblique 
bracing members. The diameters of the individual 
members are so small that the wave loads on the 

legs become drag dominated. Alternative designs 
for smaller platforms have considered circular cylin- 
drical legs, yielding inertia-dominant waveloads [1]. 
For larger platforms the circular cylindrical leg de- 
sign is not feasible as the loadings and thereby the 
required amount of steel are so much higher than 
for the truss leg design that it cannot be counterbal- 
anced by lower production costs. 

A drag-dominated wave load implies a loading 
which is nonlinear in the wave height. Furlhermore, 
the integration of the wave load up to the actual po- 
sition of the wave elevation on a leg and the non- 
symmetry {Stoke's 5th order wave) of the wave 
profile magnify these nonlinearities in the base 
shear, the overturning moment and associated re- 
sponses. 

The structural stiffness of the jack-up rig in the 
lowest vibration mode is characterized by the leg 
stiffness, the distance between the legs, the bottom 
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Fig. I,   Jack-up platform with cantilever. 

support conditions, the distance L from sea bottom 
to the platform deck and the leg-jack-house flexibil- 
ity. The global vibration pattern is normally beam- 
like with a maximum horizontal deck deflection of 
the order of 1 %-2 % of L in the design sea states. 
A linear structural analysis would therefore nor- 
mally suffice. However, the additional overturning 

moment in the deflected state due to the high axial leg 
loads from the deck mass must be included by the so- 
called P -b effect and, in a dynamic analysis, by reduc- 
ing the leg bending stiffness. 

A jack-up rig is a highly stressed structure. Tlierefore, 
it is important that an accurate structural evaluation is 
performed. Such an analysis should be done, not only 
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when designing a new structure, but also when a 
jack-up rig is moved to a new location. In order to 
get uniform and reliable site approval procedures, a 
large study was initiated by a group of companies 
involved in jack-up design and operations. A sum- 
mary of this project is presented in [2]. Generally 
three different methods are applied: 

■ Single degree of freedom methods (SDOF). 
■ Frequency domain methods. 
•   Time-domain methods. 

In the first procedure the quaststatic solution, de- 
termined by neglecting the motion of the platform, 
is amplified by a dynamic amplification factor 
(DAF) calculated by the classical SDOF formula. 
This will introduce errors due to the nonlinearities 
in the wave loading and several approximative pro- 
cedures have been used [3]-[5], aiming at reducing 
these errors. 

The frequency domain methods rely on a suitable 
linearization of the wave loads with the wave height. 
The resulting linear dynamic system is then solved 
exactly. The non-Gaussian behavior of the extreme 
values is then simply estimated by multiplying the 
standard deviation of the linear response with a fac- 
tor depending on the ratio between the root-mean- 
square values of the drag and inertia terms in the 
wave loads. 

Due to the assumptions inherent into above-men- 
tioned methods, time simulation procedures are of- 
ten used. For a specific stationary stochastic sea 
state random time signals of wave elevation and 
corresponding wave kinematics are generated, typi- 
cally by superposition of first order (Airy) wave 
components. A structural analysis of the jackup-rig 
including dynamic and nonlinear effects is then car- 
ried out using time steps of the order of 0.5 s. The 
main drawback in this method is that due to exces- 
sive computational costs only a limited number of 
time simulations, each covering a few hours, can be 
generated. The extrapolation of these results to ex- 
treme value predictions for design approval can be 
difficult. Several applications of time simulation 
procedures to jack-up rigs have been published [IJ- 
[2L [4H71. 

In a previous paper by the author [8], an alterna- 
tive method has been developed. The method is 
based on exact solution of a linear single-degree-of- 
freedom system subjected to a non-Gaussian excita- 
tion. Like in the SDOF method the present method 
also needs the nonlinear quasistatic response as in- 
put but now the dynamic effects are calculated 
much more consistently. The present procedure 

yields all required statistical moments of the re- 
sponse, which makes extreme value predictions veiy 
easy. This is done without using any stochastic lin- 
earization procedures as required in the frequency 
domain method. Finally, compared to time simula- 
tion procedures, the present method is much faster 
to apply and does not have the problems with ex- 
treme value predictions inherent in time simulation 
procedures. 

The aim of the present paper is to evaluate the 
proposed procedure [8] by comparing results with 
those obtained from time simulation procedures. 
Previous comparisons [8], [9], with results based on 
a usual SDOF procedure have been very favorable 
as well as have been comparisons with time simula- 
tion results for a large offshore jacket structure [10]. 
In the next section the present stochastic dynamic 
procedure is described. Then it is applied to data 
presented in [5], obtained using a time simulation 
procedure and the importance of the various ap- 
proximations and different modelings is discussed. 

2.   Stochastic Dynamic Analysis 

For a linear single-degree-of-freedom system the 
equation of motion for the response Y{t) can be 
written 

where wu and ^ is the natural frequency and damp- 
ing ratio, respectively. Time is denoted by / and dif- 
ferentiation with respect to f by (•). The function 
Yf^t) is seen to be the quasistatic response obtained 
neglecting the dynamic behavior of the structure 

If Yo(t) represents a global jack-up response vari- 
able like the base shear or overturning moment, 
then it has been shown, [3], [8]-[10] that it can quite 
aaniratety be represented by a polynomial descrip- 
tion in terms of the wave height H. 

yo(0 = 2^-^(0' 

h{t)=^ COS^ITTY +f], 

(2) 

(3) 

when the jack-up is subjected to a regular long- 
crested wave. The coefficients/I, will depend on the 
platform geometry,  the water depth, the wave 

457 



Volume 99, Number 4, July-August 1994 

Journal of Research of the National Institute of Standards and Technology 

theory applied and the current profile. No closed- 
form solution exists and the actual values of A, must 
be derived by curve fitting from the numerical 
results. 

The wave period T in the applied regular wave 
and in equivalent wave elevation /; is taken to be 
uniquely given by the wave height H, using for in- 
stance Odland's formula [11] 

7 = 1 + 4.1 H" (4) 

with T in seconds and H in meters. 
In a stationary stochastic sea state with significant 

wave heights H, the individual wave heights H have 
been found to be Rayleigh distributed with a root- 
mean-square value close to HJ2\/1. Furthermore, 
the phase lag e in Eq. (3) can be taken to be uni- 
fonnly distributed. Then the parameter h, Eq. (3), 
becomes normal distributed with zero mean and 
standard deviation equal to //,/4, Thereby, the 
stochastic equivalent of Eq. (2) becomes 

with 
a,=Ai{HJAy 

(5) 

(6) 

and where t/{0 is a standard Gaussian process with 
zero mean and unit variance. In most cases a cubic 
polynomial, n — 3, will suffice. 

Clearly the curve fitting and the specific values of 
T = T{H) used to obtain the quasistatic response 
description, Eq. (2), impose some inaccuracies in 
the coefficient a,. Therefore, if time simulation re- 
sults are available for the stochastic quasistatic re- 
sponse, Yo, then these results could be used directly 
to generate proper values of a,. For example, from 
the four lowest statistical moments: mean, standard 
deviation, skewness, and kurtosis, it is straightfor- 
ward to determine the four coefficients a; in a cubic 
description of Yo{t) [8]. This possibility will be con- 
sidered in the next section. 

The solution of Eq. (1) with the right hand side 
given by Eq. (5) will be based on the theory of dif- 
fusion processes. Therefore the forcing function 
^{t) must be a normal white-noise process with a 
covariance function satisfying 

£[f(')^(^ + T)] = 2,r55{T), (7) 

where 5 is the spectral density of f and 5(-) is 
Dirac's delta function. A constant spectral density is 

a very poor approximation for a wave load process 
U{t) and the standard procedure to overcome this 
problem is to pass the white noise process f(/) 
through a filter defined by 

r)-l-2f, Wer7+£i>^i7=f. (8) 

Thereby, the spectral shape 5, of TJ becomes 

25 
5,(w) = 7^-2 ;.; ■  /-^ V ^ ; W>0. (9) 

Compared to the usual wave spectra of the Pierson- 
Moskowitz type the spectrum 5,(to) has the disad- 
vantage that 5,(0)^0. The spectral shape 5,(w) 

S, {o)) = S^{bi){oil<a^^ 

of the process 

<p(/) = 7j(r)/wg 

(10) 

(11) 

much belter resembles the Pierson-Moskowitz 
spectrum. This is illustrated in Fig. 2, where the 
normalized spectra S,,(w), S^{{a) are compared 
with the normalized Pierson-Moskowitz spectrum 

5,.M(W) = 4TP''W 'exp^-(Tp<uj-''J; wsO . (12) 

Here 

(13) 

where Tp is the spectral peak period for the sea 
state. The normalizations are such that all three 
spectra have a unit variance implying that 

S = ̂IkA (14) 

for both 5, and S^. 
Furthermore, the spectral parameters Wg and ^ 

are chosen such that the peak values and peak fre- 
quencies for all three spectra coincide [8], yielding 

5,{«>): ft>5= 1.052^; ig=0.221 

S,(<^y. ^= Y^        ; 4=0.222 (15) 
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Fig, 2.   Comparison between the normalized spectra 5,(t>>), 
Sfiui) and STM(<ii). 

In the following normal process U{t) in Eq. (5) will 
be taken as 

V(r) = H') (16) 

Eqs. (1), (5), (8). and (11) can be written as Ito dif- 
ferential equations 

Z =C{Zit)) + W{t), (17) 

where 

Z={Y, Ylojo, Tj, <PY^{ZU Zi, Z,. Z,Y       (18) 

and 

C(Z) = 

(ilnZi 
It 

- 2 ib (* Zi - oio Zi + W) ^ Oj Zi 

<i)gZt 

W(t) = {0,0,O,mfoHV- 

(19) 

(20) 

Since W(i) satisfies the white noise property 

EiW{t)Wit + T)]=Ddit), (21) 

it follows from diffusion theory, e.g., [12] that the 
statistical mean value £[g(Z)] of any function g of 
Z satisfies 

\ 2 2 «.4^]=o P2) 

in a stationary sea state. In the present case i,j = 1, 
2, 3, 4 and only the £>« component in the 4x4 ma- 
trix D is different from zero. 

As the vector C(2) is given in polynomial form, it 
is straightforward to apply the procedure given by 
Krenk and Gluver [12] to obtain exact values for the 
statistical moment of Y. Here only the four lowest 
moments are determined and used to define 
uniquely a cubic  polynomial  approximation  for 
no. [8] 

y(0=co+c, u(t)+ci u{ty+c3 u{tf (23) 

Extreme values of Y{t) are finally obtained by re- 
placing U{t) with corresponding extreme values, 
that is by \/2 InA' for the most probable largest 
peak among N peaks. 

3.    Numerical Results 

For a linear single-degree-of-freedom system 
subjected to a Gaussian excitation, a dynamic am- 
plification factor can be defmed as [11] 

dynamic amplification factor = 

[J  (/'^(w)5(«)d«]' 
(24) 

where 0is the classical dynamic amplification factor 

^  H'-)= \/(w'>-wY+(2£;,wwo)' 
(25) 

and where S((o) is the spectral density of the qua- 
sistatic response (the excitation) Vo. Furthermore, 
o; is the standard deviation of the excitation given 
by 

cfi=      S'(a») dw. (26) 

Examples of dynamic amplification factors deter- 
mined by Eq. (24) are shown in Fig. 3. Three spec- 
tral den.sities 5(w) are used, the Pierson-Moskowitz 
spectrum, Eq. (12), the spectrum 5,(6>), Eq. (9), 
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and the spectrum 5^(a;), Eq. (10). The damping ra- 
tio is taken to be ^ = 0.07 and it is seen that at res- 
onance the dynamic amphfication factor is only 
about half the value of (/«((«*)) = 1/2 it- 

DAF 
Lineor 

^0 = 0.07 

Rg. 3. Dynamic amplification factor (DAF), Eq. (24), for the 
standard deviation of a linear one degree-of-freedom system, 
using different excitation spectral densities. 

For a hnear system subjected to a Gaussian exci- 
tation the same dynamic amplification factor will 
apply to both standard deviations and extreme val- 
ues. Typical values of the fundamental period 
7o = 2ir/ajD are around 8 s for large jack-up rigs 
whereas the peak spectral period Tf in the design 
sea state is about 16 s. From Fig. 3 one could then 
expect dynamic amplification factors in the vicinity 
of 2. However, most time simulation results (4]-[7], 
yield dynamic amplification factors for the extreme 
values much lower and even sometimes below 1. In 
the following this difference wilt be discussed using 
data for the example jack-up rig considered in [5]. 

First deterministic, quasistatic results for this 
jack'Up rig were computed using both the Stretched 
Airy and the Stoke's 5th order wave theory, The 
results obtained for the overturning moment 
(OTM) using the Stretched Airy wave theory are 
shown in Fig. 4, Ojrrections for P-S effects have 
been made. The wave period T is taken in accor- 
dance with Eq. (4). The sensitivity of the calculated 
results to the choice of T is exemplified in Table 1. 
It is seen that minor variations in T around the 
value given by Eq. (4) do not change the overturn- 
ing moment significantly. 

Two different curve fitting procedures have been 
used in Fig. 4 to generate cubic polynomial repre- 

sentations (A, B) of the overturning moment as 
function of the deterministic wave height H. Similar 
curves are obtained for the base shear and also 
when using the Stoke's 5th order wave theory. All 
these results are expressed in terms of coefficients 
Ai to be used in Eq. (2). 

OTM. 

Fig. 4.   Overturning moment for the jack-up-rig considered [5], 
subjected to a regular long-crested stretched Airy wave. 

The coefficients/!/ are then used in Eq, (6) to ob- 
tain values of at valid for the stationary stochastic 
design sea state. From these coefficients the four 
lowest statistical moments are calculated by the 
procedure given in [8]. The results are given in 
Tables 2 and 3 and compared with those presented 
in [5] from a quasistatic time simulation procedure. 
Furthermore, these tables contain the dynamic re- 
sults determined by the present stochastic dynamic 
procedure and by dynamic time simulations in ran- 
dom seaways [5]. From Table 2 it is clear that the 
choice of wave theory and curve fitting procedure 
has only a marginal influence on the quasistatic 
overturning moment. Therefore Table 3 for the 
base shear only contains results for one of these 
choices. Also it appears that the statistical moments 
calculated from the deterministic results using Eqs. 
(2)-(6) are remarkably close to those found from 
time simulations except perhaps for the kurtosis 
which is somewhat lower in the time simulations. 
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Table 1.   Sensitivity of ovcnurning moment (OTM) to wave 
period T, W = 13.7 m (45 ft), Stoke's 5th order wave 

Wave period T max OTM 
(Itf Nm) 

min OTM 
(10* Nm) 

9.854 3.108 -0.811 

11.261 Z63S -0.941 

12.690 [Eq. (4)] 2.428 ^1.112 

14.077 i457 -1.261 

TaMc 2. Statistical momcni.1 and dynamic amplification factors 
(DAF) for the overturning moment in the design sea state, 
//.-12.8 m.Tp-15.5 s 

Time       Based 
Overturning     Stake's 5th      Stretched Airy    simu-       on 
moment fit A     fit B    fit A     fit B      lation        (*) 

Quasisbitic 
Mean/stand.    0.197    0.198    0.192    0.193     0.200 (*) 

dcv. 
Skewness 2.60      2.77      2.50      2.61       2.99   (•) 
Kurtosis 25.7 29.7 24.3 27.0 18.4 (•) 

Dynamic 

Mean/stand. 0.081 0.082 0.079 0.08O 0.128 0.080 
dev. 

Skewness 0.17 0.19 0.16 0.18 1.29 0.19 

Kurtosis 6.89 7.60 6.67 7.15 8.40 5.30 

DAF/stand. 2.43 2.41 2.43 2.41 1.49 2.50 
dev. 

DAF 1.36 1.36 1.36 1.36 1.08 1.39 
(W = 1000) 

Table 3. Statistical moments and dynamic amplification factors 
(DAF) for the base shear in the design sea slate, H,- 12.8 m, 
rp=l5.5s 

Base shear Stoke's 5th Time simulation Based on 
(BS) [5] (*) 

Quaaistatic 

Mean/stand, dev. 0.163 0.160 (•) 
Skewness 2.43 2.23 (•) 
Kurtosis 32.2 13.7 (•) 

Dymamic 

Mean/stand- dev. 0.068 0.122 0.065 

Skewness 0.17 1.34 0.12 
Kurttwis 8.18 9.01 4.71 
DAF (stand, dev.) 2.40 1.24 2.46 

DAF (N = 1000) 1J7 1.05 1.38 

The only additional information needed to calcu- 
late the dynamic responses by the present stochastic 
dynamic procedure is the fundamental period To 
and the total damping ratio ^ see Eq. (1). For the 
example jack-up rig 7'«=8.45 s whereas the damping 
ratio is specified to 0.05 [5]. However, the lime sim- 
ulations are carried out in [5] using a single-degree- 
of-freedom formulation which includes coupled 
fluid-leg interaction terms. These terms will reduce 
the dynamic response and therefore act as addi- 
tional (hydrodynamic) damping. The total damping 
in these time simulations must thus be greater than 
0.05. In the present calculations, Eq. (1), (7)-{23), 
the damping ratio has been taken to be 5i=005. 
The consequences of larger actual damping will be 
discussed later. 

It is seen from Tables 2 and 3 that the dynamic 
amplification factor is nearly the same whether the 
quasistattc input is taken from Eqs. (2)-(6) or from 
the quasi static stochastic time simulations |>er- 
formed in [5] (the results marked by (*)). The dif- 
ference in kurtosis is apparently not important. 

For both the base shear and the overturning mo- 
ment the dynamic amplification factors for the stan- 
dard deviation turn out to be around 2.4 whereas 
the dynamic amplification factor for the most prob- 
able largest response peak among A^ = 1000 peaks 
becomes 1.36. As ru/rp = 8.45/15.5 = 0.54 the dy- 
namic amplification factor for the standard devia- 
tion is seen to be in accordance with Fig. 3 taking 
into account that the damping in the present exam> 
pie is 5, = 0.05. Tables 2 and 3 also show that the 
dynamic effects tend to reduce the skewness and 
kurtosis making the response more Gaussian than 
the quasistatic response. Thereby, the dynamic am- 
plification factors for the extreme values become 
smaller than for the standard deviation with de- 
creasing values for increasing values of A', 

The most severe disagreement between the re- 
sults from the present stochastic dynamic procedure 
and the time simulations is clearly in the dynamic 
amplification factors. They are consistently smaller 
in the time simulations. 

Before looking after passible explanations it 
should be stressed that the above results only con- 
cern one specific jack-up rig. Other results obtained 
by time simulations have shown larger dynamic am- 
plification factors. For instance the dynamic ampli- 
fication factor for standard deviation of the 
overturning moment is found in Ref. [6], Figs. 7 and 
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11 to be 5.583/2.521 = 2.21 for a comparable jack-up 
rig and sea state. Also [4] shows dynamic amplifica- 
tion factors around two without specifying precisely 
the extreme value level. 

One source of uncertainty is the damping ratio. 
In the present stochastic dynamic procedure the to- 
tal damping has to be specified whereas in the time 
simulation procedure the hydrodynamic damping is 
automatically taken into account by the relative ve- 
locity terms in Morison's equation. Therefore, it 
could be interesting to see how much the total 
damping should be increased before results in ac- 
cordance with the time simulations are obtained. In 
Table 4 such results are shown and it is seen that 
first for a total damping ratio of about 20 % good 
agreement on dynamic amplification factors is ob- 
tained. Such damping is rarely expected in real jack- 
ups although [4] presents experimental values 
around 10 % for a model test. A total damping a.s 
low as 2.2 % has on the other hand been estimated 
from full scale measurements [14]. As mentioned 
previously, the stochastic dynamic time simulation 
procedure in [5] includes 5 % damping in addition 
to some damping from fluid-structure interactions 
(Eq. (26) in [5]), This must result in an effective to- 
tal damping in the time simulation results greater 
than 5 % but how much greater it is not possible to 
say. 

A further verification of the present procedure 
will clearly require more detailed comparisons with 
time simulation results including estimations of the 

total damping in the time simulations as function of the 
severity of the sea state. Until then it seems reasonable 
to assume that if the total damping is known then the 
present procedure will yield results with uncertainties 
mainly related to the assumption of a single degree-of- 
freedom system. Note that P — S effects are included in 
To through a reduced leg stiffness [11], 

To illustrate the potential of the present procedure. 
Fig. 5 shows the variation with sea state of the non- 
Gaussian behavior and of the dynamic amplification 
factor for the most probable peak value among 1000 
peaks for the overturning moment. In particular, one 
should note that even in extreme sea states some 
dynamic amplification occurs. There are two reasons for 
this. First the stochastic sea state averages out the 
classical dynamic amplification factor as shown in Fig. 3. 
Secondly, the non-Gaussian parts of the quasistatic exci- 
tation Vo are amplified differently. In Fig. 6 the dynamic 
amplifications associated with a pure quadratic and a 
pure cubic excitation are shown. The linear excitation. 
Fig, 3, has a maximum dynamic amplification factor for 
TiJTp —\, whereas the quadratic excitation yields 
maxima for To/Tp—0.5 and the cubic excitation maxima 
for T(i/7"|,=0.33 and TiJTp=l. Thus depending on the 
relative magnitude of the linear (ai), quadratic (a;) and 
cubic (flj) terms in the excitation Yu, Eq. (5), the largest 
dynamic amplification factor can appear within a range 
of TtJTp values. For the example considered here in 
Fig. 5, the linear and especially the cubic terms domi- 
nate yielding a maximum dynamic amplification factor 
when the spectral peak period Tp gets close to the 

Tabit 4.    Statistical momcntii and dynamic amplification factor; (DAFs) for the overturning moment in 
the design sea state, (//^-12.8 m, 7',,= 1S.5 s) an function of total damping 4 

Mean Stand, (lev. Skcwnesb Kurtosis 
«4 

DAF 

6 Stand dev,   N = 903 

0.05 20.5 258 0.19 5.3 2..50 1.39 
0.10 20.5 193 0J2 7.1 1.87 1.26 
0.15 20.5 165 0.90 8.4 1.60 1.19 
0.20 20.5 148 1.25 9.4 1.44 1.13 

Quasistatic 
time sim. 20.5 103 2.99 18.4 1.00 l.OO 

[5] 

Dynamic 
time sim. 19.6 153 1.29 8.4 1.49 1.08 

[5] 
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fundamental natural period 7"o. Note, however, that 
most jack-up rigs have To/Tp—0.5 in the design sea 
state which is where the dynamic amplification fac- 
tor from the quadratic term is largest. This is the 
reason why the dynamic amplification factor in Fig. 
5 levels off for H, around 13.7 m (45 ft). 

DAF 
3.0 

Tp/T, 

to H.(m] 

Fig. 5. Skewncss K>, kurtosis K* and dynamic amplificatian fac- 
tors for the dynamic overturning moment as function of the sig- 
niflcant wave height. 

Finally, Fig. 7 shows for sake of completeness the 
variations of the skewness and the kurtosis for a dy- 
namic system subjected to a pure quadratic and a 
pure cubic excitation. Note that a quadratic excita- 
tion has Kj = 2 V 2, K4 = 15 whereas the cubic excita- 
tion has iQ=0, K4 = 46.2. The change towards a 
Gaussian behavior is clearly significant already for 
To > 0.1 Tp. 

4.    Conclusions 

A procedure able to predict dynamic global re- 
sponses of jack-up rigs subjected to wave loads in 
stationary stochastic seaways has been described. 

2J0~ 

1.0 

0 8 

OAF 
3.0 

- Pure quadratic, S,p(W), ^j = 0.07 

/         \      Stand dev 

/ 

A            N=1000     \ \v.^ 

1                        ~' 
0 5 1.0 Tfl/Tp 1.5 

Pure cubic,S,^((D), Co=Ot 

Fig. 6. The dynamic amplification of the standard deviation 
and the most probable largest peak among 1000 peaks for a pure 
quadratic and a pure cubic excitation. 

The procedure consists of three steps: 
(i)   determine the wave load response using a suit- 

able nonlinear regular wave theory neglecting 
the motion of the platform, 

(ii) fit a polynomial in the wave height through the 
calculated response maxima and minima, 

(iii) assume a deflection mode in the form of the 
first horizontal vibration mode and solve the 
corresponding equation of motion in stationary 
sea states using the theory of diffusion pro- 
cesses. 

For an example jack-up rig it is observed that the 
dynamic amplification quite significantly changes 
the statistical behavior of the response toward a 
Gaussian process. Also, a significant dynatnic 
amplification is found in the extreme sea states 
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Fig. 7. Skewness K} and Icurtosis KI for a dynamic system sub- 
jected to a pure quadratic and a pure cubic (icj = 0) exciiatiun. 

where the spectral peak period is about twice the 
lowest natural period. These results are in agree- 
ment with previous findings [1]-[13] using various 
formulations and jack-up geometries. 

Comparisons with time simulations performed 
for the example jack-up rig considered in [5] have 
indicated that the main uncertainty in the present 
procedure relates to a proper choice of total damp- 
ing. In order to clarify this point estimates of total 
damping ratios from time simulation results would 
be extremely helpful. Such dampings would include 
fluid-structure interaction effects and will vary with 
time. Suitable average values must then be defined. 
In this context also doubts expressed on the use of 
the relative velocity term in Morisons equation 
should be mentioned [13]. 
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