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Floods and draughts constitute extreme 
values of great consequence to society. 
A wide variety of statistical techniques 
have been applied to the evaluation of 
the flood hazard. A primary difficulty is 
the relatively short lime span over 
which historical data are available, and 
quantitative estimates for palcofloods 
are generally suspect. It was in the con- 
text of floods that Hurst introduced the 
concept of the rescaled range. This was 
subsequently extended by Mandelbrot 
and his colleagues to concepts of frac- 
tional Gaussian noises and fractional 
Brownian walks. These studies intro- 
duced the controversial possibility that 
the extremes of floods and droughts 
could be fractal. An extensive study of 
flood gauge records at 1200 stations in 
the United States indicates a good cor- 

relation with fractal statistics. It is con- 
venient to introduce the parameter F 
which is the ratio of the 10 year flood 
to the 1 year flood; for fractal statistics 
F is also the ratio of the lOO year flood 
to the 10 year flood and the ratio of 
the 1000 year flood to the 100 year 
flood. It is found that the parameter F 
has strong regional variations associated 
with climate. The acceptance of power- 
law statistics rather than exponentially 
based statistics would lead to a far 
more conservative estimate of future 
flfxxl hazards. 
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1.   Introduction 

The flow in a river can generally be considered 
a time series. The extreme values in the time series 
constitute floods. Floods present a severe natural 
hazard; in order to assess the hazard and to allo- 
cate resources for its mitigation it is necessary to 
make flood-frequency hazard assessments. The in- 
tegral of the flow in a river is required for the de- 
sign of reservoirs and to assess available water 
supplies during periods of drought. 

One estimate of the severity of a flood is the 
peak discharge at a station V. The magnitude of 
the peak discharge is affected by a variety of cir- 
cumstances including: (1) The amount of rainfaU 
produced by the storm or storms in question, (2) 
the upstream drainage area, (3) the saturation of 
the soil in the drainage area, (4) the topography. 

soil type, and vegetation in the drainage area, and 
(5) whether snow melt is involved. In addition 
dams, stream channelization, and other man-made 
modifications can affect the severity of floods. 

In order to estimate the severity of future floods, 
historical records are used to provide flood-fre- 
quency estimates. Unfortunately, this record gener- 
ally covers a relatively short time span and no 
general basis has been accepted for its extrapola- 
tion. Quantitative estimates of peak discharges as- 
sociated with paleofloods are generally not 
sufficiently accurate to be of much value. A wide 
variety of geostatistical distributions have been 
applied to flood-frequency forecasts, often with 
quite divergent predictions. Iixamples of distribu- 
tions used include power law (fractal), log normal. 
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gamma, Gumbe), log Gumbe), Hazen, and log Pear- 
son. Many discussions of this work appear in the lit- 
erature [1-7]. 

An independent approach to reservoir storage 
was developed by Hurst [8, 9]. Hurst spent his life 
studying the flow characteristics of the Nile and in- 
troduced the rescaled range (R/S) analysis. He 
found that the variations of the storage (the range) 
scaled with the time period considered as a power 
law. Mandelbrot and Wallis [10-13] introduced the 
concepts of fractional Gaussian noises and frac- 
tional Brownian walks and related these to R/S 
analysis; alt are recognized as fractal distributions. 
They also introduced the Noah and Joseph effects. 
The Noah affect is the skewness of the distribution 
of flows in a river and the Joseph effect is the per- 
sistence of the flows. Although the concepts intro- 
duced by Hurst and Mandelbrot and Wallis have 
been considered in a wide variety of applications 
[14], they have not influenced approaches to flood- 
frequency forecasting. This point will be a central 
feature of this paper along with a general discussion 
of the applicability of fractal statistics. 

2.   Analysis 

In most cases the flow in a river is a continuous 
function of time, thus it is appropriate to treat the 
flow as a time series. It is straightforward to study 
the spectral characteristics of the time series by de- 
termining the coefficients of a Fourier expansion. 
For most river flows there will be a strong annual 
peak associated with seasonal variations in rainfall. 
However, it is of interest to examine the longer 
range trends in the data. If the Fourier coefficients 
have a power-law dependence on frequency over a 
significant range of frequencies a fractal depen- 
dence is obtained (with some constraints on the 
power). 

UV (f) is the volumetric flow in a river as a func- 
tion of time, the condition that the flow is fractal 
requires that 

dimension of a fractional Brownian walk is related 
to the Hausdorff measure by [15] 

D=2-H (2) 

and with 0<//< 1 we have 1 <Z) <2. 
An extension of the self-similar analysis of rivers 

as a time series is to treat floods as a discrete fractal 
set. In order to avoid difficulties with annual vari- 
ability we hypothesize that the peak annual dis- 
charge Vm in a time interval T is related to the 
interval by 

Mn^c^T" (3) 

with Tan integer number of years. Self-similar river 
flows imply a power-law scaling of peak annual dis- 
charges and recurrence intervals. 

This scale invariant distribution can also be ex- 
pressed in terms of the ratio F of the peak discharge 
over a 10 year interval to the peak discharge over a 
1 year interval. With self-similarity the parameter F 
is then also the ratio of the 100 year peak discharge 
to the 10 year peak discharge. In terms of// and D 
we have 

F = 10" = 10^-''. (4) 

The parameter F is a measure of the severity of 
great floods. 

An alternative way of writing Eq, (3) is 

N^CiV-', (5) 

where N is the number of floods per unit time with 
flows that exceed V. This relation wilt be used to analyse 
actual flood-frequency data. The quantities N in Eq. 
(5) and T in Eq. (3) are related by 

N=^, (6) 

so that we have 

pff'"P„-^f"..]./(.), (!) 

where K(/-I-r)-F(/) is the difference in flow after 
a time T, H is known as the Hausdorff measure, and 
/(y) is a normalized cumulative probability distribu- 
tion function. When/(y) is the error function and 
H — 1/2 this relation defines a Brownian walk. If 
0< H< 1 and/(y) is the error function, this relation 
defines  fractional  Brownian  walks.  The  fractal 

H=- 
a 

and from Eq. (2) we have 

D=2- 1 

(7) 

(8) 

Data will be used to obtain a; F, H, and D will then 
be found from Eqs. (4), (7), and (8). 

Before considering actual examples we will also 
introduce rescaled range {RIS) analysis. Hurst [8,9] 
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proposed this empirtcat approach to the statistics of 
floods and draughts. The method is illustrated in 
Fig. 1. Consider a reservoir behind a dam that never 
overflows or empties, the flow into the reservoir is 
V{t) and the flow out of the reservoir is \^(T) de- 
fined by 

»?4jV(0d/. (9) 

The volume of water in the reservoir V(t) is given 
by 

v{t) = y(0)+ I y(t')dt'-tP{T)     (10) 

and the range is defined by 

I\\J )^^ r DIM      ^^muiT 01) 

where Vaat is the maximum volume and Fmin the 
minimum volume stored during the interval T. The 
rescaled range is defined as R/S where 5 is the stan- 
dard deviation of the flow during the period T 

S(T) = [^ I (^(0~b'Ydt. (12) 

Hurst et al. [16] found that for many time series the 
rescaled range satisfies the empirical relation 

f=(-D"' (13) 

where Hi is known as the Hurst exponent. Examples 
included river discharges, rainfall, varves, tempera- 
tures, sunspot numbers, and tree rings. In many 
cases the value of the Hurst exponent is near 0.7. 

Vmin (t) 

Fig. 1. Illustration of how rescaled range (R/S) analysis is car- 
ried out. The flow into a reservoir is V{i) and the flow out is 
V(T). The miwimura volume of water in the reservoir during the 
period T is VmaiT) and the minimum ^'niin(7'); the difference is 
the range R{T)^y^T)- V^UT). 

If a Gaussian white noise sequence of numbers is 
integrated or summed the result is a Brownian wallt. 
An R/S analysis of the white noise sequence gives a 

Hurst exponent Hi, thus the Hurst exponent is 
equal to the Hausdorff measure of the integrated 
signal, a Brownian walk with H =0.5. Mandelbrot 
and Wallis [10-13] introduced the concept of frac- 
tional Gaussian noises and their integrals, 
fractional Brownian walks. They showed that the 
Hurst exponent //| of a fractional Gaussian noise is 
equal to the Hausdorff measure of the correspond- 
ing fractional Brownian walk. 

If 0.5 <Hi<l the original time series is said to be 
persistence; adjacent values are more strongly cor- 
related than if they were random. The higher the 
value of Hi, the greater the persistence. If 
0<//i <0.5 the original time series is said to be an- 
tipersistent; adjacent values are less correlated than 
if they were random. 

3.   Examples 

We now turn to the analysis of flood-frequency 
records. As our first example, the 10 benchmark 
stations considered by Benson [2] will be studied. 
Benson [2] applied a variety of geostatistical distri- 
butions to the data from these stations, these will be 
compared with the fractal approach discussed 
above. The maximum annual floods for two stations 
are given in Fig. 2. Values for station 1-1805 on the 
.Middle Branch of the Westfield River in Goss 
Heights, Ma.ssachusetts are given in Fig. 2a for the 
period 1911-1960 [17] and values for station 
11-0980 in the Arroyo Seco near Pasadena, Califor- 
nia are given in Fig. 2b for the period 1914-1965 
[18]. 

(■) 

Vm' 

..•• .    • • • »•      .• 

V-rf 

(b) 

L*J ****' :****- '»   .   t» 

Fig. 2. Maximum annual floods fur (a) station 1-I30S on the 
Middle Branch of ihe Westfield River, Goss Itcights, Massachu- 
setts and (b) station 11-0980 in the Arroyo Scco near Pasadena, 
California. 
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In order to assess the applicability of fractal 
statistics the number of annual floods A^ with a peak 
discharge greater than F(m-'/s) is divided by the 
sampling period to give the mean number of floods 
per year N with a peak discharge greater than the 
specified value. The \ogN{V) is then plotted against 
log y. Results for station 1-1805 are given in Fig. 3a, 
the solid line is the least square fit of Eq. (5) with 
the data over the range 50<K<200mVs; large 
floods are omitted from the fit because of their 
small number. The solid line corresponds to a = 2.3; 
from Eqs. (4), (7), and (8) we have // = 0.435, 
F=2.72, and Z> = 1.56. Results for station 11-0980 
are given in Fig. 3b, the solid line is the 

0.01 
200 

V m^/s 
1000 

Fig. 3a. Numb«r of Hoods per year with a peak discharge 
greater than V. Station 1-1805 in Goss Heights, Massachusetts 
during the period 1911-1960. 

best fit of Eq. (5) with the data over the range 
lO<K<100m^/s. The solid line corresponds to 
a = 1.1; from Eqs. (4), (7), and (8) we have 
H =0.909, F = 8.11, and D = 1.09. In both cases the 
fit to the scale-invariant (fractal) relation is quite 
good. The values of// and F in California are con- 
siderably larger than in Massachusetts. Large floods 
are relatively more probable in the arid climate 
than in the temperate climate. 

The values of H, D, and F are given for all ten 
benchmark stations in Table 1. The correlations 
with the fractal relation (5) in Fig. 3 are typical of 
the ten stations. The parameter F is a measure of 
the relative severity of flooding. The higher the 
value of F the more likely that severe floods will oc* 
cur. Our results show that there are clear regional 
trends in values of F. The values in the southwest 
including Nevada (F = 4.13) and New Mexico 
(F = 4.27) as well as California (F = 8.11) are sys- 
tematically high. The high values can be attributed 
to the arid conditions and the rare tropical (mon- 
soonal) storm that causes severe flooding. Central 
Texas {F =5.24) is also high and Georgia (f = 3.47) 
is intermediate. These areas are influenced by hur- 
ricanes. The northern tier of states including Mas- 
sachusetts (F=2.72), Minnesota (F = 2.95), 
Nebraska (F — 3.47), and Wyoming (F = 3.31) range 
from low values in the east to intermediate values in 
the west. Washington (F = 2.04) has the lowest 
value of the stations considered; this low value is 
consistent with the maritime climate where ex- 
tremes of climate are rare. 

We have also determined the Hurst exponent for 
the ten benchmark stations. Values of R/S for 7 = 5, 
10, 25, and 50 years (R/S = 1 for T = 2 by definition) 
are given in Fig. 4a for station 1-1805 (Westfield, 

I r 

aoi 

VmVs 

Fig. 3b, Number of floods per year with a peak discharge 
greater than K. Station 11-09S0 near Pasadena, Califoriiia dur- 
ing the period 1914-1965. 

Table 1. Values of the Hausdorff measure//, fractal dimension 
D, flood intensity factor F, and Hursi exponent H, for the 10 
benchmark stations 

Station River (State) H D F Hx 

1-1B05 Westfield (MA) 0.435 1.56 2.72 0.67 

2-2185 Oconcc (GA) 0.540 1.46 3.47 0.72 

5-3310 Mississippi (MN) 0.470 1.53 2,95 0.72 

6-3440 Little Missouri (WY) OJ20 1.48 3.31 0.72 

6-8005 Elkhorn (NE) 0.540 1.46 3.47 0.67 

7-2165 Mora (NM) 0.630 1.37 4.27 0.73 

8-1500 Uano (TX) 0.719 1.28 5.24 0.70 

10-3275 Humboldt (NV) 0.616 1.38 4.13 0.66 

11-0980 Arroyo Scco (CA) 0.909 1.09 8.11 0.68 

12-1570 Wcnatchee (WA) 0.310 1.69 2.04 0,72 
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MA) and in Fig. 4b for station 11-0980 (Pasadena, 
CA). Good correlations are obtained with (13) tak- 
ing Hi = 0.67 for station M805 and //1-O.68 for 
station 11-0980. Values of//i for all ten stations are 
given in Table 1. The values are nearly constant 
with a range from 0.66 to 0.73 indicating moderate 
persistence. It is not surprising that the values of 
the Hausdorff measures H differ from the values of 
the Hurst exponent Hi since the former refers to 
the statistics of the flood events and the latter to the 
statistics of the running sum. 

Fig. 4a. The rescaled range {R/S) for several intervals T. 
Station 1-1805- The correlations arc with Eq. (13) and the Hurst 
exponents Hi arc given. 

Fig. 4b. The rescaled range {RIS) for several intervals T. 
Station 11-0980. The correlations are with Eq. (13) and the 
Hurst exponents Hi are given. 

However, the results indicate that there is consid- 
erable variation of a (//, D, and F) but very little 

variation in Hi. A simple explanation is that the for- 
mer is sensitive to the Noah effect while the latter 
is sensitive to the Joseph effect. The relative scaling 
of floods is sensitive to the skewness of the statisti- 
cal distribution but is not sensitive to the persis- 
tence of flows or floods. An important conclusion is 
that R/S analysis is not relevant to flood-frequency 
hazard assessments. 

Many statistical distributions have been applied 
to historical records of floods. Benson [2] has given 
six statistical correlations for each of his ten bench- 
mark stations. His results for the 2-parameter 
gamma (Ga), Gumbel (Gu), log Gumbel (LGu), log 
normal (LN), Hazen (H), and log Pearson type III 
(LP) are given in Fig. 5a for station 1-1805 and in 
Fig. 5b for station 11-0980. Also included in each 
figure is the self-similar (fractal) estimate {F). For 
large floods the fractal prediction (F) correlates 
best with the log Gumbel (LGu) while the other 
statistical techniques predict longer recurrence 
time for very serious floods. The fractal and log 
Gumbel are essentially power-law correlations 
whereas the others are essentially exponential. 

While the ten benchmark stations provide a basis 
for comparing statistical approaches, they hardly 
made a convincing case that fractal statistics are 
preferable to alternatives. A principal difficulty is 
the relatively short time span over which reliable 
records have been collected. In order to try to over- 
come this difficulty we have analysed a large num- 
ber of records and superimposed the results. We 
have utilized a digitized 40 year data set for 1009 
stations unaffected by flood control projects [19], 
The distribution of the stations over the United 
States is given in Fig. 6a. We will separately con- 
sider the data from the 18 hydrologic districts, these 
are illustrated in Fig. 6b. 

The largest floods in each of the 40 water years 
are ordered, the largest annual flood is assigned a 
period of 40 years, the 2nd largest annual flood a 
period of 20 years, the 3rd largest annual flood a 
period of 13.3 years, and so forth. The log of the 
peak discharge for each flood is plotted against the 
log of its assigned period and the best straight tine, 
i.e., from Eq. (3), is obtained. Two randomly se- 
lected examples are given in Fig. 7. 

Results for station 1-860 on the Warner River in 
Davisville, NH, are given in Fig. 7a. The best fit 
straight line gives H = 0M; from Eqs. (2), (4), and 
(7) we have f =4.8, D = 1.32 and a = 1.46. Results 
for station 3-2305 on the Big Darby Creek in Dar- 
byville, OH are given in Fig. 7b, The best fit straight 
line gives // =0.386; from Eqs. (2), (4), and (7) we 
have F = 2,43, D = 1.61, and a = 2.59. 
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100 

Fig. Sa. Flood frequency predictions for Station 1-1805. The peak discharge Kis given as 
a function of recurrence intervals T. The scale-invariant (fractal) prediction, F, is com- 
pared with the six statistical predictions given by Benson (1968); 2 parameter gamma (Ga), 
Gumbel (Gu), log Gumbei (LGu), log normal (LN), Hazen (H), and log Pearson type IIJ 
(LP), 

tOOOr 

100 

Fig. Sb. Flood frequency predictions for Station 11-0980. The peak discharge Pis given 
as a function of recurrence intervals T. The scale-invariant (fractal) prediction, F, is com- 
pared v^ith the six statistical predictions given by Benson (1968); 2 parameter gamma (Ga), 
Gumbei (Gu), log Gumbel (LGu), log normal (LN), Hazen (H), and log Pearson type IH 
(LP). 
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Fig. 6a.   Distribution of the 1009 stations that have been analysed. 

Fig. 6b.   Hydrologic regions of (he continental United States. 
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Fig. 78<    The peak daily discharge for the largest annual floods 
over 40 years as a function of the assigned period: Station 1 -0860. 

Fig. 7b.   The peak daily discharge for the largest annual floods 
over 40 years as a function of the assigned period: Station 3-2305. 

In order to detennine the quality of the fit of the 
data to the fractal relation Eq. (3), the ratio of the 
measured peak flow to the value predicted by the 
fractal fit is given for periods of 1, 2, 5, 10, 20, and 
40 years in Fig. 8- The 111 stations from hydrologic 
region 3 are given in Fig. 8a, the 57 stations from 
region 4 in Fig. 8b, the 10 stations from region 16 in 
Fig. 8c, and the 100 stations from region 17 in Fig. 
8d. If all points were unity the fit would be perfect. 
The mean deviations from the fractal relation are 
only a few per cent. The deviations for larger values 
of the period are greater as would be expected since 
the individual points are only a few floods. How- 
ever, the mean values of the 40 year floods are close 
to the fractal extrapolation. This agreement pro- 
vides support for the applicability of fractal statis- 
tics to the estimation of the flood hazard. 

In Fig. 9a the 111 fractal fits for hydrologic region 
3 are given, the fits for regions 4, 16, and 17 are 
given in Figs, 9b, 9c, and 9d. The peak flow at a pe- 
riod of 10 years was normalized by the drainage 
area upstream of the station. If peak flows were 
simply proportional to upstream drainage areas in a 
hydrologic district then all the plots should fall on a 
single band. In fact, there is more than an order of 
magnitude variation. This is not surprising but the 
details of the variations should be helpful in provid- 
ing a better understanding of the flood hazard. 

The regional variations in F are clearly illustrated 
in Table 2. The highest values of F are generally as- 
sociated with the arid southwestern states in regions 
12, 13, 15, and 18, the mean value of F for these re- 
gions is F =5.03. The lowest mean value for F is in 
region 17, the Pacific Northwest, with F = 2.08. In 
some cases the standard deviations for F in a dis- 
trict are large. For district 18 (primarily California) 
the mean is 5.34 and the standard deviation is 2.4. 
In this case much of the deviation can be identified 
with the presence or absence of snow run off. Those 
stations with large upstream snow packs have rela- 
tively small values for F compared with those sta- 
tions with little or no upstream snow packs. 

4.    Conclusions 

Historical flood-frequency records have been ex- 
amined to determine whether fractal (power-law) 
statistics are applicable. Although it must be recog- 
nized that the relatively short duration of historical 
records restricts the validity of conclusions; never- 
theless, quite good agreement is obtained between 
fractal statistics and observations for 10 benchmark 
stations and for 1200 other stations in the United 
States. The basic question in terms of flood hazard 
assessment is whether extreme floods decay expo- 
nentially in time or as a power law. If the power-law 
behavior is applicable then the likelihood of severe 
floods is much higher and more conservative 
designs for dams and land use restrictions are 
indicated. 

For fractal behavior the ratio of the 10 year to the 
1 year flood F is also the ratio of the 100 year to the 
10 year flood and the ratio of the 1000 year flood to 
the 100 year flood. We find large regional variations 
in values of F. In arid regions such as the south- 
western United States the values of F are nearly 
three times the values in more temperate regions 
such as the northwestern and northeastern corners 
of the couatry. Smaller values of F are also found if 
upstream drainage areas have large snow packs. 
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Fig. Sa.   Ratio of the observed peak daily discharge to the value predicted by the fractal fit to the data as a function 
of the assigned period for the 111 stations in region 3. 
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Fig. 8b.   Ratio of the observed peak daily discharge to the value predicted by the fractal fit to the data 
as a functkjii of (he assigned period for the 57 stations in region 4. 
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Fig. 8c.    Ratio of the observed peak daily discharge to the value predicted by the fractal fit to the data 
as a function of the assigned period for the 10 stations in region 16. 
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Fig. 8d.   Ratio of the observed peak daily discharge to the value predicted by the fractal fit to the data as a function 
of the assigned period for the 100 stations in region 17. 
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Fig, 9a.   Fractal fits of the normalized flood frcquctu^ data for the 111 stations in re^on 3. 
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Fig. 91).    Fractal fits of the nonnalizcd flood frequency data for the Vl stations in region 4. 
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Fig. 9c.   Fractal fits of the normalized flood frequency data for the 10 stations in region 16. 

1000.0 n~ 

o 
01 

en 
c 

100.0 

.S        10.0 

.-? 
'v. 
c 
o o \ 
CP 
w o 1.0 

0.1 Li_i 

-I 1 1 1—r- 

_l J 1 I 1. J I L. -I 1 I l_ 

1 10 
Period (years) 

Fif. 9d.   Fractal fits of the normalized flood frequency data for the 100 staltons in region 17. 
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TaMc 2.   Average values and standard deviations of the flood 
intensity factor F for the 18 hydrologic districts 

Hydrologic F Standard Number 
regions deviations of stations 

I 2.369 0-377 54 
2 2.998 uu 147 
3 2.758 0b617 111 
4 ^183 0299 57 
5 Z396 aso9 129 
6 2J05 0224 38 
7 2.782 0J)8 123 
8 3.021 C^?9 22 
9 4.7 \m U 

10 3.557 urn M 
U 3.897 im 46 
12 4.848 1SS9 13 
13 4.104 2121 14 
14 Z283 (LSI IS 
15 6.066 LOS 11 
16 2.778 a?S2 10 
17 2.076 0397 100 
18 5.134 2.4 39 

The relevance of R/S analysis to flood frequency 
forecasting has also been addressed. For the ten 
bench mark stations we find the Hurst exponent to 
be //i=0.7±0.03. This value indicates moderate 
persistence for the floods but also shows that deter- 
minations of Hurst exponents are not useful for 
flood hazard assessments. The Hurst exponent does 
not correlate with the fractal flood parameter F. In 
the terms introduced by Mandelbrot and Wallis [10] 
the Hurst exponent is sensitive to the Joseph effect 
or persistence of events whereas the fractal flood 
parameter F is sensitive to the Noah effect or skew- 
ness of the statistical distributions of floods. 

It certainly remains to be demonstrated that frac- 
tal flood frequency statistics are generally valid. 
However, the success indicated in the results given 
here raises the interesting question whether the un- 
derlying physical processes are inherently fractal. 
Fractal statistics will be applicable to any scale in- 
variant process. They are also applicable to dynam- 
ical systems that exhibit self-organized criticality 
[20]. One s]}eculative conclusion is that the storms 
that generate floods are associated with the self- 
organized critical behavior of the atmosphere. 
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