
Volume 99, Number 4, July-August 1994 

Journal of Research of the National Institute of Standards and Technology 

[J. Res. Natl. Inst. Stand. Technol. 99, 369 (1994)] 

A Trivariate Extreme Value Distribution 
Applied to Flood Frequency Analysis 

Volume 99 Number 4 July-August 1994 

Carlos A. Escalante-Sandoval 

Engineering Graduate Studies 
Division,  Universidad  Nacional 
Autonoma de Mexico, 
04510 Mexico, DF, Mexico 

and 

Jose A. Raynal-Villasenor 
Institute of Sciences,  Universi- 
dad Autonoma de Chihuahua, 
31800 Chihuahua, Chih., Mexico 

A trivariate extreme value diiitribution 
has been derived from the logistic 
model fur the multivariatc extreme 
value distribution. The construction of 
its corresponding probability distribu- 
tion and density function is described. 
ID order to obtain the parameters of 
such a trivariate distribution, a general- 
ized maximum likelihood estimation 
procedure is described to allow for the 
cases of samples with different record 
lengths. Furthermore the reliability of 
(he estimated parameters of the trivari- 
ate extreme value distribution is mca 
sured through the use of relative 

information ratios. A region in North- 
ern Mexico with six gauging stations 
has been selected to apply the trivari- 
ate model. Results produced by the 
proposed model have been compared 
with those obtained by general extreme 
value (GEV) distribution functions. 
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1.    Introduction 

Flood frequency analysis has been carried out by 
using univariate distribution functions, the extreme 
value distributions being an important set of distri- 
butions used in this field of study. Generally, 
parameters of such distributions are estimated 
from a short record of flows. The variability of 
these estimates has prompted exploration of joint 
estimation models which use information from 
streamflow records of neighboring gauging stations. 

in pioneering papers Finkelstein [1], Tiago de 
Oliveira [2], and Gumbel [3] gave the foundations 
for the multivariate approach to extreme value dis- 
tributions. Following this work, several bivariate 
extreme value models began to appear in the liter- 
ature. Rueda [4] explored the logistic and mixed 
models for bivariate extreme value distributions 
when both marginals are extreme value type I 
(EVl) distributions. He reported improvements in 

the estimation of parameters when the bivariate 
approach is used. Raynal [5] developed and ap- 
plied three bivariate options from the logistic 
model of bivariate extreme value distribution for 
flood frequency analysis. He found that there exists 
an improvement in the parameter estimation 
phase, even in the case when both samples have 
the same record lengths. 

Herein, the trivariate approach of multivariate 
extreme value distribution is presented with a view 
to its application to flood frequency analysis. 

General characteristics, the procedure for 
estimation, and reliability of parameters of the 
trivariate extreme value distributions will be de- 
scribed in the following sections. An actual applica- 
tion of the proposed model to six gauging stations 
in Northern Mexico is presented in the paper. 
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2.    Characteristics of the Trivariate Logis- 
tic Model 

From the multivariate extension of the logistic 
model for bivariate extreme value distribution [3], 
the trivariate approach is: 

F(x, y, z, 0)^exp{-[{\n Fix)r 

+ (-]nf(v)r + (-In F(z))"•}'"", (1) 

where m is the association parameter (msl) and 
F{s)=F(s, 6) is the marginal distribution function 
of s. Equation (1) must satisfy the following in- 
equalities (Tiago de Oliveira [6, 7]): 

F(x) F{y)F(z) < Fix, y, z) £ m\n[F(x), F{y),Fiz)] 

(2) 

[F(x,y,)Fix.z)F(y.z)t' 

-r{x,y,z)-        [f(x)F(y)Fiz)Y        "      ^^ 

Marginals in Eq. (1) can be either EVI distribu- 
tions: 

f(.)=exp(-exp-(^)) (4) 

or GEV distributions: 

F(^) = exp-(l-(^)0)"f (5) 

The combinations have been named (Escalante 
[8]): 
a) Trivariate extreme value distribution type 111 

(TEVlll) or TriGumbel distribution. All mar- 
ginals are EVF distributions, 

b) Trivariate extreme value distribution type 112 
(TEVn2) or BiGumbel-GEV distribution. 

c) Trivariate extreme value distribution type 122 
(TEV122) or BiGEV-EVI distribution. 

d) Trivariate extreme value distribution type 222 
(TEV222) or TriGumbel distribution. All mar- 
ginals are GEV distributions. 

The particular form of Eq. (1), when the marginals 
are GEV distributions for the maxima, is (Escalante 
[8]); 

F{x, y, z, Ui, oi, ^1, u;, ai, ft, HI, OH, pi, m,) = 

«p[-(('-('^)fth'* 

+('-('v')ft)"* 

where «,, «, and ^, i = 1,2,3, are the location, scale 
and shape parameters of the marginal GEV distri- 
butions for the maxima. The corresponding proba- 
bility density function is (Escalante [8]): 

/(X, ,. Z. U,. .,. ft, „,. «, ft. «,. «. ft, -".) -^ (1- (V) ^■)"""" ' i'- (^) *)""'"' 

[(-e-s^)^-)-^(-(^)fth'-^(-e-if)'^h'"]"-'[(>-)(-^...) 

((,_(£^)„).,»,(,_(z^),,),.,(,.(-i^),,),„.)-] (7) 
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3.   Estimation of Parameters 
The method of maximum likelihood for estimat- 

ing the parameters of trivariate extreme value dis- 
tributions has been chosen due to its characteristics 
for consistency in large sample estimation and ap- 
plicability in estimating the parameters of cumber- 
some density functions. 

For the case of trivariate distribution functions, 
the sample arrangements couid allow having either 
an equal or different record length in any of the 
samples to be analysed. 

In order to consider all possible combinations of 
data, it is required to have a sufficiently flexible for- 
mulation, therefore the following general form of 
the likelihood function will be used based on the 
generalization obtained by Anderson [9]: 

(8) 
where: 

ni, «2 =are respectively the univariate and 
bivariate record lengths before the 
common period ny, 

04, rti - are respectively the bivariate and uni- 
variate record lengths after the com- 
mon period lu, 

p =is the variable with univariate record 
before the common period, 

{p, g)   =are the variables with bivariate record 
before the common period, 

(Xf y, z) = are the variables with trivariate record 
during the common period, 

{r, s)    =are the variables with bivariate record 
after the common period, 

r = is the variable with univariate record 
after the common period, 

Ji =are indicator numbers such that: 
/. = 1 ifn, >Oand /, =0 ifn, =0. 

The logarithmic function will be used instead of 
the likelihood function. So, Eq. (8) is transformed 
into: 

LL(x,y,z, 0) = I:^% tn/(p„0,)] 

+ ^2 [ S In /(p;, q„ fl,)] + h[f. In f(x. y. z. 0j)] 

+ f*[2 ln/(r„ J,, 0*)] + h[2 ln/(r„ flj)]. 

(9) 

The maximum likelihood estimators of parame- 
ters for the trivariate extreme value distributions 
are those values for which Eq. (9) is maximized. 

Tlie corresponding logarithmic likelihood func- 
tion for the trigeneral extreme value (TEV222) dis- 
tribution function, based on Eq. (9) from [8] is 
shown in Eq. (10): 

LL{x, y, z, Ui, oi, ^1, ui. 02, ft, "3, 03, ft, m„ ntbi, nJM)=/i | -nj In oj. 

-I- ,|[-('-('^)fth-'"('-(^)ft)"*-]) 

+/.j|[-(ln»i, + ln«,)+li.(l-(aJ:)ft)--»-' + l„(l-(2i-!i)ft)-M*- 

*'"(('^(^)*h*-^(i-('v')*)"*) 
l^jfri - 2 

•'"(K-')*(('-(^)*)-^(-(^)fth-)'"") 

-(('-(^)'^h*-(-(^)'^)~*)"1) 
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+ h[-nj[lnai + \na2 + lna,) + J, [ln(l-(^^jjS,)'"^'''-' 

+ ln(l-(^)^.)-*-'+ln(l-(^)^3)'"''*- 

.ln[(l-..)(l-2..).((l-(^^),,)-.(l-(^)4 

+/.{2[-(ln<<,+lii«.)+ln(l-(a^)/3,)™'*-' + ln(l-(S^)ft)''«>'-' 

(('-(=^)»H-('-(^)*H""'')-(('-(^)''.H 

m, trivariate association parameter 
nth], mw      bivariate association parameter before and after the common period, respectively. 

"i 

% In f(pi, gi) and 2! ln/(r,, ft) take the form: 
i»i 1-1 

I [-|na,-(l-(^)0.)'"^ + ln(l-(4^)0.r-']. (11) 
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Similarly, 2 !"/(?..9<. &)and S ln/{r,,s„ 6A) take 

the following form (bivariate relationship with both 
GEV marginals): 

nib/A -1 

Wb/e, 

l/iitb-2 

+ 

(>-(^KH 

■"((»-')-(('-(^)ftH 

-((•-(^)fth* 

+('-('^)'^H"']-     "^' 
Given the complexity of the mathematical expres- 

sions in Eq. (10) and their partial derivatives with 
respect to the parameters, the constrained multi- 
variable Rosenbrock method. Kuester and Mize 
[10], was applied to obtain the maximum likelihood 
estimators for the parameters by the direct maxi- 
mization of Eq. (10). The required initial values of 
the parameters to start the optimization of Eq. (10) 
were provided by the univariate maximum likeli- 
hood estimators of the parameters for the case of 
the location, scale, and shape parameters. The ini- 
tial values of the association parameters, bivariate 
and trivariate, were set equal to 2, following the 
procedure developed by Escalante [8]. 

4.   Reliability of Estimated Parameters 

The indicator selected to measure the reliability 
of estimated,parameters when using the trivariate 

distribution as compared with the univariate coun- 
terpart was the asymptotic relative information 
ratio. 

Table 1 shows a sample of relative information 
ratios obtained by using the following set of 
parameters: 

«i = 15.0,    ai = 2.0,    Pi - - 0.20 

U2=12.0,    02=1.2,    ft =-0.15 

U3=10.0,    a3=1.0,    ft=-0.10 

Table 1.   Asymptotic relative information ratios of Ihc parame- 
ters of the TEV222 distribution for the maxima n}^25; m, = 2; 
Wh2^ 2 

Parameter rtj 0 25 50 75 

"j 0 1.086S 1.3695 1.5055 1.5856 
25 1.4460 1.5942 1.6823 
50 1.6295 1.7201 
75 1.7408 

"1 0 1.0141 1.2274 1.3256 1.3821 
25 1.2712 1.3753 1.4356 
50 1.3941 1.4555 
75 1.4662 

ft 0 1.2405 1.3555 1.4041 1.4312 
25 1.3864 1.4382 1.4671 
50 1.4514 1.4806 
75 1.4883 

«2 0 1.0876 1.3722 1.5094 1.5903 
25 1.0599 1.2263 1.3333 
50 1.0500 1.1683 
75 1.0450 

OS 0 1.0135 1.2151 1.3065 1J587 
25 0.9835 1.1046 1.1788 
50 0.9734 1.0604 
75 0.96S4 

ft 0 1.2442 1.3469 1.3901 1.4140 
25 1.1324 1.2069 1.2507 
50 1.0934 1.1507 
75 1.0736 

Ui 0 1.0882 1.0462 1.0302 1.0217 
25 1.0604 1.0417 1.0313 
50 1.0506 1.0390 
75 1.0736 

Oi 0 1.0126 0.9553 0.9334 0.9218 
25 0.9822 0.9549 0.9395 
50 0.9790 0.9542 
75 0.9669 

ft 0 1.2437 1.0268 0.9535 0.9166 
25 I.13H 1.0246 0.9704 
50 1.0923 1.0223 
75 1.0724 
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5.   Case Study 

A region located in Northern Mexico, with a total 
of six gauging stations, was selected to apply the 
proposed methodology to the flood frequency anal- 
ysis. Tables 2-4 show the results of the application 
of the trivariate extreme value distributions for the 
maxima to the data recorded in such gauging 
stations. 

In order to compare the goodness of fit between 
the univariate and trivariate maximum likelihood 
estimates of the parameters in stations considered 
in the case study, the standard error of fit, as de- 
fined by Kite [11], was obtained and is displayed in 
Table 5. 

Table 1.   Correlation cocfTiciBnu and relative sample sizes for 
the triplets of statiuns for the case study 

Table 5,   Standard errors of fit for gauging stations of case study 

Triplets of 
stations 

Correlation    Relative sample sizes 
coefficient      nj    n;   ni   n,   n; 

Acatitan-Sta Cruz-Ixpalinu      0.926 9       2   26     0     0 

Choix-Huitcs-Sn Francisco      0.969 0     14   18     7     0 

Table 3. Univariate maximum likelihood estimate.*! of the 
parameters of the GEV distributions defined by the data of the 
gauging stations of the case study 

Station Location Scale Shape 

Acatitan 576.21 283.80 -0.62 

Choix 256.69 130.15 -0.12 

Huitcs 1564.78 978.87 -0.57 

Ixpalino 772.57 473.97 -0.38 

Sn Francisco 926.53 532.56 -0.65 

Sta Cruz 835.74 440.23 -0.40 

Table 4. Trivariate maximum likelihood estimates of the 
parameters of the TEV222 distribution defined by the data of 
the gauging stations of the case study 

Station Location Scale Shape 

Acatitan 568.93 269.44 -0.64 

Choix 220.85 128.29 -0.39 

Huiteg 1603.30 1038.53 -0.68 

Ixpalino 795.03 490.86 -0.46 

Sn Francisco 943.69 540.73 -0.67 

Sta Cruz 850.97 467.74 -0.52 

Station 

Standard error of fit 
Univariate Trivariate 

(GEV) (TEV222) 

Acatitan 244.40" 253.90 

Choix 87.70 58.80- 

Huites 1024.00 831,90" 

Ixpalino 537.90 393.00' 

Sn Francisco 350,80" 401.50 

Sta Cniz 497.20 259.60" 

' Minimum standard error of fit. 

6. Conclusions 

The logistic model for trivariate general extreme 
value distribution for the maxima has been 
proposed. Asymptotic and data base results suggest 
that the proposed model is a suitable option to be 
considered when performing flood frequency analy- 
sis. 
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