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1.   Introduction 
In 1989 Kandpal, Vaishya, and Joshi of the 

National Physical Laboratory (India) published re- 
sults of experiments in which they observed spec- 
tral shifts caused by a simple optical system [1]. In 
their experiments light from the exit aperture of an 
integrating sphere was imaged by a two tens system 
which had an interference filter between the 
lenses. They found that when a small aperture was 
placed in the image plane, the peak wavelength of 
the spectrum of the light measured on-axis in the 
far zone of the aperture was shifted away from the 
peak wavelength which occurred when no aperture 
was used. 

They interpreted these shifts as being "Wolf 
shifts," i.e., coherence-induced shifts of ihe type 
predicted by Wolf [2-3]. Their explanation [4] for 
the occurrence of the shifts was based on their as- 
sertion {which was neither proven directly experi- 
mentally nor justified theoretically) that the 
filter-lens combination eliminated the wavelength 

dependence of the complex degree of spectral co- 
herence of the light in the image plane. If this as- 
sertion is true, then a coherence-induced change of 
the spectrum is to be expected when the light prop- 
agates from the image plane to the far zone, as was 
shown experimentally by Morris and Faklis [5] and 
Faklis and Morris [6]. Kandpal et al. [4] then 
argued that the introduction of a circular aperture 
in the image plane helped in modifying the spec- 
trum in the far zone. 

In this paper, we will analyze theoretically the 
optical system used in Ref. [1]. Many details of the 
system which did not appear in Ref. [1] were pro- 
vided to us by the group at NPL [7]. The basic 
outline of our paper is as follows. In Sec. 2 the 
optical system is described, and the basic assump- 
tions to be made throughout the paper are stated. 
In Sec. 3 an approximate form for the cross-spec- 
tral density of the light in the image plane is ob- 
tained, and it is shown that the corresponding 
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complex degree of spectral coherence is not wave- 
length independent. In Sec. 4 the spectrum of the 
light on-axis in the observation plane is investi- 
gated, and an approximate form for it is obtained, 
both for the case in which no aperture is used, and 
for the case in which the small aperture is used. It 
is shown that, for each interference filter used, the 
peak wavelength in the latter case is shifted with re- 
spect to the peak wavelength in the former case. 
However, these shifts do not agree with those ob- 
served by the group at NPL. The shifts predicted by 
our analysis are much smaller, so small as to be un- 
observable to within the accuracy of their experi- 
ments. In Sec. 5 our conclusions are presented. 

2.   Optical System, Notation and Assump- 
tions 

The optical system used by the group at NPL is 
pictured in Fig. 1. Just to the left of plane I there is 
an integrating sphere of radius 25 cm which has 
a 450 W tungsten halogen lamp at its center. Plane 

i contains the exit aperture, o-, of the integrating 
sphere, o- is a circular aperture of radius 
ao = 0.12 cm, and it is in the front focal plane of a 
lens, L|, whose focal length is/i = 5 cm and radius is 
d 1=0.45 cm. 

Plane I Plane U Plane ni 

i/« "l 1 1/' 
t A 

rt 

ll- 
/ ^^D,^^n,^^/,- 

Fig. 1.   The optical system. 

There is an interference filter, IF, a distance 
Dj = 20 cm behind Li, and a second lens, L2, a dis- 
tance D2 = 30 cm behind the interference filter. L2 is 
an achromatic doublet, and its focal length is/2 = 20 
cm. The radius of L2 and the transverse dimensions 
of the interference filter are all larger than oi. It is 
therefore a straightforward matter to show that Li 
is the aperture stop for the system. In their experi- 
ments the group at NPL used sbc different interfer- 
ence filters; the shortest peak transmission 
wavelength used was 422 nm and the longest was 
652 nm. 

The exit aperture of the integrating sphere is im- 
aged onto plane II. It is a straightforward matter to 
show that the magnification, M, for this imaging is: 

A/=-Mi=-4. (1) 

Two different kinds of things were done as regards 
plane II. In one case an aperture A of radius cj was 
placed in plane II, and experiments were done for 
the values 03=0.012 cm and 0.50 cm.' In the second 
case no aperture was used. For notational conve- 
nience, we will treat the latter case as if an aperture 
A of radius aj= « were in plane II. Also, since no 
shift was observed in the 0.50 cm aperture case, we 
will not consider that case. Plane III, where the 
measurements were made, is a distance z = 100 cm 
from plane II. 

The following notation will be used throughout 
this paper. The locations with respect to the optical 
axis of points in the planes I, II, and III will be 
specified by, respectively, the two-dimensional posi- 
tion vectors p", p', and p. The locations of points in 
the planes occupied by L, and L; will be specified 
by, respectively, the two-dimensional position vec- 
tors ffi and ttj. The lengths of vectors will be de- 
noted by the corresponding non-boldfaced symbols, 
e.g.,p" = Ip"t- 

The following assumptions will be made. As con- 
cerns the properties of the light coming from the in- 
tegrating sphere, it will be assumed that the exit 
aperture of the integrating sphere radiates as a uni- 
form lambertian source. Let the spectral radiance 
of this source, at angular frequency m, be denoted 
by Bo(w). The cross-spectral density, lf<"^ (pV, ^, w) 
of the light in plane I can be written as [9-11 ]■} 

^^Joiklfi^-plDPoipDPoip^, (2) 

where k is the wavenumber of the light, 

k=(o/c=2ir/\, (3) 

jo is the spherical Bessel function of the first kind of 
order zero, 

' In Ref. [1] the diameter of the smaller aperture was incorrectly 
reported as 0.24 cm. The correct value is 0,024 cm [8]. 
^ In order for Eq. (2) to be appropriate, the radius of I he source 
must be much larger than the wavelength of the light. In the NPL 
cjiperiments the wavelengths of interest arc visible and the 
radius of the exit aperture of the integrating sphere Is 0.12 cm, 
so this condition is fulfilled. 
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;o(u) = 
sin(M) 

(4) 

and Pu is the pupil function for the exit aperture of 
the integrating sphere, 

/'o(p'') = circ(p7ao). (5) 

In Eq. (3) c is the speed of light in vacuo and A is 
the wavelength of the light. In Eq. (5) circ is the cir- 
cle function, 

circ(«) = l, if |ii|sl, 

=0, if j«l>l. (6) 

function we must first discuss the effect of the inter- 
ference filter. 

The effect of the interference filter on a plane 
wave is depicted in Fig. 2. Here a unit amplitude, 
monochromatic plane wave of angular frequency <u 
propagating in the direction specified by the unit 
vector s is incident upon the filter at an angle of in- 
cidence 6. If, as we have assumed, the finiteness of 
the transverse size of the filter can be neglected, the 
effect of the interference filter is to change the am- 
plitude of the plane wave by the factor t(6, ot), the 
amplitude transmission function of the interference 
filter. 

Secondly, since Li is the aperture stop for the sys- 
tem, it will be assumed that the finiteness of the 
transverse sizes of Lj and the interference filter can 
be neglected. Thirdly, it will be assumed that the 
transmittance of the interference filter may be de- 
scribed by the Lissberger-Wilcock model [12-13], 
and that its behavior is such that the approximation 
described in Sec. 4.1 is valid. In addition, both 
lenses will be treated as thin lenses, and the possi- 
bility of chromatic aberration introduced by either 
Li or Lj will not be taken into account. The paraxial 
approximation will be used throughout our work. 

3.    Cross-Spectral Density of the Light in 
Plane n 

In this section, the cross-spectral density in plane 
II will be investigated. First the coherent impulse 
response function for the propagation from plane I 
to plane II will be determined. This result will then 
be used to obtain an "exact" (within the paraxial 
approximation) expression for the cross-spectral 
density incident upon plane II. Approximations ap- 
propriate to the NPL experiments will then be used 
to obtain an approximate expression for the cross- 
spectral density in plane II. The corresponding 
spectrum and complex degree of spectral coherence 
in plane II will then be calculated and discussed. 

3,1    Coherent Impulse Response Function for the 
Propagation from Plane I to Plane n 

Let P" be a point in plane I located by position 
vector p", and let P' be a point in plane II located 
by position vector p'. The coherent impulse re- 
sponse function, h(p', p", (i>), for the propagation 
from plane I to plane II is the field at P' due to a 
monochromatic, unit amplitude point source of an- 
gular frequency w at P". In order to calculate this 

exp(iks.r) 

t(0,CD) exp(iks.r) 

s 
0 

-*►   z 

IF 

Fig. 2.   The effect of the intcrfcfcnce filter on a plane wave. 

When this effect is taken into account, it can be 
shown (see Appendix A) that in the paraxial 
approximation h(p', p", w) is the product oU{p'!fi, 
(u), the amplitude transmission function of the in- 
terference filter evaluated at 6 = p'lf2, and hs{p', 
p", (o), the coherent impulse response function 
(paraxial form) for the case when there is no inter- 
ference filter present, i.e., 

hip'.p", <o)=l{p/fz, w)h^{p;p', a,),       0) 

where 

h^(p\ p\ w) = C(a.)exp{/* {4>{P'") + 'f (P')]} 

xBesinc(^|p''-j^p'|) (8) 

and 

^(-)4i^ f^) 

Hpl=f>+ip"'f2fil (10) 
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x(p')=fi+D + il-—](p'^af2), (11) ^"'^ ^ ^^'' ^-^ ^^ ^"'^ ^^^'' ^'' '"^ ^^^ ^^^^^ factors: 

Besinc(u)=2y>(„)/. . (12) ^f^'' ^' -) = exp[,*(l"f )(^^-P:^H , (16) 

In Eq. (11) D is the distance from Li to L:, i.e., 
D =D, +£):. In Eq. (12) /i is the Bessel function of 
the first kind of order one. 

3.2   Cross-Spectral Densi^ of the Light Incident 
Upon Plane II 

The cross-spectral density of the light incident 
upon plane II, lf"'"*(pl> PJ. w), is related to the 
cross-spectral density in the plane I by the expres- 
sion [14] 

H^"-'(pi, pi, <») = J J h*(p\. pi, o>)h{p^, p?. <o) 

XW<'^{p'{,^,<o)d'p'[<i'(^, (13) 

where /i (p', p", w) is the coherent impulse response 
function for the propagation from plane I to plane 
II. Upon substituting Eqs. (2) and (7) into Eq. (13), 
and using Eq. (8) in the result, we find that 

»""->(pi'. P^. (o) = 27rBa(,o>)t*{plff2, w)/(p2//:,w) 

^F{pL pi, to) , (14) 

where 

F(p[, P2, u>)=C\m)E(p\, fi, to) 

X J J £ (pi, (H, ft)) Besinc (-r |pT " j;^ pl|) 

xBesinc^y^L^ ~ M'^^   r" Tr^ ~'''/ 

E{pu fi, o) = exp[//:(^:^-p,-^)/2/,].        (17) 

Equation (14), with F{p'\, ph, w) given by Eq. (15), 
is an exact (within the paraxial approximation) 
expression for the cross-spectral density incident 
upon plane II. However, the integral on the right 
hand side of Eq. (15) cannot be evaluated analyti- 
cally. Nevertheless, for the NPL system certain 
approximations are appropriate which simplify 
f (pi, pi, (It) considerably. 

First, it is shown in Appendix B that for the NPL 
parameter values we may set E(p'i, (H, w)~l in the 
integrand on the right hand side of Eq, (15), Hence, 
to a good approximation 

F(pI,pi.w) = C=(o>)£(pI,p;, a>) j J 

„   .    lkai\ „    1    ,\\ -n   ■    (kaA „      \    ,  \ 
xBesmc^-^|p, "j^P. | j Besinc (y|-|p. ^-^fh  ] 

xK*!^'-p."|)dVTd^/^. (18) 

Next, it is shown in Appendix C that for the NPL 
parameter values, 

//Besinc (^1^-1,11) 
m    a- 

X Besinc (^| #^"-j^pJ | ]u (k \f^~p"i\)6'p"6'(^ 

'2C 
l^(|)'Besinc(^|pi-pl|) 

xd^pTd-p?, (15) xcirc(p;/|W|«o) circ(p5/|Af |oo) (19) 
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It then follows from Eqs. (14), (18), and (19) that 
the cross-spectral density of the light incident upon 
plane II is given, to a good approximation, by the 
expression 

TJOi 

2 

W^^ipi, Pi', *^) = ^ 5u(w)/*(pJ//2,«) 

xt{pi/fi, <y)£(p!', P2, w)Besinc^-7^ U-p! ) 

X circ(p;/[ A/ [a,,) circ(p^7| MM. (20) 

The spectrum, 5'""' (p', w), of the light incident 
upon plane II at the point P' located by the vector 
p' and at the angular frequency <o is obtained from 
the corresponding cross-spectral density by setting 
pi=P2 = p'.' It therefore follows from Eq. (20) that 

5"-'(p'.a,) = 

■mil 
Bo(oj)^(p'/f2, o>)\'ciTc{p-/\M\a,).        (21) 

M^f">(pl, p2, o,)=f^B,io,)t*(p[/f2, w) 
/: 

xt{p^/f2, w) E{p[, p2. (o) Besinc (th-i) 
xcirc(pi7a) circ(p2M), (23) 

where a is the smaller of |Af|flo, and Oi, i.e., 
a =min(|Af |flo, a^). 

The physical significance of the parameter a is 
that it is the radius of the "secondary source." If 
fl3 < \M\ao part of the incident light is blocked by the 
aperture A, and therefore the radius of the sec- 
ondary source is ay However, if fl,i > |A/|ao the aper- 
ture does not (within the approximation we are 
using) block any of the light, therefore \M\ao is the 
radius of the secondary source. The distinction be- 
tween these two cases is necessary because when 
the small aperture is used aj < | Af jao, whereas when 
no aperture is used fl3>|A/|fl(i. 

The spectrum, 5'"'(p', a>), of the light in plane II 
can be calculated by using the result in Eq. (23): 

It can be seen from this expression that this spec- 
trum is nonuniform (since / depends on p') and oc 
cupies the region p'£|A/jflo, i.e., the region which 
corresponds to the geometrical optics image of a-, 
the exit aperture of the integrating sphere. 

33    Cross-Spectral Density, Spectrum, and Com- 
plex Degree of Spectral Coherence in Plane II 

The cross-spectral density, H^""(pi',p2, w) in 
plane II (with the effect of the aperture A taken 
into account) is given by the expression 

W*^ (pi, ^, ot) = 

H^''' (pi, Pz, &») circ(p,7a3)circ(p^a3).      (22) 

S^(p\oi) = W*">(p;p',u>), 

mil 
= y^ B,iw)\t (p'th a>)|^ circ(p7fl).        (24) 

We see from this expression that the secondary 
source occupies a circular domain of radius a, and 
that the spectrum of the light inside the secondary 
source is proportional to the product of spectral ra- 
diance in plane i, fli)(w), and transmittance of the 
interference filter, \l(p'/f2, (o)\^. 

The   complex   degree   of  spectral   coherence, 
/i'"'(pi.p2, w), of the light in the plane II is defined 
by the formula [16]: 

Upon substituting the approximate Eq. (20) into 
Eq. (22), we find that the corresponding approxi- 
mate expression for the cross-spectral density of the 
light in plane II is 

M""(P!,P;,^)= I^"YP;. P^:. (O) 
V5*'V. ^) V5""(p5. <u)* 

(25) 

' TJK spectrum S is aiso somctimc<i referred to as ihc spectral 
density of (he light. It is the optical intensity per unit angular 
frequency at the [>a<>ition and angular frequency in question [15]. 

Upon using Eqs. (23) and (24) in Eq. (25), we find 
that when pl<a and pn.<a, i.e., for pairs of points 
located inside the secondary source, 
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xBesinc (f ^-4 (26) 

This result shows that the group at NPL was incorrect 
in stating that the filter-lens combination eliminates 
the wavelength dependence of the complex degree of 
spectral coherence of the light in plane II. In particu- 
lar, since the first three factors on the right hand 
side of Eq. (26) are each unimodular, it follows that 
the modulus of pt*"' (p[, pj, w) is equal to the abso- 
lute value of Besinc(/:fli|p2 — pIlZ/i).. Hence, the as- 
sertion by the group at NPL that the wavelength 
independence of ^t*"'(pi, (A, w) causes the spectrum 
to change upon propagation from plane 11 to plane 
III is not correct. There may be a change of the 
spectrum (we will investigate that in the next sec- 
tion), but it is not caused by a wavelength indepen- 
dence of ^*"^(pi, f^, oi). 

In the next section we will refer to the effective 
correlation length, L(w), of the light inside the sec- 
ondary source. The correlation length of a Besinc 
type correlation function is typically taken as the 
smallest separation, jp;-pi|, for which the complex 
degree of spectral coherence takes on the value 
zero. Since Besinc has its first zero when its argu- 
ment is equal to 3.832, it follows from Eqs. (26) and 
(3) that 

L(<u)=0.610 
Hi 

(27) 

4.    Spectrum   of the   Light   On-Axis   in 
Plane III 

Let P be a point in plane HI located by position 
vector p. When the Fresnel approximation is used 
to propagate the field from plane II to plane III, the 
spectrum of the light at P is given by the expression 
[17] 

^ \\ W-™ ip\, p5. o>) exp[/i(;^'^-pr)/2z] 

xexp[-/^(pi-p;) -p/zldVld^pS. (28) 

where )f<"'(p|, p2, la) is given by Eq. (23), and the 

integrations extend formally from - » to «» in each 
variable.'' 

If the secondary source obeys the Leader condi- 
tion [18] 

kaL(iD) 
«1, (29) 

then we are in the far zone of the secondary source 
and the quadratic exponential term in Eq. (28) can 
be dropped. We will restrict our considerations to 
the on-axis observation [Mint, p=0, 

4.1   No Aperture in Plane II 

In this case a = lM|ao, and the Leader condition is 
not fulfilled for the NPL parameter values. The on- 
axis spectrum is therefore given by the expression 

5<'"'{0,^)=^J/n/<">(p:,p;,a,) 

xexp[ikif^'-p'r')/2z]d^pld'pi, (30) 

where W^'"' (pf, pj, w) is given by Eq. (23), with 
a = |Af Iflo- 

In order to investigate 5*"''(0, w), let us first in- 
troduce average and difference vectors, p' and p', in 
plane H: 

p'=\{pi + 0i), 

P'=pi-P'i. 

(31a) 

(31b) 

In terms of these variables, it follows from Eqs, 
(30), (23), (16) and (27) that 

5""'(0. ^)=7f^5o(ft.)|| GO'.p', w) 

X exp( -ikp' • p'Id)d^ p'd^ p', (32) 

where 

G(p',p',to)=t*(^'-ip'\ff2,ci) 

>^t{\p' + ^p|//2. o>)Besinc[3.832p7L(w)] 

Xcirc[(p'"ip')/|A/|fln]circ[(^'+ip')/|A/|fl„] , (33) 

' In prdctice, ihe circ functions in Eq, (23) limit the domains of 
integration to tiic area occupied by the secondaiy source. 
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and 

d    /: \fi     V    z (34) 

Let us now examine the behavior of G(p', p', tj) 
as a function of the difference vector p' for a fixed 
value of the average vector p'. The region over 
which the Besinc function is significant is the do- 
main p'^L((t)). As p'explores this region the first 
arguments of r* and / in Eq. (33) each change by at 
most the angle 

^ = 0.610^ (35) 

For visible light this is an extremely small angle. For 
example, for A =550 nm and ai=0.45 cm, L{ti>)l 
fi — 15 (jirad. Therefore we will assume that the be- 
havior of the interference filter is such that when 
evaluating the integral on the right hand side of Eq. 
(32) we may, to a good approximation, neglect the 
p' dependence of both r* and r, i.e., that we may 
approximate G as 

G(^'.p', a.) = |r(p7/2, w)p Besinc[3.832p7L(w)] 

X circ[(p' - \ p')/|Af |ao]circ[(p' +^ p')/iM|a„]. (36) 

Furthermore, for the NPL system parameter values 
and the wavelengths used in their experiments, 
L{o))«\M\ao. Therefore we will now use the 
quasihomogeneous approximation [19] which corre- 
sponds to replacing Eq. (36) by the expression 

G{p',h\o>) = 

H'p'lh, w)f Besinc[3.832p7L(w)] circ(p7|A/|flo). 

(37) 

Upon substituting the approximate form Eq. (37) 
for G into Eq. (32), it can be shown, after some 
straightforward calculations, that the on-axis spec- 
trum in plane Til is given by the expression 

_L2 

5""H0, w) = ^ Bo(aj)M(w) , (38) 

where 

M{to) = ^2 J \t(p'lh w)p circ(^7!A/|fl„) 

xcirc(p7A)dV , (39) 

and b —aid/fi. For the NPL parameter values, 
\M]aa=0A8 cm and /J=0.35 cm. Therefore, Eq. 
(39) simplifies to 

Af(W= ;p |KPV/2, O>)\' circ(p7A)d^P', 

2 r" = ^Jjr(d.w)pOdO, (40) 

where ^=blfi. 
Let us now discuss the transmittance, |/(0, <i>)[^, 

of the interference filter. We will assume that it can 
be described by the Lissberger-Wilcock model [12- 
13]. This model works well for Fabry-Perot and all- 
dielectric interference filters for angles of incidence 
which are less than 20°. It can also be used to de- 
scribe, less accurately, double halfwave and induced 
transmission filters [20]. 

Let Ao denote the peak wavelength transmitted by 
the interference filter at normal incidence {8 = 0), 
(AA)o denote its bandwidth (FWHM) at normal in- 
cidence, and Tn denote its maximum transmittance. 
According to the Lissberger-Wilcock model the 
transmittance of the interference filter is given by 
the expression 

(41) 

where r\ is the effective index of refraction of the 
interference filter. 

The integral in Eq. (40) can be evaluated (see 
Ref. [12]) without any approximation, for the trans- 
mittance function Eq. (41). The result is that 

M(a,)=gtan-'[j_^^^^^       ]. (42) 

where X = Ao^-/[2-n-(AA >,], and ^ = 2(A - Ao)/(AA)o. 
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Some comments about the interference filter 
parameters Ao, (AA)(i, and TI are now in order. The 
effective indices of refraction, i.e., the values of TJ, 
for the filters used in the NPL experiments are not 
known. However, typical values of TI are in the 
range 1.4<T|<3,4, with the lower values being 
more typical [21-25]. We will therefore use TI = 2 in 
our calculations. The precise values of Ao and (A A)o 
are also not known. For reasons which will be ex- 
plained in Sec. 4.3, we will take the values of Aa for 
the sk filters to be 421.9 nm, 484.0 nm, 512.4 nm, 
566.0 nm, 609.1 nm, and 652.0 nm, with their band- 
widths being, respectively, 9 nm, 9 nm, 5 nm, 13 nm, 
8 nm, and 8 nm. 

4,2    Small Aperture in Plane II 

In this case flj = 0.012 cm and the Leader condi- 
tion is fulfilled. It therefore follows from Eqs. (28) 
and (23) that the spectrum can be written as 

5<™^(0, «) = 

i^Bo(^)| Jr*(p!//2, ^)r(pi//2,t^) 

Tnii 

irai 

Ahf 

xE(p{, pj, w) Besinc(^ |/>5-p.'|)dV!d'pi.   (43) 

where A is the circular aperture of radius ay For the 
same reasons as were discussed in the Sec. 4.1, we 
will assume that the product off* and t on the right 
hand side of Eq. (43) can be replaced by |jp evalu- 
ated at the average position, i.e., that to a good ap- 
proximation, 

5<»'>(0, a,) = 

-^ B,(w)j J KIP! +pf|/2/,, oj)\' E{p\, pj, a,) 
A  A 

xBesinc(^ !pl-Pi'|)dVld'p^, (44) 

For the NPL parameter values, it can be shown 
from Eq. (41) that, to a very good approximation, 
|f(lp;+p;|/2/2, <u)p-|f(0, (of, for all pi and pi 
which are in A. The on-axis spectrum in plane III is 
therefore given, to a good approximation, by the ex- 
pression 

5'"'>(0, «) = ^ BoicoMO, «)P N{<o),      (45) 

where 

X Besinc(yi |pJ -pi|) d^i d^pi ■ (46) 

This integral can be evaluated by substituting the 
Fourier integral representation of the Besinc func- 
tion [see Eq. (88)] into the integral, interchanging 
the orders of integration, and then recognizing the 
resultant integrals as familiar diffraction integrals. 
The result is that 

N{o>)=-i-i^{^YQ^(^). (47) 

where 

kai (D     A 

fi 

(48) 

(49) 

and the Qz<(v) functions are those introduced by 
Wolf [26] and simplified by Petersen [27]: 

Q,^v)=n{v)+J]{v) , (50) 

Q^'(^)=-2^^{V[^2(V)72,.,(V) 

-7,(v)J2.+2(v)] + 2si,(i')^2.+i(!')} , if J>0.    (51) 

43 Numerical Investigation of the Specttum On- 
Axis in Plane III; Comparison to the NPL 
Experimental Values 

Let iil'"(0. A) be the spectrum, as a function of 
wavelength, at the on-axis position in plane III, for 
the case in which there is no aperture in plane II. 
Let the wavelength at which this spectrum peaks be 
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denoted by Ap and the bandwidth (FWHM) of this 
spectrum be denoted by AA. Let sii"'(0. A) be the 
spectrum, as a function of wavelength, at the on- 
axis position in plane III, for the case where the 
small aperture is in plane 11. Let Ap denote the peak 
wavelength for this spectrum. The group at NPL 
measured Ap, AA, and Ap for six different interfer- 
ence filters [1]. Their results are shown in Table 1, 
along with the shift. 

TTOi 

8Ap— Ap — Ap , (52) 

which occurred due to the insertion of the aperture. 

Table 1.   NPL expcrimenlal results 

AP, in nin AA , in nm Ap, in nm SAi-: , in nm 

422.0 9 421.0 -1.0 
484.1 9 483.6 -OJ 
512.4 5 514.1 1.7 
S66A 13 564.1 -ZO 
609.1 g 610.3 u 
652.0 8 653.2 1.2 

There are several things which should be noticed 
about the results shown in Table 1. First, the shifts 
are, in absolute value, of the order of 0,5 nm to 
2,0 nm. Secondly, some of the shifts are blueshifts 
and some are redshifts. Furthermore, there are no 
obvious trends in the behaviors of the shifts as func- 
tions of either Ap or AA. 

Let us now investigate the shifts that our theory 
predicts. It follows from Eqs. (38) and (42) that the 
spectrum when there is no aperture in plane II is 
given by the expression 

^nO, A) = ^feo(A)mN(A), (53) 

where b^^k) is the spectral radiance, as a function of 
wavelength, at the exit aperture of the integrating 
sphere and 

^nO, A)=^feo(A)m4A), (55) 

where 

m^iX) = TaN(2-nc/X)\\ + /A){l 
r2(A-A.)P1-' 
L (AA)B J I (56) 

In order to simulate the experimental conditions, 
we did the following things. The color temperature 
of the lamp was 3200 K [7]. We therefore took the 
spectral radiance, Ao(A), to be a Planck distribution 
[28]: 

"^^      A-'   exp(/ic/AJtHr)-l 
(57) 

with a temperature of 7=3200 K. In Eq. (57), h is 
Planck's constant and As is Boltzmann's constant. 
Furthermore, we chose the center frequencies, Ao, 
and the bandwidths, (AA)i>, of the interference fil- 
ters to be such that the Ap and AA values obtained 
for the spectrum j|i"'(0,A) [from Eq. (53)] agreed 
with the experimental values of Table 1 to the num- 
ber of decimal places being displayed there. 

Table 2 lists the interference filter parameters, 
and Ao and (AA)o, we used in our calculations and 
gives the shifts, SAp, predicted by our theory. These 
shifts were obtained by using a search routine to 
find Ap and Ap from, respectively, Eqs. (55) and (53), 
and then subtracting the two values. 

Table 2,   Theoretical values for the shift 

All, in nm (AA)n, in nm KAp, in nm 

421.9 9 0.007 
484.0 9 0.009 
512.4 5 0.009 
566.0 13 0.010 
609.1 8 0.011 
652.0 8 0.012 

mN(A)=^tan-'[^^^^y^^J (54) 

Here f and X are given by the expressions which fol- 
low Eq. (42), It follows from Eqs. (45), (47), and 
(41) that the spectrum when the small aperture is in 
plane II is given by the expression 

These shifts disagree with those measured by the 
group at NPL. The theoretical shifts are approxi- 
mately two orders of magnitude smaller than the ex* 
perimental shifts. Furthermore, the theoretical 
shifts are always redshifts, whereas the experimen- 
tal shifts are in some cases redshifts and in other 
cases blueshifts. 
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At this point some further comments about the 
shifts predicted by our theory are in order. First, let 
us consider Ap. 5'^"*(0, A) is the product of two wave- 
length dependent factors, mA(A) and ha(X). Due to 
the presence of the factor N(2i7c/A), mA(A) is not 
centered at Au, it is biueshifted from it by an amount 
of the order of 0.0001 nm. Multiplication by the 
Planck spectrum then causes mA{A) to be redshifted 
by about 0.1 nm. Now, let us consider Ap. jii^"'{0. A) 
is the product of two wavelength dependent factors, 
ms{\) and 5o(A). mN(A) is not centered at Ao, it is 
biueshifted from this value by an amount of the or- 
der of 0.01 nm. Multiplication by the Planck spec- 
trum then causes mN(A) to be redshifted by about 
0.1 nm. When we subtract Ap from A? the two Planck 
shifts cancel. Since the blue shift of mN{A) is much 
larger than the blueshift of MIACA), the resulting 
shift, 8Ap, is a redshift of the order of 0.01 nm. 

The physical origin of this redshift is as follows. 
The field incident upon the interference filter can 
be represented as a superposition of polychromatic 
plane waves traveling in different directions, and 
the wavelength at which the transmittance of the in- 
terference filter peaks decreases as the angle of in- 
cidence of a plane wave increases [see Eq. (41)]. 
Therefore, for each polychromatic plane wave inci- 
dent upon the interference filter at an oblique angle 
of incidence, the spectrum of the transmitted light 
has a i>eak wavelength which is less than it would be 
for a normally incident plane wave. In the case in 
which no aperture was used, the contributions from 
a significant set of such waves arrive at the on-axis 
observation point in plane III, However, in the case 
in which the small aperture was used, the contribu- 
tions from a large subset of these waves were 
blocked at plane II and did not arrive at plane III. 
As a result, the spectrum in plane 111 when the 
small aperture is used peaks at a longer wavelength 
than it does when no aperture is used. 

5.    Conclusion 
Our paper contains two separate sets of results. 

(1) In Sec. 3 an approximate form for the cross- 
spectral density of the light in plane II was obtained 
[Eq. (23)], and it was shown that the corresponding 
complex degree of spectral coherence contradicts 
the explanation for the shifts given in Ref, [1], (2) In 
Sec. 4 further approximations were made to propa- 
gate the cross-spectral density obtained in Sec. 3 
from plane II to plane III, and an approximate ex- 
pression for the on-axis spectrum was obtained, 
both for the case in which no aperture is used, and 
for the case in which the small aperture is used, it 

was found that the peak wavelength of the spectrum 
in the latter case is shifted with respect to the peak 
wavelength for the former case. However the shifts 
predicted by our analysis are much smaller than 
those reported in Ref. [1], so small as to be unob- 
servable to within the accuracy of their experi- 
ments. 

This brings us to an important question. Our 
analysis is predicting no observable shift (to within 
the accuracy of the measurements of the group at 
NPL), and yet the group at NPL observed shifts; so 
where is this shift coming from? In our opinion 
there are three possibilities. One possibility is that 
their interference filters did not behave in the man- 
ner we have assumed in our calculations, and that 
shifts arose as a result. A second possibility has to 
do with the spatial coherence properties of the light 
in plane III. Since the secondary source created in 
plane II when no aperture is used has a radius 
which is forty times as large as in the case in which 
the small aperture is used, the spatial coherence 
properties of the light in plane III will be quite dif- 
ferent in the two cases. If this difference is signifi- 
cant enough, it may be that the monochromator 
used in the detection process responds differently 
in the two cases. A third possibility, and in our opin- 
ion the best one, is that the shift is caused by chro- 
matic aberration introduced by Li, or Li, or both. Li 
has a short focal length and is not an achromatic 
doublet, and is therefore an obvious candidate for 
introducing significant chromatic aberration. L2 is 
an achromatic doublet. However, it can only be per- 
fectly achromatic for two wavelengths, whereas fil- 
ters with six quite different center wavelengths were 
used in the NPL experiments. 

Finally, let us comment on the relevance of these 
possibilities for typical spectral irradiance measure- 
ment systems. Typical spectral irradiance measure- 
ment systems do not use interference filters. There- 
fore, if the shift is caused by a nonideal behavior of 
the interference filter, it is irrelevant for typical 
spectral irradiance measurements. As concerns the 
second possibility, it has been known for some time 
that the spatial coherence properties of the light in- 
cident upon a monochromator do effect its re- 
sponse, viz., its slit scattering function [29-30]. 
Hence any comparison of experimentally measured 
spectra which have significantly different spatial co- 
herence properties at the entrance aperture of the 
monochromator should take this into account. Fi- 
nally, if the shift is caused by chromatic aberration, 
it will not occur in spectral irradiance systems which 
use only mirrors, and is an effect which should obvi- 
ously be taken into account in any system which 
uses lenses. 
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6. Appendix A: Coherent Impulse Re- 
sponse Function for the Propagation 
from Plane I to Plane 11 

6.1   Field Exiting L, 

Let Q be a point in tiie plane occupied by Li, and 
let ttj be tlie two-dimensional position vector in the 
plane which locates O. The field, (/""'(ori, to), inci- 
dent upon L| at the point Q due to a monochro- 
matic, unit amplitude, point source at position P" in 
plane I is given by the expression 

(/u-)(«..^)=l^^Pffek'7l). (58) 
lA l^l—p I 

where r^ = (OTI, /i). Since the angles involved are 
small, this expression may be approximated 
(paraxial approximation) as 

f/('-'(«.. u,)^^^^ exppfc(a,-p'')V2/,]. (59) 

The field exiting the lens, [/*'*^(ffi, a>), is given by 
the expression [31] 

t/"*'(a,, «) = 

t;('->(aj, a.)exp(-/^a?/2/.)r.(«i) , (60) 

evaluated at K=ksi. It follows from Eqs. (61) and 
(63) that 

^exp[/A:0(p")] 

X Besinc[A:fli|ji-ioi|] , (64) 

where SQ±= -p'lfu 

6.2    Field Incident Upon Li 

Let P be a point in-between Li and the interfer- 
ence filter. Let /■ be a position vector which goes 
from the center of Lj to P. The field at F can be 
represented as a superposition (angular spectrum) 
of plane waves [32]: 

f/(r, (w) = / a{su a))exp(i7rj •r)6'Sx-       (65) 

where s =(si, s^) is a unit vector, 

J.^Vl-si , if 51^1, 

^iy/s\-\ , ifsi>l, (66) 

where   P{a\)   is   the   pupil   function   for   Lu 
/'i(ai) = circ(ai/fli). Using Eq. (59) in Eq. (60) yields 

U^'*\a^, a.) = 

exp[iA^(p')] exp(-/ia. .p7/,)/'.(«,) .      (61) 

and 

where 

«*(p'')=/» + (p"'/2/i). m) 
In the next subsection we will need C7"^'(X, w), 

the two-dimensional spatial Fourier transform of 

/t/"*'(ai, w) exp(-ilf • a,)d=a,. (63) 

a{sx,o>)=^U^'*\ksuO}) (67) 

In Eq. (66), j^ = |sxl. 
In spherical polar coordinates, as measured from 

the center of Li, J=(1, 6, <{>). In this notation 
s± = {Si, jy) = (sin0cos<^, sindsint^). Therefore the 
angle of incidence of the plane wave exp(f7f* -r) 
with respect to the normal to the surface of the IF 
is 6 [see Fig. 2], where Ji=sin 9 = 6. 

Let t{d, ft>) be the amplitude transmission func- 
tion of the filter for a plane wave of angular fre- 
quency wand angle of incidence ^. If we neglect the 
finiteness of the transverse size of the IF, the effect 
of the interference filter is to change the amplitude 
of each plane wave, exp(/A:s -r), by the factor J(jj., 
<i)). The amplitude, call it d{si, to), of the plane 
wave exiting the filter is therefore 
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fl(s±, 0))- t{s±, w)a{sL, o>) 

1 

h(p', p", w)- 

=  p/(5i, w)[/"^'(fcSx, W), 

TTfll 

X Besinc[/cai|sj.—Stt±|]. (68) 

Let rj = (ff2, £)) be the position vector whicli goes 
from the center of Li to the point in L2 located by 
the two-dimensional position vector m. The field, 
[/'' '{oi, (a) incident on L2 can be represented as a 
superposition of plane waves: 

{/'^->(ar2, w)= ! a{su oj)exp{iks ■r)d^Jx, 

= / fl(si, (o) exp{iA:si ■ 02) 

X expOfcr,Z))d^Si. (69) 

Since the angles involved are small, we may make 
the approximation s^ = \/\ —s\ = 1 - 5^i in Eq. (69), 
and we find that 

(/'■^"'(wz, <!)) = &xp(ikD)fa(si, a>) exp(/fr4x ■ 012) 

X exp( - ikDsl/l) dhj_. (70) 

-^^exp{ik[<i>(p") + xip')]^ 

xB&smc{ka>\(p'/f2)-(p%)\}t(p'/f2, co) ,  (74) 

where 

X(p-) =f2^D + (1 -|) (p"/2/2) . (75) 

The magnification of the imaging from plane I to 
plane 11 is M = /z/jfi- It therefore follows from Eq, 
(74) that the coherent impulse response function 
can be written as 

h(p', p\ <»)^t{p'iU, ui)hn{p\ p", t^),      (76) 

where htiip',p"i (o) is the coherent impulse re- 
sponse function if there is no interference filter, 

/IN(P', P\ «)=C(t,»)expP[^(p") + A'(p')]} 

^ri (kaA  „     1     ,1 
X Besinc f ^ P     7/ /• (77) 

5J    Final Expression 

The coherent impulse response, h{p', p", w), for 
the propagation from plane I to plane II is the field 
in plane II due to the point source in plane I, i.e., 

/«(p'.p",a>) = C/'°'(p',^) (71) 

If we neglect the finite transverse size of L2, this 
equation can be written as [33] 

h(p',p';.>)^^^^^^^^u<^-Kkp'/h<o), (72) 

where <p{p') =/j + (p'^flf^). It follows from Eq. (70) 
that 

Lf'--'(A;Sx, a.) = 

A^a (sx, w) expiikD) exp( ~ikDs\ll).      (73) 

Upon substituting Eq. (73) in Eq, (72) and Eq, 
(68) in the result we find that 

Here 0(p") and xip) ^r^ given by Eqs. (62) and 
(75) respectively, and 

C(tu) = 
_1_     TTfll 

(78) 

7.    Appendix B: Derivation of 

Let us first define average and difference vari- 
ables in plane I as, respectively, 

P''=\ip2+f([), 

P = pz-pj 

(79a) 

(79b) 

In terms of these variables E{p", pi, m) [see Eq, 
(17)] can be rewritten as 

E{plp^,a>) = exp[^p''-p' (2m -„   -„\ 
(80) 
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As pn and pi each explore the domain o-, the max- 
imum value of p' = |p"| is OQ. In the integrand of Eq. 
(15) the range of values of p"-pS -pT over which ju 
is significant is p"sA/2. Hence as pj" and fh range 
over the domain where the integrand is significant, 

In —»   -„ uno 
/. 

(81) 

For the NPL system ao = 0.12 cm and /j = 5 cm; 
therefore over the domain where the integrand is 
significant the real and imaginary parts of £(pi, f^, 
w) fulfill, respectively, the inequalities: 

0.997 s Re[£(pr, ^!, w)] < 1 . (82a) 

-0.075 < Im[£(pr, pS, w)] ^ 0.075        (82b) 

8.   Appendix C: Derivation of Eq. (19) 

Let 

B(p.', pi, <w) = I jBesinc (^ |pT-j^ p! I) 

If Ki »1 then the first and second Besinc func- 
tions in the integrand on the right hand side of Eq. 
(85) are, respectively, very sharply peaked about the 
values «i = V] =pi7A/ou and U2 — V2 = t^Mao. As a re- 
sult, if V, or V2 lies outside the unit disk, then the 
integral on the right hand side of Eq. (85) is approx- 
imately zero, and if V| and vj both lie within the unit 
disk the integrals in Eq. (85) may be approximated 
by extending the limits to ± oo, I.e., 

B(p'u pi, 6>)=='a!i circ(p[/Afao) circ(pl/Mau) 

x// Besinc(f()|uj—fi|) Besinc(KI|«2-VJ|) 

x;o(f|ii2-a,|)d^u,d^H2. (87) 

The right hand side of Eq. (87) may be simplified 
by using the Fourier representations of the func- 
tions in the integrand: 

Besinc(«-,1 u, -Vj\)=^ j circ(A)/*fi) 

Xexp[-iKj ■{ui-v,)]6'K„(j = l, 2),      (88) 

xBesinc(^ \fn~^pi\)mPi-pl\) ^^pl^M, ^ ,   eirc(^/K) 

and let us make the change of variables 

Vj = pi'/Mao,(j=l,2) 

(83) 

(84a) 

(84b) 

_ expl-iK'iu2-ui)]d'K 

(89) 

In terms of these new variables, Eq. (83) can be 
rewritten as 

B(p[, pi, w) = ao j   J  Besinc(KIIHI-K,I) 

xBesinc(Ki|B2-»'i|V'u(Kt«2-«i!)d^uid'«2 ,   (85) 

where u.d. is the unit disk, u.d. ={«;u<l}, and 

kaiOu 

Upon substituting Eqs. (88) and (89) into Eq. (87), 
we find, after performing some simple integrations, 
that 

B(p',, pi, w)=£>(w) circ(pi7A/fli)) ciTc{p'JMau) 

r circ(K/KI) circ(A/ic) j 

^Diw) circ(p[/A/fl,.) ciTc{pi/Mao) f   ""'^f/'''^,, 

x&xp[iK(v2-v,)]d-K, (90) 

where 
Kl = 

K=kao. 

(86a) 

(86b) 

^.   ,        (27rao)* 
(91) 
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and the step performed in Eq. (90) follows from the 
fact that KIIK =at/fi<l. 

If (al/f^f<<l, Eq. (90) can be approximated as 

Bipi, pi, w) =!)(«>) circ(pl/Mfl(i) circ(pi/A/ao) 

X J circ(i:/K:i)exp[i/f ■ (v2-Vi)<i''K, 

= D(<t)) circ(pI/Mao) circ(pi/Mao)irKi'' 

XBesinc(Ki|v2-vi|), 

= 2ck^ i^y Besinc(^^-p[|) circ(pI/|M|ao) 

xcirc(p2/|M|flo) (92) 

For the NPL system, flo=0.12 cm and aJfi — 0.09, 
and the peak wavelengths of the interference 
filters used in their experiments were in the range 
422   nm    to    652    nm.    For    these    parameter 

values, 1.04x10' s ^^ <1.6] x 10' and (ajZ/i)^ 

= 8.10 X10"'; therefore, KI > > 1 and (ai/fif < < I. It 
then follows that the approximation Eq, (92) is ap- 
propriate for the NPL system. 
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