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Glossaiy 

0 Null vector 
0 Null dyadic 
a Radius of a spherical subregion 
a,b,di,di Arbitrary vectors 
flm (1/2)   X   maximum linear cross- 

sectional dimension of the sub- 
region V„ 

Aim Dyadic kernel for the MOM 
equations 

Akk, Akk Self-terms when MOM is used 
with spherical subregions 

b Side of a cubical subregion 
B{x) Magnetic flux density (weber per 

square meter) 
D{x) Electric flux density (coulomb per 

square meter) 
Cine Electric field intensity amplitude 

of an incident plane wave 
E{x) Electric field intensity (volt per 

meter) 

<'"'£«c(x) Electric field intensity exciting the 
subregion V„ 

jBcxc/n = '""£.xc(x„) 
£inc(jc) Incident electric field intensity 
E„ Electric field intensity at x„ 
E^{x) Scattered electric field intensity 
F^{u,) Far-zone scattering amplitude in 

the direction «, 
0{x,x') Free space dyadic Green's 

function 
Gkm = G(Xk,x„) 
H(x) Magnetic field intensity (ampere 

per meter) 
Hs.,(x) Scattered magnetic field intensity 
i = (-!)>« 
1 Identity dyadic 

J(.x) Electric current density (ampere 
per cubic meter) 

Jm = J(x„) 
JconiyX) Conduction current density 

(ampere per cubic meter) 

699 



Volume 98, Number 6, November-December 1993 

Journal of Research of the National Institute of Standards and Technology 

Jpo[(x) 

M 
Pm 

Putn 

'sea 

P.« 
Qkn, 

t 

u, 

Uinc 

Fc„ 

Fin, 

Kn 
X 

a 

d(x-x') 

Vo 

A 
A 

Polarization current density (ampere 
per cubic meter) 
Free space wavenumber (inverse 
meter) 
Depolarization dyadics for the three- 
dimensional subregion Vm 
Total number of subregions 
Electric dipole moment equivalent to 
the subregion Vm 
Time-averaged absorbed power 
Time-averaged scattered power 
Time-averaged extinguished power 
Dyadic kernel for the CDM 
equations 
Closed surface of the three-dimen- 
sional subregion Vm 
Time (seconds) 
Polarizability dyadic of the subre- 
gion V„ 
Unit vector denoting direction in the 
far zone 
Unit vector denoting propagation 
direction of an incident plane wave 
Three-dimensional region external to 
the scatterer 
Three-dimensional region occupied 
by the scatterer 
Three-dimensional subregion 
Three-dimensional position vector 
(meter) 
Distinguished point inside the 
subregion Vm 
Xk —Xm 

Mossotti-Clausius polarizability 
scalar of a spherical subregion 
Mossotti-Clausius polarizability 
scalar of the m-th spherical 
subregion 
Kronecker delta 
Dirac delta 
Permittivity of free space 
( = 8.854x 10"'^ farad per meter) 
Relative permittivity 
Relative   permittivity   of  dielectric 
matter occupying Vmt 
Relative permittivity of dielectric 
matter of the subregion V„ 
Intrinsic impedance of free space 
(= 12077-ohm) 
= [(l-ikoa)exp(ikoa)-l] 
= Wavelength in free space 
( = 2Tr/ko) 

fid Permeability of free space 
(= 4Tr X10"' henry per meter) 

ft) Circular   frequency   (radian   per 
second) 

fi Solid angle 
T Polarizability scalar of a spherical 

subregion 
Tm Polarizability scalar of the m -th 

spherical subregion 
7t) Draine's polarizability scalar of a 

spherical subregion 
7t)B Dungey-Bohren polarizability scalar 

of a spherical subregion 
Vm Volume of the subregion Vm 

(cubic meter) 
i/f(/3) A Riccati-Bessel function of 

argument p. 
((li) A    Riccati-Hankel    function    of 

argument {3. 

1.   Introduction 

Electromagnetic scattering problems involving 
complicated geometries are treated numerically 
nowadays. Apart from some low- or high- 
frequency methods [1, 2] and the T-matrix method 
[3], implementation of most numerical techniques 
entails a partitioning of the region occupied by the 
scatterer into may subregions. This is generally true 
whether a differential formulation is used or an 
integro differential formalism. 

The method of moments (MOM) [4-6], as ap- 
plied to an inhomogeneous dielectric scatterer, is 
an approach based on the evaluation of an electric 
field volume integral equation over the region oc- 
cupied by the scatterer. This region is partitioned 
into a number of subregions; the electric field in 
each subregion is represented by a subregional ba- 
sis function; and the volume integral equation is 
converted into a set of simultaneous algebraic 
equations that are solved using standard proce- 
dures. The subregions are generally cubes, 
although the relevant self-terms are usually evalu- 
ated as that of equivoluminal spheres. 

Whereas the MOM is an actual field formalism, 
the coupled dipole method (CDM) is based on the 
concept of an exciting field. The CDM was formu- 
lated intuitively in 1969 by Purcell and Penny- 
packer [7] for dielectric scatterers, although it had 
by that time a rich history spanning many decades 
[8]. Conceived from a microscopic viewpoint, the 
CDM has only a semi-microscopic basis; indeed. 
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the operational basis for applying the CDM to 
boundary value problems is totally macroscopic [9]. 
Both the MOM and the CDM were recently 
extended to bianisotropic scatterers and their 
respective weak and strong forms were shown to be 
equivalent [10]. 

This tutorial paper contains a complete deriva- 
tion of the MOM and the CDM for the scattering 
of time-harmonic electromagnetic waves by an in- 
homogeneous dielectric object possessing an 
isotropic permittivity, the starting point of the exer- 
cise being the monochromatic Maxwell curl equa- 
tions. A central topic of the paper is the 
elucidation of the relationship between the MOM, 
which is widely used in electrical engineering, and 
the CDM, which is motivated by concepts in atomic 
physics [7]. Our treatment is directed towards the 
researcher who is interested in understanding 
these methods but who may not be a specialist in 
electromagnetic field theory. 

A current topic of considerable interest is light 
scattering by agglomerated structures made up of 
individual spheres arranged in a low-density struc- 
ture. Examples of such structures include smoke 
agglomerates formed in fires or internal combus- 
tion engines; various materials produced in com- 
bustion systems including silica and titanium 
dioxide; and, perhaps, interstellar dust. The earli- 
est relevant analyses [11, 12] of light scattering 
from smoke were based on the Rayleigh-Debye 
approximation, in which the field exciting any par- 
ticular primary sphere is taken to be just the field 
that is actually incident on the agglomerate. Such a 
procedure neglects multiple scattering effects, and 
is acceptable for primary spheres with size parame- 
ter ( = radius multiplied by the free space 
wavenumber) less than about 0.2. The typical size 
parameters for the smoke agglomerates mentioned 
above lie in the range 0.1 to about 0.25 at visible 
frequencies. 

Both the CDM [13, 14] and the MOM [15, 16] 
have been applied to compute scattering from 
smoke agglomerates in the recent past, since nei- 
ther technique suffers from the limitations of the 
Rayleigh-Debye approximation. While the MOM 
and the CDM are expected to give the same results 
for infinitesimally small size parameters [17], the 
methods—as ordinarily used—do not yield identi- 
cal results as the primary sphere size increases [18, 
19]. This is because the CDM has been used chiefly 
in what may be called its weak form, while it is the 
strong form of the MOM that is in standard usage 
[10]. The strong form is valid for larger primary 
spheres because the effect of the singularity of the 

free space dyadic Green's function is better esti- 
mated therein than in the weak form. This be- 
comes clearer in the following sections. 

2.   Volume Integral Equation 

As is schematically illustrated in Fig. 1, let all 
space be divided into two mutually disjoint regions. 
Kin, and Fe«, that are distinguishable from each 
other by the occupancy of matter. The region Kit is 
vacuous; hence, 

D(x) = eoE(x);xEV„,, 

B{x) = noH(x);x&V,^ 

(la) 

(lb) 

The region Fim is filled with an isotropic, linear, 
possibly inhomogeneous, dielectric continuum with 
frequency dependent [exp(-/w/)] constitutive 
equations 

D(x) = en e,{x) E(x); x E VM, 

B(x) = ^H(xy,xEV,», 

(2a) 

(2b) 

where e,{x) is the complex relative permittivity 
scalar. The square root of €r(x) is the local complex 
refractive index, Imag [w6oe,(jf)] is the local con- 
ductivity, and CO is the circular frequency. 

There is no requirement that Kim be a simply- 
connected convex region. Sharp corners and cusps 
should be absent, it being preferable that the 
boundary surface that separates Knt from K^ be at 
least once-differentiable everywhere to enable the 
unambiguous prescription of a unit normal at eveiy 
point on it. Furthermore, the maximum linear ex- 
tent of Kint must be bounded so that only the region 
K„, extends out to infinity in all directions. 

The monochromatic Maxwell curl equations, in 
the absence of any externally impressed sources, 
are given in Kn as 

7xE{x)-ioitu,Hix) = 0;xEVrr„ (3a) 

'7xHix)+io)£oEix) = 0; x E V„t. (3b) 

with 0 denoting the null vector. Similarly, in V;„t we 
have 

'7xEix)-i(OfM,Hix) = 0;xE Ki„„ (4a) 

VxH(x) + \<oeo e,(x) E(x) = 0;xE V^.    (4b) 

On rewriting Eq. (4b) as 
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Fig. 1. Schematic of the scattering problem. The unshaded region Vc 
extends to infinity in all directions, while the shaded regions collectively 
constitute Kin,. 

VxH(x) + i(oeo E(x) + iWo [e,(x)-1] E(x) 

= 0;xeV,„„ (4c) 

and comparing it with Eq. (3b), we are able to state 
the Maxwell curl equations everywhere as 

VxE(x)-mfi^H(x) = 0;xe Vi^ + V^,     (5a) 

VxH(x) + iojeoE(x)=J(xy,x e Vi„,+ V„,.   (5b) 

In Eq. (5b), the volume electric current density 
J(x) = 0 for x G K.„, but 

/(r) = /poi(r) + /cond(x); x E ViM, (6c) 

which implies that/(r) is not merely a mathemati- 
cally convenient quantity for dielectric scatterers. 

It is enough that we look for the solution of the 
differential equations (5a, b) in terms of only the 
electric field, since the magnetic field everywhere 
may be obtained from Eq. (5a) if the electric field 
is known everywhere: /f(jr) = Vx£(x)//w^. On 
taking the curl of both sides of Eq. (5a), and then 
substituting for VxH(x) from Eq. (5b) in the re- 
sult, we get 

J(x)= -ia>&> [£,(x)-l] E(x);x 6 Ki„ (5c) 
VxVxE(x)~k,^E(x) = m{M^J{x); 

xeFi„,-l-Fe«, 
In this fashion a volume electric current density has 
effectively replaced the dielectric matter occupying 
the region Vi„ [20, Sec. 3-11]. 

The volume electric current density/(AT) defined 
by Eq. (5c) is not a fictitious entity in the present 
context. We must remember that, while the region 
Vox is vacuous, the region VM is occupied by dielec- 
tric matter. The monochromatic polarization cur- 
rent density in this dielectric matter is given by 

/poiCx) = -m€» {Real [e,(x)] -1} E{x); 

X e Vim, (6a) 

while the conduction current density is given by 

7cond(ji:) = wei Imag [e,{x)\ E(x); x € VM.    (6b) 

It is now easy to see that 

(7) 

where /to = co(/uoeo)"^ is the free space wavenum- 
ber. We take cognizance of the fact that when J{x) 
is set equal to zero everywhere, Eq. (7) reduces to 
the celebrated vector Helmholtz equation. 

As shown in Appendix A, it follows from Eq. (7) 
that the electric field E{x) is the solution of the 
volume integral equation 

E(x)-Ei„,{x)=mtio fff    d'x 3,' 

(8a) {G(x,x')-/(jr')};xeFi„, + F.„, 

or, equivalently, 

E(X) -£',„c(x) =h' SSf      d'x • {[€r(x') - 1] 

G(x, x')-E{x')}; X E Ki„, + V„„ (8b) 

on using Eq. (5c). Here 
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G(x, X') = [I + (l/A:o')V V][exp(ifto Ix -x'\)l 

4Trlx-x'|] (8c) 

is the free space dyadic Green's function and I is 
the identity dyadic. The field E;„c(x) is the solution 
of Eq. (7) when J(x)sO for all x E Fi„, + Fen, and is 
the electric field existing in V-M + Vat if €,(x) = l for 
all X £ Fini. The standard radiation conditions are 
satisfied by the right sides of Eqs. (8a, b) as 
ko\xl^«> [21]. 

3.   Intermediate Remarks 

Equation (8a) is utilized in setting up the CDM, 
while the integral Eq. (8b) is solved in the MOM, 
and it is this commonality that partially begets the 
algorithmic equivalence of the two techniques. In 
setting up the solutions of Eq. (7) in the form of 
the integral Eqs. (8a,b), we have brought in two 
significant topics that need some rumination right 
now: (i) dyadics and (ii) the free space dyadic 
Green's function. 

Dyadics are as American as apple pie, being the 
brainchildren of Josiah Willard Gibbs. In 1884, 
Gibbs circulated a pamphlet introducing the con- 
cept and nomenclature of dyadics. Mathematics 
books with dyadic notation were written every so 
often earlier in this century, but most mathemati- 
cians appear to have eventually discarded dyadics 
in favor of tensors. In electromagnetics, though, 
dyadic notation has been used with great profit, the 
books by van Bladel [22], Fedorov [23] and Chen 
[24] being immensely popular. A short exposition 
on dyadics was brought out by Lindell [25] in 1981, 
and is much recommended to the interested 
reader. 

A dyadic serves as a linear mapping from one 
vector to another vector; thus, a dyadic D is a map- 
ping from a to 6 given by * = D • a. This property 
leads to the idea of a dyad that is composed of two 
vectors, i.e., Dn=didi. It follows that 
Di2 • a =di(dz • a) and a • D12 = (a • di)d2 are vectors, 
and Di2Xa =di(d2Xa) and a xDi2=(a y.di)di are 
dyads, and the oft-used appellation bivectors for 
dyads appears justified [26]. Because a dyadic can 
be written as the sum of dyads, the general repre- 
sentation of a dyadic is the sum D = Xkn, Dkmdi4m 
[27]. 

The identity dyadic I is such that D • I = D = 1 • D, 
and the null dyadic 0 is such that D* 0 = 0 = 0-0. 
The simplest antisymmetric dyadic is « x I, where « 
is any vector of unit length. Even vector differential 
operators can be thought of as dyadics; thus, the 
curl operator is written as V x I, and the divergence 

operator as V • I, in dyadic notation. It is not possi- 
ble for us to go through all the wonderful proper- 
ties of dyadics than can be exploited in theoretical 
electromagnetics research, so we refer the inter- 
ested reader to the compendiums in the books by 
Chen [24], van Bladel [22], and Varadan et al. [28]. 
The main feature of computational significance is 
that, as dyads are bivectors, all dyadics used in this 
paper can be thought of as 3 x 3 matrices. 

The second issue concerns the singularity of the 
dyadic Green's function G(x, x') used in Eqs. 
(8a,b) and defined in Eq. (8c): the factor exp (//to 
|jir-x'l)/47rlx-jf'l goes to infinity as lx-x'l-*0. 
When evaluating G(x, x'), the second derivatives 
therefore have to be carefully handled. As shown 
by van Bladel [29], the classical procedure leads 
one to write 

US^A'x'Q^(x,x')-b(x')=-{\ll>k^)b{x) + 

P.V. ///^ d'jc' {G(x, x')'b{x')); xEV,     (9) 

where P.V. stands for "principal value." When 
computing the P.V. integral on the right side of Eq. 
(9), an infinitesimally small spherical region cen- 
tered about the point x'=x is excluded from the 
domain of integration. Computing the P.V. integral 
is not problematic because [30] 

G{x,x') = [(\-uxux) + {ilK\X\){\-^ilkf,\X\) 

{\-?,uaix)] {expOVtolXI)/47rlJfl}; 1X|;^0,      (10) 

is not singular when the source point x'and the 
field point x do not coincide; here X=x-x' and 
ux=XI\X\. Yaghjian [31] has modified the right 
side of (9) to an expression wherein the excluded 
infmitesimal region need not be spherical. 

We will use an alternative approach to evaluate 
the integral (9), as shown in Appendix 2. In this 
approach [6, 10, 32], the region of integration is 
split into two regions: one region includes the point 
x'=x in its interior, while the second one is the 
remainder. Use is made of Gauss' theorem and the 
Green's function for Poisson's equation to deter- 
mine this integral. This procedure is attractive as it 
places very little restrictions on the shape and the 
size of the region surrounding the point x' =x. 

4.   The Method of Moments 

The method of moments is a general mathemati- 
cal procedure for transforming a linear operator 
equation  into  a  set  of simultaneous  algebraic 
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equations, and the interested reader is referred to 
[4], Chap. 1, for a simple introduction. We are, 
however, confining ourselves here to the applica- 
tion of MOM to electromagnetic scattering prob- 
lems. 

Although the MOM has grown increasingly so- 
phisticated in the last decade [6, 33], a simple ver- 
sion [5] suffices for the easy conversion of the 
integral equation (8b) into a set of simultaneous 
algebraic equations. We begin by partitioning the 
scatterer region Fim into simply connected subre- 
gions Vm, l£m <M, each bounded by a closed sur- 
face 5m, so that Eq. (8b) can be transformed to 

£(x)=£i„c(x) + fco^ £. fJSy^ d'jt' {[er(x')-l] 

G(x,x')'E{x% X e S„Vn, + Vc«. (11) 

The main features of this partitioning scheme are 
as follows: 
(i) Each subregion Vm is modeled as being 

homogeneous such that 
£t{x) = €r.m;X S V„. (12) 

(ii) The maximum linear cross-sectional extent 
2flm of Vm is such that flm/A <0.1 and 
flmler.m"^l/A <0.1; that is, the dimension a„ is 
no more than a tenth of the wavelength A in 
the exterior region K„, as well as of the wave- 
length in the subregion Vm. 

(iii) The surface 5^ that bounds the subregion Vm 
is sufficiently smooth so as to be at least once 
differentiable, which enables the unambigu- 
ous prescription of a normal at any point on 

Satisfaction of these three conditions, in prac- 
tice, means that the union SmVm of the subregions 
is only approximately coincident with the scatterer 
region VM. Condition (i) can lead to an artificial 
material discontinuity across the interface of two 
adjacent subregions, therefore the simple MOM 
algorithm given in this section works best when. 
adjacent subregions do not differ widely in their 
permittivities. Condition (ii) ensures that the spa- 
tial variations of the electromagnetic field inside 
each subregion are small enough so that each sub- 
region can be thought of as a dipole scatterer [34], 
though different authors use somewhat different 
upper bounds on the subregional size [35,36]. Con- 
dition (iii) is mostly ignored by MOM users, their 
usual practice being to use cubical subregions. 
Thus,  the  adequacy  and  the  accuracy of the 
MOM—and the CDM—results depend in large 
measure  on   the  adequacy of the  partitioning 
scheme. 

Two ancillary aspects of the partitioning scheme 
need to be stated for the simple MOM algorithm. 
First, the incident field must have slow enough spa- 
tial variations that it may be considered almost spa- 
tially constant over any subregion. Second, not only 
the permittivity but also the actual field is assumed 
spatially constant in each subregion. Together, 
these two assumptions constitute a long wavelength 
approximation [37], whose consequences are ex- 
ploited in the MOM as well as in the CDM. 

Let the volume of Vm be denoted by Vm = fSIy 
d'jf, and let Xm denote a distinguished point (such 
as the centroid) lying inside Vm. On setfingx=jr* in 
Eq. (11) we get the relation 

E{x,)-kti'[e,j^-l]fSSy^i'x' 

{G(xk, x') ■E(x')}=Ei„c(Xk) +Aro' X..n,*t [e^.™ -1] 

SfL dV {G(x,, X') -Eix')}; 1 <k ^M. 

(13a) 

Next, on using the approximation E{x)=E{xm) for 
all x EV„ and carrying out the integrations over all 
subregions, we get 

Ek-{e,.k-\)[ko^Uik -U]-Ek = 

Einc{Xk)+ko   Zm.rnrk {Vm [fr.m ~ 1] 

G{Xk,Xn,)'E„}; l<k<M, (13b) 

where £m = E(x„,). In obtaining Eq. (13b) from Eq. 
(13a), we have accomplished the integration on the 
subregion Vm, tn T^k, very simply by evaluating the 
specific integrand at Xm and multiplying it by the 
volumetric capacity Vm. The integral ///^, d\' 
G{xk,x')'E{x'), on the other hand, has been esti- 
mated using Eq. (A2-5a). 

With the assistance of Eqs. (5c) and (12), we 
transform Eq. (13b) into 3A/ simultaneous alge- 
braic equations compactly stated in vector dyadic 
notation as 

£inc(jc*) = l^me{i,2,..ji/} [A*m • Em\, Is k <.M,   (14a) 

where the 3M unknowns are the cartesian compo- 
nents of the fields E„, \<m <M. The dyadic kernel 
used in Eq. (14a) is given as 

Ato, = I 5i„, -f- (1 - Er,* ) 8km [ko^W -\-k] + 

ko'v„ (1 - €r.m ) (] - Skm ) G*^, (14b) 
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where Skm is the Kronecker deha and the definition 

Gkm = G{Xk, Xn, ) = [(I -XkJChnl\Xk„, 1^) + 

{ilko\Xkn, 0(1 - 3XknX^ l\X^ P) + 

07^ol^fe„ 1)^ (I - 3Xk„X^I\X^ 1^)] 

[exp(//:olYfa„l)/47ri:V*„l]; m p^k. (15) 

follows from Eq. (A2-6a) with Aim =xt —Xm. In this 
straightforward and simple version of the MOM, 
wherein the electric field has been assumed to be 
piecewise constant over the scatterer region KVK, 
Eq. (14a) has to be solved for the three cartesian 
components of all E^ for specified £inc(x). 

Bearing in mind that all of our dyadics can be 
easily thought as 3 x 3 matrices, one can solve Eq. 
(14a) using a variety of matrix manipulation tech- 
niques. The Gauss elimination procedure [38] is 
simple but places a heavy demand on computer 
memory. Much less computationally intensive is 
the conjugate gradient method [39], which is now 
being heavily employed for MOM calculations [40]. 

Once all £m have been thus calculated, the scat- 
tered electric field in Vc» can be computed as the 
sum 

Esc.(x)=E{x)-EUx) = 

ko^ Xme(I.2....«}{Vm [Cr.m " 1] G{x,X„) • E„}; X £ V,„, 

(16) 

which expression follows from Eq. (8b). Now, from 
Eq. (A2-6a), we have the asymptote [41] 

Tend,„^.,„,.. G(x,x„,) = [l-(x-x„)(x-Xm)/ 

Ijr -x„ 1^] [exp(/A:olx -XJ)/4TT\X -X,„\],      (Ha) 

correct to order 1/lx -Xml Since allx^ are generally 
distributed around the origin, the further reduction 

Tend,„,.,„,_ G{x,x„,)= [l-xc/Lcl^] 

{exp (ikobc-x„\)f4iT\x\}, (17b) 

is reasonable. Finally, making the Fraunhofer ap- 
proximation [42] 

exp(/A:olx-x„l)sexp[/A:olJi:l] exp[ikox -x^/lxl] (17c) 

on the left side of Eq. (17b) yields 

Tendj„^.,„,^. G(x,x„,)= [\-xx/\x\^] exp(/A:ol*l) 

exp(-//:ox-.r„/lxl)/4T7|x|]. (17d) 

Consequently, the scattered electric field of Eq. 
(16) has the asymptotic representation 

Tendk^^. E^(xus)s [exp(iknK)/x] F«:a(Hs),    (18) 

in the direction HS in the far zone, with the far-zone 
scattering amplitude defined by 

F«a(«0 = (A:oV47r)[l-«s«s]. 

^m^[,i..M) {exp(-/A:o«s -Xm) v„ [e,.„ -1] E„},  (19) 

which shows quite clearly that KS ■ Fxi(us) = 0. 

5.   The Coupled Dipole Method 

The heart of the MOM is Eq. (13b) which in- 
volves the electric field Ek that is actually present at 
Xk. However, in the CDM we have to consider the 
electric field that excites the subregion Vk, each 
subregion being explicitly modeled as an electric 
dipole moment. In order to obtain an expression 
for this exciting field, we return to Eq. (8a), and 
rewrite it as 

E{x)-ia>^ //4 d'x' {G(x,x') ■y(x')} = 

£i„c(x)+iwMo im,m.t nSy„ d'x' {G(x,x') J (x')}; 

x6X.F„ + K„„ (20) 

after partitioning the scatterer region precisely in 
the same manner as was done for the MOM solu- 
tion. We know that Ei„c(x) is the field in the ab- 
sence of the scatterer and that the quantity 

ico/i^ IHy^ d'x' {G(x, x') -/(x')}; X e K„. m ^k, 

is an electric field whose source clearly lies in the 
subregion V^, mr^k. Thus, the whole of the right 
side of Eq. (20) is a composite electric field with 
multiple sources, but none of the sources lies in Vk. 
This composite electric field 

<*'£«c(x)=£inc(x) + /WA10 Xn.m-* //^ d'x' 

{Gix,x')-J(x')};xeVk, (21a) 

can be thought of as the field that excites Vk. 
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Since the left side of Eq. (20) must be equal to 
its right side, it follows that 

<'^E^,(x)^E(x)-ia>fio Uiy, d^jc' {G(x,*')-/ {x')}\ 

X e n. (21b) 

On setting x =Xk in Eq. (21b), and completing the 
volume integration therein using Eq. (A2-5a), we 
get the expression 

E^,k = Ek -i(Ofio [Mt - (l/A:o^)Li] -J* =£exc.i; 

i£k<M; (22) 

here,/* =/(x*) andEexo =***£exc(jr*)- But. by virtue 
of Eq. (5c) we have 

Jk = iueo (l-e,,k)Ek;l^k<M, (23a) 

which means that Eq. (22) reduces to 

Akk-Ek=E„ck;'i^k£M, (23b) 

whence, 

Ek=Akk~'-E^,k;l^k£M, (23c) 

Jk = ia>€o (1 - er.*) AM -' • £.«.* ;l^k<M.    (23d) 

Consistent with the long-wavelength approach, in 
the CDM we think of the equivalent electric dipole 
moment [9, 10] 

Pk  =(i/03)VkJk 

located atx*; thus, 

Pk=tk 'Ecxc,k, 

after using Eq, (21b), where 

U=vt eo(e,,i-l) Akk' 

(24a) 

(24b) 

(24c) 

is the polarizability dyadic of the dielectric region 
Vk. 

We return to Eq. (21a) at this stage, set x =Xk 
therein, and do the volume integrations; the result 
is the vector dyadic relation 

Ecxe.k —Einc{Xk) + ia)fM) lm,mrk {Vm Gjbn ' Jm)', 

l£k<M, (25) 

in accord with the long-wavelength approximation. 
With the aid of Eq. (24a), we rewrite Eq. (25) as 

£exc.t =Ei„ciXk) + W^MO Xm.m^k {Gkm *Pm} ,       (26a) 

and the use of Eq. (24b) yields 

£«c* =Einc{Xk) + (O^tlo Zm,m^k {Gkm- tn} • £ac.m •   (26b) 

Equation (26b) constitutes the core of the CDM 
and, for numerical work, is best rewritten as the set 
of the 3M algebraic scalar equations 

Emc{Xk) = Xm£{l.l,...Mi [Qkm'Ecxcm]', l^k^M, 

(27a) 

for the cartesian components of Ecxjn, where the 
dyadic kernel 

Qkm = 15b,, - (O^fla Gkm-tm(l-Sk„,) . (27b) 

The CDM algorithm is structurally just the same as 
the MOM algorithm, as is easily demonstrated by a 
comparison of Eqs. (27a,b) with Eqs. (14a,b). 
Hence, computational techniques for solving Eq. 
(27a) are the same as for solving Eq. (14a). 

Once all £„c.m have been obtained as the solution 
of Eq. (27a), one can use Eq. (24b) to find all p„ 
and ascertain the scattered field as the sum 

Esc»{x)=E{x)-Ei„o{x) = 

(o^fM, X„E: {1.2...M\ {G(X, X„) •p„}; XEVca,    (28) 

which relation follows from Eq. (8a), Equation (18) 
still applies for the scattered electric field in the far 
zone, but the far-zone scattering amplitude is now 
given by 

Xmc{l.2...^fi {exp(-ikou, 'X„)p„}; (29a) 

equivalently, 

Fsc4"0 = {(0^fM>/4lT) [I -M5H5] • 

Xme{l,2...M} {eXp(-ikoUs ' Xm) in ' E^„}.        (29b) 

Parenthetically, we remark here that the 
Rayleigh-Debye approximation for scattering by 
smoke agglomerates [11, 12] may be obtained by 
replacing E^cn, in Eq. (29b) by E;„,(x„). 
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6.   Scattering and Absorption 
The presence of a scatterer has two observable 

consequences insofar as the conservation of elec- 
tromagnetic energy is concerned. A portion of the 
energy radiated by the source of EiJ^x) is scattered 
in all directions by the scatterer. Another portion is 
absorbed by the scatterer and converted into other 
forms such as heat. All calculations pertaining to 
the scattered and the absorbed powers at a given 
circular frequency a are made in terms of power 
averaged over the time period ITTICO. 

Because Fxi(Ui) is of the form [I -KSHS] • ft, it fol- 
lows that Ms • Fsca(Hs) = 0, as has been mentioned 
earlier. By virtue of Eqs. (3a) and (18), we have 

Tend*oi-.„ Hx!i(xUs)= 

(VTJO) [eTip(ikox)/x] Us xFsc=,{us), (30) 

where 7jo = (/Weo)"^ is the intrinsic impedance of 
free space. These observations imply that the scat- 
tered field in the far zone is Transverse Electro- 
Magnetic (TEM) in character. 

The time-averaged scattered power per unit 
solid angle in the direction Us is defined as 

dP«a(Ks)/d/3(H,) = (l/2) 

Tendio^^, Real [x^ur{E^.{xus)xH^*(xu,)}],(31a) 

with dn(us) = sinei dft d<fh, as is customary in 
spherical coordinates, and the asterisk denoting 
the complex conjugate. After putting Eqs. (18) and 
(30) in Eq. (31a), we obtain 

dPsca(«s)/d/2(Ms) = (l/27Jo)Fsca(H0 " Fs^*(us);    (31b) 

consequently, we are able to ascertain the total 
time-averaged scattered power as the integral 

/'sca = (l/2Tio) I    d^ I   d ft sin 0s 

F^.(us)-F^*(us). (31c) 

Unless the scatterer material is intrinsically loss- 
less, there is absorption of electromagnetic energy 
in Fint. Because the scatterer is simply a dielectric 
object here, the time-averaged power absorbed in 
Fint may be computed as the volume integral 

from Poynting's theorem for monochromatic fields 
[24, Chap. 2]. After using Eq. (2a) on the right side 
of this relation, we get the result 

/'ab, = Real [(/w/2) 

//4^_ d'x {€o€.*(x)£(x) -E*(x)}] .        (32b) 

Finally, after using Eq. (12) as well as the long- 
wavelength approximation made heretofore, we are 
able to reduce this expression to the sum 

Pab,=Real [(iw/2) //f    d^;c{€o€r,,„* £„ ■£„*}] = 
' inl 

- ((0/2) Imag [X, u„{€o€r.m *E„'En. *}] .     (33) 

Because E„ • E„* is purely real, no power absorp- 
tion will take place in V„ if e,„ is purely real; in- 
deed, Pabs^O, provided  Imag [€,(jc)]=0 for all 
X e Kin,. 

Insofar as the MOM is concerned, the solution 
{E„; m = 1, 2, ..., M} of Eq. (14a) may be directly 
substituted into Eq. (33) for the computation of 
Pabs. The calculation of Pabs in the CDM is only 
slightly more complicated: the exciting fields 
{Eexcm', m = \, 2, ..., M} obtained by solving Eq. 
(27a) have to be substituted into Eq. (23c) to get 
{E„;m = 1,2,..., M}. Thus, an useful expression for 
CDM computations is 

Pabs= -(W 12) Imag [X.  Vm{£66r.m* 

where 

T„=[l + (l-e,„) {kMn,-K,)Y' .        (34b) 

The total time-averaged power extinguished by the 
scatterer region is the sum 

1 cxt   —  ^sca    '    J abs . (35) 

Pabs=Real [{iw 12) fU^^ d'xE(x)-D*(x)] 

(32a) 

Quite often, one is interested in the extinction of 
the plane wave 

Ei„c{x) =Cinc exp[ikoU\„c -x] , (36a) 

Hir^ix) = (I/TJO) Mine XCi« exp[;*(i«j„c -x] ,     (36b) 

where fine carries the units of volts per meter and 
Mine is a dimensionless unit vector such that 
emc"«inc = 0. In this case, the total time-averaged 
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power extinguished by the presence of matter in 
V\M can be estimated using the forward scattering 
amplitude as [22, Chap. 8]: 

Pcxt = (2T7/w/io) Imag [Cinc* • Fsca(Minc)]  . (37) 

Substitution of Eqs. (29a) and (36a) in this relation 
gives us 

Pen = {(0/2) Imag [:En,{£,nc*(x„)-p„}],      (38a) 

whence, 

Pc« = (<u/2) Imag [Xn{iBi„c*(x„) • t, • £c.c^}]  (38b) 

for use with the CDM. The MOM analog of Eq. 
(38b) is easily obtained by substituting Eq. (23b) 
therein; ergo, 

Pcxt = (o)eo/2) Imag [Xn{v„,(6r,m -1) 

Ei„,*(x„,) ■£„}], (38c) 

for use with the MOM. 

7.   Spherical and Cubical Subregions 
Although spheroidal and ellipsoidal subregions 

have been used [43, 44], it is commonplace in liter- 
ature to have cubical or spherical subregions. CDM 
users are more comfortable with spherical subre- 
gions, while MOM users are fond of cubical ones. 
Cubes and spheres have the same dyadic L, and in 
many MOM codes the M dyadic of a cube is esti- 
mated as that of an equi-voluminal sphere; see 
Appendix C. Without any particular loss of gener- 
ality therefore, we take the subregions to be spheri- 
cal and of identical radii in the remainder of this 
paper. 

Let the subregion Vk be the sphere of radius a 
with its center at jc*. As a result, the volume 
Vie =(47^/3)a^ the dyadic L* = (1/3)1, and the dyadic 
Mk = {2/3ko^)[{l-ihra) exp(/"A:oa)-l]I, as shown in 
Appendix C. Consequently, the MOM dyadic ker- 
nel given in Eq. (14b) reduces to 

A« = I [1 + (1/3)(1 - e,.k ){2 (1 -ik^) 

exp(/A:ufl)-3}] , (39a) 

Afan = (477/3) a'ko'O- er.„)Gk„;m^k.    (39b) 

In the same manner, the CDM dyadic kernel of Eq. 
(27b) simplifies to 

Q«=l, (40a) 

Q*m = -(o^fMi (473-/3)a^ €o{e,^ -1) 

[l-^(l/3)(l-e^,.){2(l-//:oa) 

exp(//coa) - 3}] -' Gfan; m ?=A:. (40b) 

An analysis of the self-terms is crucial to the 
understanding of the MOM and the CDM. From 
Eq. (39a) it follows that the MOM self-term can be 
broken up as 

where 

and 

Aij,={Akk+Auc}\ , 

Aide = (er,t + 2)/3 , 

(41a) 

(41b) 

i« = (2/3)(l - ea)[(1 - ikoa ) exp{ikcfi) -1] . (41c) 

Both Avk and Akk should be called self-terms; in- 
stead, it seems only Akk has been accorded that 
honor in some MOM papers, e.g., [16-19, 45]. 

The CDM self-term is somewhat obscure, being 
hidden as the polarizability dyadic tt of Eq. (24b). 
In the present instance, the polarizability dyadic 
reduces to a scalar because the subregion is spheri- 
cal; hence, 

ic = \Tk, (42a) 

where 

and 

Tk = ak/(1+Akk/Akk), (42b) 

Ok^Aira^ eo(er.* -l)/(er,* + 2) (42c) 

is the Mossotti-Clausius polarizability [46, 47] of 
the electrically small dielectric sphere. 

Let A^ofl < < 1 in Eq. (41c) and Au be evaluated 
correct to order fco^a^. Then, 

Tk =ak/{\ -ko-{a-'+2ikJ3)akl4-,reo} , (43) 

and we observe that the {2iko^/3)ak/4Treo term in the 
denominator of the right side of Eq. (43) is the 
radiative reaction term used by Draine [48] in his 
CDM formulation. More often, Akk is evaluated 
correct only to the first order in k(fl, leading to 
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Tk = ak [7], and thereby giving rise to the semi- 
microscopic flavor of this numerical approach [9]. 

8. Strong and Weak Forms 

The various approximations that can be made for 
the self-terms lead us to the strong and the weak 
forms of the MOM and the CDM [10]. In the 
strong forms (S-CDM & S-MOM), Eq. (A2-5a) is 
used to estimate the self-term {m=k)'\x\ Eqs. (13a) 
and (21b). In the Weak forms (W-CDM & W- 
MOM), Eq. (A2-7) is used in place of Eq. (A2-5a) 
for this estimation. For isotropic dielectric scatter- 
ers, the W-CDM is exemplified by Purcell and Pen- 
nypacker [7] using spherical subregions, and the 
S-CDM has become recently available [17] for the 
same problem. The S-MOM has been used for 
isotropic dielectric scatterers for many years [6, 
33], but the idea of W-MOM is of more recent 
provenance [17]. 

The W-MOM corresponds exactly to the 
W-CDM, while the S-MOM corresponds exactly to 
the S-CDM. When all subregional volumetric ca- 
pacities are very small, the S-MOM/S-CDM effec- 
tively transmutes into the W-MOMAV-CDM. 
Generally stated, therefore, it can be surmised that 
the scatterer region V\m must be broken up into a 
larger number of subregions when the W-MOM/ 
W-CDM is used than if the S-MOM/S-CDM is 
used. Comparison of S-MOM results with the 
W-CDM results, with identical partitioning of the 
scatterer region, [e.g., 16, 18, 19], in some instances 
may be like comparing apples with oranges. The 
difference between S-CDM/S-MOM and W-CDM/ 
W-MOM is solely due to the inclusion or the exclu- 
sion of the dyadic M* in the expression for A«, 
therefore computational time is marginally in- 
creased and the memory requirement negligibly, 
when one shifts from W-CDM/W-MOM to 
S-CDM/S-MOM. 

9. Spherical Subregions and Finite-Size 
Effects 

An assessment of the MOM and the CDM for 
isotropic dielectric scatterers with spherical subre- 
gions is now in order. To facilitate such a compari- 
son, we reiterate that 

A^t = {1 -I- (1 - ea)[(2/3)(l - ik^) 

exp(/)t,^)-!]}!, [S-MOM] (44a) 

A,, = {{€,,, + 2)/3}l ; [W-MOM] (44b) 

and correspondingly, 

n = (47r/3)fl' eo(ea -1)/{1 + (1 - e,jc) [(2/3) 

(1 -ifcofl) exp(j^,/i)-1]}, [S-CDM] (45a) 

Tk = 4ira^ eo(e,.k - ^)/(€,,k + 2) = <% . 

[W-CDM] (45b) 

We can evaluate the strong forms vis-a-vis the 
weak forms through the Taylor expansion of the 
ratio T/O about c, = 1, there being no need for us to 
continue the subscript k in the remainder of this 
paper. Using Eqs. (41b), (41c) and (42b), we get 
the expansion 

T/a = l+2vl[(6r-l)/3]-l- 

2yl(2yl- l)[(e.-l)/3]^ + ..., (46a) 

where A= [(l-ikua) exp(i7cofl)-l] has been used 
for convenience; and it becomes clear that the 
weak forms are poor approximations of the strong 
forms when the relative permittivity is significantly 
different from unity. 

Likewise, the Maclaurin expansion of r/a with 
respect to the size parameter koa, 

T/a = 1+ [(£,-l)/(e, +2)] (A:,^)2 + 

+ (2z73) [(€,-\)/(e, + 2)]{k,ay+ ....      (46b) 

indicates that the weak forms become increasingly 
inadequate as the size parameter of the subregion 
increases. 

Equations (46a) and (46b) tell us that strong 
forms incorporate finite-size effects meaningfully, 
while the weak forms do so trivially. This conclu- 
sion is reinforced by Figs. 2-4 that show plots of 
r/a versus the normalized radius k^ of an electri- 
cally small sphere for 6,= 1.5, 2.5 and 4.0. In these 
figures we have ensured that the maximum value of 
Arofller"^ is about 0.5. We observe-not surprisingly 
—that T is complex while a is purely real for these 
input parameters. Furthermore, in all three figures 
the ratio Ir/al lies between 1.02 and 1.03 when 
A:uflle,"^s0.5; while T/a = l for k<fi =0, of course. 
Similar conclusions can be drawn from Fig. 5, 
wherein the calculations of r/a have been reported 
for a lossy dielectric sphere with e, = 3.75-t-0.25/. 
These figures highlight the understanding on finite- 
size effects drawn from Eqs. (46a,b), and it follows 
that coarser partitioning of Ki„, may be acceptable 
when S-CDM/S-MOM is used than when W-CDM/ 
W-MOM is used. These thoughts can be validated 
by careful examination of the graphs recently 
published by Ku [19]. 
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Fig. 2. Functions [T/QT -1] (solid lines) and [Tbii/a — 1] (dashed 
lines) as functions of the size parameter lufi of a spherical sub- 
region whose relative permittivity c,= 1.5; the Mossotti-Clausius 
polarizability a = 47ra-' eu{e,-l)/(e, + 2). 

Fig. 4.   Same as Fig. 2, but €, = 4.0. 

0.03 - 
1 1 

/ 

a" 0.02 _ /_ 
H, y^ 
<D 

DC 
0.01 

n ^=rrrC-—  T  

— 

1 

0.03 - 
1 1 

9 0.02 — y   - 
lr> y^ 

15 0.01 

0 

— 

rr:::^'\—" 1 

0.006 

0.004 

CO 

I 0.002 - 

0.006 
1        / 

-                                                                                          /f- 

S 
■^  0.004 

(0 

.§  0.002 

n  \                                         1 

0.1 0.2 
koa 

Fig. 3:   Same as Fig. 2, but €, = 2.5. ng. 5.   Same as Fig. 2, but t, = 3.75 + 0.25i. 
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The strong forms discussed above are not the 
only way of introducing finite-size effects, there be- 
ing at least two more CDM algorithms available for 
that purpose. As alluded to earlier, Draine [48] 
replaced the Mossotti-Clausius polarizability by 

Tb = «/{! - (i/6TTeo)ko^a}. [D-CDM] (47) 

However, TD is fully contained in T, as we have seen 
in Eq. (43); and TD approaches a as the size 
parameter kaa becomes vanishingly small. 

The second source for the incorporation of 
finite-size effects has been the Lorentz-Mie-Debye 
analysis for scattering by a dielectric sphere [46]. 
The electromagnetic field scattered by any object 
can be described in terms of a multipole expansion 
[49]. With inspiration from Doyle [50], Dungey and 
Bohren [51] introduced finite-size effects in the 
CDM by using the lowest order Mie coefficient— 
corresponding to the electric dipole term of the 
mutipole expansion — for the polarizability in place 
of the Mossotti-Clausius polarizability a. Thus, 

W'^Hk^er"^) dC(k^) - ak^ )#(A:<KJer'«)] 

[DB-CDM] (48) 

was used in [47], with i/'(i3) = /3"' sin(/3) -cos(/3), 
#(i3) = d.A/dj8,   C{P)=-{\+ilp)   exp(i^),   and 

Using Eq. (48), it can be shown that TDB ap- 
proaches a as the normalized radius k^ becomes 
vanishingly small. This is also borne out in Figs. 
2-5, wherein the computed values of TDB/O are 
compared with those of r/a as functions of the nor- 
malized radius A:oa for 6,= 1.5, 2.5, 4.0 and 
3.75 + 0.25/. The general behavior of TUB is the 
same as of T: (i) TOB is complex even for purely real 
€i, and (ii) the ratio iTtje/al lies between 0.99 and 
1.01 when /cofl l6r"^l s 0.5 in these figures. A more 
remarkable observation is that II - Ttja/al SII - r/al; 
in other words, TDB is closer to the Mossotti- 
Clausius polarizability a than T is. 

Draine [48] and Dungey and Bohren [51] 
concluded from their numerical investigations that 
D-CDM and DB-CDM, respectively, generally 
provide scattering results superior to those from 
W-CDM. This does not come as a surprise because 
the   self-terms  in  W-CDM   (or  W-MOM)   are 

estimated with the least accuracy. On the other 
hand, although it is difficult to provide general 
enough conclusions for the adequacy of either 
D-CDM or DB-CDM vis-a-vis that of the S-CDM/ 
S-MOM, it is safe to state that any claims of superi- 
ority—based purely on the estimation of some 
gross parameter, such as the total scattering cross- 
section—are debatable. Indeed, the only good way 
of deciding on the superiority of S-CDM, D-CDM 
or DB-CDM is by making calculations for the 
specific problem under consideration: The scat- 
terer region should be subdivided into different 
numbers of subregions, and computed data from 
the various algorithms for different partitioning 
schemes compared for the property of interest [52- 
54]. 

The refractive index of soot at visible frequencies 
has been measured by a variety of experimental 
techniques, and has been found to be dependent 
on the source materials [55]. We conclude with 
calculations of r/a and TDBIU for er = 2.40 + 2.38j, 
corresponding to a complex refractive index of 
1.7 + 0.7/, in Fig. 6. It is not difficult to gather from 
this figure that conclusions drawn in the previous 
paragraphs of this section apply to light scattering 
by soot agglomerates. 

0.03 

Fig. 6.   Same as Fig. 2, but t, = 2.40 + 2.38/. 
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10.   Appendix A.  The Volume Integral 
Equation for the Electric Field 

that depends on ihe forcing function, J(x) being the 
forcing  function  here,  and  the complementary 
function that holds when the forcing function is 

The free space Green's function G(x,x') satisfies        identically zero everywhere. The right side of Eq. 
the dyadic differential equation 

VxVxG(x,x')-ko^G(x,x') = 

\S(x-x'), (AM) 

where S(x-x') is the Dirac delta function. Since 
J(x') is not  a function of x, it follows that 
Vx[G(x,x')-Jix')] = [VxG(x,x')]-J(x'y, 
hence, 

VxVx[G(x,x')'J(x')]- 

ko' [G(x,x')-J(x')] = l-J(x') S(x-x').   (Al-2) 

We multiply both sides of this equation by iwiio and 
integrate over all JC' to get 

{VxVx\-hH)-n!^.,,^^'x- 

[io}^G{x,x')-J{x')] = 

icotio ///,.„, d'x'Jix-) 8{x -X-) ,       (Al-3) 

whence, 

(Al-6) is the particular solution of Eq. (7), which 
has the complementary function ^inc(:i:) satisfying 

^x VxEi^(x)-kd'Ei„,(x)=0; 

*6Fi„, + Fc«. (Al-7) 

Hence, the complete solution of Eq. (7) is 

Eix) -=Ei^{x) + i(oixo ISS^.  dy 
" oit 

\G{x, x') -Jix ')];   X e Fi„, + Kx,,       (Al-8) 

which can be easily re-expressed as Eq. (8a). 

11.   Appendix B.   The Self-Integral 

The integral under consideration is given as 

a{x,) = lfLd\' G{x„x-)-b{x') ,        (A2-1) 

{VxVx\-Wl)-I!L,^^d'x' where Kis the region bounded by the surface 5, as 
shown in Fig. 7, G(x, x') is given by Eq. (8c), and 

[/w/xo G(x, x') 'Jix')] =-ia>tu,J{x).      (Al-4)        the point jco lies inside V. Because G{x,x') is of the 
order l/lr -x'l' for Ix -x'!= 0, and becomes singu- 
lar at x=x', this integral has to be carefully 

Now by comparing Eqs. (7) and (Al-4), it is not too        treated. 
arduous to convince ourselves that 

£(x)=/6,Mo//4.,^. d'x' [G(x,x')-J{x')\, 

OsUrl<oo. (Al-5) 

Remembering that for the present purposes7(x) is 
null everywhere except in Ki„„ we next obtain 

E{x)=i<0H^ SS!^,^ d'x' [G{x,x') -Jix')]; 

XBV;„+V,„. (Al-6) 

The solution of every linear differential equation 
can be divided into two parts: the particular solution 

As shown by Fikioris [56], we can transform Eq. 
(A2-1) to 

a(xo) = nf^_^J'x' [G{x„,x')-bix')] + 

fUy„ d'x' [G(xo,x')-*(x')-G,(xo,x')-*(*o)] 

-{\lh^)fLdh'u„' 

[(x' -Xo)/47rlx' -Xol'] • * (x«) , (A2-2) 

where 

G,(x, x' ) = (l/^o') V V[l/47rlx-x'l]     (A2-3) 
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is an auxiliary dyadic related to the Green's func- 
tion for Poisson's equation [10]; Vo is an exclusion- 
ary region bounded by the surface So, as shown in 
Fig. 7; u„ is the unit normal to 5o, pointing away 
from Vo, at the point x'^Sa. The exclusionary re- 
gion Vo should be small but not necessarily in- 
finitesimal, and it must be wholly contained within 
V. Moreover, there is no requirement that So be a 
miniature copy of S. 

The use of the long-wavelength approximation 
b{x)sb(xo) for all x £ Freduces Eq. (A2-2) to 

a(xo)=nSy_y„d\' [G(xo,x')'b(xo)] + 

JSSyd'x'{[Q{xo,x')-Gsixo,x')]-b{xo)} 
■'Vo 

-{ykti')Sf^d'x'u„'[{x'~Xo)/ 
•"So 

4-ir\x'-Xo\']-b(xQ) (A2-4) 

Since V is electrically small, but Vo need not be 
infinitesimal, we set V = Vo and 5 = So to have 

a (xo) = [M - 0/U) L] • b(xo), (A2-5a) 

where 

M= ISSyd'x' [G(xo, X') - a (xo, X')],    (A2-5b) 

L=Sf^d^'u„'[(x'-XOVATTIX'-Xo\'] .   (A2-5C) 

The evaluation of M can be accomplished nu- 
merically for regions of different shapes using the 
coordinate-free (i.e., non-indicial) representations 
[24, Chap. 9] 

G(x, x') = [(\-uxUx) + (i/ko\X\)il + ilko\X\) 

(1-3 «A«A-)] [exp {iko \X-X'\)I^TT\X-X'\\, 

\X\i^Q, (A2-6a) 

Gs{x,x') = {ilh\X\f (1-3 uxUx)\IA'u\X\- 

\X\^Q, (A2-6b) 

v-v. 
VoE 

Fig. 7.   For the evaluation of the integral in Eq. (A2-1) when x„ e Fand 
x'E.V. 
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where A^=x -x' and ux=XI\X\. The evaluation of 
the depolarization dyadic L is equally easy on a dig- 
ital computer, and analytical expressions for L are 
available for the quite general ellipsoidal shapes 
[57]. 

If V is extremely small in electrical size, the sim- 
plification 

a{xo) = {\lko^)L'b{xo) (A2-7) 

is permissible and leads to the weak forms of the 
MOM and the CDM. 

12.   Appendix C:   The Self-Dyadics for 
Spherical and Cubical Regions 

Let the region V in Appendix B be a sphere with 
radius a and center atxo. Without loss of generality 
due to the translational invariance of the right 
sides of Eqs. (A2-6a,b), we setaro=0. Furthermore, 
we set x' = r' («i sinfl' COS<^'+M2 sinfl' sin0'+«3 
COS0'), where lx'l=r', («i,«2,«3) is the triad of 
cartesian unit vectors, while (r', 6',^') represent 
the corresponding spherical coordinate system lo- 
cated at the center of the sphere. Hence, 

!SSyA'x'{'}=\  dr'r'^ I   dd'sme'\'d4>'{-}> 
JQ JO JO 

ff.dhc'{■} =a^ I  de-sine' I   d<f)'{•}. 
Jo Jo 

Now, 

I   de' sine' f    d<f>U}aix = 
Jo Jo 

I   d0'sine' [    d0'{(«, sine'cos0' + 
Jo Jo 

ui sine' sin<^' + K3 cose')(ui sine' cos^'-l-«2 

sine' sin<^'-F«3 cose')} = 

I   de' sine' {(«iHi + «2«2) sin^e-l-2«3«3 cos^e'} = 
JQ 

(47r/3) (K,wi+«2U2+H3«3) = (47r/3)I,       (A3-1) 

IT 

and 

[  de'sine' f   d<^' 1 = 4771 (A3-2) 
Jo Jo 

likewise. It follows that 

M 
r2jr J'fl fir r 

dr' r'^      de' sine'       d<t>' 
0 Jo J 0 

{[GiO,x')-G,(0,x')]} 

= f  dr' r'^ [(21/3) exp(/A:or')/r'] 
Jo 

= I (2/3ito') {{\-ikyfi) exp{ik^)-1] .     (A3-3) 

In order to evaluate L for a spherical region, we 
note that u„'=x'/\x'\ where jc' e 5; ergo, \x'\=a, 
and 

Ll,phere=fl^ |   de' sine' |    d<^' 
Jo Jo 

{«„'jc'/477a'} = (l/4-ir) 

f   de'sine' I    d<^'{(«i sine'cos<^' + 
Jo Jo 

«2 sine' sin<^'-F«3 cose')(«i sine' cos<^'-l- 

«2 sine' sm<(>' +U3 cose')} 

= (l/47r)(4Tr/3)l = (l/3)l, (A3-4) 

after using Eq. (A3-1). 
If the region V in Appendix B were to be a cube 

of side b, we would get 

Llc.be = (1/3) I, (A3-5) 

the same as that for a sphere. No expression exists 
for the dyadic M for a cube in closed form; however, 
it is commonplace in MOM practice to use the 
value for an equivoluminal sphere. Thus, 

Micobe = I (2/3A:o') {[1-ikJ) (3/4ir)"^] 

exp[«^,*(3/4)''']-l}, (A3-6) 
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because [(3/477)"^ b] is the radius of a sphere hav- 
ing the same volume as the cube of side b. 
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