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A method to analyze powder-diffraction 
line broadening is proposed and ap- 
plied to some novel high-Tc supercon- 
ductors. Assuming that both 
size-broadened and strain-broadened 
profiles of the pure-specimen profile 
are described with a Voigt function, it 
is shown that the analysis of Fourier 
coefficients leads to the Warren-Aver- 
bach method of separation of size and 
strain contributions. The analysis of size 
coefficients shows that the "hook" ef- 
fect occurs when the Cauchy content of 
the size-broadened profile is underesti- 
mated. The ratio of volume-weighted 
and surface-weighted domain sizes can 
change from —1.31 for the minimum 
allowed Cauchy content to 2 when the 
size-broadened profile is given solely by 
a Cauchy function. If the distortion co- 
efficient is approximated by a harmonic 
term, mean-square strains decrease lin- 
early with the increase of the averaging 
distance. The local strain is finite only 
in the case of pure-Gauss strain broad- 
ening because strains are then indepen- 
dent of averaging distance. Errors of 
root-mean-square strains as well as do- 
main sizes were evaluated. The method 
was applied to two cubic structures 
with average volume-weighted domain 
sizes up to 3600 A, as well as to tetrag- 
onal and orthorhombic (La-Sr)2Cu04, 
which exhibit weak line broadenings 
and highly overlapping reflections. 
Comparison with the integral-breadth 

methods is given. Reliability of the 
method is discussed in the case of a 
cluster of the overlapping peaks. The 
analysis of La2Cu04 and 
Lai.»5Mo.i5Cu04(M = Ca, Ba, Sr) high-Tc 
superconductors showed that micro- 
strains and incoherently diffracting do- 
main sizes are highly anisotropic. In the 
superconductors, stacking-fault probabil- 
ity increases with increasing Tc; micro- 
strain decreases. In La^CuOA, different 
broadening of (hOQ) and (040) reflec- 
tions is not caused by stacking faults; it 
might arise from lower crystallographic 
symmetiy. The analysis of Bi-Cu-0 
superconductors showed much higher 
strains in the [001] direction than in 
the basal a -b plane. This may be 
caused by stacking disorder along the 
c-axis, because of the two-dimensional 
weakly bonded BiO double layers. 
Results for the specimen containing 
two related high-rc phases indicate a 
possible mechanism for the phase trans- 
formation by the growth of faulted 
regions of the major phase. 
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Glossary 

a, b, c, m, m', 
U, V, W, 
U', V, W 
i,x,z 
A 
fl3 

D 

General constants 
General constants 
General constants 
General variables 
Fourier coefficient 
Edge of orthorhombic cell, 
orthogonal to diffracting planes 
Domain size orthogonal to 
diffracting planes 
Interplanar spacing 
Upper limit of strain 

FWHM Full width at half maximum of 
profile 

f.F Pure-specimen (physically) 
broadened profile and its 
Fourier transform 

&G Instrumentally broadened 
profile and its Fourier transform 

h,H Observed broadened profile and 
its Fourier transform 

hkl Miller indices 
I Intensity 
Jc Critical superconducting current 

density 
K Scherrer constant 
k Pc/i'ir^'^ Pc), characteristic 

integral-breadth ratio of a Voigt 
function 

L naj, column length (distance in 
real space) orthogonal to 
diffracting planes 

I Order of reflection 
MSS Mean-square strains 
N Average number of cells per 

column 
n Harmonic number 
P Column-length distribu- 

tion function 
R Relative error 
RMSS Root-mean-square strains 
s 2sin e/X = Vd, variable in 

reciprocal space 
Tc Critical superconducting 

transition temperature 
w Observation weight 
Z Displacement of two cells in a 

column 
a Stacking-fault probability 
a' Twin-fault probability 
P )3(20)cos0o/A, integral breadth 

in units of 5(A"') 
7 Geometrical-aberration profile 
S Fraction of oxygen atoms 

missing per formula unit 
{e\L)) Mean-square strain, orthogonal 

to diffracting planes, averaged 
over the distance L 

V "Apparent strain" 
e Bragg angle 
eo Bragg angle of Kai reflection 

maximum 
A 

CO 

X-ray wavelength 
Span of profile in real space 
Wavelength-distribution profile 
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Superscripts 

D       Denotes the distortion-related parameter 
S        Denotes the size-related parameter 

Subscripts 

C       Denotes Cauchy component of Voigt 
function 

D       Denotes distortion-related parameter 
/        Denotes pure-specimen (physically) 

broadened profile 
G       Denotes Gauss component of Voigt function 
g        Denotes instrumentally broadened profile 
h        Denotes observed broadened profile 
S       Denotes size-related parameter 
s        Denotes surface-weighted parameter 
V        Denotes volume-weighted parameter 
wp     Denotes weighted-residual error 

Operators 

*        Convolution: g(x)*f(x) = Sg(z)f(jc -z)dz 

1.   Introduction 

X-ray diffraction is one of the oldest tools used 
to study the structure of matter. In 1912, Laue [1] 
demonstrated in a single experiment that crystals 
consist of regularly repeating elementary building 
blocks, and that x rays show wave nature. Since 
then, x-ray diffraction has become one of the basic 
and the most widely used methods for characteriza- 
tion of a broad range of materials. 

1.1   Powder X-Ray Diffraction 

Many materials are not available in a monocrys- 
tal form. Moreover, powders and bulk materials 
are more easily obtainable, practical, and less ex- 
pensive. A powder-diffraction experiment requires 
an order-of-magnitude shorter time than a 
monocrystal experiment. Thus, powder diffraction 
is used very often. However, because data are of 
lower quality and peaks are generally highly over- 
lapped at higher diffracting angles, until 25 years 
ago powder diffraction was mostly used for qualita- 
tive phase analysis. Through advances by Rietveld 
[2, 3], powder-diffraction patterns become used in 
structure analysis, so-called structure (Rietveld) re- 
finement. Development of fast on-line computer- 
controlled data acquisition has allowed a quick 
analysis of the whole diffraction pattern. Table 1 
summarizes uses of different diffraction line-pro- 
file parameters in various types of analyses (after 

Howard and Preston [4]). We shall focus on line- 
profile analysis to obtain information about mi- 
crostructural properties of materials: microstrains 
in the lattice and size of incoherently diffracting 
domains in crystals. 

Table 1.   Use of diffraction line-profile parameters 

Position   Intensity   Shape   Shift   Method   Identification 

V Indexing    Cell parameters 

V V Phase        Identification 
analysis     and quantity 

V     Peak-shift Internal strain 
analysis      (residual stress) 

V V Profile       Microstrain, 
analysis     crystallite size, 

lattice defects 

V V V Structure   Atomic posi- 
refine-       tions, Debye- 
ment Waller factors, 

others 

1.2   Diffraction-Line Broadening 

Diffraction from crystal planes occurs at well- 
defined angles that satisfy the Bragg equation 

\ = 2dhkisin6iM. (1) 

Theoretically, intensity diffracted from an infinite 
crystal should consist of diffraction lines without 
width (Dirac delta functions) at some discrete dif- 
fraction angles. However, both instrument and 
specimen broaden the diffraction lines, and the ob- 
served line profile is a convolution of three func- 
tions [5, 6] 

h (26) = [io)*y)*f] (20) + background.        (2) 

Wavelength distribution and geometrical aberra- 
tions are usually treated as characteristic for the 
particular instrument (instrumental profile): 

gi2e) = ico*y)i2d). (3) 

To obtain a specimen's microstructural parameters, 
the specimen (physically) broadened profile/must 
be extracted from the observed profile h. 

Origins of specimen broadening are numerous. 
Generally,   any  lattice   imperfection  will  cause 
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additional diffraction-line broadening. Therefore, 
dislocations, vacancies, interstitials, substitutions, 
and similar defects manifest themselves through 
the lattice strain. If a crystal is broken into smaller 
incoherently diffracting domains by dislocation 
arrays, stacking faults, twins, or any other extended 
imperfections, then domain-size broadening 
occurs. 

13   Superconductivity and Defects 

Since discovery of the ~90 K superconductor 
YBa2Cu307-« [7], it became clear that the novel su- 
perconductivity relates closely to defects in struc- 
ture. Both point and extended defects relate 
closely to the physical properties of superconduc- 
tors [8, 9]. Defects play an important role both in 
the critical superconducting transition temperature 
Tc [10] and in the critical current density /c [H]. 
Some theories also connect Tc with lattice distor- 
tion [12], with strains around dislocations [13], and 
with interaction of current carriers and the elastic- 
strain field [14]. 

The Tc of YBajCuaOv-ji, for instance, depends 
strongly on the ojq^gen stoichiometry, that is, num- 
ber of oxygen vacancies in the charge-reservoir lay- 
ers and their arrangement (see Jorgensen [15] and 
references therein). Superconductivity in La2Cu04 
appears either by the partial substitution of La with 
Sr, Ba, Ca [16, 17], or by the introduction of inter- 
stitial oxygen defects in the La202 layer [18]. Some 
substitutions, especially on Cu sites, destroy the su- 
perconductivity. 

For classical superconductors, /c can be drasti- 
cally increased by introducing defects to pin mag- 
netic flux vortices. The layered structure of high-Tc 
cuprates causes the vortices to be pinned in the 
form of pancakes, rather than long qflinders [19]. 
Because of relatively small coherence length of 
vortices, pinning can not be increased in the classi- 
cal way by introducing second-phase precipitates. 
Instead, submicroscopic lattice defects caused by 
local stoichiometry fluctuations, vacancies, substi- 
tutions, Guinier-Preston zones, and the strain field 
of small coherent precipitates are much more ef- 
fective. Especially in highly anisotropic Tl-based 
and Bi-based cuprates, substitutions are very suc- 
cessful. Even a 5% Mg for Ba substitution in 
Tl2Ba2CaCu208 increases /c by 25% [20]. 

1.4   Purpose of the Study 

We know that defects have a very important role 
in novel high-Tc superconductivity. Defects can be 
characterized and quantified by analyzing the x-ray 

diffraction broadening. Basically, there are two ap- 
proaches: 

(i) The Stokes deconvolution method [21] com- 
bined with the Warren and Averbach analysis [22] 
give the most rigorous and unbiased approach be- 
cause no assumption about the analytical form of 
diffraction-peak shape is required. However, when 
peaks overlap and specimen broadening is com- 
parable with the instrumental broadening, the 
Stokes method gives unstable solutions and large 
errors or can not be performed at all. To obtain 
reliable results, proper corrections have to account 
for truncation, background, sampling, and the stan- 
dard's errors [23]. 

(ii) The simplified integral-breadth methods 
(summarized by Klug and Alexander [24]) are 
more convenient and easier to use, but they require 
that size and strain broadening are modeled by ei- 
ther Cauchy or Gauss functions. Experience has 
shown, however, that in most cases both size and 
strain profiles can not be satisfactorily represented 
with either function. However, there is some theo- 
retical and experimental evidence that the effect of 
small-domain-size broadening produces long pro- 
file tails of the Cauchy function, and that the lat- 
tice-strain distribution is more Gauss-like. 
Langford [25, 26] used the convolution of Cauchy 
and Gauss functions (Voigt function) to model 
specimen broadening. However, the results ob- 
tained by the integral-breadth and Warren-Aver- 
bach analyses are usually not comparable; the first 
methods give volume-weighted domain sizes and 
upper limit of strain; the second gives surface- 
weighted domain sizes and mean-square strain av- 
eraged over some distance perpendicular to 
diffracting planes. 

Unfortunately, most high-Tc superconductors 
show weak peak broadening (because of high an- 
nealing temperatures) and strong peak overlapping 
(because of relatively complicated crystal struc- 
tures), which makes it very difficult to apply the 
Stokes deconvolution method to extract pure speci- 
men broadening. The aim in this study is twofold: 

(i) To develop a reliable method for analysis of 
a pattern with highly overlapping reflections and 
weak structural broadening, and to compare it with 
the previously described approaches. It will be 
shown that the Voigt-function modeling of the 
specimen broadening concurs with the Warren- 
Averbach approach. 

(ii) To apply the method to the same high-Tc 
superconductors and conclude how much informa- 
tion about defects can be extracted from analysis of 
the x-ray diffraction broadening. 
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2.   Previous Studies 
2.1   Size and Strain Broadening 

Some important methods to extract specimen 
size and strain broadening and information about 
domain sizes and strains will be reviewed briefly. 
An excellent review about Fourier methods and in- 
tegral-breadth methods is given by Klug and Alex- 
ander [24]. A survey of single-line methods was 
authored by Delhez, de Keijser, and Mittemeijer 
[27]. The use of variance (reduced second moment 
of the line profile) in the analysis of broadening 
will not be treated here. Wilson described the con- 
tributions to variance by crystallite size [28] and 
strain [29]. 

2.1.1 Determination of the Pure Specimen- 
Broadened Profile As mentioned in Sec. 1.2, be- 
fore the specimen's size and strain broadening can 
be obtained, the observed profile must be cor- 
rected for instrumental broadening. Most used 
methods are the Fourier-transform deconvolution 
method [30, 21] and simplified integral-breadth 
methods that rely on some assumed analytical 
forms of the peak profiles. The iterative method of 
successive foldings [31, 32] is not used extensively, 
and will not be considered here. 

Deconvolution Method of Stokes From Eqs. (2) 
and (3), it follows that deconvolution can be per- 
formed easily in terms of Fourier transforms of re- 
spective functions: 

F(n) = =H(nl 
G(ny (4) 

Hence, the physically broadened profile / is re- 
trieved from the observed profile h without any as- 
sumption on the peak-profile shape (see Fig. 1). 
This method is the most desirable approach be- 
cause it is totally unbiased. However, because of 
the deconvolution process, there are many prob- 
lems. Equation (4) may not give a solution if the 
Fourier coefficients of the / profile do not vanish 
before those of the g profile. Furthermore, if physi- 
cal broadening is small compared with instrumen- 
tal broadening, deconvolution becomes too 
unstable and inaccurate [33, 34]. If the h profile is 
20% broader than the g profile, this gives an upper 
limit of about 1000 A for the determination of ef- 
fective domain size [34]. Regardless of the degree 
of broadening, deconvolution produces unavoid- 
able profile-tail ripples because of truncation ef- 
fects. To obtain reliable results, these errors have 
to be corrected, along with errors of incorrect 
background, sampling, and the standard specimen 

[23, 35, 36]. The largest problem, however, is peak 
overlapping. If the complete peak is not separated, 
the only possible solution is to try to reconstruct 
the missing parts. That would require some as- 
sumption on the peak-profile shape, that is intro- 
duction of bias into the method. The application of 
the Stokes method is therefore limited to materials 
having the highest crystallographic symmetry. 

dh(x) 

Fig. 1. Observed profile n is a convolution of the instrumental 
profile g with the specimen profile /. Adapted from Warren 
[59]. 

Integral-Breadth Methods The basic assumption of 
these methods is that diffraction profiles can be ap- 
proximated with some analytical function. In the 
beginning, two commonly used functions were 
Gauss 

/(x)=/(0)exp[-,7|^] (5) 

and Cauchy 

/(■>=) =/(0) 
4+; 

(6) 

From the convolution integral, it follows easily that 

Ac = ftc + iE^c (7) 

for Cauchy profiles, and 

l3lG = lih + Ph (8) 

for Gauss profiles. However, the observed x-ray 
diffraction line profiles can not be well represented 
with a simple Cauchy or Gauss function [24, 37]. 
But they are almost pure Cauchy at highest angles 
because the dominant cause of broadening be- 
comes the spectral distribution in radiation [24]. 
Different geometrical aberrations of the instru- 
ment are difficult to describe with simple analytical 
functions. In the case of closely Gaussian broaden- 
ing of y, following Eq. (3), the instrumental line 
profile can be best described by a convolution of 
Cauchy and Gauss functions, which is the Voigt 
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function. Experience shows that the Voigt function 
[38] (or its approximations, pseudo-Voigt [39, 40] 
and Pearson-VII [41, 42]) fits very well the ob- 
served peak profiles [25, 43, 37]. The Voigt func- 
tion is usually represented following Langford [25] 

nx)=m{^)Rc[ctn(^ + ik)].   (9) 

Here, the complex error function is defined as 

erfi(z) = exp( -z^) [1 - erf( -»)]. (10) 

Its evaluation can be accomplished using Sundius. 
[44] or Armstrong [45] algorithms with eight-digit 
accuracy. Useful information about the Voigt func- 
tion can be found in papers of Kielkopf [46], As- 
thana and Kiefer [47], and de Vreede et al. [48]. 
Figure 2 presents a Voigt function for different val- 
ues of Cauchy and Gauss integral breadths. 

causes diffraction-line broadening 

1.2 

Pc=0.05; pc=0.05 

Pc = 0.1;pc=0.01 

PG=0.01;PC=0.1 

28.3' 
26 

Fig. 2.   Voigt functions for different values of Cauchy and 
Gauss integral breadths. Adapted from Howard and Preston [4]. 

Integral breadth of the Voigt function is expressed 
through its constituent integral breadths [49] 

'*    '^   erfc(A:) (11) 

Here, erfc denotes the complementary error func- 
tion. 

Because convolution of two Voigt functions is 
also a Voigt function, integral breadths are easily 
separable conforming to Eqs. (7) and (8). 

2.1.2 Separation of Size and Strain Broadening 
After removing the instrumental broadening from 
the observed line profile, it is possible to analyze 
the pure-specimen (physically) broadened line pro- 
file, to consider the origins and amount of broad- 
ening. 

In 1918 Scherrer [50] recognized that break- 
ing the crystal into domains smaller than ~1000 A 

<Z)>v = 
KX 

/3(20) cos9 (12) 

The constant K depends on the crystallite shape 
[51,52,53,54,55,56], but generally is close to unity. 
The main characteristic of size broadening is that it 
is independent of the reflection order, that is, inde- 
pendent of diffraction angle. 

Most of the work on x-ray diffraction line broad- 
ening was done on metals and alloys. It is widely 
accepted that plastic deformation in metals pro- 
duces dislocation arrays, which divide crystallites 
into much smaller incoherently scattering domains. 
These dislocations produce strains within the do- 
mains, causing strain broadening. It was elaborated 
in Sec. 1.2 that any lattice imperfection (vacancies, 
interstitials, and substitutions) would broaden the 
diffraction peaks. These effects would be inter- 
preted in the frame of this theory as a strain broad- 
ening, too. Stokes and Wilson [57] defined 
"apparent strain" as 

Tj=/3(20)cot0. (13) 

Strain broadening is angle dependent. Therefore, 
the angle dependence of the line broadening gives 
a possibility to distinguish between contributions of 
size and strain. However, when we speak of size 
and strain broadening, they may include other con- 
tributions. For instance, stacking faults and twins 
will contribute to broadening similar to size effects. 

Warren-Averbach Method This method was devel- 
oped originally for plastically deformed metals, but 
since its introduction [58, 22] it found successful 
application to many other materials. The method is 
extensively described in Warren's publications [59, 
60]. Each domain is represented by columns of 
cells along the 03 direction [61] (see Fig. 3). The 
crystal has orthorhombic axes with the direction 03 
normal to the diffracting planes (00/). The experi- 
mentally observable diffraction power may be ex- 
pressed as a Fourier series 

/(20)=-^  2 An expilvina^s).        (14) 

Here, experimentally measurable coefficients A„ 
are 

N„ 
A„ =T^ <exp(2'm7Z„)). (15) 
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m 3 

^i 

m I 

Fig. 3.   Representation of the crystal in terms of columns of 
cells along the a^ direction [59], 

The A„ coefficients are the product of two terms. 
The first term depends only on the column length 
(size coefficient); the second depends only on dis- 
tortion in domains (distortion coefficient): 

An —An An   • 

N„ 
;/lf = <exp(2Tr//Z„)). 

(16) 

(17) 

It is more convenient to express the distortion coef- 
ficient in terms of the strain component. If L =«a3 
is the undistorted distance between a pair of cells 
along direction 03, and distortion changes distance 
by 4L = a^Zn, the component of strain in the as 
direction (orthogonal to reflecting planes) aver- 
aged over distance L can be defined as (L) = A(L)/ 
L. Because oi/l^d, interplanar spacing, the 
distortion coefficient can be rewritten 

/I°(L) = {exp(2Tr/Le(L)/d)). (18) 

To obtain the strain component, it is necessary to 
approximate the exponential term. For not too 
large L 

{exp(2mLe(L)/d) 

«exp(-2Tr^L2<e2(L))/d^). (19) 

This relationship is exact if the distributions of 
e(L) for all L values follow the Gauss function and 
is generally true as far as terms in e^(L) because 

these distributions are usually sufficiently symmet- 
rical [57]. Now, Eq. (16) can be approximated as 

InA {L)=lnA\L)- {2TT\e\L))LW).       (20) 

Warren and Averbach [22] derived this relation- 
ship in a similar way. It separates size and strain 
contributions to the broadening, and allows for 
their simultaneous evaluation. 

If the size coefficients are obtained by applica- 
tions of Eq. (20), it is possible to evaluate the aver- 
age surface-weighted domain size and the 
surface-weighted column-length distribution func- 
tion [59]: 

idAHL)\     ^ 1_ 

Ps(L) dMU) 
dL^ 

(21) 

(22) 

Figure 4 shows how (D), can be obtained from 
both the size coefficients ^^(L) and the column- 
length distribution function. 

Fig, 4. Surface-weighted domain size is determined: (a) by the 
intercept of the initial slope on the L-axis; (b) as a mean value 
of the distribution function. 

Multiple-Line Integral-Breadth Methods To sepa- 
rate size and strain broadening by using integral 
breadths, it is necessary to define the functional 
form for each effect. In the beginning, size and 
strain contributions were described by Cauchy or 
Gauss functions. Using Eqs. (12) and (13) on the s 
scale, and additive relations for the integral 
breadths following Eqs. (7) and (8) 

1 
j8 =77vr + 2es       (Cauchy-Cauchy),       (23) 

/8=T^ + ^y-       (Cauchy-Gauss),      (24) 
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^^=■7^ + 4e^s^       (Gauss-Gauss).       (25) 

Here, e = Tj/4»4d/d is the upper limit for a strain. 
Equation (24) uses the Haider and Wagner [62] 
parabolic approximation for the integral breadth of 
the Voigt function expressed by Eq. (11) : 

/3 \I3) (26) 

Experience shows, however, that neither Cauchy 
nor Gauss functions can model satisfactorily size or 
strain broadening in a general case. Langford [26] 
introduced the so-called multiple-line Voigt-func- 
tion analysis. Both size-broadened and strain- 
broadened profiles are assumed to be Voigt 
functions. Using Eqs. (12) and (13), it follows sym- 
bolically for Cauchy and Gauss parts that 

j8c = i3sc+j8Dcs ; 

ph = Plc + plcs^ 

(27) 

(28) 

This approach disagrees with the Warren- 
Averbach analysis, that is, the two methods give 
different results (see Sec. 4.4) [63, 64]. 

Single-Line Methods There are cases where only 
the first order of reflection is available or higher- 
order reflections are severely suppressed (ex- 
tremely deformed materials, multiphase com- 
posites, catalysts, and oriented thin films). Many 
methods exist to separate size and strain broaden- 
ing from only one diffraction peak. However, it was 
stated in Sec. 2.1.2 that the different size and strain 
broadening angle dependence is a basis for their 
separation; hence, using only one diffraction line 
introduces a contradiction. Consequently, single- 
line methods should be used only when no other 
option exists. The single-line methods can be di- 
vided in two main parts: Fourier-space and real- 
space methods. Fourier-space methods are based 
on the Warren-Averbach separation of size and 
strain broadening following Eq. (20). The func- 
tional form of {E^(L)) is assumed either to be con- 
stant [65,66,67,68], or assumed to depend on L as 
{e\L))=c/L [69,70,71,72]. Then, Eq. (20) can be 
fitted to few points of A(L) for the small averaging 
distance L, to obtain size and strain parameters. 
All Fourier-space methods have the serious prob- 

lem that the Fourier coefficients .,4 (L) are usually 
uncertain for small L, because of the so-called 
"hook" effect [60] (see Sec. 4.2). 2:occhi [73] sug- 
gested that fitting the straight line through the first 
derivatives of the Fourier coefficients, instead of 
through the coefficients themselves, would solve 
the "hook"-effect problem. 

All real-space methods [74,75,76] are based on 
the assumption that the Cauchy function deter- 
mines size and that the Gauss function gives strain. 
The most widely used method of de Keijser et al. 
[76] gives size and strain parameters from Cauchy 
and Gauss parts of the Voigt function, respectively: 

P)v=^; 

e=^ 
2s 

(29) 

(30) 

2.2   Diffraction-Line-Broadening     Analysis     of 
Superconductors 

In this field, very few studies exist. Williams et 
al. [77] reported isotropic strains in YBa2Cu307-« 
powder by the simultaneous Rietveld refinement of 
pulsed-neutron and x-ray diffraction data. Using a 
GSAS Rietveld refinement program [78], both size 
and strain broadening were modeled with the 
Gauss functions for the neutron-diffraction data 
[79, 80], and with the Cauchy functions for the x- 
ray diffraction data (modified method of Thomp- 
son, Cox, and Hastings [81]). Interestingly, both 
the neutron and x-ray data gave identical values for 
the isotropic strain (0.23%) and no size broaden- 
ing. Singh et al. [82] studied internal strains in 
YBa2Cu307-« extruded wires by pulsed-neutron 
diffraction. They separated size and strain parame- 
ters by means of Eq. (25) (Gauss-Gauss approxi- 
mation). Size broadening was found to be 
negligible, but (isotropic) microstrains range from 
0.05% for the coarse-grained material to 0.3% for 
the fine-grained samples. Eatough, Ginley, and 
Morosin [83] studied Tl2Ba2Ca2Cu30io (Tl-2223) 
and Tl2Ba2CaCu208 (Tl-2212) superconducting thin 
films by x-ray diffraction. Using the Gauss-Gauss 
approximafion, they found strains of 0.14-0.18% in 
both phases, and domain sizes of 1200-1400 A for 
Tl-2212, but 500 A for Tl-2223. 

We are aware of only two more unpublished 
studies [84, 85] involving size-strain analysis in 
high-Tc superconductors. The probable reason is 
that any analysis is very difficult because of weak 
line broadening and overlapping reflections. This 
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precludes application of reliable analysis, such as 
the Stokes deconvolution method with the Warren- 
Averbach analysis of the broadening. Instead, sim- 
ple integral-breadth methods are used, which gives 
generally different results for each approach. 
Moreover, for x-ray diffraction broadening, appli- 
cation of the Gauss-Gauss approximation does not 
have any theoretical merit, although reasonable 
values, especially of domain sizes, may be obtained 
[86]. We showed [87,88,89] that reliable diffrac- 
tion-line-broadening analysis of superconductors 
can be accomplished and valuable information 
about anisotropic strains and incoherently diffract- 
ing domain sizes obtained. 

3.   Experiment 
3.1   Materials 

The materials used for this study were tungsten 
and silver commercially available powders with 
nominal grain sizes 4-12 ijim, La2-xSriCu04(jc = 0, 
0.06, 0.15, 0.24) powders, Lai^Mo.i5Cu04(M = Ca, 
Ba) powders, Bi2Sr2CaCu208 (Bi-2212) sinter, 
(BiPb)2Sr2Ca2Cu30io(Bi,Pb-2223) sinter, and 
(BiPb)2(SrMg)2(BaCa)2Cu30io (Bi,Pb,Mg,Ba-2223) 
sinter. 

Powders with nominal compositions 
La2-xSr,CuO4(!c=0, 0.06, 0.15, 0.24) and 
Lai.g5Mo.i5Cu04(M = Ca, Ba) were prepared at the 
National Institute of Standards and Technology, 
Boulder, Colorado, by A. Roshko, using a freeze- 
drying acetate process [90]. Acetates of the various 
cations were assayed by mass by calcining to the 
corresponding oxide or carbonate. The appropriate 
masses of the acetates for the desired compositions 
were dissolved in deionized water. The acetate so- 
lutions were then sprayed through a fine nozzle 
into liquid nitrogen to preserve the homogeneous 
cation distributions. Frozen particles were trans- 
ferred to crystallization dishes and dried in a com- 
mercial freeze dryer, to a final temperature of 
100 °C. After drying, the powders, except the 
Lai^Bao.i5Cu04, were calcined in alumina (99.8%) 
crucibles at 675 "C for 1 h in a box furnace with the 
door slightly open to increase ventilation. Because 
BaCOs is difficult to decompose, the 
Lai.g5Bao.i5Cu04 was calcined under a vacuum of 2 
Pa at 800 "C for 4 h, then cooled slowly in flowing 
oxygen (2°C/min). The calcined powders were 
oxidized in platinum-lined alumina boats in a tube 
furnace with flowing oj^gen at 700 °C. After 3 h at 
700 "C the powders were pushed to a cold end of 
the furnace tube where they cooled quickly 
(20 "C/s) while still in flowing oxygen. 

The cylindrical specimens (23 mm in diameter 
and 9 mm thick) of Bi-2212, Bi,Pb-2223, and 
Bi,Pb,Mg,Ba-2223 were prepared at the National 
Research Institute for Metals, Tsukuba, Japan, by 
K. Togano [91], Starting oxides and carbonates 
were: Pb304, 61203, CuO, SrCOs, MgCOs, and 
BaC03. They were calcinated in air at 800 "C for 
12 h. Powders were then pressed and sintered in 
8% oxygen-92% argon mixture at 835 °C for 83 h. 
Specimens were furnace cooled to 750 °C, held for 
3 h in flowing oxygen, and then furnace cooled in 
ojygen to room temperature. 

3.1.1 Preparation of Specimens for X-ray 
Diffraction The bulk specimens were surface 
polished, if necessary, and mounted in specimen 
holders. Coarse-grained powders of La2-;cSrxCu04 
(x=Q, 0.06, 0.15, 0.24) and Lai.8sMo.i5Cu04 
(M = Ca, Ba) were ground with a mortar and pestle 
in toluene and passed through a 635-mesh sieve 
(20-|xm nominal opening size). Silver and tungsten 
powders were dry ground with a mortar and pestle. 
All powders were mixed with about 30% silicone 
grease and loaded into rectangular cavities or slur- 
ried with amyl acetate on a zero-background quartz 
substrate. 

3.2 Measurements 

X-ray-diffraction data were collected using a 
standard two-circle powder goniometer in Bragg- 
Brentano parafocusing geometry [92, 93] (see 
Fig. 5). A flat sample is irradiated at some angle 
incident to its surface, and diffraction occurs only 
from crystallographic planes parallel to the speci- 
men surface. The goniometer had a vertical 
0-26 axis and 22 cm radius. CnKa radiation, ex- 
cited at 45 kV and 40 mA, was collimated with 
Seller slits [94] and a 2 mm divergence slit. SoUer 
slits in the diffracted beam, 0.2 mm receiving slit 
and Ge solid-state detector were used in a step- 
scanning mode (O.OI7IO s for a standard specimen, 
0.02°-0.05730-80 s for other specimens, depending 
on the amount of broadening). 

3.3 Data Analysis 

The diffractometer was controlled by a com- 
puter, and all measurements were stored on hard 
disc. Data were transferred to a personal computer 
for processing. 

We used computer programs for most calcula- 
tions. X-ray diffraction patterns were fitted with 
the program SHADOW [95]. This program allows 
a choice of the fitting function and gives refined 
positions of the peak maximums, intensities, and 
function-dependent parameters. It also has the 
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Seller Slits 

Source      ,S''' 

Specimen 

Fig.  5.   Optical   arrangement   of  an  x-ray   diffractometer. 
Adapted from Klug and Alexander [24], 

ability to convolute the predefined instrumental 
profile with the specimen function to match the ob- 
served pattern. Choice of the specimen function in- 
cludes Gauss and Cauchy functions. We added the 
ability to model the specimen broadening with an 
exact Voigt function and implemented SHADOW 
on a personal computer. In the fitting procedure, 
for every peak in the pattern, the program first gen- 
erates the instrumental profile at the required dif- 
fraction angle. The instrumental profile is deter- 
mined from prior measurements on a well-annealed 
standard specimen (see Sec. 5.1). Then it assumes 
parameters of the specimen profile. For an exact 
Voigt function, parameters are peak position, peak 
intensity, and Cauchy and Gauss integral breadths 
of the Voigt function. By convoluting the instru- 
mental profile with the specimen profile, and 
adding a background, the calculated pattern is ob- 
tained [Eq. (2)]. Parameters of the specimen profile 
are varied until the weighted least-squares error of 
calculated and observed patterns Eq. (59), reaches 
a minimum. This process avoids the unstable Stokes 
deconvolution method. It is possible that the refine- 
ment algorithm is being trapped in a false minimum 
[96], but it can be corrected by constraining some 
parameters. Refined parameters of the pure-speci- 
men profile are input for the size-strain analysis of 
the broadening. A program for this analysis was 
written in Fortran. 

Lattice parameters of powder specimens were 
calculated by the program NBS*LSQ85, based on 
the method of Appleman and Evans [97]. A pro- 
gram in Fortran was written to apply corrections to 
observed peak maximums by using NIST standard 
reference material 660 LaB6 as an external stan- 

dard. Lattice parameters of bulk specimens were 
determined by the Fortran program, which uses a 
modified Cohen's method [98,99,100] to correct for 
systematic diffractometer errors. Lattice parame- 
ters were also calculated by the Rietveld refinement 
programs GSAS [78] and DBW3.2S [101, 102]. 

4.   Methodology 

When instrumental and specimen contributions 
to the observed line profile must be modeled sepa- 
rately, adopting a specimen function is a critical 
step. Yau and Howard [103,104] used Cauchy, and 
Enzo et al. [105] pseudo-Voigt functions. Benedetti, 
Fagherazzi, Enzo, and Battagliarin [106] showed 
that modeling the specimen function with the 
pseudo-Voigt function gives results comparable to 
those of the Stokes deconvolution method when 
combined with the Warren-Averbach analysis of 
Fourier coefficients. De Keijser, Mittemeijer, and 
Rozendaal [107] analytically derived domain sizes 
and root-mean-square strains for small averaging 
distance L in the case of the Voigt and related func- 
tions. 

The aim here is to study more thoroughly the 
consequences of assumed Voigt specimen function 
on the size-strain analysis of the Fourier coeffi- 
cients of the broadened peaks. It is shown that some 
experimentally observed interrelations between 
derived parameters (particularly volume-weighted 
and surface-weighted domain sizes) and their be- 
havior (the "hook" effect and dependence of mean- 
square strains on the averaging distance) can be 
explained by this simple assumption. Moreover, the 
discrepancy between the integral-breadth methods 
and Warren-Averbach analysis results from differ- 
ent approximations for the strain broadening and 
the background experimental errors. 

4.1   Separation of Size and Strain Broadenings 

The normalized Fourier transform of a Voigt 
function is easily computable [46]: 

^ =exD[-2«^e^-7m^^fi^l        fan ^„-exp|^    ^ cr(2e)     "^  a^(2e) T      ^^^^ 

It is convenient to express Fourier coefficients in 
terms of distance L, by immediately making the ap- 
proximation A (26) = \ As/cos do: 

A{L) = exp[-2L^-7rL^pl] (32) 
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Equation (32) is a good approximation even for 
large specimen broadening. Even for a profile span 
of A (29) = 80°, the error made by replacing this in- 
terval by an adequate A(sin9 ) range is 2%. How- 
ever, strictly speaking, the profile will be asym- 
metrical in reciprocal space, and Fourier-interval 
limits will not correspond to the 29i and Idz peak- 
cutoff values in real space. It is important to keep 
Fourier interval limits identical for all multiple-or- 
der reflections; otherwise serious errors in the sub- 
sequent analysis will occur [108]. If higher accuracy 
for a considerable broadening is desired, profile fit- 
ting can be accomplished In terms of the recipro- 
cal-space variable s, instead of in a real 29 space. 

Assuming that only the Cauchy function deter- 
mines domain size [/4*(L) = exp(-L/(Z))s)] and 
only the Gauss function gives root-mean-square 
strain (RMSS) [^°(L) = exp(-27r='L2(e')/d^)], Eq. 
(32) leads to the Warren-Averbach [Eq. (20)] for 
the separation of size and strain contribution [62]. 
Experience shows that Cauchy and Gauss functions 
can not satisfactory model specimen broadening. 
Balzar and Ledbetter [64] postulate that the speci- 
men function includes contributions of size and 
strain effects, both approximated with the Voigt 
functions. Because the convolution of two Voigt 
functions is also a Voigt function, Cauchy and 
Gauss integral breadths of the specimen profile are 
easily separable: 

/3c=i3sc + /3DC; (33) 

(34) 

Langford [26] separated the contributions from 
size and strain broadening in a similar way. (See 
Eqs. (27) and (28).) Note, however, that Eqs. (33) 
and (34) do not define size and strain angular or- 
der-dependence. 

Because Fourier coefficients are a product of a 
size and a distortion coefficient, from Eqs. (32), 
(33), and (34), we can obtain the separation of size 
and strain contributions to the pure specimen 
broadening: 

^S(L) = exp(-2Li3sc-TrL^/3io); (35) 

A°(L) = eM-2LpDc-TrL^Phc). (36) 

Wang, Lee, and Lee [109] modeled the distortion 
coefficient, and Selivanov and Smislov [110] mod- 
eled the size coefficient in the same way. 

To obtain size and distortion coefficients, at least 
two reflections from the same crystallographic- 
plane family must be available. 

4.2   Size Coefficient 

Surface-weighted domain size is calculated from 
the size coefficients following Eq. (21). From Eq. 
(35) we obtain 

<^>s = 
1 

2i3sc 
(37) 

Therefore, surface-weighted domain size depends 
only on the Cauchy part of the size-integral 
breadth. 

The second derivative of the size coefficients is 
proportional to the surface-weighted column-length 
distribution function, Eq. (22). The volume- 
weighted column-length distribution function fol- 
lows similarly [111]: 

p.(L)ocL^j^. (38) 

By differentiating Eq. (35) twice, we obtain 

^^4^ = [(2^L^ic + 2^sc)^- dL 

2TrplcA%L) (39) 

Because the column-length distribution function 
should always be positive [59], the Cauchy part must 
dominate. Inspection of Eq. (39) shows that for 
small L we must require 

(40) 

Otherwise, the "hook" effect will occur in the plot 
of size coefficients/I *(L) versus L, that is, the plot 
will be concave downward for small L (Fig. 6). The 
"hook" effect is usually attributed to experimental 
errors connected with the truncation of the line 
profiles, and consequently overestimation of 
background [59]. This is a widely encountered prob- 
lem in the Fourier analysis of line broadening. It 
results in overestimation of effective domain sizes 
and underestimation of the RMSS [36]. Some 
authors [106] claim that the preset specimen- 
broadening function eliminates the "hook" effect. 
However, Eq. (39) shows that, effectively, too high 
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Fig. 6. (upper) The "hook" effect of the size coefficients A ^ 
(full line) at small L; (lower) it causes negative values (set to 
zero) of the column-length distribution functions. 

background causes underestimation of the Cauchy 
content of the Voigt function, because the long 
tails are truncated prematurely. It has to be men- 
tioned that Wilkens [112] proposed tilted small-an- 
gle boundaries to be the source of the "hook" 
effect. Liu and Wang [113] defined a minimum 
particle size present in a specimen, depending on 
the size of the "hook" effect. Figure 6 shows that 
negative values of the column-length distribution 
functions (set to zero), do not affect the shape, but 
shift the entire distribution toward larger L values. 

Note also that the surface-weighted column- 
length distribution function ps(L) will usually have 
a maximum at L = 0; but for the particular ratio of 
integral breadths, determined by Eq. (40), it can be 
zero. The volume-weighted column-length distribu- 
tion function/7v(L) will always have a maximum for 
L?sO. 

If the column-length distribution functions are 
known, it is possible to evaluate mean values of 
respective distributions: 

<^kv   = 

00 

J  ^%}. 
_0  

\ 

(L)dL 

/»s,v(L)dL 
(41) 

Integrals of this type can be evaluated analytically 
[114]: 

OQ 

J ;c"'exp( - to^ - a: )dc = i^y^ ^ 
of" 

hd^^^^fe)]-        (^2) 

Surface-weighted domain size (D)s must be equal 
to the value obtained from Eq. (37). The volume- 
weighted domain size follows: 

<D)v = ^^erfc(A:) = js. (43) 

Using Eqs. (37) and (43), we can evaluate the ratio 
of domain sizes: 

i^ = 7./r. 
<^>s 

= 2v''n-^exp(A:2)erfc(^). (44) 

Theoretically, k can change from zero to infinity. 
However, the minimum value of k is determined by 
Eq. (40): 

1/V2 <,k < «> . (45) 

Hence, the ratio of domain sizes can change in a 
limited range (see also Fig. 7): 

1.31« V2^ erfc (^ ) s ^ < 2.       (46) 

10"^      10"^       10-'        10°       10'       10^       10- 

Fig. 7. The ratio of volume-weighted and surface-weighted 
domain sizes as a function of the characteristic ratio of Cauchy 
and Gauss integral breadths k. 
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It may be noted that most experiments give the 
ratio {D)v/{D)s in this range (see for instance re- 
view by Klug and Alexander [24]). When k goes to 
infinity the size broadening is given only by the 
Cauchy component and (JD)V=2(D)S. This is a case 
of pure Cauchy size broadening, described by 
Haider and Wagner [62] and de Keijser, Mittemei- 
jer and Rozendaal [107]. It is possible to imagine a 
more complicated column-length distribution func- 
tion [27] than Eq. (39), which would allow even 
larger differences between surface-weighted and 
volume-weighted domain sizes. However, we are 
not aware of any study reporting a difference larger 
than 100%. 

43   Distortion Coefficient 

In Sec. 2.1.2 it was shown that the distortion co- 
efficient can be approximated by the exponential 

A°(L) = exp(-ITTVL\e\L))). (47) 

Comparing with Eq. (36), we can write 

Therefore, mean-square strains (MSS) decrease 
linearly with averaging distance L. This behavior is 
usually observed in the Warren-Averbach analysis. 
Rothman and Cohen [115] showed that such be- 
havior would be expected of strains around disloca- 
tions. Adler and Houska [116], Houska and Smith 
[117], and Rao and Houska [118] demonstrated for 
a number of materials that MSS can be repre- 
sented by a sum of two terms, given by Cauchy and 
Gauss strain-broadened profiles. 

However, for i3Dc=0, the MSS are independent 
ofL: 

(^2)1/2 ^ ^Dc(2g) cotg  = ^ 
2V2 V2TT 

(49) 

where the upper limit of strain e is defined as 7j/4 
(see Sec. 2.1.2). This is a limiting case of pure- 
Gauss strain broadening, described by de Keijser, 
Mittemeijer and Rozendaal [107]. 

4.4   Discussion 

To calculate domain sizes and strain, it is neces- 
sary to define size and distortion integral-breadths 
angular order-dependence. From Eq. (43) It fol- 
lows that the domain size {D )v is always indepen- 
dent of the order of reflection: 

)3sc = const.;   JSSG = const. 

However, from Eq. (48) we find 

^^ = const.;   ^^ = const. 

(50) 

(51) 

An important consequence is that "apparent 
strain" TJ will be independent of angle of reflection 
only in the case of pure-Gauss strain broadening 
because /3DC and JSDG depend differently on the dif- 
fraction angle. If we compare Eq. (51) with the 
multiple-line Voigt-function analysis [26], given by 
Eqs. (27) and (28), it is evident that they disagree. 
Therefore, recombination of constituent integral 
breadths /3DC and /3DO to Voigt strain-broadened in- 
tegral breadth P° and the subsequent application 
of Eq. (49) to calculate strain [26, 119] will concur 
with the Fourier methods if strain broadening is 
entirely Gaussian and for the asymptotic value of 
MSS ((e^( 00))). However, neither volume-weighted 
domain sizes {D)y will agree, although they are de- 
fined identically in both approaches, because size- 
broadened and strain-broadened integral breadths 
are dependent variables. 

If at least two orders of reflection (/ and / +1) of 
the same plane (hkl) are available, using Eqs. (50) 
and (51) we can solve Eqs. (33) and (34): 

(52) 

^^° s\l + l)-s'il) ^^^^ 

^'^=sHl + l)-s\l) [fc(/ + l)-/3c(/)3    (54) 

^''^'=s\l + l)-s\l) [^(^ + ^)-^"(0]-   (55) 

If we substitute these expressions into Eqs. (35) 
and (36), we see that this approach leads exactly to 
the Warren-Averbach Eq. (20) for two orders of 
reflections. This is expected because the distortion 
coefficient is approximated with the exponential 
(47)]. Delhez, de Keijser, and Mittemeijer [23] ar- 
gued that, instead of Eq. (20), the following rela- 
tion would be more accurate: 

A(L)=AXL) (1 -27r^(e^(L))LVd% (56) 
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These two approximations differ with fourth-order 
terms in the power-series expansion. In terms of 
this approach, Eq. (48) has to be rewritten: 

/   2/r ^^      l-exp(-2LI3DC-TTL^0DG) (57) 

This means that even if the strain-broadened pro- 
file is given entirely by the Gauss function, the 
MSS depend on distance L (see Fig. 8). In this ap- 
proximation no simple relation for the distortion 
integral-breadths angular order-dependence exists. 
For not so large L, however, Eq. (51) holds, and 
approximations from Eqs. (20) and (56) do not dif- 
fer much (see Fig. 8). 
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Fig. 8. Mean-square strains {£^(L)) for two approximations of 
the distortion coefficient: (upper) Voigt strain broadening; 
(lower) pure-Gauss strain broadening. 

Generally, it was shown that in the size-broad- 
ened profile the Cauchy part must dominate. No 
similar requirement for the strain-broadened pro- 
file exists. However, experience favors the assump- 
tion that it has to be more of Gauss-type. The 
Warren-Averbach approach is exact if strain broad- 
ening is purely Gaussian, so Eqs. (20) and (48) are 

better approximations as strain profile is closer to 
the Gauss function. In any case, both approaches, 
given by Eqs. (20) and (56), are good up to the 
third power in strain, and the Warren-Averbach 
relation [Eq. (20)] does not assume that MSS are 
independent of distance L [27]; it also represents a 
harmonic approximation. 

If at least two orders of reflection from the same 
plane (hkl) are available, we can use Eqs. (52), 
(53), (54), and (55) to calculate size-related and 
strain-related integral breadths. Subsequent appli- 
cation of Eqs. (37), (43), and (48) gives directly 
domain sizes (D), and (D)v, and mean-square 
strains (e^(L)). This approach is more straightfor- 
ward and much simpler than the original Warren- 
Averbach analysis. Great care should be given to 
the possible systematic errors. The easiest way to 
observe the "hook" effect is to plot column-length 
distribution functions as a function of averaging 
distance L. If they show negative values for small L 
(see Fig. 6), all derived parameters will be in error. 
This is because (i) only the positive values of the 
column-length distribution functions are numeri- 
cally integrated or (ii) the intercept on the L-axis 
of the linear portion of the A^ vs L curve is taken 
(see Fig. 4), always larger values of domain sizes 
will be obtained than by the application of Eqs. 
(37) and (43). Therefore, we conclude that the dis- 
crepancy between integral-breadth and Fourier 
methods is always present by the appearance of the 
"hook" effect in the A^ vs L curve. An analogous 
discrepancy exists between integral-breadth and 
variance methods [119]. In such cases, correction 
methods for truncation can be applied [35, 119, 
120], but the best procedure is to repeat the pat- 
tern fitting with the correct background. 

In the Fourier analysis it is usually observed that 
the mean-square strains diverge as the averaging 
distance L approaches zero. This also follows from 
Eqs. (48) and (57). However, because the MSS de- 
pendence on distance L is not defined in Warren- 
Averbach analysis, it was suggested [27, 107, 121] 
that local strain can be obtained by taking the sec- 
ond derivative of the distortion coefficient, or by a 
Taylor-series expansion of local strain. Therefore, 
we obtain from Eq. (36): 

i^m-M^-^).      (58) 

It is evident that this relation is wrong. It holds 
only for a special case of pure-Gauss strain-broad- 
ened profile, when the MSS are equal for any L. 
Otherwise, if the Cauchy function contributes to 
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strain broadening, all derivatives of strain in L = 0 
are infinite, and local strain can not be defined. If 
the main origin of strains is dislocations [115], 
strains are defined after some distance from the 
dislocation (cutoff radius) to be finite. Averaging 
strains over a region smaller than the Burgers 
vector is probably not justified. For instance, Eq. 
(48) gives, even for a small averaging distance, 
L = 1 A, and considerable strain broadening 
(J3DG(20) = /3DC(20) = 1O''), root-mean-square strain 
{e\L = 1A))"^ «0.2, that is, about the elastic limit. 

4.5   Random Errors of Derived Parameters 

Errors in size and strain analysis of broadened 
peaks are relatively difficult to evaluate. Following 
Langford [26], sources of the systematic errors in- 
clude choice of standard specimen, background, 
and type of analytical function used to describe the 
line profiles. The first two errors should be mini- 
mized in the experimental procedure. Errors 
caused by inadequate choice of specimen function 
would systematically affect all derived results, but 
they can not be evaluated. Random errors caused 
by counting statistics have been computed by 
Wilson [122, 123, 124] and applied to the Stokes 
deconvolution method by Delhez, de Keijser, and 
Mittemeijer [23], as well as by Langford [26] and 
de Keijser et al. [76] using single-line Voigt-func- 
tion analysis. Nevertheless, the approximate error 
magnitude can be calculated from estimated stan- 
dard deviations (e.s.d.) of the parameters refined 
in the fitting procedure. In the program 
SHADOW, the weighted least-squares error is 
minimized: 

7\wp — " 
RES 

Here 

)=1 

RES = 2 vfi [/. (obs) - /, (cal)]' 

(59) 

(60) 

and weights are the reciprocal variances of the ob- 
servations: 

H'; = l///(obs). (61) 

Each line profile has four parameters varied inde- 
pendently: position, intensity, and Cauchy and 
Gauss integral breadths of the Voigt profile. In 
least-squares refinement, e.s.d.'s are computed as 

^^ bu 
RES (62) m —m 

Here ba are diagonal elements of the inverse matrix 
of the equation coefficients, m is the number of 
observations, and m' is the number of refined 
parameters. The main source of errors is integral 
breadths. Errors in peak position, peak intensity, 
and background are much smaller and can be ne- 
glected in this simple approach. For two indepen- 
dent variables, )3G and Pc, covariance vanishes, and 
from Eqs. (37) and (38), for the two orders of re- 
flection, / and / +1, it follows that 

R\{D\ = 

s\i+i)m)RHMi))+s\i)m+i)i?^(/3c(/+D). 

(63) 

R\{e\L)r) = 

pHDRHPcG)) + m + m'iPcJl + D) 
{2[/3c(/+1) - i8c(/)3+TTL [m+1) - mw 

-n-'L'miDRHihd))+m+m'WcH+i))i 
^ {2[)3c(/+1) - iSc(/)+TTLim+1) - mw ■ 

(65) 

Here R{x) are "relative standard deviations." The 
error in {D\ would be complicated to evaluate, but 
because 1.31{D)s^(I>)v<2(£))s, Eq. (63) gives a 
good estimation for the error in (Z))v as well. Alter- 
natively, to see how errors depend on the Fourier 
coefficients, errors can be estimated from the 
Warren-Averbach relationship [Eq. (20)] (86). 
From Eq. (32) it follows that 

R\A (L)) = ATr^L'p*o{s)R\^{2d)) + 

4L'ph(s)R\Pci2e)). (66) 

Errors in root-mean-square strains and domain 
sizes are 

i?^((e^(L ))•«) = 

RHA(L,l))+RHA(L,l + l)) . 
(67) 

A{L,l + l) 
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^^«^)')=(T^) 

s*(l + 1)RHA (L,l)) +SV)RHA (L,l + D) 
ls\l + l)-s\l)f (68) 

Here, (D), is approximately defined with 
A^(L) = l-L/(D)j. Errors in Fourier coefficients 
increase with L, while factors in Eqs. (67) and (68) 
lower the errors for large L. In general, errors of 
domain sizes and strains are of the same order of 
magnitude as errors of integral breadths [86]. 

5.   Application 
5.1   Correction for Instrumental Broadening 

Before specimen broadening is analyzed, instru- 
mental broadening must be determined. This is ac- 
complished by carefully measuring diffraction 
peaks of some well-annealed "defect-free" speci- 
men. It is then assumed that its broadening may be 
attributed only to the instrument. The usual proce- 
dure is to anneal the specimen. However, in some 
instances that is not possible, because either the 
material undergoes an irreversible phase transition 
on annealing, or the number of defects can not be 
successfully decreased by annealing. Another pos- 
sibility is to measure the whole diffraction pattern 
of the material showing the minimal line broaden- 
ing, and then to synthesize the instrumental profile 
at the needed diffraction angle. This approach re- 
quires the modeling of the angle dependence of the 
instrumental (standard) parameters. Cagliotti, Pao- 
letti, and Ricci [125] proposed the following func- 
tion to describe the variation of the full width at 
the half maximum of profile with the diffraction 
angle: 

F9miA^(2e) = Utan^9 + Vtand + W.       (69) 

Although this function was derived for neutron dif- 
fraction, it was confirmed to work well also in x-ray 
diffraction case [126, 127]. A more appropriate 
function for the x-ray angle-dispersive powder dif- 
fractometer, based on theoretically predicted er- 
rors of some instrumental parameters [128] may be 
the following [129]: 

FWHNf (2 e) = W+Vsin^l 6 + 

UtanH + U'cotH. (70) 

This function may better model the increased axial 
divergency at low angles and correct for the speci- 
men transparency [129]. However, contrary to the 
requirement on the specimen function, most im- 
portant for the instrumental function is to correctly 
describe the angular variation of parameters, re- 
gardless of its theoretical foundation. 

When specimen broadening is modeled with a 
Voigt function, the simplest way to correct for the 
instrumental broadening is by fitting the line pro- 
files with the Voigt function, too. Cauchy and 
Gauss integral breadths of the specimen-broad- 
ened profile are then easily computable by Eqs. (7) 
and (8). However, because the instrumental broad- 
ening is asymmetric [24], modeling with the sym- 
metric Voigt function can cause a fictitious error 
distribution, resulting in errors of strain up to 35% 
[76]. Another approach is to model the instrumen- 
tal-broadening angle dependence by fitting the 
profile shapes of a standard specimen with some 
asymmetrical function; split-Pearson-VII [95] or 
pseudo-Voigt convoluted with the exponential 
function [105]. The instrumental function can then 
be synthesized at any desired angle of diffraction 
and convoluted with the assumed specimen func- 
tion to match the observed profile by means of Eq. 
(2). 

In the program SHADOW, instrumental para- 
meters are determined by fitting the split-Pearson 
VII function (see Fig. 9) to line profiles of a 
standard specimen: 

iix)=m- 
2   \m 

with 

c =- 

\     mc^f 

mm) 
/mv-rim-1/2) ' 

(71) 

(72) 

Here, m = 1 or m = <» yields a Cauchy or Gauss 
function, respectively. Refined full widths at half 
maximum (FWHM) and shape factors m for both 
low-angle and high-angle sides of the profiles are 
fitted with second-order polynomials. To fit the 
FWHM, we used Eq. (69), and for the shape fac- 
tors 

m(2e) = U'(20f + V'(2e) + W'. (73) 

The resulting coefficients U, V, W, U', V, and W 
permit synthesis of the asymmetrical instrumental 
line profile at any desired angle. 
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2 0(deg) 

le 

Fig. 9. A split-Pearson VII profile. The two half profiles have 
same peak position and intensity. Adapted from Howard and 
Preston [4]. 

The basic requirement on the standard specimen 
is, however, to show as small a line broadening as 
possible. To minimize physical contributions to the 
Une broadening of the standard specimen, a few 
moments were emphasized as follows. Because dif- 
fraction-line width depends strongly on degree of 
annealing, it is preferable to use some reference 
powder-diffraction standard. Furthermore, asym- 
metry in the peak profiles is introduced by axial 
divergence of the beam, flat specimen surface, and 
specimen transparency [24]. Choosing a standard 
specimen with low absorption coefficient would 
cause transparency effects to dominate. If the stud- 
ied specimen has a large absorption coefficient 
(compared to the standard), this might produce a 
fictitious size contribution and errors in micro- 
strains. All of the specimens studied have absorp- 
tion coefficients exceeding 1000 cm"^ so a NIST 
standard reference material 660 LaBe was chosen 
to model the instrumental broadening (p, = 1098 
cm"'). According to Fawcett et al. [130], LaBe 
showed the narrowest lines of all studied com- 
pounds. Furthermore, LaB6_has a primitive cubic 
structure (space group Pm3m) resulting in rela- 
tively large number of peaks equally distributed 
over 26. This allows for better characterization and 
lower errors of FWHMs and shape factors of split- 
Pearson VII functions (Fig. 10). 

5.2   Applicability of the Method 

To study the applicability of method described in 
Sec. 4, we first studied simple cubic-structure mate- 
rials such as silver and tungsten. Tungsten has very 
narrow line profiles, allowing us to obtain the up- 
per limit of domain sizes that can be studied. Silver 
is easily deformed, which provides a possibility to 
apply the method to broad line profiles. To test the 

0.09 

-a 

OH 

0.06 

0.03 

1 1  
■  m low-angle side 
n  m high-angle side 

•z, w 
2; o 
OH 

X 

tan© 

Fig. 10. Refined FWHMs and shape factors (exponents) m for 
low-angle and high-angle sides of LaBe line profiles. Second- 
order polynomials were fitted through points. 

case of relatively complicated patterns and weak 
line broadening, the method was also applied to 
Lai.85Sro.i5Cu04 and La2Cu04 powders. In this sec- 
tion only the mechanical aspects of the line broad- 
ening are discussed. Discussion about the origins of 
broadening of superconductors can be found in 
Sec. 6. 

5.2.1 Silver and Tungsten Powders Figure 11 
shows observed and refined peaks of tungsten un- 
treated and silver ground powders. In Table 2 are 
listed results of fitted pure-specimen Voigt profiles 
for silver and tungsten specimens; Table 3 and 
Fig. 12 give results of the line-broadening analysis. 
Untreated tungsten powder shows relatively weak 
broadening. Instrumental profile FWHMs at angle 
positions of (110) and (220) tungsten lines are 
0.059° and 0.081°, respectively, close to values mea- 
sured for tungsten: 0.065° and 0.100°. Results in 
Table 3 reveal that small broadening is likely 
caused by domain sizes, because microstrains have 
negligible value. This pushes the limit for measur- 
able domain sizes probably up to 4500-5000 A. 
However, one must be aware that weak specimen 
broadening implies higher uncertainty of all 
derived parameters. Moreover, the choice of the 
instrumental standard becomes more crucial. 

Both silver and tungsten line profiles become 
more Cauchy-like after grinding, which probably 
increases dislocation density in the crystallites. This 
is consistent with the presumption that small 
crystallites and incoherently diffracting domains 
separated by dislocations within grains affect the 
tails of the diffraction-line profiles [60,115]. Figure 
13 illustrates the dependence of MSS on the recip- 
rocal of the averaging distance L. 
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Fig. 11, Observed points (pluses), refined pattern (full line), 
and difference pattern (below): (110) W untreated (upper); 
(200) Ag ground (lower). 

Fig. 12. Fourier coefficients for the first- (pluses) and second- 
order (crosses) reflection, and size coefficients (circles): [111] 
Ag untreated (upper); [100] Ag ground (lower). 

Table 2.   Parameters of the pure-specimen Voigt function, as obtained from profile-fitting procedure 
for tungsten and silver powders 

Specimen hkl 2ft,(°) /3c(°) /3G(°) FWHM(°) Rwp(%) 

W untreated 110 
220 

40.28 
87.05 

0.0065(7) 
0.0301(6) 

0.020(2) 
<io-' 

0.021 
0.019 

9.0 
4.4 

W ground 110 
220 

40.29 
87.05 

0.100(2) 
0.222(3) 

0.038(4) 
0.069(6) 

0.080 
0.166 

9.0 
4.2 

Ag untreated 111 
222 
200 
400 

38.06 
81.51 
44.25 
97.86 

0.056(1) 
0.105(4) 
0.118(2) 
0.274(21) 

<io-' 
0.0008(21) 

<io-^ 
<io-5 

0.036 
0.067 
0.075 
0.175 

10.5 
9.7 

10.5 
12.2 

Ag ground 111 
222 
200 
400 

38.07 
81.51 
44.24 
97.83 

0.175(3) 
0.410(26) 
0.365(10) 
1.079(82) 

0.038(12) 
<io-* 

0.076(29) 
<io-' 

0.121 
0.261 
0.250 
0.687 

9.9 
14.5 
9.9 

14.5 
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Table 3.   Microstructural parameters for tungsten and silver powders 

Specimen                     Direction                (£>)»( A) (2))v(A) <£^(fl3))'« (.^«D)v/2)>w 

W untreated [110] 3200(200) 3500(200) 0.00038 0.00008(2) 

W ground [110] 620(20) 1030(30) 0.0023 0.00054(2) 

Ag untreated [111] 
[100] 

1000(20) 
510(20) 

2000(20) 
1030(20) 

0.0010 
0.0022 

0.00024(1) 
0.00047(5) 

Ag ground [111] 
[100] 

380(20) 
210(10) 

650(20) 
350(20) 

0.0047 
0.0100 

0.00095(7) 
0.00180(14)   . 

100 -_ . .. -■ [100) Ag ground                                                   ."^ 
^~ — C1111 Ag ground                                         ^• 

y 
y 

o y 
*^  50 
A y 

y 
y 

y 
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y ^,--' 

c ) 50                   100                   150 

l/LfA"'jxlO^ 

Fig. 13.   Mean-square strains (E^) as a function of VL. 

Errors in integral breadths allow estimation of 
errors in strain and size parameters (Sec. 4.5), but 
in some cases the refinement algorithm gives unre- 
liable errors of integral breadths. When a particu- 
lar parameter is close to the limiting value (for 
instance, 10"^ degrees has been put as the mini- 
mum value for integral breadths), errors become 
large. However, in Eqs. (63), (65), (66), (67), and 
(68), only the product of integral breadth and ac- 
companying error is significant, which is roughly 
equal for Cauchy and Gauss parts. Errors of do- 
main sizes and strains are of the same order of 
magnitude as errors of integral breadths. 

The possible source of systematic error is poten- 
tial inadequacy of Voigt function to accurately de- 
scribe specimen broadening. This effect can not be 
evaluated analytically; but it would affect all 
derived parameters, especially the column-length 
distribution functions. The logical relationship be- 
tween values of domain sizes (see Table 3) for dif- 
ferent degrees of broadening indicates that 
possible systematic errors can not be large. 

Equation (41) allows computation of volume- 
weighted and surface-weighted average domain 
sizes if respective column-length distribution func- 
tions can be obtained. Figure 14 gives surface- 
weighted and volume-weighted average column- 
length distribution functions following Eqs. (39) 
and (38). Width of the distribution function deter- 
mines the relative difference between (D), and 
(£))v. The broader the distribution, the larger the 
differences, because small crystallites contribute 
more to the surface-weighted average. That is 
much more evident comparing the surface- 
weighted column-length distribution with the vol- 
ume-weighted. If they have similar shape and 
maximum position, as in Fig. 15, differences are 
small. Conversely, if the surface-weighted distribu- 
tion function has a sharp maximum toward smaller 
sizes, differences are larger (see Fig. 14). The dif- 
ference between (£>)s and (D)v, and the actual 
mean dimension of the crystallites in a particular 
direction, also depends strongly on the average 
shape of the crystallites [52, 131, 132]. 

If experimental profiles are deconvoluted by the 
Stokes method, even for considerable specimen 
broadening, size coefficients A ^ usually oscillate at 
larger L values [59, 106], preventing computation 
of the column-length distribution function. Few 
techniques were used to deal with this problem: 
successive convolution unfolding method [32, 133], 
smoothing, and iterative methods [134, 135, 136, 
137]. Figures 14 and 15 show very smooth column- 
length distribution functions. However, they follow 
from size coefficients ^4^ that depend on the accu- 
racy of the approximation for the distortion coeffi- 
cient, given by Eq. (47). Equation (47) is exact if 
the strain distribution is Gaussian, but in general 
holds only for small harmonic numbers n, if strain 
broadening is not negligible. 
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Fig. 14. Surface-weighted and volume-weighted column-length 
distribution functions, normalized on unit area: [111] Ag un- 
treated (upper); [100] Ag ground (lower). 

Fig. 15. Surface-weighted and volume-weighted column-length 
distribution functions for [010] La2Cu04, normalized on unit 
area. 

5.2.2 La2-xSrtCu04 Powders To test the 
applicability of the discussed method to more com- 
plicated patterns, two compounds with lower 
crystallographic symmetry were studied. 
Lai.85Sro.i5Cii04 has a tetragonal K2NiF4-type struc- 
ture, space group lAlmmm. La2Cu04 is orthorhom- 

bic at room temperature. Both compounds show 
slight line broadening and relatively highly overlap- 
ping peaks (see Fig. 16), which makes it very diffi- 
cult, if not impossible, to perform a Stokes analysis. 

25 

-25 

26 (deg) 

■yN*»- 

Fig. 16. Observed points (pluses), refined pattern (full line), 
convoluted profiles (dashed line), and difference plot (below) 
for part of La2Cu04 pattern. 

Tables 4 and 5 list results from the fitting proce- 
dure and the analysis of specimen-broadened inte- 
gral breadths. There are no qualitative differences 
in results for tungsten and silver powders. How- 
ever, average errors are higher, as expected be- 
cause of overlapping peaks, while weighted errors 
/?wp are surprisingly smaller. This fact illustrates the 
unreliability of i?wp when only a segment of the pat- 
tern is being refined, because it depends on the 
number of counts accumulated in points, as well as 
on the 28 range of the refinement. 

Figures 17 and 18 represent Fourier coefficients 
of Lai.85Sro.i5Cu04 [110] and La2Cu04 [010] direc- 
tions. In the second plot, the A *(L )-versus-L plot 
shows a concave-downward part near L =0, the so- 
called "hook" effect. It was shown in Sec. 4.2 that 
the "hook" effect originates because of underesti- 
mation of background, connected with the trunca- 
tion of profiles. In the profile refinement, all peaks 
separated less than 4° 20 have been included in the 
refinement region to avoid possible overlapping of 
peak tails, and specimen profiles have been trun- 
cated below 0.1 % of the maximum intensity. How- 
ever, because the polynomial background was 
determined prior to profile refinement, it may be 
overestimated for complicated patterns containing 
many overlapping peaks. If background is refined 
with other profile parameters, undesirable correla- 
tion with integral breadths occurs. 
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Table 4.   Parameters of the pure-specimen Voigt function, as obtained from profile-fitting procedure 
for La2-^Sr,Cu04 powders 

Specimen hid 2H°) Pen PcO FWHM(°) R*p(%) 

Lai.85Sro.i5Cu04 004 26.95 0.046(4) 0.024(8) 0.042 3.4 
006 40.92 0.083(5) <io-= 0.053 6.2 
110 33.52 0.110(5) <io-' 0.070 12.5 
220 70.46 0.171(9) <io-' 0.109 4.3 

La2Cu04 004 27.13 0.061(8) 0.045(9) 0.067 3.9 
006 41.19 0.124(7) <io-^ 0.079 7.7 
020 33.16 0.074(10) 0.078(10) 0.102 2.9 
040 69.57 0.210(30) 0.026(81) 0.135 2.9 
200 33.45 0.074(8) 0.061(10) 0.087 6.9 
400 70.28 0.130(10) 0.023(95) 0.089 2.9 

Table 5.   Microstructural parameters for Laij(5Srai3Cu04 and La2Cu04 powders 

Specimen Direction (DUA) P>.(A) <e^(fl3))'« <e2((Z)>./2))'« 

Lai.83Sro.,5Cu04 

La2Cu04 

[001] 
[110] 

[001] 
[010] 
[100] 

1700(300) 
470(20) 

1100(100) 
680(50) 
680(50) 

2000(200) 
940(20) 

1200(100) 
760(50) 
810(50) 

0.0024 
0.0017 

0.0038 
0.0033 
0.0016 

0.00049(9) 
0.00044(6) 

0.0008(1) 
0.0007(2) 
0.0003(3) 
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Fig. 17. Fourier coefficients for the first- (pluses) and second- 
order (crosses) reflection, and size coefficients (circles) for [110] 
Lai^Sro.i5Cu04. 

Fig. 18. Fourier coefficients for first- (pluses) and second- 
order (crosses) reflection, and size coefficients (circles) for [010] 
La2Cu04. 
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S3.   Comparison    with    the    Integral-Breadth 
Methods 

Knowing the specimen integral breadths, simpli- 
fied methods can be applied. In Sec. 2.1.2 we re- 
viewed multiple-line and single-line integral- 
breadth methods. We shall compare the simplified 
multiple-line methods [Eqs. (23), (24), and (30)] 
and the single-line method [76] [Eqs. (29) and (30)] 
with results obtained for silver, tungsten, and 
La2-xSrxCu04 powders (Tables 3 and 5). We did 
not compare with the multiple-line Voigt-function 
method [26] because it was shown in Sec. 4.4 that it 
is incompatible with the Warren-Averbach analy- 
sis. In Table 6, integral breadth Pi was computed 
according to Eq. (11). This value was compared 
with )8A, integral breadth computed from Fourier 
coefficients [58]: 

i8A=- 
«3 2^(L) 

(74) 

Results obtained by the Warren-Averbach analysis 
are significantly smaller for both size and strain. 
Integral-breadth methods give the upper limit for 
strain, so comparison is limited. Considering the 
approximation e = 1.25{e^(L))^ [138] with 
L=(D)v/2 or L=(D)s/2, strains resemble more 
closely than crystallite sizes. It must be noted, how- 
ever, that this approximation makes sense only in 
the case of pure-Gauss strain broadening. 
Benedetti et al. [106] reported excellent agreement 
for both size and strain using Warren-Averbach 
and Cauchy-Gauss [Eq. (24)] methods. Results 
from Table 6, on the contrary, indicate that the 
Gauss-Gauss approximation gives values closest to 
the Warren-Averbach method for crystallite sizes, 
whereas the Cauchy-Gauss and especially the 
Cauchy-Cauchy approximation tend to give too 
large values. For strain, the trend is opposite. The 
Cauchy-Cauchy   approximation   resembles   most 

Table 6.   Comparison of results obtained with the integral-breadth methods: Cauchy-Cauchy (C-C), Cauchy-Gauss (C-G), Gauss- 
Gauss (G-G), and single-line (S-L) analysis 

Specimen hkl PiXKP PAXKP <i>)v (Z)>,(A) (e^((DV2)>"2 eXlO^ 
(A-') (A-0 (A) C-C C-G G-G S-L xlO^ C-C C-G G-G S-L 

W untreated 110 
220 

0.259 
0.247 

0.259 
0.247 

3500 3700 3810 3810 14500 
4040 

0.08 -0.01 -0.03 -0.05 0.24 
0" 

W ground 110 
220 

1.25 
2.04 

1.25 
2.05 

1030 2240 1450 1220 940 
550 

0.54 0.90 0.93 1.05 0.45 
0.32 

Ag untreated 111 
?2?. 

0.600 
0.901 

0.600 
0.900 

2000 3340 2390 2190 1670 
1110 

0.24 0.35 0.39 0.95 0" 
0" 

200 1.24 1.24 1030 2270 1470 1230 810 0.47 0.82 0.85 0.95 0" 
400 2.04 2.04 490 0" 

Ag ground 111 
222 

1.98 
3.52 

2.00 
3.52 

650 2080 1240 910 530 
280 

0.95 1.79 1.82 1.97 0.48 
0" 

200 4.03 4.06 350 9380 4780 1320 260 1.80 4.05 4.05 4.08 0.82 
400 8.03 8.03 120 0* 

Lai.85Sro.i3Cu04 004 
006 

0.657 
0.881 

0.650 
0.880 

2000 5230 3290 2660 1970 
1140 

0.49 0.76 0.78 0.88 0.44 
0" 

110 1.19 1.19 940 1240 1000 970 840 0.44 0.52 0.64 0.80 0" 
220 1.58 1.58 630 0" 

La2Cu4 004 
006 

0.988 
1.32 

0.998 
1.31 

1200 2980 1940 1630 1490 
760 

0.8 1.07 1.12 1.27 0.81 
0- 

020 1.43 1.42 760 1200 910 860 1240 0.7 0.79 0.90 1.10 1.14 
040 1.98 2.00 510 0.16 
200 1.26 1.24 810 810 810 810 1250 0.3 0.02 0.11 0.15 0.89 
400 1?S 1.26 830 0.14 

* Not possible to evaluate because of too small Gauss integral breadth. 
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closely a Warren-Averbach method. These results 
concur with the Klug and Alexander [24] compari- 
son of the published size and strain values obtained 
by Warren-Averbach (Stokes) and integral-breadth 
methods. However, for x-ray diffraction, the 
Cauchy-Gauss assumption for the size-strain 
broadening is theoretically and experimentally 
more favored th£m the other two models. The fact 
that the Gauss-Gauss method for crystallite size 
and the Cauchy-Cauchy method for strain give 
more realistic results may mean that the presump- 
tion that size and strain broadening are exclusively 
of one type is an oversimplification. 

The single-line method seems much less reliable. 
If Gaussian breadth is very small, no information 
about strain is obtained. Moreover, second-order 
reflections give much lower values of both size and 
strain than do basic reflections. However, if multi- 
ple reflections are not available, the single-line 
method can give satisfactory estimations. 

5.4   Reliability of Profile Fitting 

The profile fitting of a cluster of even severely 
overlapping peaks can be accomplished with a low 
error and excellent fit of total intensity. But how 
reliable is information obtained about separate 
peaks in the cluster? In the fitting procedure, it is 
possible to put constraints on the particular profile 
parameter to limit intensity, position, and width of 
the peak. If anisotropic broadening or different 
phases are present, constraints may not be realistic. 
Morever, acceptable results can be obtained even 
using a different number of profiles in refinement 
[4]. Hence, the first condition for the successful ap- 
plication of this method is knowledge of actual 
phases present in the sample and their crystalline 
structures. 

In this regard, two powders were measured: or- 
thorhombic Lai.94Sro.o6Cu04 has a slightly distorted 
K2NiF4-type structure (space group Bmab, 
a =5.3510(2) A, b =5.3692 A(2), c = 13.1931(7) A) 
and tetragonal Lai.76Sro.24Cu04 (space group 
I4/mmm a =3.7711(3) A, c = 13.2580(8) A). Data 
were collected for each specimen separately and 
for a specimen obtained by mixing the same pow- 
ders. Because diffracted intensity of each phase 
was lower for the mixture, counting time was pro- 
portionally increased to obtain roughly the same 
counting statistics. Figure 19 shows two partially 
separated orthorhombic (020), (200) and (040), 
(400) peaks, overlapped with tetragonal (110) and 
(220) reflections. During the profile fitting of the 
mixed powders, (200) orthorhombic peak tended to 
"disappear" on account of neighboring (020) and 

(110) reflections. Its intensity was constrained to 
vary in range ± 30 % of (020) peak intensity, which 
can be justified if the crystallographic structure is 
known. 

60 

-60 

34.5 

34.5 

33.5 
29 (deg). 

34.5 

Fig. 19. (upper) Lai.76Sro.24Cu04 (110) peak; (middle) 
Lai.94Sro.o6Cu04 (020) and (200) peaks; (lower) (110), (020), 
and (200) peaks. 

Table 7 contains results of fitted specimen-Voigt 
functions, as well as size and strain values obtained 
by the analysis of broadening. Comparing integral 
breadths of the starting and mixed powders, some 
profiles change from more Cauchy-like to Gauss- 
like and vice versa. This is especially evident for 
the (400) reflection, meaning that accurate deter- 
mination of the profile tails is indeed affected in 
the cluster of overlapping peaks. However, integral 
breadth does not change significantly, so results of 
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Table 7.   Comparison between two specimens run separately and mixed togetlier 

Specimen hkl 2H°) )3cO PoO                 {DUA) (D)v(A) (e2«D)v/2))'«xlO' 

Lai.76Sroj4CuOr 110 33.69 0.058(6) 0.094(7)                780(60) 850(60) 1.0(1) 
220 70.73 0.22(2) 0.13(2) 

Lai.MSro.(KiCu04 020 33.42 0.084(9) 0.55(14)                500(90) 1000(200) 0.7(1) 
040 70.12 0.10(2) 0.14(1) 
200 33.53 0.0216(85) 0.061(8)              1100(100) 1200(100) 0.3(1) 
400 70.40 0.026(11) 0.088(8) 

Mix 110 33.67 0.083(21) 0.064(14)              800(300) 1200(300) 0.8(3) 
Lai.76Sro.24Cu04 220 70.72 0.19(7) 0.13(4) 

+ 020 33.43 0.066(35) 0.070(23)               800(300) 1000(300) 0.7(4) 
Lai.94Sro.o6Cu04 040 70.12 0.116(93) 0.13(5) 

200 33.54 0.024(156) 0.071(61)              900(700) 1000(600) 0.4(12) 
400 70.41 0.11(2) 0.003(320) 

the multiple-line methods are not much influenced. 
On the contrary, the single-line method gives quite 
different results. This may support the conclusion 
of Suortti, Ahtee, and Unonius [43] that the Voigt 
function fails to account properly for size and 
strain broadening simultaneously if only Cauchy 
integral breadth determines crystallite size. 

Table 7 shows that the results of Warren- 
Averbach analysis of starting and mixed powders 
agree in the range of standard deviations. How- 
ever, errors are much larger, especially for the hid- 
den (200)-(400) reflections. From Eq. (62) it 
follows that more counts (longer counting times) 
and more observables (smaller step-size) would 
lower standard deviations. Therefore, in the case of 
highly overlapping patterns, to obtain desirable ac- 
curacy, much longer measurements are needed, al- 
though that will not change the fact that higher 
overlapping implies intrinsically higher errors of all 
refinable parameters. To further minimize possible 
artifacts of the fitting procedure, it is desirable to 
include in the analysis as many reflections in the 
same ciystallographic direction as possible. 

5.5   Remarks 

By modeling the specimen size and strain broad- 
ening with the simple Voigt function, it is possible 
to obtain domain sizes and strains that agree with 
experiment and show a logical interrelationship. 
Furthermore, the Voigt function shows the correct 
1/A(26y asymptotic behavior of peak tails, as ex- 
pected from kinematical theory [139]. However, if 
the specimen profile is significantly asymmetric 
(because of twins and extrinsic stacking faults [140, 
59]) or the ratio FWHM/^ is not intermediate to 
the Cauchy (2/Tr) and Gauss (2(ln2/7r)"^) functions, 
then the Voigt function can not be applied [25]. 

Suortti, Ahtee, and Unonius [43] found good over- 
all agreement by fitting the Voigt function to the 
pure-specimen profiles of a Ni powder, deconvo- 
luted by the instrumental function. However, more 
accurate comparison is limited because of unavoid- 
able deconvolution ripples of specimen profiles. 
Furthermore, the Voigt function might not be flex- 
ible enough to model a wide range of specimen 
broadening, as well as the different causes of 
broadening. Therefore, the question whether the 
Voigt function can satisfactorily describe complex 
specimen broadening over the whole 20 range in a 
general case needs further evaluation. 

This method of Fourier analysis, with the as- 
sumed profile-shape function, is most useful in 
cases when the classical Stokes analysis fails; there- 
fore when peak overlapping occurs and specimen 
broadening is comparable to instrumental broaden- 
ing. It was shown that for a high degree of peak 
overlapping, the fitting procedure can give unreli- 
able results of Gauss and Cauchy integral breadths; 
that is, the peak can change easily from predomi- 
nantly Cauchy-like to Gauss-like, and contrary. 
This can lead to illogical values of size-integral and 
strain-integral breadths, according to Eqs. (52), 
(53), (54), and (55), and to irregularities in the be- 
havior of Fourier coefficients for large L. Simulta- 
neously, if the size-broadened profile has a large 
Gauss-function contribution, the "hook" effect will 
occur. However, volume-weighted domain sizes 
{D)y and MSS {e\L)) for small L are much less 
affected, because they rely on both Cauchy and 
Gauss parts of the broadened profile. Any integral- 
breadth method that attempts to describe the size 
and strain broadening exclusively by a Cauchy or 
Gauss function, in this case, fails completely. For 
specimens with lower crystallographic symmetry. 
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when many multiple-order reflections are avail- 
able, but the peaks are overlapped, it is therefore 
desirable to include in the analysis as many reflec- 
tions as possible, to minimize the potential artifacts 
of the fltting process. 

6.   Analysis of Superconductors 
6.1    (La-M)2Cu04 Superconductors 

Bednorz and Miiller [16] found the first high- 
temperature oxide superconductor in the La-Ba- 
Cu-O system. Soon after, substituting Ba with Sr 
and Ca, Kishio et al. [17] found superconductivity 
in two similar compounds. Later, many compounds 
with much higher transition temperatures (Tc) were 
found. The (La-M)2Cu04 system remains favorable 
for study because the cation content, responsible 
for the superconductivity, is easier to control and 
measure than the oxygen stoichiometry. Also, this 
system provides a wide range of substitutional 
cation solubility in which the tetragonal K2NiF4- 
type structure is maintained. Compared with much- 
studied Y-Ba-Cu-O, this structure is simpler 
because it contains only one copper-ion site and 
two oxygen-ion sites. 

The undoped compound La2Cu04 is orthorhom- 
bic at room temperature. It becomes superconduct- 
ing either with cation substitution on La sites or 
increased oxygen content to more than four atoms 
per formula unit. Doping with divalent cations in- 
creases the itinerant hole carriers in the oxygen- 
derived electron band [141], which probably causes 
the superconductivity. However, different dopants 
influence the transition temperature Tc. Although 
the unit-cell c-parameter simply reflects ionic 
dopant size [142], the in-plane unit-cell parameter 
(and accordingly the Cu-0 bond length) correlates 
with Tc for different dopants and for different dop- 
ing amounts [142, 143]. 

Lai.B5Mo.uCu04 (M = Ba, Ca, Sr) have a tetrago- 
nal K2NiF4-type structure, space group lAlmmm 
with four atoms in the asymmetric unit [117]. One 
site is occupied with La, partially substituted with 
dopant ions (Fig. 20). La2Cu04 is orthorhombic at 
room temperature. The best way to correlate these 
two structures is to describe La2Cu04 in space 
group Bmab; the c axis remains the same, tetrago- 
nal [110] and [110] directions become [010] and 
[100] orthorhombic axes, and size of the unit cell is 
doubled [144]. 

Figure 21 shows parts of the x-ray diffraction 
patterns, observed and refined, of Lai.85Mo.i5Cu04 
(M = Sr, Ba, Ca) and La2Cu04. Refined lattice 

parameters are given in Table 8. Table 9 shows 
resuhs of the line-broadening analysis. Relatively 

La(Ba,Ca,Sr) 

0(2) 

0(1) 

Fig. 20.   Ciystal structure of (La-M)2Cu04 showing one unit 
cell. 
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Fig. 21.   Diffraction patterns of Lai.H5Mo.i5Cu04 specimens: (a) 
M=Sr; (b) M = Ba; (c)M = Ca; (d) M = U. 
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Table 8.   Lattice parameters and T^ at zero resistivity (Ac method at 10 Ma current) 

Specimen a (A) b{k) c(A) rc(K) 

Lai.»5Sro.i5Cu04 3.77814(7) 

Lai.»3Bao.i3Cu04 3.7846(2) 

Lai.iijCao.i5Cu04 3.7863(7) 

La2Cu04 5.3558(2) 5.4053(2) 

.231(2) 36 

.288(4) 28 

.17(2) 19 

.1451(8) 

Table 9,   Results of line-broadening analysis for (La-M)2Cu4 specimens 

Specimen hkl PcO PoO (DUk) (I»),(A) <e^((D),/2))" 

Lai.(«Sro.j5Cu04 004 
006 

0.046(4) 
0.083(5) 

0.024(8) 
<io-' 

1700(300) 2000(200) 0.00049(9) 

110 0.110(5) <io-' 470(20) 940(20) 0.00044(6) 
220 0.171(9) <io-' 

Lai.85Bao.i3Cu04 004 
006 

0.049(6) 
0.110(7) 

0.076(6) 
0.089(9) 

1100(200) 1100(100) 0.0011(2) 

110 0.087(4) 0.00042(6) 560(20) 1110(20) 0.00024(5) 
220 0.116(3) <io-5 

Laiji5Cao.i5Cu04 004 
006 

0.120(13) 
0.146(12) 

0.032(22) 
0.033(27) 

440(70) 780(90) 0.0007(4) 

110 0.045(25) 0.200(19) 340(30) 360(20) 0.0013(2) 
220 0.343(22) <io-' 

La2Cu04 004 
006 

0.061(8) 
0.124(7) 

0.045(9) 
<io-' 

1100(100) 1200(100) 0.0008(1) 

020 0.074(10) 0.078(10) 680(50) 760(50) 0.0007(2) 
040 0.210(30) 0.026(81) 
200 0.074(8) 0.061(10) 680(50) 810(50) 0.0003(3) 
400 0.130(10) 0.023(95) 

weak peak broadening was observed, which can not 
be attributed to the proximity of the phase trans- 
formation; Lai.85Sro.isCu04 is tetragonal down to 
= 170 K [145], Lai.85Bao.i5Cu04 to 140 K [146,147], 
and Lai.85Cao.i5Cu04 to 130 K [148]. Another possi- 
ble reason for peak broadening might be continu- 
ous compositional variations in dopant content. 
The scanning Auger microprobe analysis of 
La2-*SrtCu04 compounds [149] showed that grain- 
boundary segregation of Sr is weak and limited to a 
narrow region near the grain surface. In the case of 
the separation of two phases with different Sr con- 
tent and similar lattice parameters, asymmetry of 
some reflections would be observed [150]. More- 
over, in the case of compositional inhomogeneity, 
microstrains {e\L)) would be roughly independent 
of the averaging distance L in the grains [151]; 
therefore distribution of strains would be Gaus- 
sian. For all specimens, microstrain behavior is 
identical; it decreases linearly with distance L. 

Rothman and Cohen [115] showed that such be- 
havior of microstrains is caused by dislocations that 
might arise during grinding. Assuming the same 
applied stress, microstrain would be approximately 
inversely proportional to the elastic moduli of these 
materials. If mean microstrain is defined as the 
arithmetic average of strains for the [001] and [110] 
directions, results agree with values of the Young's 
moduli for polycrystalline La2Cu04, Lai.85Mo.i5Cu04 
(M = Sr, Ba, Ca) [152]. However, other factors may 
contribute to the microstrain. Coordination-6 ionic 
radii of La^+, Sr'*, Ba^+, Ca^+ are 1.06, 1.16, 1.36, 
1.00 A, respectively [153]. Substitution of La'* with 
ions of different sizes affects the lattice parameter 
[142] and may cause much larger strains in the 
[001] direction when some of the ions are replaced 
with Ba^* than with Sr^*, in accord with results in 
Table 9. Substitution of Ca^'^ ions produces an 
entirely different effect; microstrains in the [110] 
direction are larger. This may be explained by 
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comparing effects of substitutional ions on the 
unit-cell a -parameter. The Ba-doped specimen has 
a larger a-parameter than the Sr-doped, but the 
Ca-doped a-parameter is largest, although Ca^^ 
has the smallest ionic size. This should increase the 
cell distortion in the a-b plane. 

Table 9 reveals high anisotropy in these materi- 
als, consistent with other physical properties such 
as thermal expansion [154] and upper critical mag- 
netic field [155]. Differences of domain sizes might 
arise from a layered structure in the [001] direction 
and consequently easy incorporation of stacking 
faults between regularly stacked layers. The stack- 
ing-fault and twin-fault probabilities can be esti- 
mated from the average surface-weighted domain 
sizes [59]: 

^       = TAN + cf*1fun(a,a').        (75) m. im - (D) 

Here, c'**'' is a constant for the particular [hkl] 
direction, and fun(a;, a') a linear combination of 
stacking-fault probability and twin-fault probability 
a'. The exact form of Eq. (75) was derived only for 
the cubic and hexagonal crystal structures. On con- 
dition that the "true" domain dimension D is 
isotropic or so large that the second term of Eq. 
(75) dominates, a linear function of stacking-fault 
and twin-fault probability is 

fun(a,a') = c( 
1 

) ■        (76) {Z>)/"''J     (D>™ 

Here, c denotes a constant that depends only on 
geometrical factors and is the same for all three 
doped compounds. 

Figure 22 shows a possible correlation between 
Tc and fault-defect probabilities computed from. 
TEM observations of La2-jcSr,Cu04 revealed that 
stacking-fault density increased with Sr content up 
to jc = 0.15 [156]. That study suggests that a shear 
mechanism forming the fault-boundary dislocations 
implies oxygen vacancies and/or cation deficiency. 
We did not measure oxygen content, but neutron- 
diffraction studies showed that oxygen deficiency 
starts to appear at much higher Sr content [157]. 
However, the increase of fault probability with the 
simultaneous decrease of microstrain in Fig. 22 
supports the assumption that defects are intro- 
duced to accommodate lattice strains [156]. A simi- 
lar increase in Te was found in Y2Ba4Cu802o-« thin 
films [158]. Compounds with asymmetric broad- 
ened and shifted peaks showed higher Tc, which 

was attributed to stacking faults. Although extrinsic 
stacking faults may cause asymmetric peak broad- 
ening [140], it is probably caused by twinning. 
Twinning in La-M-Cu-0 materials is less abundant 
than in Y-Ba-Cu-O compounds, but it was ob- 
served in (La-Sr)2Cu04 monocrystals on (110) 
planes [159]. In the profile-fitting procedure, peak 
asymmetry is incorporated only in the instrumental 
function; therefore we could not model asymmetric 
peak broadening. However, any significant asym- 
metry of the specimen profile would cause an un- 
even fit of low-angle and high-angle sides of peaks, 
which was not observed. This gives much more im- 
portance to stacking faults in Eq. (76). 

Fig. 22. Arithmetic average of [110] and [001] root-mean- 
square strains and linear function of stacking-fault and twin- 
fault probabilities as a function of Tc. 

In Fig. 22, average microstrains, defined as the 
arithmetic average of [001] and [110] directions, 
correlate inversely with Tc. However, we did not 
find a correlation of Tc and microstrains in a partic- 
ular direction. [001] microstrains simply reflect dif- 
ference in size of dopant and host La^* ions (see 
Table 9). 

In La2Cu04, (OkO) reflections are significantly 
broader than (hOO). This has also been observed in 
low-temperature orthorhombic Lai.85Sro.i5Cu04 and 
Lai.85Bao.i5Cu04 [160], and explained by either 
stacking faults or possible lower symmetry. Our 
results reveal that domain sizes (D), have identical 
values for [010] and [100] directions (Table 9). 
From Eq. (76), it follows that stacking-fault proba- 
bilities in these directions have the same values. 
However, microstrains in the [010] direction are 
roughly twice as large as in the [100] direction, 
which is responsible for the different broadening. 
In the case of doped La2Cu04 compounds, 
different microstrains might be caused by oxygen 
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vacancies ordered along one direction in the a-b 
plane, similar to effects found in YBa2Cu307-«. 
However, undoped La2Cu04 is not expected to 
have significant o^Q'gen deficiency. Other possibili- 
ties are lower ciystallographic symmetry and/or La 
vacancies, although they were not reported for this 
system, but La deficiency was found in an La2Co04 
compound [161]. 

We can conclude that lattice strains and incoher- 
ently diffracting domain sizes confirm high an- 
isotropy in these materials. This simple approach, 
however, does not allow unambiguous identifica- 
tion of the strain's origin. Probably, the strains 
originate from dislocations and from different sizes 
of host and dopant ions. Domain sizes of all com- 
pounds are larger in the c-direction than in the a-6 
plane. This indicates existence of stacking faults 
and twins. However, because estimated errors are 
relatively large and only three materials were stud- 
ied, the possible connection between stacking 
faults and 7c needs further study. 

62   Bi-Cu-O Superconductors 

Among the high-Tc superconductors, the. Bi- 
Cu-O compounds appear intriguing, especially 
because their incommensurate structure modula- 
tion remains incompletely understood [162, 163]. 
The crystal structure consists of perovskite-like 
SrO-(Cu02Ca)m.i-Cu02-SrO layers separated by 
NaCl-like BiO double layers (see Fig. 23 [164]). 
The number m of Cu02 layers alters the supercon- 
ducting transition temperature Tc (for m = 1,2, and 
3, rc«10, 90, and 110 K, respectively). This two- 
dimensional layered structure makes these materi- 
als highly anisotropic and favours the creation of 
defects. 

Bulk sintered specimens showed relatively weak 
peak broadening. Moreover, the diffraction pat- 
terns contained many overlapping peaks because 
the compound crystallizes in an orthorhombic low- 
symmetry space group A2aa [165], and incommen- 
surate modulation gives superlattice reflections. All 
patterns revealed a strong [001] texture (Fig. 24), 
making reflections other than (001) difficult to ana- 
lyze. The lattice parameters vary depending on the 
exact compound stoichiometry and processing his- 
tory, but characteristically they have almost identi- 
cal a and b parameters, and large c parameter: 
fl =5.4095 A, 6=5.4202 A, c =30.9297 A for 
Bi2Sr2CaCu208 (Bi-2212} [166] and A =5.392 A, 
b =5.395 A, c =36.985 A for (BiPb)2Sr2Ca2Cu30io 
(Bi,Pb-2223) [165]. Thus, we treated (hOO) and 
(0^0) reflections as single peaks. Table 10 gives the 

results for three specimens: Bi-2212, (BiPb)2 
(SrMg)2(BaCa)2Cu30io (Bi,Pb,Mg,Ba-2223), which 
were one-phase specimens, and Bi,Pb-2223, con- 
taining approximately equal amounts of 2212 and 
2223 phases. The in-plane lattice parameters of 
2212 and 2223 phases differ little, hence only the 
[00/] directions of the mixed-phase specimen were 
evaluated. 

b^ (c) 

Fig. 23.   Average crystal structure of Bi2Sr2Cam-iCum04+2m 
for: (a) m = 1; (b) w =2; (c) m =3 [164]. 
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Fig. 24.   Part of Bi,Pb,Mg,Ba-2223 refined pattern. There are 
48 fundamental reflections in this region. 

Interpretation of the results in the case of these 
complicated compounds must be considered care- 
fully. Microstrains are probably caused by disloca- 
tion arrays. However, substitution of different-sized 
ions and vacancies would also contribute to the 
strains, as would other kinds of disorder, especially 
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Table 10.   Results of line-btoadening analysis for Bi-Cu-O supreconductors 

Specimen Phase hkl 
(A) 

{e\{D)sa)y'^ 

Bi-2212 2212 008 
00.12 

0.163(8) 
0.22(3) 

0.01(6) 
0.05(6) 

420(80) 0.0021(6) 

020+200 0.104(4) <io-^ 580(30) 0.0007(1) 
040+400 0.18(2) 0.0004(6300) 

Bi,Pb,Mg,Ba-2223 77,73 00.10 
00.20 

0.097(1) 
0.21(2) 

0.0002(1700) 
0.007(150) 

770(60) 0.0012(1) 

020 + 200 0.12(27) 0.13(10) 380(430) 0.0009(71) 
040 + 400 0.15(95) 0.21(33) 

Bi,Pb-??73 2212 008 
00.12 

0.23(2) 
0.25(5) 

0.002(350) 
0.001(1000) 

220(30) 0.0013(26) 

2223 00.10 
00.20 

0.22(8) 
0.23(99) 

0.092(67) 
0.18(47) 

230(190) 0.0012(197) 

Stacking faults and twins. Table 10 shows larger 
strains in the [001] direction that in the basal 
plane. This can be explained by stacking disorder 
along the c-axis, which was frequently observed in 
electron-diffraction patterns as streaking [167, 
168]. Easy incorporation of stacking faults is possi- 
ble because of the two-dimensional weak-bonded 
layers (BiO double layers are spaced about 3 A 
apart). The difference in microstrain between in- 
plane and the c-direction is much smaller for the 
Bi,Pb,Mg,Ba-2223 phase, probably because Pb low- 
ers the faulting by stabilizing the higher-Tc 2223 
phase [167]. For the Bi,Pb-2223 specimen, with two 
phases, there are two possibilities: Either the speci- 
men consists mainly of a mk of two kinds of one- 
phase grains, or both phases occur within the same 
grains. The second possibility was confirmed exper- 
imentally [169, 170], and our results concur be- 
cause microstrain in the 2212 phase is much 
smaller than in the one-phase Bi-2212 specimen. 
Processing conditions and cation content probably 
favour development of the macroscopic inter- 
growth of both phases within the grains; that is, 
microscopic defects grow to sufficiently large re- 
gions to give a diffraction pattern of another phase 
with the different number of Cu02 layers. As a re- 
sult, strain is relieved, and both strains and domain 
sizes, being quite different in one-phase specimens, 
tend to equalize. 

For the Bi-Cu-O specimens, the mean surface- 
weighted domain sizes are generally smaller than 
for (La-M)2Cu04 compounds. Therefore, the com- 
putation of the stacking- and twin-fault probabili- 
ties by using Eq. (75) may be wrong. It would be 
very instructive to compare the different broaden- 

ing of satellite and fundamental reflections, which 
indicates a more pronounced stacking disorder in 
the modulated structure [171]. 

In summary, we found that for both Bi-2212 and 
Bi,Pb,Mg,Ba-2223 superconductors, the c-axis 
strain exceeds the in-plane strain. The Bi,Pb-2223 
specimen, containing both 2212 and 2223 phases 
within the single grains, shows smaller incoherently 
diffracting domains and lower c-axis strain than the 
one-phase specimens. This fact may direct us to- 
ward the mechanism of the second-phase forma- 
tion in these materials. 

6.3   Remarks 

It was shown that this particular method of the 
line-broadening analysis can give information 
about the size of incoherently diffracting domains 
and lattice strains in (La-M)2Cu04 and Bi-Clu-O 
superconductors. Moreover, results show high an- 
isotropy of both size and strain parameters, as one 
may expect, because of the layered structure of all 
superconducting cuprates. Generally, structural 
line broadening is not large; that is a result of rela- 
tively large domain sizes (200-2000 A) and small 
strains (0.02%-0.2%). It is interesting to compare 
these values with the published results for 
YBa2Cu307-« (isotropic strains of 0.23% [77] and 
0.05%-0.3% [82]). Although the different materi- 
als were studied, they seem too large, especially be- 
cause they are the average of strains in different 
directions. 

The main drawback of the line-broadening the- 
ory is the uncertainty about the origins of the line 
broadening; that is, it is difficult to distinguish the 
main effects responsible for the broadening. For 
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the novel superconductors, particularly, the numer- 
ous defects (substitutions, vacancies, stacking 
faults, dislocations, and similar) can occur simulta- 
neously, which makes it very difficult to determine 
their individual contributions. Furthermore, the 
crystal structures of most novel superconductors 
are relatively complicated. The average structure 
has mostly a slightly distorted tetragonal symmetry; 
very similar a and b lattice parameters, and a large 
c parameter, but c=36 for YBa2Cu307-«, for in- 
stance. This results in a large number of overlap- 
ping peaks, and consequently in large errors of all 
results. This showed especially in the case of 
Bi-Cu-O superconductors (see Table 10). Follow- 
ing the discussion of reliability of profile fitting in 
Sec. 5.4, it would be desirable to include more than 
two reflections in the analysis of broadening, but 
higher-order peaks are usually too weak and over- 
lapped. One way to partially solve this problem 
would be a whole pattern fitting [172, 173] and 
Rietveld structure refinement [2,3] in terms of size 
and strain parameters. This requires an accurate 
preset function to model specimen broadening and 
precise definition of angular dependence of size 
and strain parameters. The Rietveld programs that 
model the line broadening in terms of size and 
strain parameters are based either on the simpli- 
fied integral-breadth methods [78, 95] or on the 
single-line method [174]. 

7.   Conclusions 

A method for analyzing the pure-specimen 
(structural) broadening of x-ray diffraction line 
profiles is proposed. By modeling the specimen size 
and strain broadenings with the simple Voigt func- 
tion, it is possible to obtain domain sizes and 
strains that agree with experiment and show a logi- 
cal interrelationship. Furthermore, some common 
consequences and problems in the Fourier-method 
analysis follow easily. The specimen function is 
convoluted with the instrumental function to match 
the observed x-ray diffraction-line profile. This 
avoids the Stokes deconvolution method, thus al- 
lowing analysis of patterns with highly overlapping 
peaks and weak structural broadening. Therefore, 
the method was applied to some novel high-Tc 
superconductors. We reached the following conclu- 
sions: 

(i) Surface-weighted domain size depends only 
on the Cauchy integral breadth of the size-broad- 
ened profile. 

(ii) The "hook" effect occurs when the 
Cauchy-content of the size-broadened profile is un- 

derestimated, that is, for ^sc{('n"/2)"^/3sG. Usually 
this happens when the background is estimated too 
high, so the long tails of the Cauchy function are 
prematurely cut off. 

(iii) It also follows from conclusion (ii) that the 
volume-weighted domain size can not be more than 
twice the surface-weighted domain size (limiting 
value {D)v=2{D)i is obtained for the pure-Cauchy 
size-broadened profile). Minimum value for {D)J 
(D)j should not be less than -1.31. 

(iv) If the distortion coefficient is approxi- 
mated with a harmonic term, this leads exactly to 
the Warren-Averbach method of separation of size 
and strain broadenings. 

(v) In that case, mean-square strains decrease 
linearly with the distance L. 

(vi) It is possible to evaluate local strain 
((e^(0))"^) only in the case of pure-Gauss strain 
broadening. Then, root-mean-square strain is inde- 
pendent of the distance L and related to the upper 
limit of strain obtained from the integral breadth of 
the strain-broadened profile. 

(vii) If strain broadening is not described exclu- 
sively with the Gauss function, the multiple-line 
Voigt integral breadth and Warren-Averbach 
analyses can not give the same results for volume- 
weighted domain size, although {D)v is defined 
identically in both approaches, because the "appar- 
ent strain" -q = p°(29)cot9 is not angular- 
independent. 

(viii) Smooth size coefficients give column- 
length distribution functions without oscillations 
and make possible a computation of volume- 
weighted average domain sizes up to ~5000 A. 

(ix) Comparison with the simplified integral- 
breadth methods, in most cases, has shown not 
large, but systematic discrepancy of results, indicat- 
ing that size and strain broadening can not be accu- 
rately modeled by a single Cauchy or Gauss 
function. Moreover, the application of the single- 
line method is much less reliable, and it should not 
be used where multiple reflections are available. 

(x) The knowledge of all phases present in the 
sample and their crystallographic structure is re- 
quired to successfully fit a cluster of overlapping 
peaks. Although it is very difficult to accurately de- 
termine the Cauchy-Gauss ratio of an overlapped 
peak, final results of domain size and strain are 
much less affected. Therefore, connecting the crys- 
tallite size exclusively with the Cauchy content and 
strain with the Gauss content of a specimen profile 
might be doubtful. 

(xi) Evaluated errors of domain sizes and 
strains increase substantially with the degree of 
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peak overlapping. Hence, for complicated patterns, 
very accurate measurements are necessary and one 
needs to analyze as many reflections in the same 
crystallographic direction as possible. 

(xii) Line-broadening analysis of (La-M)2Cu04 
and Bi-Cu-O compounds confirms high anisotropy 
in these materials. 

(xiii) Strains in (La-M)2Cu04 probably origi- 
nate from dislocations and from different sizes of 
host and dopant ions. 

(xiv) Stacking-fault probability in (La-M)2Cu04 
(M = Ba, Ca, Sr) increases with increasing Tc, 
whereas the average strain decreases. 

(xv) In La2Cu04, different broadening of (/lOO) 
and (OfcO) reflections is not caused by stacking 
faults. 

(xvi) All Bi-Cu-0 superconductors show larger 
strain in the c-direction than in the a-b plane, 
which can be explained by stacking disorder along 
the [001] direction. 

(xvii) In the specimen with approximately 
equal amounts of Tl-2212 and Tl,Pb-2223 phases, it 
is likely that a secondary phase develops by the 
growth of the microscopic faulted regions of the 
primary phase. 
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