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1.   Introduction 

Neutron scattering provides a direct measure of 
spatial and temporal correlations of atomic posi- 
tions and magnetic states of the target system. 
Thus, to a considerable extent the theory of neu- 
tron scattering is aimed at calculating physical 
quantities that are of interest beyond the scattering 
technique itself. This outline is a short and highly 
selective tour through the basic mathematics and 
concepts of the canonical neutron scattering for- 
malism, which may provide useful preparation for 
the more focused contributions that follow in this 
collection. Our approach is didactic but also takes 
much for granted. We start abruptly, for example, 
with the general formula for the differential cross 
section and along the way leave out a great deal 
that could be said; important topics are ignored, 
and some of the discussions may seem to end pre- 
maturely. If terse, however, the outline also strives 
to be logical and cohesive and to set out a di- 
gestable overview of what is, after all, a far-ranging 
discipline. 

Fortunately for the reader, excellent and well- 
known introductory articles and texts are available, 
as well as advanced treatments of both general and 
specialized interest. References [1-18] of this arti- 
cle serve as a list of some of these. Scherm's [13] 
succinct and lively tutorial on the mathematical 
formalism of neutron scattering was the inspiration 
for the present treatment, which borrows liberally 
from it. The opening chapters of Bee's book [4] 
also give a thorough and readable survey of the 
formalism. The introductory review by Price and 
Skold [10] has broad scope and provides a bal- 
anced development of both theoretical and practi- 
cal material, while the authoritative collection of 
articles edited by Skold and Price [17] reaches into 
many areas of application. Squires' clear and effi- 
cient textbook [18] is a standard and helpfully in- 
corporates mathematical preparation that other 
sources often leave out. The treatise by Marshall 
and Lovesey [8] is a classic presentation of the for- 
malism. 
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The author is indebted to colleagues who pe- 
rused drafts of this article at various stages of 
preparation. Even in its brevity it tries to convey 
their insightful comments. 

2.   Basic Formulas 
2.1   The Born Approximation 

Our starting point for this outline of neutron 
scattering formalism is the definition of the double- 
differential scattering cross-section per particle, as 
obtained from the Born approximation: 

\d/2d(w/j|)-ti 
4(Sri;2/'(«o) 

(E   —En \ 
"   .        -o)j  , (1) 

where fl denotes the scattering solid angle, w, the 
angular frequency corresponding to energy transfer 
Ao), m, the neutron mass and A^, the number of 
nuclei in the scattering system. Note that in some 
treatments, the differential cross-section is defined 
with respect to an energy differential, which intro- 
duces a dimensional factor of;?"' on the right-hand 
side of Eq. (1). The incident neutron beam is in the 
plane-wave state |*o, Jo), where ko is the incident 
wavevector and so is the incident spin. The scat- 
tered beam is in the state \k,s), where k ands refer 
to the outgoing beam. The fundamental formula in 
Eq. (1) effectively is the product of a kinematical 
factor, k/ko, with the transition rate from Fermi's 
golden rule. The matrix element of the neutron- 
scatterer interaction V is taken in the product rep- 
resentation 

where 

\k,s,n) = \k,s)\n) , 

H\n)==E,.\n) 

and H is the Hamiltonian of the scatterer. The 
summation over the initial states of the scatterer is 
weighted by a probability density, p (no). The mo- 
mentum transferred to the scatterer by the neutron 
beam is /iQ, where 

Q=ki)-k (2) 

is called the scattering wavevector, or, more often 
than   not,   simply  the   scattering  "vector."  We 

designate the energies of an incident and scattered 
neutron as EQ and E, respectively. Then, consistent 
with the right hand side of Eq. (1), the angular 
frequency (o is determined by the neutron energy, 
Eo—E, transferred to the scatterer: 

A<o=^i^(kl-k^) (3) 

Thus positive co corresponds to excitation of the 
target, which is convenient in calculations which 
focus on the properties of the scatterer rather than 
on the analysis and configuration of the measuring 
instrument. Indeed, with respect to the probing 
neutron, w > 0 means energy loss or "down" scat- 
tering, while co<0 represents energy gain or "up" 
scattering. 

2.2   Nuclear Scattering in Homogeneous 
Systems 

For nuclear scattering the interaction potential is 
well-approximated by the Fermi pseudopotential 

2ir/5 V(r)=^2bjSir-Rj) m (4) 

where bj is the isotope- and spin-dependent scat- 
tering length of the neutron-nuclear interaction, 
and the summation is over all of the nuclei in the 
system. The scattering lengths in Eq. (4) are de- 
fined for fixed nuclei in the laboratory frame, and 
are generally referred to as "bound " (or "bound- 
atom") scattering lengths. For unbound nuclei, the 
bound scattering lengths are replaced by "free" 
scattering lengths. 

a,= 
Ai + 1 

b, (5) 

where the At are the nuclear atomic weights. The 
prefactor in Eq. (5) stems from the reduced mass 
of the interacting neutron-nucleus pair. The bound 
scattering lengths, in fact, are always the correct 
choice, provided the scattering is calculated cor- 
rectly, as illustrated below by the case of the ideal 
gas. Thus tabulations of scattering lengths (e.g., the 
comprehensive table by Sears [14]) give the bound 
values. For most nuclei, of course, the differences 
between the bound and free scattering lengths are 
relatively small, but hydrogen and deuterium are 
notable exceptions. 
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For a neutron beam of arbitrary spin polariza- 
tion, the scattered intensity is determined by 

dV 
dildo) -^p^4-mlrX...       (^) 

where/j(i)-/7(-i) is the polarization state of the 
beam. For an unpolarized beam,/j(±i) = i, while 
for nonmagnetic interactions the cross-section is 
independent of 5o. When there is no knowledge 
connecting the internal (isotopic and spin) states 
of the scattering nuclei to their positions, the 
observed cross-section is an average over the 
nuclear degrees of freedom: 

Equation (8) can be rewritten even more compactly 
as 

bibi = S ktibl 

where 

^ti = 
1     fora = "coh", 
hij   fora = "inc". 

(13) 

(14) 

The combination of Eqs. (1), (4), (7), (13) and (14) 
then gives 

d^ o-  _ / d^ o- \ 
d/2d<u    \d/3d<u/„uc (V) 

d'o-        k 
AflAo)    4'irko 

'2^aSa{Q,0>), (15) 

It is generally an excellent approximation to 
assume that there are no correlations between the 
internal states of different nuclei. As a conse- 
quence, 

bibj=bibj,   iT^j, 

where the overbar denotes the average over 
nuclear internal degrees of freedom. Then 

bibj =b?ac^ij+b^h , (8) 

where 

where 

S.{Q,i^)=ilp(no)l^?.j N 
no,n i,j 

(no|e-'fi«^|«)<n|e'2«'|«o)8(^^-^ -w) 

Explicitly, these are: 

(16) 

bcoh = b,   and 

bL = P-b^ , (9) 

define the interactions for nuclear coherent and 
incoherent scattering. The effective scattering lengths, 
Z>inc and bcoh, are often expressed in terms of bound 
cross-sections as. 

where 

cr„ = 4Trb^ , 

•coh" , 

(10) 

(11) 

5coh(fi,co)=T^2p(«o)2 N 
no." I,] 

(«fl|e-'C*'\n){n [e'e*'|«o)8(^" ^^"" -a>) 

and 

Sinc(Q,io) = -rj'2,p(no)'Z N 

(17) 

Therefore, 

0-inc + Crcoh = 4Trfc^. (12) 

K«|e'«"'^|/io)|^8(^^^ -co) . (18) 
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Notice that the site summation in 5coh (Q,o>) is 
unrestricted and thus includes the summation in 
Sinc(Q,oi). The total cross-section is obtained from 

<^(otal -IC d^ O" 

d/2da) dfido}. (19) 

In the upper limit, Eo = ^^lco/2m is the incident 
energy, the largest possible neutron energy loss. 
Often, however, w-integral is well-approximated by 
taking the upper limit to «. The quantity 

■i — 7^ O'total , (20) 

for A'^ scattering nuclei in sample volume V, is 
called the macroscopic cross-section and is just the 
inverse of the scattering mean free path. 

The total cross-section, Eq. (19), depends on the 
incident neutron energy; note, for example, the fac- 
tor ko = \'2mEo/^ in Eq. (1). The £o-dependence 
of total cross-section can be obtained analytically 
for the case of neutron scattering by an ideal gas. 
The result shows that crtmai « JBO""^ for^o^O, as 
expected from the kinematics, while for Eo > kaT/A, 
the asymptotic scattering is 

O^Cotal =(.-^r( O'inc '  O'oah) > 

which is just the free cross-section. This renormal- 
ization of the bound cross-sections at high incident 
energy is brought about by the recoil kinetic energy 
of the impulsive neutron-atom collisions and is 
observed in condensed matter. 

The relation in Eq. (15) is the basic law of non- 
magnetic neutron scattering from homogeneous 
systems. Generalizations to heterogeneous nuclear 
scattering and magnetic scattering, described 
below, depart only slightly from this archetype. 
Thus (nuclear) neutron scattering is a sum of 
coherent and incoherent contributions, each of 
which conveys different kinds of information about 
the scattering system. Only Sco\i{Q,(o) expressly 
depends on the relative positions and motions of 
the nuclei and thus provides explicit knowledge of 
structure and collective dynamics. In contrast, 
5inc(fi,(w) discloses no spatial structure and only 
reveals the motions of individual particles. For 
example, while coherent scattering can measure a 

phonon dispersion curve, w vs j2, incoherent scat- 
tering can only measure a phonon density of states, 
N{(o). Needless to say, a density of states is often 
just the information desired. 

The weights of coherent and incoherent scatter- 
ing in the measurement are determined—for a 
homogeneous system—by o-coh and o-i„c, which vary 
randomly from one nuclear species to another. 
Most nuclei are stronger coherent scatterers than 
incoherent scatters, and a few even scatter only 
coherently. For example, if we define 

A = 
O'total 

(21) 

then/coh=l for the abundant isotopes of Al, C, and 
O, while /coh^O.97 for Mg and Fe. Some nuclei 
scatter mostly incoherently. For example, 
/inc(V) = 0.995 and /i„c(Co) = 0.84. Hydrogen, 
/inc(H) = 0.98, is a singular example of an incoherent 
scatterer. Its total cross-section, o-totai(H) = 82 barns 
(1 barn = 10"^m^), is by far the largest among the 
elements and, of course, it is abundant in many 
materials. Hydrogen in hydrated compounds and in 
hydrocarbons causes significant incoherent scatter- 
ing, which often masks the desired coherent scatter- 
ing in structure determinations. Indeed, in small 
angle neutron scattering, water scattering, which is 
virtually independent of Q in the range of interest, 
is used to calibrate area detectors for spatial 
nonuniformity. Deuterium scatters incoherently, as 
well, but actually is a stronger coherent scatterer, 
with/coh(iD) = 0.74. Hydrogen and deuterium also 
are readily dissolved in many metals as a highly 
mobile interstitial impurity. Incoherent neutron 
scattering thus probes hydrogen vibrations and 
transport in these metals: in 5inc(C<u), the 
position operator, R\ (t), then refers to only to H if 
the host metal is a coherent scatterer. 

In heterogeneous nuclear systems, Eq. (15) is 
replaced by 

d^=|;2^r(e,»). (22) 

where 

5^(2,0))=^ 2/; («o)2H?; N 
n o,n 1,1 

(no|e-g*/\n){n |e'g'*'|no)8i^" ^"' -6j) , 

(23) 
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and where the ^-function defined in Eq. ( 14) has 
been extended to the H-function, 

E^-= ■ 
fccoh,, i>cohj     for a = "coh" , 
Oi,; "iac,i for a = "inc" . 

(24) 

Thus, in heterogeneous systems, including crystals 
with bases, the coherent scattering is also sensitive 
to the signs of the constituent fccoh-values, which 
also vary randomly with species, although bmb > 0 in 
most cases. For example 6coh(H)=-0.37, while 
fccoh(D) = 0.65. This sign difference is exploited in a 
wide variety of neutron scattering experiments, in 
which deuteration is used to label molecular sites 
or adjust overall coherent scattering contrasts to 
enhance the contributions from various compo- 
nents of the structure. 

2.3   Van Hove Formalism 

The Van Hove formalism recasts the Born 
approximation formula for Sa(Q,(o) into the 
Heisenberg representation and introduces quan- 
tum generalizations of classical correlation func- 
tions. Begin with the identity. 

y-f   e'"'{m\Aop(t)\n)dt, (25) 

where 
H H 

■^ op \f ^ — e ^ ^ op^   ^ (26) 

Then Eq. (16) becomes 

Two additional steps were also needed to reach 
Eq. (28). First 

e''^'e''fi*e"'^ = e"'«'W 

and 

^p{no){no\Aop\no) = {Aop) . 
"0 

Finally, with the use of the obvious identity. 

je-Rj =( d<in s(r-Rj)dh , 

Eq. (28) takes the form 

Ia(Q,t) = \ d^-''G.(r,t)<i'r . (29) 

where 

(5(r'-/?,(0))5(r'+r-i?y(0))dV' .        (30) 

Then Sa{Q,(o) and Ga(r,t) are connected by the 
Fourier transform 

5.(fi,^)=^|j° 

e'<e'-"')G„(r,r)dVdr , (31) 

Sa(Q,o>)=^j j-"-h(Q,t)dt , (27) ^"^'■•^^    J J_. 

and its inverse, 

Go 

with the introduction of 

/ 

e-'(e—)5„(G,6,)-^da, 
(27r)' 

(32) 

(2.0=^2 ^.. ^e-'-e-^'^") e-'fi«/w) 

(28) 

The asymmetric placement of the lir in these 
Fourier integrals is unfortunate, perhaps, but con- 
ventional. It could be avoided, say, by multiplying 
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the right-hand-side of Eq. (28) by ITT, but this is 
never done. The relationships among the quantities 

Sa(Q,(o)-^ "scattering function", 
Ia{Q,t) -* "intermediate scattering function", 
Ga{r,t) -^ "correlation function", 

comprise the Van Hove representation of the Born 
approximation. Now the nuclear position opera- 
tors, Ri(t), are not constants of motion, so that 

[R>(t),Rj(t')]^0 , 

and the substitutions implied by the the 8-functions 
can not be made in Eq. (30), except in a classical 
approximation. However, the correlation function 
in the coherent case can be exactly represented by 
the form 

Gcoh(r,0=^J<p(r',0)p(r'+r,r))dV' ,    (33) 

where 

p(r,t)==2S{r-Ri{t)) (34) 

is the nuclear particle density operator. Also, with 

p(fi.O = Je'^X'-.OdV, (35) 

the coherent intermediate scattering function is 
also represented by 

Icou(Q,t)=j^{p(-Q,0)p(Q,t)). (36) 

In materials applications, the meaning of (• • •) is 
generalized to include configurational averaging, as 
well as the implied thermal average. For a heteroge- 
neous scattering population, bcohp(r,t) becomes 
the scattering-length density field, 

v{r,t)=^bc^h.iS(r-Ri(t)), (37) 

and Scoh(Q,(o) is a sum of contributions depending 
on self- and cross-correlations among the various 
nuclear populations. 

The Van Hove formulation was a signal advance 
in non-relativistic scattering theory and a major 
stimulus to condensed matter applications beyond 
crystallography. Although rooted in Fermi's golden 
rule, it manages, with the introduction of the corre- 

lation function, to "hide" its overt quantum 
mechanical origins and bring forth a classical 
looking representation that is a powerful guide to 
intuition, while also providing the path to relation- 
ships with statistical mechanics and linear response 
theory. 

In thermal equilibrium, the statistical weight 
p (no) of the initial states is the Boltzmann factor 

-/5£nO 

where 

/?(rto) = —2- 

p=j^ ,   and   Z^Se-''^". 

The energy conservation explicit in Eq. (1) means 
that 

p{na)-^p{n)i^''°'. 

within the sums over states. This leads eventually to 
the principal of detailed balance: 

5a(-e.-w) = e-^""'5„(e,w). (38) 

In applications to inelastic scattering, Eq. (38) pre- 
dicts that "down" scattering («>0) is always 
stronger than "up" scattering (a><0). For centro- 
symmetric systems, the scattering function is an 
even function of Q, 

S4-Q,a>) = SaiQ,(o). (39) 

Actually, this is also true for systems without a cen- 
ter of symmetry if the inverted equililbrium struc- 
ture differs from the original by a constant 
displacement. 

The scattering function, Sa{Q,(o), is defined to 
be real, but the derived correlation function, 
Ga(r,t), is complex: 

G{r,t) = G'ir,t) + iG"(r,t). 

This can be seen from the integral in Eq. (32), since 
Sa(Q,(o) is not an even function of 6>—the con- 
straint of detailed balance. Thus a general relation- 
ship exists between the real and imaginary parts of 
the correlation function, which ultimately leads to: 

21 

(40) 
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This leads in turn to a concise connection between 
the scattering theory and linear response theory: 

5coh(2,w) = 
-2/5 

1-e- ]X"(Q,o^), (41) 

where A'(G><«*) is the generalized susceptibility 
function for the density operator in Eq. (34). 

2.4   Magnetic Scattering of Unpolarized 
Neutrons 

Since the neutron has a magnetic moment, inci- 
dent neutrons interact not only with the nuclei of 
the atoms in the scatterer but also with the mag- 
netic moments of their unpaired electrons. For un- 
polarized beams, the magnetic interaction with the 
nuclear spins is already incorporated into the dis- 
tinction between bmi, and bmc in Eq. (9). The poten- 
tial for the neutron-electron interaction is 

F„,ag(/-)=-/i-fi(r), (42) 

where /i = yfiNO- is the neutron magnetic moment 
operator, in terms of the neutron gyromagnetic 
ration, -y = 1.9132, the nuclear magneton, /AN, and 
the Pauli operator, a. The internal magnetic field 
operator, B(r), is 

B(r) = 2^.2[7x{^)+^],       (43) 

where JU,B is the Bohr magneton, s, and p, are the 
electron spin and momentum operators, respec- 
tively, and the summation is over all unpaired elec- 
trons. The (") symbol denotes a unit vector. For the 
Born approximation the required matrix element 
ofB(r) is 

x-,r- •-     i(Pi'xQ)'] 
{k\Bir)\ko) = 2tiB2[Qx(s,xQ)+ ^^g^Je'^- 

= AioA/(e), 

(44) 

(45) 

where ^lo is the vacuum magnetic permeablity and 
M is the magnetization operator. For an unpolar- 
ized beam, the differential cross-section can be 
expressed as in Eq. (15) with the identifier a taking 
on the additional value "mag", and with the defini- 
tion 

o■mag = 4^^(y/-o)^ (46) 

where ro is the classical electron radius. Note that 
this usage of the symbol, o-mag, is not universal. The 

generalization of the Van Hove representation to 
the magnetic case gives, 

5mag(e >«) = 2 -z: ZT :r- 
M,"    (2/iBMo)     277 

f    IJ^SHQ,t)dt, (47) 
J — oa 

where /x and v are coordinate labels. The interme- 
diate scattering function I^v^{Q,t) extends the 
definition in Eq. (36), 

I^^ (e,O=^<A/.(-G,0)M„(G,O),      (48) 

for//m magnetic ions, while the corresponding mag- 
netization correlation function, from Eq. (33), is 

G;„^«(r,O=;^J<M,(r',0)M„(r'+r,O)dV'. (49) 

Thus, except for the appearance of the quantity 
known as the Halpern tensor, 

Ofiv        j^t^l^v  > (50) 

in Eq. (47), the formal extension of nuclear scatter- 
ing to magnetic scattering of unpolarized beams 
simply entails replacing the scalar nuclear density, 
p, by the components of the magnetization, M^. 
The Halpern factor, however, is responsible for the 
special, anisotropic character of magnetic neutron 
scattering. For example, for a single-domain ferro- 
magnetic sample. 

S>..-Q,Q.-^1-{Q-My (51) 

where M is the direction of the domain magnetiza- 
tion. Thus, in the Born approximation, there is no 
magnetic scattering for Q || M . As indicated by the 
scattering law, Eq. (15), now with 

"coh", 
"inc", 
"mag". 

(52) 

nuclear and magnetic scattering coexist, in general, 
in magnetic materials and can have comparable 
weight. The anisotropy of magnetic scattering offers 
one means of separating these contributions by 
choosing directions of Q along which the magnetic 
component is suppressed. Squires [18] introduces 
basic elements of magnetic scattering, while Balcar 
and Lovesey [3] provide a thorough exposition. 
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3.   Generic Applications 
3.1   Elastic Scattering 

The scattering function can be analyzed into 
distinct w-dependent contributions according to: 

S„{Q,(o) = I„(Q,oo)8(a>)+SS' (Q,a>).     (53) 

Tlie first part is called the elastic scattering, which, 
by convention, means SQattering with no change in 
the neutron energy, so that k =ko. The isolation of 
the elastic contribution is the result of writing 

/«(G.o=/a(G,»)+[/„(e,o-/a(e,")],(54) 

in the integrand of Eq. (27) and assuming that the 
limit, 

/„(e,«)=nm[/„(e,o], 
exists. The first term in Eq. (54) is independent of t 
and thus produces the scattering proportional to 
S(o)). The «o/j-elastic part SS'(Q,(o) stems from 
the Fourier transform of the f-dependent remain- 
der and comprises both inelastic and ^uaj/elastic 
contributions. Furthermore, for |f —/'|-» <», 

(A(t)B(n) = {A(oxBin) 
(55) 

where the A "' is equilibrium average of the opera- 
tor/!. Therefore, in Eq. (53) 

Psdf(r)=   J(5(r')){5(r'+r))dV' (58) 

can be interpreted as the conditional probability 
density for nuclear position r at time t-^oo, given 
that r = 0 at (= 0. These expressions for the elastic 
scattering are easily extended to heterogeneous 
systems. 

3.2   Energy-Integrated Scattering: The Static 
Approximation 

Coherent elastic scattering, which reveals equi- 
librium structure, must be measured by energy- 
resolved techniques. Often, however, structure is 
studied using methods that do not discriminate the 
scattered neutron energy; these experiments 
observe the energy-integrated cross-section 

do-     f 
d/2    J. dfidco d(o . (59) 

In the static approximation, this is represented as 

where 

0) (61) 

1 
/coh(e,«)=^|p"'(fi)l (56) 

which is the basis of structure determinations in 
solids. Various aspects of this extensive field are 
elucidated in [1], [7], [8], [11], and [18]. For liquids, 
on the other hand, p"'(r)=Ar/F, so that 

/coh(fi,«')=^(p)'5(e). 

leading to the dictum that liquids scatter elastically 
only in the forward direction. The weight of inco- 
herent elastic scattering is given by 

/mc(e,'») = |e'2'/'s»if(r,«')d/- (57) 

where 

Since Q is held fixed in the <w-integration, this 
approximation entails neglecting the C-dependence 
of the final neutron wavenumber, 

k = \ko-Q\, 

and setting k=ko, as in elastic scattering. Then 
from Eq. (27), 

Sa(Q)=l4Q,0)- (62) 

Since [/?,(/), Rj(t)] = 0, this can be analyzed as 

'5«(fi) = Je-'e-^G„(r,0)dV, (63) 

where 

Ga(r,0)=^ S ^rj {8{r +/?,(0)-«;(0))).      (64) 
'.1 
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Therefore, for the incoherent contribution, 

Gi„c(r,0) = S(r), (65) 

so that 

5i„c(fi) = l, (66) 

For the more interesting coherent component. 

where 

ScouiQ) = S(r) + g(r), (67) 

g(r)='Z{S(r+RoiO)-Rj(0))) (68) 

is the static pair-correlation function. Thus energy- 
integrated coherent scattering measures an aver- 
age of instantaneous "snapshots" of the time- 
dependent structure, while elastic coherent scatter- 
ing measures the equilibrium averaged structure. In 
harmonic crystalline solids, where the atoms more- 
or-less "stay put," both methods yield the equi- 
librium positions and mean-square thermal 
displacements, but the two forms of measurement 
differ in important ways. Indeed, from Eq. (53), one 
has 

5coh(e) = 5Slh(G)+ 50-01,(0 

where we have defined 

55ih(G)=/ooh(fi,"), 

and 

(69) 

(70) 

55fh(e)=f    55.1,(6,6,)d6). (71) 
J —   00 

For monatomic harmonic crystals, in particular, 

SUQ) = ^^^-'"'1HQ-K),       (72) 

where /2o is the volume of the unit cell, the K are 
wavevectors of the reciprocal lattice, and 
exp(-2W) is the Debye-Waller factor, which 
depends on the thermal displacements and is 
defined below at Eq. (107). The 5-functions in 
Eq. (72) are the Bragg peaks from which the equi- 
librium structure is deduced. In this context the 
integrated nonelastic scattering in Eq. (69) is 
referred to as thermal dijfuse scattering. For the 

special case of an Einstein solid (dispersionless 
vibrations), the thermal diffuse scattering varies 
monotonically with Q. In general, however, for 
dispersive vibrations (acoustic phonons), the 
thermal diffuse scattering is a structured back- 
ground, including temperature-dependent "wings" 
centered on the Bragg peaks. Thermal diffuse 
scattering is discussed again in Sec. 3.5.2. 

In strongly anharmonic solids and systems where 
structure changes on the time scale of the measure- 
ments, elastic and energy-integrated scattering 
probe substantially different correlations, and only 
the latter provides the short-time information 
usually of interest in such cases. 

3.3   Sum Rules 

Taken in a larger context, the formula in Eq. (61) 
is the zeroth-order member of a set of frequency 
moments of the scattering function, Sa{Q,(>>), 
which in normalized form is defined by 

<^">a(e) = 5;;^J ^6)"5„(e,^)d6> 

In particular. 

W°)^{Q) = \. 

(73) 

(74) 

While seeming trivial, in practice Eq. (74) actually 
constrains physically distinct measurements and 
thus provides a means of checking their mutual con- 
sistency. The higher-order rules are formally gener- 
ated starting with Eq. (27): 

^/„(fi,0|,=o = i'' J J.{Q,co)o>''du>.     (75) 

Then it is easy to get 

NSaiQ)   ij 

^e-'e-*.(«)^e'e«^(")     , (76) 

where, following Eq. (26), the derivatives with 
respect to t are determined by 
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le'Q-*'W = |[//,e'e-*^w]. (77) dt 

For velocity-independent interactions, the commu- 
tator is independent of the atom-atom interaction 
potential and gives 

^"'"''^(^+^Q'Ri(0), (78) 

where M is the atomic mass. The contribution from 
the second term averages to zero in Eq. (76), and, 
recalling the normalization in Eq. (73), it follows 
easily that 

H(o)4Q) = 2M (79) 

which can be interpreted as the average recoil 
kinetic energy at fixed scattering vector Q. Note 
that if the f-derivative is treated classically, the 
result is equivalent to keeping only the second term 
in Eq. (78), which gives (w)a(2) = 0. This is incon- 
sistent with the asymmetry oiSC,(Q,CD) required by 
detailed balance, Eq. (38), except in the high- 
temperature limit. 

Higher moments are increasingly system-depen- 
dent and more difficult to calculate. For a classical 
liquid, the second moments are 

("'^■'■o^'mwy 
The coherent case. 

Q'ksT 
<^'>-^(Q)-MS^,(Q)' 

(80) 

(81) 

and its analogues come into play in the analysis of 
quasielastic scattering (Sec. 3.6) in liquids and 
lattice fluids, where (w^)coh(6) is used as a measure 
of the width of the coherent contribution to the 
quasielastic line. Then Eq. (81) predicts that the 
width has a minimum near the maximum of 
ScobiQ), the effect known as de Gennes narrowing, 
which physically expresses the relative stability of 
density fluctuations that are consonant with the 
dominant short-ranged liquid order at <2max. 

3.4   Small Angle Neutron Scattering (SANS) 

Small angle scattering is the discipline of study- 
ing microstructure of materials by investigating 
scattering in the immediate neighborhood of the 
incident beam. For neutrons with wavelengths 
larger than the Bragg cutoff—i.e., Ao > a, where a is 
the largest unit cell dimension—Bragg scattering 
from the atomic-scale structure is suppressed, and 
all scattering is near the forward direction. The 
(2-dependence of small angle scattering thus arises 
from structural variations over length scales usually 
much larger than the atomic scale. An informal but 
helpful rule is that microstructure on length scale L 
produces scattering in the Q-range 

Q^ITTL- (82) 

In other words, the more homogeneous the 
microstructure, the smaller the 2-range in which it 
is observable. To a good approximation in SANS, 
the scattering angle is given by 20 = Ao!2/2'n-. 
Combining this with the criterion in Eq. (82), gives 

20^ L • (83) 

This shows that increasing the neutron wavelength 
magnifies the observable scale of microstructure; 
i.e., at a given scattering angle (position on the 
detector relative to the incident beam), larger 
homogeneous regions contribute to the scattering at 
larger incident wavelengths. Small angle scattering 
also occurs for neutron wavelengths below the 
Bragg cutoff, but then intensity at small angles is 
reduced by Bragg scattering into large angles. In 
thick specimens, especially, multiple Bragg scatter- 
ing can contaminate scattering in the small angle 
regime, a bane of the early history of the field. 

As with other methods of structure determina- 
tion, small angle scattering can be implemented as 
elastic scattering, following Eqs. (53) and (56), or as 
energy-integrated scattering, as defined in the 
preceding section. Most SANS instruments, in fact, 
integrate the scattered energy transfer, and the 
static approximation usually is appropriate. Thus, 
for heterogeneous systems Eqs. (84) and (63) are 
generalized as 

(lsL=2«"(e). (84) 

and 
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5^(Q) = j e'e-Gr (r ,0)dV . (85) 

Since the notation is getting cumbersome, for the 
remainder of this section the superscript "het" will 
be omitted, and the specification, t =0, will 
become implicit. Also, recalling Eq. (9), fecoh will 
be denoted by the more compact b. Now, in order 
to make contact with conventional SANS terminol- 
ogy, introduce the function r(r). 

Gcoh(r)=^r(r) 

Then, from Eqs. (33) and (37), 

(86) 

nO=pj<^(r')rj(r'+r))dV'. (87) 

For the incoherent contribution, Eq. (30) easily 
gives 

Gincir) = {bL)Sir), (88) 

where 

\binc/ — XT ^ binc,i   • N (89) 

This is just the extension of Eq. (65) to hetero- 
geneous systems. Small angle scattering usually is 
analyzed in terms of the Porod-Debye correlation 
function, as defined by 

7(r) = 
r(r)-r(oo) 
r(0)-r(oo) 

(90) 

By construction, it follows immediately that 

■y(O) = 1,   and 
y(oo) = 0. 

Using Eq. (87), the limits of y(r) are 

y(0) = {v')y,   and 

(91) 

where 

{•••V = ^J(-'-)dV, 

(92) 

(93) 

means a combined thermal-configurational-volume 
average. In most theoretical SANS treatments these 
averages are treated as being redundant, and the 
choice of which one to do "first" is usually a matter 

of mathematical convenience. The Porod-Debye 
correlation function can then be written as 

^f{Av(r')^v(r'+r))d'r' 

yir) = ^T-T;^ .      (94) 

where 

{(^V)\ 

Avir) = v(r)-{'n)v, (95) 

is the fluctuating part of the scattering-length den- 
sity field. The combination of these results gives 

+ F((A77)^)^Je'fi-'y(r)dV. (96) 

The first term is a Q-independent background, and 
the second is the forward coherent scattering, 
which usually is masked by a beam stop. The 
Fourier transform of y(r) in the last term de- 
scribes the scattering caused by the spatial varia- 
tion of the microstructure. Equation (96) is the 
basic law of small angle neutron scattering. 

A typical class of materials in SANS studies 
consists of two or more homogeneous phases sepa- 
rated by sharp interfaces and partitioned into 
multiply-connected volume compartments. For 
such systems the scattering-length density can be 
represented as 

where 

v{r)='Zbnp.,(r), 

Pn(r) = lSir-R!), 

(97) 

(98) 

and b„ is its coherent scattering-length, which can 
be computed as a cellular average for polyatomic 
phases. The component densities satisfy 

\P'i)y-'y9" (99) 

where <^n is the volume fraction of the n -th phase, 
and also have the properties. 

p„(r)p„,{r) = for m ?^ « , 
)     for m = n . (100) 
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The first expresses the spatial partitioning of the 
phases, while the second is the normalized idem- 
potency condition. It then follows that 

{(i^v)\ = {y)\{bL)-{b.o.)'-\,       (101) 

where 

bcah= 2J <i>nbn (102) 

Then, using the phonon representation of the 
displacement operator, one can derive (with some 
tedium) the basic identity of the harmonic approxi- 
mation. 

(105) 

For the special but important case of two phases, 
this reduces to the symmetrical formula where 

<(A7J)\==<^(1-0)(771-172)', (103) 

where ^ is the volume fraction of either one of the 
phases, and 171 and 772 are the scattering-length 
densities. 

3.5   Inelastic Scattering 

In Eq. (53) the non-elastic contribution, 
55°(g,w), may describe melastic scattering, 
5«a« elastic scattering. Sec. 3.6, or both, depending 
on the system being studied. Inelastic scattering 
means energy-resolved scattering not centered on 
w = 0. Coherent inelastic scattering typically con- 
sists of well-defined lines riding on a diffuse, or 
structureless, w-dependent background. The lines 
result from resonant scattering of the neutron by 
long-lived elementary excitations of the system, 
such as phonons and magnons (in magnetic materi- 
als) and impurity atom vibrations in host-guest 
systems. Diffuse coherent inelastic scattering is 
produced by scattering from multiple, or non- 
elementary, excitations. Energy-integrated inelastic 
scattering is usually the main source of the thermal 
diffuse background in structure determinations 
using energy-insensitive detection methods. Inco- 
herent inelastic scattering measures excitation 
densities of states, to a first approximation. 

3.5.1   Scattering by Phonons 

Scattering by phonons provides the prototype for 
neutron inelastic scattering. Squires [18] gives a 
lucid treatment. To calculate the intermediate scat- 
tering function, Eq. (27), resolve the nuclear posi- 
tion operator into the equilibrium coordinate and a 
time-dependent small displacement, 

and 

W,j{Q,t) = ^{Q'U>(0)Q'Ui{t)), (106) 

W=Wu{Q,Q). (107) 

R,(0 =/?/" +«/(/). (104) 

The ubiquitous exponential, exp(-2PK), is the 
Debye-Waller factor. It is a long-standing conven- 
tion to leave the Q-dependence of the W function 
implicit. A concrete formula for W follows from 
Eq. (113) in the next section. Although correct 
quantum mechanically, the result in Eq. (105) actu- 
ally can be obtained more directly by treating 
Q ' Uj (f) as a classical Gaussian random variable, f, 
with zero mean, and by using the concommitant 
rule: 

^ef) = e"^<^>. 

The Taylor expansion of the final exponential in 
Eq. (105) leads to a systematic development of the 
inelastic scattering function, 5i"°'(g,w). The first 
term (unity) gives the elastic scattering from the 
equilibrium structure, as in Eq. (56). The next 
term—the first f-dependent one—describes one- 
phonon scattering, while the remainder produces 
multi-phonon scattering. For a Bravais lattice the 
result for coherent one-phonon scattering turns out 
to be: 

{[n.{q) + l'\8{a>-C0s{q))S{Q-q-K) 

+ [ns{il)]S{o> + (o,{q))8{Q-^q +K)] . (108) 
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In this formula M is the nuclear mass, /2o is the 
volume of the lattice unit cell, and Kisa. reciprocal 
lattice wavevector (often denoted as ITTT, where T 
is a reciprocal lattice vector). The phonon modes 
of wavevector q and polarization s have frequencies 
cos(q), polarization vectors es{q) and thermal 
occupations ns(q). The two terms in Eq. (108) 
describe, respectively, scattering with the emission 
of a phonon—the neutron is down-scattered by 
energy ^(Os(q)—and scattering with the absorption 
of a phonon—the neutron is wp-scattered by 
energy fi(>h{q)- In each case the scattering satisfies 
the kinematical constraints 

£(A:o^-/:^)=±^co.(?) 

and 

(109) 

application of inelastic scattering. For example, in 
hydrogen in metals, the point symmetry of occu- 
pied interstitial sites usually is revealed simply by 
assignment of the intensities produced by vibra- 
tional modes having signature degeneracies. 

3.5.2   Thermal Diffuse Scattering 

With the material now at hand, we continue the 
description of thermal diffuse scattering begun in 
Sec. 3.2. In general the energy-integrated non- 
elastic scattering that constitutes thermal diffuse 
scattering incorporates both quasielastic and in- 
elastic scattering. Here, however, we only consider 
the inelastic contribution from phonon scattering. 
Thus using Eq. (105) in Eqs. (28) and (62), and 
recalling Eq. (71), one gets 

ko-k=K±Q. (110) 

For incoherent one-phonon scattering, the scat- 
tering function can be obtained from Eq. (108) by 
making the formal replacement, 

(27r)^ 

/2o 
8{QTq-Ky^ 1. 

This leads to 

5ii,c'"'(e.«) = 

3JV^e-^'^ <[e-e.(<7)]'«.(?))«. 
2M CO 

•^((o),       (111) 

where J^{(o) is the one-phonon density of states 
and (■ • ■ )a, denotes the average over the surface in 
reciprocal space on which a)s(q) = (o. 

For multi-phonon processes the corresonding 
kinematical relations are not mode-specific, and 
diffuse ft)-dependent scattering generally is the 
result. Often the multi-phonon background must 
be estimated in order to achieve a reliable analysis 
of one-phonon scattering. Occasionally multi- 
phonon scattering may even appear in the guise of 
"broadened" one-phonon scattering in compli- 
cated spectra. 

Inelastic scattering is also used to measure spin- 
wave spectra in magnetic materials. The kinemati- 
cal constraints for 1-magnon scattering are the 
same as in Eq. (110). Determination of local vibra- 
tions in host-guest systems is another important 

S^UQ) = l-e-'"'-h^ 
-2W 

N 

y g.-iQ<Rr>-«f^)tQ2»'ii(e,o)-i\ ^ (112) 

where Wij(Q,t) was defined in Eq. (106). Explic- 
itly, forr=0, 

q,5 ■• \-i / 

[2«,{q)^l]cos[4r • {Rf^ -/?/")] .      (113) 

The formula for W, Eq. (107), is obtained by set- 
ting i =j here. For an Einstein model the thermal 
displacements on different sites are uncorrelated, 
so that Wij (2,0) = 0 for i p^j. In this case, there- 
fore, the term in Eq. (112) with the sum over sites 
vanishes identically, and the thermal diffuse back- 
ground is l-&xp{ — 2W). Notice that in the opposite 
extreme, if Wij (Q ,0) were independent of the dis- 
tance between sites, the summation in Eq. (112) 
would produce Bragg peaks, as in 5mh(6)- Instead, 
Wij{Q,0)-^0 as |fi("'-/?/i|^oo, and this fall-off 
moderates the site summation. However, Wij(Q,Q) 
decays slowly with distance, which leads to a weak- 
ened expression of the reciprocal lattice structure 
in the thermal diffuse scattering. This is seen by 
expanding exp[2IFy(g,0)], in analogy to the 
phonon expansion of S'coh{Q,(o). Indeed, one can 
obtain the 1-phonon thermal diffuse scattering 
directly by integrating Eq. (108) with respect to (o. 
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This gives 

SLl'\Q) = 
Ha     2M 

s,K o^siq) 
(114) 

where 

q = Q-K 

for each K in the sum. Thus the acoustic phonon 
branches give rise to algebraic singularities coinci- 
dent with the Bragg peaks, since a)s(q) = Csq for 
small 1^1. Specifically, for ^^0 near a particular K 
and at temperatures such that fi(x){q)<k^T, then 

s'^riQ) a le-^l (115) 

since ns(q)~kBT/A(Os{q). On the other hand, if 
/io),,{q)>kuT, then 

ScU-^fi) ^ \Q-K\' (116) 

Although these results are derived in the harmonic 
approximation, they correctly imply that soft 
modes in plastic crystals also produce significant 
thermal diffuse scattering near Q=K+qc, where 
(iOs{qc) = Q at the softening temperature. 

Historically, before the ascendancy of inelastic 
neutron scattering, x-ray thermal diffuse scattering 
was the chief means of measuring phonon disper- 
sion in solids by fitting lineshapes with expressions 
like Eq. (114). 

3.6   Quasielastic Scattering 

Quasielastic scattering is energy-resolved scatter- 
ing centered on w = 0 and is the result of neutrons 
interacting with purely dissipative excitations, 
which can be viewed as motions at imaginary 
frequencies. Usually this means scattering by diffus- 
ing nuclei. Typically, quasielastic and inelastic 
scattering are well-separated from each other, since 
vibrational angular frequencies tend to be much 
larger than diffusive jump rates. Sometimes, how- 
ever, analysis of the scattering near w = 0 into its 
elastic, quasielastic and inelastic components is not 
easy. 

A prototype for quasielastic neutron scattering 
is incoherent quasielastic scattering from hydrogen 
in metals. At high temperatures the correlation 

function, G\m(r,t) in Eq. (30), is well-approxi- 
mated by the classical limit, 

Gtr{r,t) = Pse.f(r,r) 

= {8(r+Ro(0)-Ro{t))) , (117) 

which is the finite-^ generalization of Eq. (58). 
Application of jump diffusion theory to the calcula- 
tion of Px\f{r,t) then leads to the Lorentzian 
quasielastic lineshape. 

Smc(Q,(0) = (118) 

where r(Q) depends on the diffusion constant and 
on the structure visited by the diffusing particle. In- 
coherent quasielastic scattering coexists with inco- 
herent elastic scattering given by Eq. (57), which is 
called the elastic incoherent structure factor in the 
concerned literature. This "EISF" is proportional 
to the reciprocal of OXH, the volume accessible to 
the diffusing particle. Thus, the less localized the 
self-diffusion, the smaller the weight of incoherent 
elastic scattering. 

Coherent quasielastic scattering, which was 
alluded to in Sec. 3.3, is important in fluid systems, 
indeed wherever diffusive transport of coherently 
scattering nuclei occurs. Quasielastic scattering also 
is produced by diffusive rotational modes in plastic 
crystals and caged systems. See [4] for an extensive 
treatment of quasielastic scattering. 

4.   Neutron Refraction and Reflection 

The Born approximation neglects interference 
between the incident and scattered waves. This usu- 
ally is justified in standard beam-target geometries 
for scattering at wide angles from small samples. 
These interactions become important, however, as 
scattering becomes concentrated into the forward 
direction. Then the sharp distinction between inci- 
dent and scattered beams within the scattering 
medium is lost, and it is necessary to solve the 
Schrodinger equation ("dynamical" scattering) 
without resort to the Born approximation ("kine- 
matical" scattering). 

An important problem where dynamical scatter- 
ing theory is required is a neutron beam incident on 
a semi-infinite scattering medium having a smooth, 
planar boundary, say at z = 0. The Schrodinger 
equation for this case is 

^ VV(r) + F(r)^(r)=£o^(r) ,       (119) 
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where Eo = h'^kallm, and the potential is the step 
function, 

V{r): 
0, z > 0 

<F>cdi,        z < 0- 
(120) 

The effective scattering potential in the medium is 
the average of F(r) over the crystalline unit cell. 
This is a good approximation for neutrons beyond 
the Bragg cutoff. In detail, 

{V)ce\\ = P (6coh)cell   , (121) 

where p=N/V, and bcoh is arithmetically aver- 
aged over the cell. The trial solution is 

r e'*»''+M,e'*''''       z>0 
)= ., ^ (122) Hr) = 

where k!=ko. The subscript "r" denotes the 
reflected beam, while "m" refers to the wave within 
the scattering medium. The angle of incidence <^ 
and the angles of the reflected and refracted waves 
<^r and 0m, respectively, are conventionally mea- 
sured from the flat in neutron optics. Since the 
model potential is everywhere independent of J: and 
y, the wavevectors ko, kr and km have equal compo- 
nents parallel to the surface. Thus the reflection is 
specular, <f>t=^. The boundary conditions at z = 0 
are 

l + Hr = "m,   and 

(\-Ur)k(i sin (p = Umkm sin (^m . (123) 

It follows easily from Eq. (122) in Eq. (119) that 

fi^ki     Pk 2t2 

2m 2m + {V% (124) 

The amplitude of the reflected wave works out to 

sin</>- •\/sin^<^-sin^<^c 
"^ = ^ ,       •       .    •' . (126) 

sm<^-l- vsin <^-sm 00 

where ^c is the critical angle, 

4>c ■■ arcsm Vi-«' (127) 

For <^^0c, Eq. (126) shows that |Mr| = l, which 
indicates that the incident wave is totally reflected. 
In this case the normal component of km is imagi- 
nary, and the wave in the medium is evanescent. 
When <J> > 0c. km is real, and its direction is given 
by Snell's law. The index of refraction in Eq. (125) 
can be written as 

(128) 

where T; =p(Z>coh)ceu is the average scattering length 
density of the medium and generally is positive. 
Typically «=1-0(10"') for thermal neutrons, 
which gives critical angles 

0c = Ao \/^ 
^    IT 

(129) 

of only fractions of a degree. The longer wave- 
lengths of cold neutrons give substantially larger 
critical angles, which are required for practical 
applications of neutron guides. For media in which 
77 <0, the index of refraction is greater than unity, 
0c is imaginary, and the incident wave is never 
totally reflected (except at 0 = 0). 

The scattering wavevector for neutron reflection 
is defined as 

Q=ko-kr (130) 

so  that Q=2kosm(f>. The neutron reflectivity, 
/? = |Mrp, then is obtained from Eq. (126) as 

This gives the index of refraction of the scattering 
medium. RiQ) = 

~\2 

(131) 

-V^ Eo 
(125) 

where Qc = 2kosin(f)c. This is equivalent to the 
Fresnel formula for reflectivity in optics. Thus, 
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R(Q) = 1 for Q^Qc, while for Q>Qc, the reflec- 
tivity falls as 

RiQ) (132) 

The asymptotic behavior in Eq. (132) is identical to 
that derived from the Born approximation for the 
potential in Eq. (120) when dcr/d/3, Eq. (60), is 
converted to the reflectivity, an observation made 
only recently by Sinha, et al. [16]. The reflection 
laws from heterogeneous and nonuniform surfaces 
and films depart significantly from Eq. (131) and 
are sensitive to model details. For expositions of 
neutron reflectometry and optics, see [9], [12], 
and [15]. 
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